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Chover-type laws of the k -iterated logarithm for

weighted sums of strongly mixing sequences

Lorenzo Trapani1

Cass Business School, City University London, 106 Bunhill Row, London EC1Y 8TZ,
UK.

Abstract

This note contains a Chover-type Law of the k -Iterated Logarithm for weighted
sums of strong mixing sequences of random variables with a distribution in
the domain of a stable law. We show that the upper part of the LIL is similar
to other studies in the literature; conversely, the lower half is substantially
different. In particular, we show that, due to the failure of the classical ver-
sion of the second Borel-Cantelli lemma, the upper and the lower bounds
are separated, with the lower bound being further and further away as the
memory of the sequence increases.

Keywords: Chover Law of the Iterated Logarithm, strongly mixing
sequence of random variables, slowly varying function
2000 MSC: 60F15

1. Introduction

Let {Xi, 1 ≤ i <∞} be a sequence of real-valued random variables de-
fined on a probability space (Ω, F, P ), and define

α (m) = sup
k

{
|P (A ∩B)− P (A)P (B)| s.t. ∀k ∈ N, A ∈ F k

1 , B ∈ F∞k+m
}
,

(1)
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where F j+k
j = σ (Xi, j ≤ i ≤ j + k). The sequence {Xi, 1 ≤ i <∞} is said

to be strongly mixing (or α-mixing) if α (m) = 0 as m → ∞ - we refer to
Davidson [4] inter alia, for a comprehensive treatment of mixing.

The notion of strong mixing plays an important role in asymptotic the-
ory, also because it has the relative advantage of being weaker than other
types of mixing (see e.g. Davidson [4, Ch. 13.6]). In the context of the
Law of the Iterated Logarithm (LIL), however, strong mixing poses some
problems, essentially due to the difficulty in using the second Borel-Cantelli
lemma. Although the classical version of this result requires independence,
it is well known that such assumption can be relaxed: e.g. Iosifescu and
Theodorescu [5, Lemma 1.1.2] show the validity of the lemma for uniformly
mixing sequences. However, in the case of strongly mixing sequences, the
second Borel-Cantelli lemma does not follow automatically, and in order to
derive it, restrictions have to be imposed on the size of the probabilities
(Yoshihara [13]), or on the rate of divergence of the sum of the probabilities
(Tasche [10]). Oodaira and Yoshihara [7] and Yoshihara [13] study the LIL
for strongly mixing sequences, in the case of random variables with finite
second moments.

In this contribution, we derive the Law of the k -Iterated Logarithm for
weighted sums of strongly mixing sequences of random variables with infinite
second moment. In this respect, the subject of this note belongs in the
family of the so-called “Chover-type LIL” - see e.g. Chover [3], Mikosch
[6], Vasudeva [12], Cai [1][2], Wu and Jiang [14][15]. One major difference
with such contributions, however, is that in our case the upper and the lower
halves of the LIL are separated. In particular, the upper half of the LIL
is exactly the same as in other studies. On the other hand, the lower half
is substantially different: a different norming sequence is required, which
is slower the slower the convergence of α (m) to zero as m → ∞. As a
consequence, the LIL bifurcates into two separate results, thereby not being
a sharp result any more.

Let the common, non-degenerate distribution of the Xis be denoted as
F , assumed to be in the domain of attraction of a stable distribution with
tail exponent γ ∈ (0, 2), viz.

1− F (x) =
c1 (x) + o (1)

xγ
L (x) and F (−x) =

c2 (x) + o (1)

xγ
L (x) , (2)

as x→∞. Consider the following assumptions:
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Assumption 1 [distribution] In (2), it holds that (i) ci (x) ≥ 0, i = 1, 2
with limx→∞ ci (x) = ci and c1 + c2 > 0; (ii) the function L (x) ≥ 0 is slowly
varying at infinity in the Karamata sense, i.e.

lim
t→∞

L (tx)

L (t)
= 1 for any x > 0.

Assumption 2 [dependence] The sequence {Xi, 1 ≤ i <∞} is strongly
mixing with mixing numbers α (m) = O

(
m−θ

)
and θ > 1.

By Theorem 1.2 in Seneta [9, p.2], Assumption 1 entails that L (x) has the
representation L (x) = l1 (x) exp

{∫ x
B
t−1l2 (t) dt

}
, for some B > 0, l1 (x) ≥ 0,

limx→∞ l1 (x) = l1 > 0, and limx→∞ l2 (x) = 0.
In Assumption 2, a polynomial rate of decay is assumed for α (m). Al-

ternatively, an exponential rate of decay can be assumed - this is in the next
assumption, which constitutes an alternative to Assumption 2.

Assumption 2’. [exponential mixing rate] The sequence {Xi, 1 ≤ i <∞}
is strongly mixing with mixing numbers α (m) = O (bm) for some b ∈ (0, 1).

The remainder of the paper is organised as follows. The main results,
namely the upper and lower bounds for the LIL, are presented in Section 2.
In Section 4, we report all the technical lemmas that are required for the
proofs of the two theorems in Section 2.

2. Main results

Let Sn =
∑n

i=1 h
(
i
n

)
Xi, where h (·) is a nontrivial, pointwise continuous

function of bounded variation on [0, 1]. We present the upper and lower
halves of the LIL as two separate theorems. Let lnk x denote the k-iterated
logarithm of x (e.g. ln2 x = ln ln x) truncated at zero, and define the product∏j

p=1 (·) as 1 for j = 0.
It holds that

Theorem 2.1. Let Assumptions 1 and 2 hold. For any ε > 0 and any
j ∈ N ∪ {0}

lim sup
n→∞

(
|Sn − an|

bn

)1/ lnj+2 n

≤ e
1+2ε
γ a.s.
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where an =
∑n

i=1E
[
h
(
i
n

)
Xi

]
when γ > 1 and zero otherwise, and bn = n

1
γ[(∏j

p=1 lnp n
)

ln1+ε
j+1 n

] 1
γ
L1 (n), with L1 (n) slowly varying at infinity in the

Karamata sense. Under Assumptions 1 and 2’, the same result holds.

Theorem 2.2. Let Assumptions 1 and 2 hold, and recall that θ is the size
of the mixing numbers α (m). For any ε ∈

(
0, 1

2

)
and any j ∈ N ∪ {0}

lim sup
n→∞

(
|Sn − an|

bθn

)1/ lnj+2 n

≥ e
1−2ε
γ a.s.

where an is defined in Theorem 2.1 and bθn = n
θ

1+θ
1
γ

[(∏j
p=1 lnp n

)
ln1−ε
j+1 n

] 1
γ

L2 (n), with L2 (n) slowly varying at infinity in the Karamata sense. Under

Assumptions 1 and 2’, the same result holds with bθn =
(
n

lnn

) 1
γ

[(∏j
p=1 lnp n

)
ln1−ε
j+1 n

] 1
γ

L2 (n).

Remark 2.1. Theorem 2.1 contains the upper half of the Law of the k-
Iterated Logarithm. As can be seen comparing the result with e.g. Corollary
2.4 in Cai [1], this is the “classical” upper bound for the LIL, which is typi-
cally found in the case of independent data. The only difference, in the proof,
is the maximal inequality employed here.

Remark 2.2. Theorem 2.2 contains the lower bound of the LIL. The norming
sequence bθn is different than in Theorem 2.1, and of lower magnitude. In
particular, as mentioned in the Introduction, bθn depends on the size of the
mixing coefficients, θ: the higher the dependence (and, therefore, the lower
θ), the smaller the norming sequence, and vice versa. This is not the case
under Assumption 2’: the norming sequence bθn does not depend on b in case
of exponential mixing.

As mentioned in the Introduction, the Law of the Iterated Logarithm
for strongly mixing sequences has been shown by Oodaira and Yoshihara [7]
and Yoshihara [13]. These studies require the existence of second moments,
and are based on a different assumption on the mixing numbers - e.g. in
Oodaira and Yoshihara [7, Theorem 5], it is required that E |X1|2+δ < ∞
and

∑∞
m=1 α

δ′
2+δ′ (m) < ∞ for 0 < δ′ < δ. Although “classical” studies in the

field of Chover-type laws usually require the tail index γ to be constrained
to be stricly smaller than 2, the method of proof employed in here can be
readily generalised to the case of γ = 2.
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Lemma 2.1. Let Assumptions 1 and 2 hold, with γ = 2. Then Theorems
2.1 and 2.2 hold; the same result holds under Assumptions 1 and 2’.

Remark 2.3. The Lemma follows immediately from the proofs of the main
results and it is therefore reported without proof. Note that, in this case, the
norming sequence for the upper bound is the familiar one that is typically
found in Hartman-Wintner-type Laws of the Iterated Logarithm, i.e. bn =√
n
(∏j

p=1 lnp n
)

ln1+ε
j+1 n L1 (n); on the other hand, given Assumptions 2 or

2’, there is the usual gap between upper and lower bounds.

Remark 2.4. The Lemma is valid even in the case of γ > 2. In such case,
the proofs of Lemmas 4.1-4.5 can (again) be readily extended. As can be
expected, the norming sequence for the upper bound cannot be faster than bn

=

√
n
(∏j

p=1 lnp n
)

ln1+ε
j+1 n L1 (n), otherwise Lemma 4.3 does not hold - in

particular, term IIa in equation (7) diverges.

3. Conclusions

This note studies the Law of the k-Iterated Logarithm for strongly mixing
sequences. Most of the attention is devoted to the case of random variables
with common distribution in the domain of attraction of the normal distri-
bution and tail index γ ∈ (0, 2); however, proofs and results can be readily
extended e.g. to the case of finite second moment, i.e. γ = 2. The Law of
the Iterated Logarithm (LIL) is a delicate result, in that it is, usually, an
equality. In addition to being of interest per se, the LIL finds natural ap-
plications when exact rates of convergence are required - an example, under
investigation of the author, is the case of a randomised test for the finiteness
of the k-th absolute moment of a random variable (see Trapani [11]). In
general, when exact rates are required, the LILs derived in this paper can be
of help, e.g. to strengthen the results given by a Law of Large Numbers or
by a Central Limit Theorem. More generally, derivations, in statistics, often
involve the use of inequalities - heuristically, there is a wide amount of such
inequalities providing upper bounds, whereas lower bounds are relatively less
explored; results like Theorem 2.2 bridge this gap.

The results in this paper have one interesting theoretical implication:
when considering strongly mixing sequences, the upper and lower halves of
the LIL are not the same, and therefore the LIL is no longer a equality. We
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show in the paper that this is due to the failure of the (standard) formulation
of the second Borel-Cantelli Lemma: the upper bound of the LIL is the
same as when having an independent sequence, but the lower bound, on
the other hand, is not. Specifically, we find that in order for the partial
sums to be bounded from below, the norming constant has to be of smaller
order of magnitude (and, therefore, it is slower) than e.g. in the case of
independence. Despite such negative feature, this paper provides almost
sure upper and lower bounds for the (weighted) partial sums of a sequence
of strongly mixing random variables.

4. Lemmas and proofs

Henceforth, we denote with f (x) > 0 a function such that

lim sup
x→∞

sup
0≤t≤x

f (t)

f (x)
<∞. (3)

Further, we define the truncated sequence X
(n)
i = XiI [|Xi| ≤ bn], and the

corresponding partial sums S
(n)
i =

∑i
j=1

[
h
(
j
n

)
X

(n)
j − Eh

(
j
n

)
X

(n)
j

]
. The

proof of Theorem 2.1 requires some preliminary lemmas, some of which are
similar to those found in other studies (e.g. Cai [1]).

Lemma 4.1. Let Assumption 2 hold. Then, for any sequence rn

P

[
max
1≤i≤n

∣∣∣S(n)
i

∣∣∣ ≥ xrn

]
≤ 8n

x2r2n

[
sup

0≤z≤1
|h (z)|2

]
E
∣∣∣X(n)

1

∣∣∣2 +
32 (n− 1)

x
α (n) .

(4)
The same result holds for Assumption 2’.

Proof. The lemma is an application of Theorem 4 and Lemma 1 in Rio [8].
Indeed, Theorem 4 in Rio [8] stipulates that

P

[
max
1≤i≤n

∣∣∣S(n)
i

∣∣∣ ≥ 2x

]
≤ 2

x2

n∑
i=1

E

∣∣∣∣h( in
)
X

(n)
i

∣∣∣∣2 +
4

x

n−1∑
i=1

δi,1 (n) , (5)

where δi,1 (n)≤ 2
∫ 2α(n)

0
Qi+1 (u) du, whereQi+1 (u) is the inverse of P

[∣∣∣X(n)
i+1

∣∣∣ > u
]
.

This result holds for any weighted sequence h
(
i
n

)
Xi, since transformations
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of mixing sequences are mixing of the same size (e.g. Theorem 14.1 in David-

son [4]). Since the Xis have identical distribution, E
∣∣∣X(n)

i

∣∣∣2 = E
∣∣∣X(n)

1

∣∣∣2 and

we write Qi+1 (u) = Q1 (u) for each i. Also, by the boundedness of X
(n)
i ,∫ 2α(n)

0
Q1 (u) du ≤ 2α (n) rn, so that

∑n−1
i=1 δi,1 (n) ≤ 4 (n− 1) α (n) rn. Sub-

stituting these calculations in (5), and noting that h (·) is bounded, yields
(4).

Lemma 4.2. Let Assumption 1 hold, and let f (x) be a function with property

(3) such that
∫∞
1

[xf (x)]−1 dx < ∞ and define cn = [nf (n)]
1
γ . Then, as

n→∞

c−1n max
1≤i≤n

∣∣∣∣∣
i∑

j=1

Eh

(
j

n

)
X

(n)
j

∣∣∣∣∣→ 0.

Proof. The proof is the same as for equation (2.5) in Cai [1], where it is
shown that

c−1n max
1≤i≤n

∣∣∣∣∣
i∑

j=1

Eh

(
j

n

)
X

(n)
j

∣∣∣∣∣ < ε

2
, (6)

for ε > 0.

Lemma 4.3. Let Assumption 2 hold. Then, under the conditions of Lemma
4.2, for any ε > 0 it holds that

∞∑
n=1

n−1P

[
max
1≤j≤n

|Sj| > εcn

]
<∞.

The same result holds under Assumption 2’.

Proof. It holds that

P

[
max
1≤j≤n

|Sj| > εcn

]
≤ P

[
max
1≤j≤n

|Xj| > cn

]
+P

[
max
1≤j≤n

∣∣∣S(n)
j

∣∣∣ > εcn − max
1≤i≤n

∣∣∣∣∣
i∑

j=1

Eh

(
j

n

)
X

(n)
j

∣∣∣∣∣
]
.

Using Lemma 4.2, and specifically equation (6), the expression above can be
rewritten as

P

[
max
1≤j≤n

|Sj| > εcn

]
≤

n∑
j=1

P [|Xj| > cn] + P

[
max
1≤j≤n

∣∣∣S(n)
j

∣∣∣ > ε

2
cn

]
.
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Therefore, in order to prove the lemma, we need to show that

I =
∞∑
n=1

n−1
n∑
j=1

P [|Xj| > cn] <∞,

II =
∞∑
n=1

n−1P

[
max
1≤j≤n

∣∣∣S(n)
j

∣∣∣ > ε

2
cn

]
<∞.

Consider I; we have I =
∑∞

n=1 P [|Xn| > cn]; thus, by Assumption 1, I ≤ C ′∑∞
n=1 c

−γ
n L (n) ≤ C

∫∞
1

[xf (x)L (x)]−1 dx. Using the properties of regular
variation (see Seneta [9]; in particular, Proposition 3 on p. 18 and Theorem
2.6 on p. 65), this integral is equivalent to L−1 (1)

∫∞
1

[xf (x)]−1 dx, which is
finite by assumption, so that I <∞. As far as II is concerned, using Lemma
4.1 we have

II ≤ 32

ε2

∞∑
n=1

n

nc2n
E
∣∣∣X(n)

1

∣∣∣2 +
64

ε

∞∑
n=1

(n− 1)

n
α (n) = IIa + IIb. (7)

Clearly, IIb ≤ C
∑∞

n=1 α (n) < ∞ by Assumption 2; this also holds under
Assumption 2’, and it is the only part of the proof in which the mixing
numbers play a role. The proof that IIa < ∞ is in equation (2.13) in Cai
[1] - see also the proof of Theorem 1(ii) in Wu ad Jiang [14]. Thus, II <∞,
which proves the lemma.

Lemma 4.4. Under the conditions of Lemma 4.3 it holds that

lim sup
n→∞

|Sn − an|
cn

= 0 a.s.

Proof. The proof is similar to that in the proof of Corollary 2.4 in Cai [1].
In particular, note that for any n there is a k ∈ N such that 2k ≤ n <
2k+1; further, there exists some t ∈ [0, 1) it holds that n = 2k+t. Using the

short-hand notation Pk ≡ P
[
max1≤i≤2k+t |Si| > ε

(
2k+1f

(
2k+t

)
L
(
2k+t

)) 1
γ

]
we have

∞∑
k=0

Pk ≤ 2
∞∑
k=0

2k+1−1∑
n=2k

1

2k+1 − 1
Pk ≤ 2

∞∑
n=1

1

n
P

[
max
1≤j≤n

|Sj| > εcn

]
<∞,

by Lemma 4.3. Therefore, as n→∞
max1≤i≤2k+t |Si|

[2k+1f (2k+t)L (2k+t)]
1
γ

= 0 a.s.,
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which entails

|Sn|
[nf (n)]

1
γ

≤
max1≤i≤2k+t |Si|

[2k+1f (2k+t)L (2k+t)]
1
γ

[
2k+1f

(
2k+t

)
L
(
2k+t

)] 1
γ

[nf (n)]
1
γ

≤ C
max1≤i≤2k+t |Si|

[2k+1f (2k+t)L (2k+t)]
1
γ

= 0 a.s.,

so that finally

lim sup
n→∞

|Sn|
[nf (n)]

1
γ

= 0 a.s.

Proof of Theorem 2.1. The Theorem follows immediately from Lemma

4.4, upon setting f (x) = L1 (x)
(∏j

p=1 lnp x
)

ln1+ε
j+1 x, and using equation

(2.11) in Wu and Jiang [14].

We now prove Theorem 2.2. Define

ᾱ (m) = sup
k

{
|P (A ∩B)− P (A)P (B)| s.t. ∀k ∈ N, A ∈ F k

1 , B ∈ F k+m
k+m

}
.

(8)
Clearly, ᾱ (m) ≤ α (m).

Henceforth, we use the short-hand notation “i.o.” for “infinitely often”.

Lemma 4.5. Let Assumptions 1 and 2 hold, and define the sequence cθn =

n
θ

1+θ
1
γ ϕ (n)

1
γ , with

∫∞
1

[xϕ (x)]−1 dx =∞. Then

P
[
|X1| > cθn i.o.

]
= 1. (9)

Under Assumptions 1 and 2’, (9) holds for cθn =
(
n

lnn

) 1
γ ϕ (n)

1
γ .

Proof. We report the proof in detail under Assumption 2, and, at the end,
sketch the proof under Assumption 2’. Let r = θ − 1; clearly, by Assump-
tion 2, r ∈ [−1,+∞). The lemma is based on applying Theorem 2.2 in
Tasche [10]; essentially the same results could be obtained using Theorem 1
in Yoshihara [13]. Indeed, the result in the lemma requires two sufficient con-
ditions. Firstly, it is required that

∑∞
n=1 n

rᾱn <∞; but since
∑∞

n=1 n
rᾱn ≤∑∞

n=1 n
rαn <∞ on account of Assumption 2, this condition holds. Secondly,

it is required that
∑∞

n=1 n
− 1

2+rP
[
|X1| > cθn

]
= ∞. Indeed

P
[
|X1| > cθn

]
= C

(
cθn
)−γ

L
(
cθn
)
∼ Cn−

θ
1+θϕ−1 (n) ,

9



for some C > 0 in view of Assumption 1 and of the properties of regular
variations (see Seneta [9]). Thus

∞∑
n=1

n−
1

2+rP
[
|X1| > cθn

]
∼ C

∞∑
n=1

n−
1

1+θn−
θ

1+θ ϕ−1 (n) = C

∞∑
n=1

1

nϕ (n)
,

which diverges by virtue of the integral test
∫∞
1

[xϕ (x)]−1 dx = ∞. This
proves (9) under Assumption 2. If Assumption 2’ holds, Theorem 2.2 in

Tasche [10] can still be applied as long as
∑∞

n=1

P [|X1|>cθn]
lnn

= ∞. Indeed,
since in this case

P
[
|X1| > cθn

]
= C

(
cθn
)−γ

L
(
cθn
)
∼ C

lnn

n
ϕ−1 (n) ,

we have
∞∑
n=1

P
[
|X1| > cθn

]
lnn

∼ C
∞∑
n=1

lnn

n lnn
ϕ−1 (n) = C

∞∑
n=1

1

nϕ (n)
,

which gives the desired result. Henceforth, the proof is the same as for the
case of Assumption 2.

Proof of Theorem 2.2. Standard calculations yield that Lemma 4.5 holds

when ϕ (n) =
(∏j

p=1 lnp n
)

ln1−ε
j+1 n. Hence

P
[
|X1| > n

θ
1+θ

1
γ ϕ (n)

1
γ i.o.

]
= 1; (10)

by virtue of Davidson [4, Theorem 14.1], this result holds for any transfor-
mation of the type Xi 7−→ h

(
i
n

)
Xi. This entails that

lim sup
n→∞

|Sn − a′n|[
n

θ
1+θϕ (n)

] 1
γ

= +∞ a.s., (11)

for every sequence a′n. This can be shown by contradiction: let bθ,εn =[
n

θ
1+θϕ (n)

] 1
γ

and suppose

lim sup
n→∞

|Sn − a′n|[
n

θ
1+θϕ (n)

] 1
γ

= d0 a.s., (12)
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for some d0 <∞. We have∣∣Xn −
(
a′n − a′n−1

)∣∣
bθ,εn

=

∣∣Sn − Sn−1 − (a′n − a′n−1)∣∣
bθ,εn

1

|h (1)|

≤ C

[
|Sn − a′n|
bθ,εn

+

∣∣Sn−1 − a′n−1∣∣
bθ,εn−1

bθ,εn−1

bθ,εn

]

≤ C

[
|Sn − a′n|
bθ,εn

+

∣∣Sn−1 − a′n−1∣∣
bθ,εn−1

]
,

where the last passage holds on account of bθ,εn being a non-decreasing se-
quence. By (12), this entails that

lim sup
n→∞

|Xn|
bθ,εn
≤ 2d0 + lim sup

n→∞

∣∣(a′n − a′n−1)∣∣
bθ,εn

<∞ a.s.;

due to Xn
bθ,εn

p→ 0, we have lim supn→∞
|(a′n−a′n−1)|

bθ,εn
= 0 a.s., which entails

P
[
|X1| > n

θ
1+θ

1
γ ϕ (n)

1
γ i.o.

]
= 0. But this contradicts (10), so that (11)

is the correct statement.
Now, using Lemma 3 in Wu and Jiang [14] we have that, for some arbi-

trary κ

|Sn − an|[
n

θ
1+θ
∏j

p=1 lnp n
] 1
γ

=
|Sn − an|[
n

θ
1+θϕ (n)

] 1
γ

[
n

θ
1+θϕ (n)

] 1
γ

[
n

θ
1+θ
∏j

p=1 lnp n
] 1
γ

≥ (lnj+1 n)
1−ε
γ (lnj+1 n)−(1−ε)κ ;

setting κ = ε
1−εγ, we finally have

|Sn − an|[
n

θ
1+θ
∏j

p=1 lnp n
] 1
γ

= (lnj+1 n)
1−2ε
γ ,

whence the statement of the theorem. The proof under Assumption 2’ follows
exactly the same passages and thus it is omitted.

The proof of Lemma 2.1 is a straightforward generalisation of the results
above, and it is left as an exercise.
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