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Abstract
We contrast the forecasting performance of alternative panel esti-

mators, divided into three main groups: homogeneous, heterogeneous
and shrinkage/Bayesian. Via a series of Monte Carlo simulations, the
comparison is done using different levels of heterogeneity and cross
sectional dependence, alternative panel structures in terms of T and
N and the specification of the dynamics of the error term. To as-
sess the predictive performance, we use traditional measures of fore-
cast accuracy (Theil’s U statistics, RMSE and MAE), the Diebold
and Mariano’s (1995) test, and the Pesaran and Timmerman’s (1992)
statistics on the capability of forecasting turning points. The main
finding of our analysis is that when the level of heterogeneity is high,
shrinkage/Bayesian estimators are preferred, whilst when there is low
or mild heterogeneity homogeneous estimators are the ones with the
best forecast accuracy.
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Optimal Forecasting with Heterogeneous Panels: A Monte
Carlo Study.

We contrast the forecasting performance of alternative panel estimators,
divided into three main groups: homogeneous, heterogeneous and shrink-
age/Bayesian. Via a series of Monte Carlo simulations, the comparison is
done using different levels of heterogeneity and cross sectional dependence,
alternative panel structures in terms of T and N and the specification of the
dynamics of the error term. To assess the predictive performance, we use
traditional measures of forecast accuracy (Theil’s U statistics, RMSE and
MAE), the Diebold and Mariano’s (1995) test, and the Pesaran and Tim-
merman’s (1992) statistics on the capability of forecasting turning points.
The main finding of our analysis is that when the level of heterogeneity is
high, shrinkage/Bayesian estimators are preferred, whilst when there is low
or mild heterogeneity homogeneous estimators are the ones with the best
forecast accuracy.
J.E.L. Classification Numbers: C12, C13, C23, C33.
Keywords: Heterogeneity; Cross dependence; Forecasting; Monte Carlo

simulations.
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1 Introduction

Over the last two decades a variety of estimation techniques have been pro-
posed to estimate parameters of interest when panel data are available: Arel-
lano and Honore’ (2001), Wooldridge (2002), Hsiao (2003), Arellano (2003)
and Baltagi (2005) provide comprehensive surveys on the topic. It has be-
come customary to group these techniques into three main groups: homoge-
neous, heterogeneous and Bayesian (or shrinkage) estimators. While the first
class assumes poolability of the data in the panel, and therefore parameters
homogeneity across the panel units, the second one rejects this hypothesis
taking into account explicitly the presence of heterogeneity among units. The
class of Bayesian estimators is viewable as a hybrid solution between the two
other classes (see Maddala, Li and Srivatsava, 1994, and Pesaran, Hsiao and
Tahmiscioglu, 1999). It becomes then crucial to understand which estimation
method is the “best”, in statistical terms, for the specific research interest
(e.g. bias reduction, efficiency, forecasting accuracy...).
Recently, in several seminal empirical papers Professor Badi Baltagi and

associates have focused on investigating which estimator is the “best” when
the specified model has to be used for forecast purposes. Baltagi and Grif-
fin (1997), Baltagi, Griffin and Xiong (2000), Baltagi, Bresson, Griffin and
Pirotte (2003) and Baltagi, Bresson and Pirotte (2002) apply dynamic panel
specifications to industrial level data and find that the predictive ability of
homogeneous estimators outperforms the predictive ability of heterogeneous
and Bayesian estimators over any forecast horizon. Amongst the homoge-
neous estimators, GLS and within-2SLS emerge as the best estimators for
forecasting purposes, especially when we forecast over a long time span. The
superiority of the homogeneous estimators can sound quite reasonable when
the panel is short, and when the degree of heterogeneity across units is lim-
ited, but it is rather puzzling when the time length T of the panel is large
or when the degree of heterogeneity is high. This genuine empirical finding
is particularly interesting because the model where we impose homogene-
ity is in general rejected by the data. A first interpretation of this apparent
counter-intuitive empirical regularity is that a model that is “simple and par-
simonious” offers a better forecasting performance. However, using a different
dataset, Baltagi, Bresson and Pirotte (2004) find that Bayesian estimators
provide the best forecasting performance.
It becomes therefore worth investigating whether these results hold gen-

erally speaking or if they are properties of the data considered in the works
cited above, or, possibly, if the outcome of the comparison among the esti-
mators forecasting performance depends on the number of units N and the
time length of the panel T , and on the degree of the parameters hetero-
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geneity across units. Our main objective in this work is to compare via a
broad Monte Carlo simulation exercise the forecasting accuracy of several es-
timators belonging to each of the three classes (homogeneous, heterogeneous
and shrinkage) for a routinely applied model (the dynamic specification with
one or more exogenous covariates) under various circumstances. Such ”cir-
cumstances” are the pair (N,T ), the level of heterogeneity among units, the
dynamic specification of the error term, and the existence and degree of cross
sectional dependency across units. These issues are of paramount importance
in determining the properties of estimators.
An important related question that arises in these circumstances is how

to assess forecasting performance of a model. In their papers, Baltagi and
associates use the standard Root Mean Square Error (RMSE) to measure
forecasting accuracy. However, the literature on forecasting has developed
a quite critical attitude towards this classical statistical measure. Thus in
addition to the method based on RMSE, in our Monte Carlo experiments we
use also the approach based on different specifications for the loss function
(Diebold and Mariano, 1995), and the non parametric statistic that evalu-
ates the ability to forecast change points due to Pesaran and Timmermann
(1992). Our main findings show that the degree of heterogeneity plays a
crucial role, whilst other features of the data have a very limited impact on
the predictive ability of various panel estimators. When heterogeneity is low
or mild, homogeneous estimators have the best predictive ability, whereas
when heterogeneity is high, shrinkage/Bayesian procedures are preferable.
The remainder of this paper is as follows. We set out the model we will be

considering for our exercise, and briefly describe the estimation techniques
and the predictive performance tests that we employ in our experiments
(Section 2). We describe the details of the Monte Carlo experiments in
Section 3, and report and comment the main results from the simulations in
Section 4. Section 5 concludes.

2 ESTIMATION AND FORECASTING

2.1 Model

The data generating process (DGP) we employed for simulation is based on
a dynamic specification and one strictly exogenous/predetermined variable:

yit = αi + βiyit−1 + γixit + uit (1)

where i = 1, .., N and t = 1, .., T . Without loss of generality, the error term
uit is assumed to have no time specific effects since we focus on the impact of
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grouping across units. The possibility of having cross sectional dependence
- i.e. the case E [uitujs] 6= 0 for some pair (i, j) - is not ruled out. Model (1)
is the classical dynamic panel data specification, as discussed extensively in
Baltagi (2005). It is also worth emphasizing that what we consider in our
exercise are ex post forecasts, i.e. forecasts where the exogenous variable in
model (1) is assumed known.
As far as estimation is concerned, we employed both homogeneous and

heterogeneous estimators, performing an exercise similar to that in Baltagi
and Griffin (1997), Baltagi, Griffin and Xiong (2000), Baltagi, Bresson, Grif-
fin and Pirotte (2003) and Baltagi, Bresson and Pirotte (2002, 2004). Notice
that whilst heterogeneous estimators are based on model (1), homogeneous
estimators, assuming poolability of the data, are based on the following re-
stricted specification of the DGP:

yit = α+ βyit−1 + γxit + εit. (2)

The error term εit is assumed to follow the well known one way specification:

εit = µi + uit, (3)

where µi is the unobservable individual specific effect defined as

µi = (αi − α) + (βi − β) yit−1 + (γi − γ)xit, (4)

and uit is the remainder of the disturbance - see Baltagi (2005) for a thorough
discussion. The results of pooling using model (2) on estimators are discussed
in Pesaran and Smith (1995) and Hsiao, Pesaran and Tahmiscioglu (1999).

2.2 Homogeneous, heterogeneous and shrinkage/Bayesian
estimators

We turn our discussion to estimation, referring to Baltagi (2005) for the
details of each estimator.

2.2.1 Homogeneous estimators

The homogeneous estimators we consider fall into two main groups: least
squares and instrumental variables estimators.
Within the class of least squares estimators, we first consider six standard

pooled estimators applied to model (2): OLS, which ignores unit specific ef-
fects; first difference OLS to wipe out the effect of (possible) serial correlation
in the error term; Within(-groups) estimator, which allows for unit specific
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effects; Between(-groups) estimator; and WLS and WLS-AR(1), where unit
specific effects are assumed to be random. It is known that none of these
estimates is either unbiased or consistent (see Pesaran and Smith, 1995, and
the review in Baltagi, 2005). This is due to the assumption, common to
all these estimators, that regressors are exogenous. However, the model we
consider is dynamic and thus though all the explanatory variables are uncor-
related with the error components, the presence of either serial correlation in
the remainder error term νit or of a random unit effect such as µi makes the
lagged dependent variable correlated with the error term and therefore leads
to potentially inconsistent estimates. The asymptotic bias of OLS has been
assessed by Sevestre and Trognon (1985); it is also well known (see Nickell,
1981), that Within estimator is consistent only when T →∞, being biased of
order O (1/T ) for finite T . The random effect WLS estimator is also biased
and inconsistent, as pointed out in Baltagi (2005).
To achieve consistency, we may focus on pooled estimators based on in-

strumental variables. Thus, we first employ a standard 2SLS, which is con-
sistent but not efficient; no attempt was made to improve efficiency by taking
into account the unit specific effects. We also consider Within 2SLS, which,
like its least squares counterpart, wipes out unit specific effects by trans-
forming the data in deviations across their mean, and the Between 2SLS.
Thirdly, we apply 2SLS to the first differenced version of model (2); this
estimator (that henceforth will be referred to as FD-2SLS) is due to Ander-
son and Hsiao (1982) and is meant to eliminate fixed and random effects.
However, given that this estimation procedure may induce autocorrelation
in the remainder error term νit − νit−1, we also employ the correction pro-
posed by Keane and Runkle (1992) that allows for arbitrary types of serial
correlation1. This is applied to both the specification in levels (leading to
an estimator denoted as 2SLS-KR) and the first differenced model (obtain-
ing another estimate referred to as FD-2SLS-KR). Also, we employ EC2SLS
estimator - see Baltagi (2005) - and EC2SLS-AR(1) - see Baltagi, Griffin
and Xiong (2000) - to potentially achieve more efficiency by taking account
of possible serial correlation in the error term2. As a variant of EC2SLS,
we also compute the G2SLS estimator due to Balestra and Varadharajan-
Krishnakumar (1987). It is worth noticing that such estimator has the same
asymptotic covariance matrix as EC2SLS - see Baltagi and Li (1992) - but
its performance is different in finite samples3.

1Such estimation technique can be applied only if N > T - see Baltagi (2005).
2Note that these estimators, unlike standard 2SLS, also require an estimate of the

variance components in order to be feasible.
3We also considered employing the Arellano and Bond (1991) estimation procedure,

using a GMM estimation method on the specification in differences (whose outcome will
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Finally, we considered the MLE (see Baltagi, 2005) using the iterative
procedure suggested by Breusch (1987).
In total, we compare 18 homogeneous estimators.

2.2.2 Heterogeneous estimators

The estimators considered so far are all characterized by the assumption of
poolability of the data. This is a valid assumption only if the parameters
in model (1) are homogeneous across units. As pointed out by Pesaran and
Smith (1995) with respect to the dynamic pooled model, when parameters
are heterogeneous, pooling leads to biased estimates. Therefore, we turned
our attention also onto heterogeneous estimators.
In our Monte Carlo experiments we considered OLS and 2SLS applied

to each unit i, obtaining Individual OLS and 2SLS. Given the presence of a
lagged dependent variable, both estimates are biased. We then consider an
average of both estimates (obtaining Average OLS and 2SLS), as suggested
by Pesaran and Smith (1995). Averaging individual estimates leads to a
consistent estimator as long as both N and T tend to infinity. We also
compute the Swamy (1970) estimator, which belongs to the class of GLS and
is a weighted average of the least squares estimates, using as weights the
estimated covariance matrix.
In total we compare 5 alternative heterogeneous estimators.

2.2.3 Shrinkage/Bayesian estimators

We employed a class of shrinkage/Bayesian estimators - see Maddala, Li and
Srivastava (1994) - where each individual estimate is shrunk towards the
pooled estimates by weighing it with weight depending on the correspond-
ing covariance matrix. The authors claim that shrinkage type estimator are
superior to the homogeneous and to the other heterogeneous estimators as
far as predictive ability is concerned. The estimators we consider are the
Empirical Bayes based on OLS initialization, the Empirical Bayes based on
2SLS estimation and their iterative counterparts. Finally, we implement the
Hierarchical Bayes estimator using the same prior structure as in Hsiao, Pe-
saran and Tahmiscioglu (1999), which is found to have the best performance
among heterogeneous estimators in terms of bias reduction, especially when
T is small.

be labelled as FDGMM) and also the same set of instruments in first difference on a
specification in levels (GMM). However GMM estimation procedures are only feasible
when N > T (k − 2)+ (T + 3) /2, where k is the number of parameters. These estimators
would not have been feasible for all the cases we consider in our experiment, and we did
not perform them. GAUSS code was anyway written and is available upon request.
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In total, we compare 5 alternative Bayesian estimators.

2.3 Comparing forecasting performance

In this section we introduce the measures of forecasting performance we em-
ploy in our simulation exercise.
We employ three (classes of) measures of forecasting performance to as-

sess the out-of-sample predicting ability of each estimator:

1. statistical measures of accuracy;

2. measure of statistical assessment of performance.

3. measures of the capability of predicting turning points.

The indicators we chose are, for each class:

1. mean and median absolute error (referred to as MAE and MdAE re-
spectively), RMSE and Theil’s U statistics, whose expressions are re-
spectively

MAEj ≡
1

h

hX
i=1

|ŷji − yji|

MdAEj = median1≤j≤h |ŷji −median1≤j≤h (yji)|

RMSEj ≡

vuut1

h

hX
i=1

(ŷji − yji)
2

Uj ≡

vuutPh
i=1 (ŷji − yji)

2Ph
i=1 y

2
ji

where the index j refers to the j-th unit in the panel, h is the forecast
horizon, ŷji is the forecast i steps ahead of yji and median1≤j≤h (yji)

is the median of the sample {yji}hj=1. To obtain a single overall mea-
sure of performance, we considered the average of each indicator across
units, similarly to Baltagi and associates papers. These indicators are
all based on the residuals from forecast, and widely employed in the
realm of forecasting. We calculate these ”classical” measures but we
report and comment on the Theil’s U statistics only, given its nature of
relative measure which doesn’t have the scaling problem of both RMSE
and MAE. It is necessary to point out that using these indicators to
assess forecasting accuracy has been widely criticized on the basis of
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statistical and economic considerations - for a general overview, see the
review in Mariano (2002). From a statistical point of view, Clements
and Hendry (1993) noted that the RMSE is not invariant to isomor-
phic transformations of models, and can therefore lead to contradictory
results when applied to different (but isomorphic) representations of
the same model. Moreover, Diebold and Lopez (1996) show that since
RMSE depends only on the first two moments of the forecast distrib-
ution, it will suffer from serious shortcomings when such distribution
is not adequately summarized by only two moments. The literature
has criticized RMSE also on the grounds of economic considerations,
arguing that predictive performance should be evaluated via the losses
that arise from forecasting errors when certain decisions are made - see
Leitch and Tanner (1991), Granger and Pesaran (2000a, 2000b), and
the review by Pesaran and Skouras (2002). It has been shown that the
RMSE is compatible with a quadratic loss function - see Pesaran and
Skouras (2002) - but other specifications could be considered - see the
discussions in Christoffersen and Diebold (1996) and Mariano (2002).

2. Diebold and Mariano’s (1995) test is a widely used alternative to over-
come the inadequacies of RMSE since it is based on a loss function
approach without needing specify the functional form. This statistics
- with the adjustment for small sample bias proposed by Harvey, Ley-
bourne and Newbold (1997) - can be used for any forecasting horizon h
and doesn’t require gaussianity, zero-mean, serial or contemporaneous
uncorrelation of the forecast errors, and under the null hypothesis of
no difference between forecasting performances it is distributed as a
standard normal. Formally, this statistic can be obtained as follows.
Let dkji = ŷji − yji be the forecast error at period i for series j when
estimating parameters with an estimator k; assuming covariance sta-
tionarity and other regularity conditions, it is straightforward to show
that

T−1/2
¡
d̄j − µd

¢
⇒ N [0, 2πf (0)] ,

where f (0) is the spectral density at frequency zero, µd = E
¡
dkji
¢
and

d̄j =
hX
i=1

£
g
¡
d1ji
¢
− g

¡
d2ji
¢¤

with g (·) a generic loss function. Hence, the DM test is designed to
compare the performance of two predictors; computationally, the sta-
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tistic is set equal to

DMj =
d̄jh

2πf̂ (0) /T
i1/2 .

The loss function we consider in order to compute the statistics is a
quadratic one, which allows us to compare pairwise RMSEs.4 This
enables us to detect whether one estimator has a superior predictive
ability compared to another one by a proper testing rather than by
the pure comparison of RMSE values. Even in this case, we compute
the test statistics for every unit of the panel and then take the average
across units.

3. Forecasting performance could refer to something different from min-
imizing a loss function, such as the capability to capture the sign of
changes in the series rather than its values - see Granger and Pesaran
(2000b). We employ Pesaran and Timmerman’s (1992) statistics, de-
fined as

PTj =
P̂j − P̂ ∗jr

V̂
³
P̂j

´
− V̂

³
P̂ ∗j

´ ∼ N(0, 1)

where

P̂j = h−1
hX
i=1

sign (ŷjiyji) , P̂ ∗j = P̂yjP̂xj+
³
1− P̂yj

´³
1− P̂xj

´
,

V̂
³
P̂j

´
= h−1P̂ ∗j

³
1− P̂ ∗j

´
,

V̂
³
P̂ ∗j

´
= h−1

³
2P̂yj − 1

´2
P̂xj

³
1− P̂xj

´
+ h−1

³
2P̂xj − 1

´2
P̂yj

³
1− P̂yj

´
+

+4h−2P̂yjP̂xj

³
1− P̂yj

´³
1− P̂xj

´
P̂xj = h−1

hX
i=1

sign (ŷji) , P̂yj = h−1
hX
i=1

sign (yji) ,

4The Diebold and Mariano testing procedure also requires a non parametric estimate of
the spectral density of the difference of the loss associated with each predictor. The kernel
we employ is the truncated rectangular one employed by Diebold and Mariano (1995),
and the bandwidth we choose is specified as m (h) = 1+ blog (h)c, where the operator b·c
denotes the rounding to the closest integer.
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where the function sign (·) takes the value of unity if its argument is
positive and is equal to zero otherwise. Pesaran and Timmerman (1992)
prove that this non parametric statistics is distributed as a standard
normal under the null hypothesis that ŷji and yji are independent - and
therefore that the predictor ŷji has no capability to forecast yji. Like
in the previous point, here we compute the Pesaran and Timmerman
statistics for each unit of the panel and then report its average value
across units. Notice that this measure could be also employed as a
descriptive measure to rank forecasting techniques (see inter alia Driver
and Urga, 2004).

Having described the estimators considered and the methods of evaluating
forecasting accuracy, in the next section we illustrate the design of the Monte
Carlo experiment.

3 THE DESIGN OF THE MONTE CARLO
EXPERIMENTS

We generate a sample of N units with length T +T0, where T0 is the number
of initial values to be discarded to avoid dependence on the initial conditions
(set equal to 0). We let the number of units N and the time dimension T
assume various values.
The DGP we generate at each replication is the one given in model (1):

yit = αi + βiyit−1 + γixit + uit,

where:

• the parameters αi, βi and γi are generated as, respectively:

αi = ᾱ+HNα
i ,

βi = β̄ +HUβ
i ,

γi = γ̄ +HNγ
i ,

where ᾱ, β̄ and γ̄ are the mean values of the parameters, N ·
i denotes

an independent (across i) extraction from a normal random variable
and H is a parameter that controls heterogeneity across units, which
will be useful throughout the set of simulations to assess the predictive
performance of the estimators. Notice that whilst we employed stan-
dard normals for αi and γi, βi was simulated via a uniform distribution
(Uβ

i ) with bounded support so as to rule out the possibility of having
a value larger than (or equal to) unity;
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• the disturbance uit is, in a first set of experiments, assumed to follow
a stationary, invertible Gaussian ARMA(1,1) specification defined by

uit = ρuit−1 + ζit + ϑζit−1,

and the parameters (ρ, ϑ) control the degree of autocorrelation of the
error term in model (1). The error term is then rescaled by the factor
λ =

p
(1 + ϑ) / (1− ρ) to give it unit variance. Here there is no cross

sectional dependence across units, since uit is generated independently
of ujt for any pair (i, j). In a second set of experiments, we take into
account the presence of cross sectional dependence by modelling the
error (now denoted as u

0
it) as

u
0
it = uit + ζift,

where ft is a standard normal independent over t and ζi is a uniformly
distributed random variable whose support is chosen as [0, 0.2] to model
small cross section dependence and [−1, 3] to represent a large amount
of cross section dependence. This part of the experiments to modelling
cross sectional dependence follows the same lines as Pesaran (2007);

• the explanatory variable xit is generated with the following DGP:

xit = αi + βi + δxit−1 + ηit, (5)

where the error term ηit is a Gaussian white noise generated indepen-
dently of uit. Thus, the presence of the term αi + βi introduces a
correlation between xit and the error term (3) in the random effect
specification (2)

εit = µi + uit.

This correlation is such that E (xituit) = 0 for any i since all the quan-
tities on the right hand side of (5) are generated independently of uit -
and hence xit endogeneity is ruled out - and E (xitµi) 6= 0.5 This two
results make xit a strictly exogenous variable and a valid instrument
for GMM estimation a la Arellano and Bond (1991) thanks to its cor-
relation with the unit specific effect - see Baltagi (2005) for discussion.

5This can be seen combining (4) and (5), which (after some algebra) leads to

E (xitµi) = E [αi (α− αi)] +E [βi (β − βi) yit−1] 6= 0.
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As our results reported in Section 4 show, the degree of heterogeneity H
plays a pivotal role in determining the rank of the predictive abilities of the
various estimation techniques. We considered two separate cases, namely
H = 0.1 and H = 0.9 to represent the cases of "mild" heterogeneity and
"high" heterogeneity respectively. We base our choice on the grounds of the
empirical results in Baltagi and Griffin (1995), Baltagi, Griffin and Xiong
(2000), Baltagi, Bresson, Griffin and Pirotte (2003) and Brucker and Siliv-
ertovs (2006), where some order statistics (mainly the maximum, the mini-
mum, and the median) are reported for the individual estimated coefficients
in the panel regression. The discrepancy between maximum and mininum
estimated values differ (sometimes substantially) depending on the type of
heterogeneous estimator considered, and the models employed in the papers
cited above have different specifications and therefore a different number of
parameters to our exercise. However, it is possible to derive some guidelines
as to the degree of heterogeneity in the data considered in the empirical exer-
cises in Baltagi and Griffin (1997), Baltagi, Griffin and Xiong (2000), Baltagi,
Bresson, Griffin and Pirotte (2003) and Brucker and Silivertovs (2006). As-
suming that unit specific parameters have a normal distribution around the
estimated medians and standard deviation H, and letting n be the number
of cross sectional units, the (expected) maximum is given by H (anγ + bn),
where γ = 0.5772 is Euler’s constant and

an = 1/
p
2 log n,

bn =
1√
2 logn

− 1
2

log log n+ log (4π)√
2 logn

.

We compute the level of heterogeneity H for each estimator as

H =
dMm

2 (anγ + bn)
,

where dMm is the difference between the maximum and the minimum esti-
mate. We subsequently calculated an average level of heterogeneity based on
averaging (1) the levels of heterogeneity found using different estimators and
(2) the levels of heterogeneity found estimating different parameters when
models have more than one exogenous variable. Based on this approach, we
find that the levels of heterogeneity found in the datasets used by Baltagi,
Griffin and Xiong (2000) and Baltagi, Bresson, Griffin and Pirotte (2003)
are equal to 0.176 and 0.183 respectively. Baltagi and Griffin (1995) and
Brucker and Silivertovs (2006) find higher levels of H, equal to 0.323 and
0.428 respectively. Thus, in our experiments we set H = 0.1 to represent low
levels of heterogeneity, H = 0.5 to represent a mild level of heterogeneity,
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and we also choose H = 0.9 to explore the robustness and sensitivity of the
rankings of the forecasting performance relative to various estimators.
As far as the other parameters in our simulation exercise, we considered

the following values:

• we ran 5000 iterations for each simulation, and 2500 iterations (500 of
which in the burn-in period) for every Gibbs sampling algorithm - on
the ground of the results in Hsiao, Pesaran and Tahmiscioglu (1999);

• as far as the autocorrelation structure is concerned, we considered (ρ, ϑ)
to be equal either to (0, 0) or to (0.9, 0.9). These two pairs represent
the cases of non autocorrelation and of near integration, respectively;

• the number of initial observations to be discarded was set equal to
T0 = 100;

• the forecasting horizon is set equal to h = 10, though our results can
be extended to the cases h = 1 and h = 5, as in various papers by
Baltagi and associates.

4 SIMULATION RESULTS

In this section we report and comment the full set of results from the various
Monte Carlo experiments using the three forecasting accuracy tests. We
consider three different degrees of heterogeneity given by H = 0.1, 0.5 and
0.9 respectively; two different specifications for the error dynamics, namely
(ρ, ϑ) were set equal to (0, 0) and (0.9, 0.9); in addition to the case of no
cross dependence, two alternative degree of cross sectional dependence are
considered, namely the case of ”mild” cross dependence (ζi [0, 0.2]) and one
with ”large” cross sectional dependence ( ζi is now [−1, 3]). Finally, the
pairs of (T,N) we consider are (5, 10), (5, 20), (10, 20), (10, 50), (20, 50) and
(50, 50).
The presentation of the full set of experiments are reported in details in

a companion paper (Trapani and Urga, 2005).

4.1 Theil’s U statistic

In this section we report the rankings of the various estimation techniques
based on Theil’s U statistic6. Each table is divided in three panels. We report

6The full set of results are reported in Trapani and Urga (2005), Tables A1-A12. We
also computed RMSEs and the MAEs for each simulation. The findings remain unchaged.
The results are available upon request.
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the statistics for the homogeneous, heterogeneous and shrinkage/Bayesian
estimators respectively.
The main findings can be summarized as follows.

Our results show that heterogeneity plays a very important role and has
a strong impact on the outcomes of the simulation exercises. The results we
obtained for the case of mild heterogeneity, H = 0.5, were essentially the
same as those with low levels of heterogeneity, H = 0.1, and therefore we
report and comment only the latter case. When the degree of heterogeneity
is low (columns with H = 0.1 in the Tables) and the amount of dependence
among units is mild, homogeneous estimators prevail; this is a common fea-
ture found in the case of mild cross dependence (Tables 1, 3, 5, 7, 9, 11).
Such findings are in the line with what reported in Baltagi and associates.
Note that the results from homogeneous estimators are very closed to those
obtained from the class of shrinkage/Bayesian estimators. However, by in-
creasing the level of heterogeneity (H = 0.9) homogeneous estimators are
outstaged by the shrinkage/Bayesian estimators, as columns 2 and 4 in Ta-
bles 1, 3, 5, 7, 9, 11 show. While the statistics from shrinkage/Bayesian
estimators do not change very much with respect to the case of low hetero-
geneity, we note massive changes affecting homogeneous estimators, which
is particularly evident in Tables 1 and 3 where Theil’s U becomes on aver-
age three times bigger than in the case where H = 0.1. It is important to
emphasize that this result reinforces and complements the empirical findings
reported in the papers by Baltagi and Griffin (1997), Baltagi, Griffin and
Xiong (2000), Baltagi, Bresson, Pirotte (2002), Baltagi, Bresson, Griffin and
Pirotte (2003), and Brucker and Silivertovs (2006), where homogeneous esti-
mators seem to dominate over heterogeneous and shrinkage. Low/mild levels
of heterogeneity, as found in the papers cited above, entail the superiority
of homogeneous estimators over heterogeneous and shrinkage. This occurs
especially for small T , whereby the performance of individual estimators is
very poor, as one could expect and as found in the empirical papers cited
above. On the contrary, increasing the degree of heterogeneity improves the
performance of shrinkage estimators over homogeneous estimators. This oc-
curs for all values of T , even when heterogeneous estimators do not perform
well; see also columns 2 and 4 Tables 1 and 3 with T = 5, where, in spite
of high heterogeneity, homogeneous estimators have a better performance
than their homogeneous counterparts. This is consistent with the analysis
by Maddala, Li and Srivastava (1994), who advocate the use of shrinkage es-
timators to both take heterogeneity into account and smooth away the bias
of heterogeneous estimators. It is worth noting that even under high levels of
heterogeneity, heterogeneous estimators never outperform the shrinkage ones
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when limited cross dependence is present, whose predictive ability actually
improves ceteris paribus as heterogeneity increases. The results change when
cross dependence increases to high levels.

Other findings that emerge from our simulations are reported below.
The impact of cross sectional dependence is also quite substantial. In the

case of mild cross dependence our findings are very much in line with what
reported in the existing applied literature for the case of mild heterogeneity
- see Baltagi and Griffin (1997), Baltagi, Griffin and Xiong (2000), Baltagi,
Bresson, Pirotte (2002), Baltagi, Bresson, Griffin and Pirotte (2003), and
Brucker and Silivertovs (2006). When instead we consider the case of large
contemporaneous correlation, the statistics change dramatically, as one may
see from Tables 2, 4, 6, 8, 10 and 12. Irrespective of the level of heterogeneity
considered and other characteristics of the panel (namely the combination of
size of T and N and the dynamics of the error terms), the estimators that
show the best forecasting accuracy are always the shrinkage/Bayesian ones,
with the only exception of very short panels with T = 5 where individual
estimates are unreliable (this clearly emerges fromTables 2 and 4). It is worth
noticing that the presence of cross sectional dependence has an impact on
the shrinkage/Bayesian estimators in the sense that the statistics get worse
as cross dependence gets larger, and this seems to suggest that an increasing
presence of cross dependence makes forecasting in general more difficult in
this case.
The time and cross sectional dimensions of panels do not play a substan-

tial role. Few estimators are sensitive to T and N , especially when in the
small sample case. In general most estimators are not sensitive to the values
of the pair (T, N), and this is particularly evident in the case of the Hierar-
chical Bayes estimator, whose prediction outcome is almost invariant with T ;
this emerges from the comparison of the results in Tables 1 and 3 with those
in tables 5, 7, 9 and 11, where the value of Theil’s U is essentially the same
for shrinkage estimators. This result confirms previous findings reported in
Hsiao, Pesaran and Tahmiscioglu (1999) about the very small bias of this
estimator even with small samples.
The error term dynamics does have an impact on the choice of the best

estimator when cross dependence is mild. However, first difference homoge-
neous estimators outperform all other estimators in presence of low hetero-
geneity and (ρ, ϑ) equal to 0.9, as it is evident from the third columns of
Tables 1, 3, 5, 7, 9 and 11. Both the presence of high heterogeneity or high
cross sectional dependence make the dynamics of the error term irrelevant
and as in most other cases seen so far the shrinkage/Bayesian estimators
dominate. We refer the reader to column 4 in Tables 1, 3, 5, 7, 9 and 11
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to observe the effect of large heterogeneity in presence of highly persistent
dynamics; columns 3 and 4 in Tables 2, 4, 6, 8, 10 and 12 show that when
cross-sectional dependence is high, first difference estimators no longer deliver
the best performance among homogeneous estimators.
A final note about a case where there is evidence of small sample prob-

lem, related to the time series dimension T and arising when we implement
Individual OLS and 2SLS. For T = 5 (see Tables 1-4), the Theil’s statistics
is never lower than 104, and therefore their forecasting capability is totally
implausible. This also affects the performance of shrinkage estimators, whose
magnitude of the Theil’s statistics is much larger (at least of a factor 102)
than that of the best estimators. Thus, for the case of a short panel (T = 5
in our case), our results contradict the findings reported in Maddala, Li and
Srivastava (1994).

4.2 Diebold and Mariano’s (1995) test

The outcome of Diebold and Mariano test is represented by a lower triangular
matrix of dimensions (28 × 28) for each experiments. Since the amount of
output generated by this part of the exercise exceeds a reasonable number
of pages, we decide not to report it. They are available upon request from
authors.
The main results reinforce the conclusions reported in the previous section

for the Theil’s U statistic.

When the degree of heterogeneity is small and there is mild cross sec-
tional dependence, there is no evidence of statistically significant difference
between shrinkage and homogeneous estimators, and therefore either class of
estimators can be used irrespective of any feature of the data; this is evident
from column 1 in Tables 1, 3, 5, 7, 9, and 11. On the other hand, when H is
large, shrinkage/Bayesian estimators have a significantly better performance,
especially for the small T case, and therefore the conclusion that they should
be preferred follows from columns 2 and 4 in the Tables referred above. Only
when the error component dynamics is characterized by a nearly integrated
behavior the performance of homogeneous first difference estimators is signif-
icantly better than that of shrinkage estimators based on the model in levels
(column 3 in the Tables).

When cross sectional dependence is large, for T larger than 5 there is
no significant difference in the performance of homogeneous versus shrink-
age/Bayesian estimators - see Tables 6, 8, 10 and 12. However, once again in
the nearly integrated case the first difference homogeneous estimators domi-
nate (see column 3 of Tables). When T = 5, Tables 2 and 4 show that even
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though none of the estimators has a significantly better performance than
the others, however there is statistical evidence that Hierarchical Bayes is
more powerful as heterogeneity increases. When T increases, the difference
between homogeneous and heterogeneous estimators gets significant, and the
latter group performs better, especially when heterogeneity gets bigger (this
is particularly evident in column 2 in Tables 8,10 and 12). In presence of
low heterogeneity, there is virtually no difference between estimators, Hierar-
chical Bayes included. Such finding illustrates that as long as heterogeneity
is limited across units the choice of estimators is not crucial for forecasting.
This is true especially when T ≥ 10 (Tables 6, 8, 10 and 12). It is worth
noticing that the presence of serial correlation in the error term doesn’t affect
these findings. The main findings so far are reinforced when the number of
units is large (i.e. N = 50, see Tables 8, 10 and 12). Here too the pres-
ence of heterogeneity is crucial in marking the difference between pooled and
heterogeneous estimators, in favor of the latter.
The impact of the error dynamics here follows a similar pattern as in the

case of Theil’s U statistics.

4.3 Pesaran and Timmermann’s (1992) test

In this section, we describe the results of our Monte Carlo for the Pesaran
and Timmermann’s (1992) statistic which measures the capability to forecast
turning points, reported at the bottom of Tables 1-12. The full set of results
are reported in Trapani and Urga (2005), Tables B1-B12.
Since Pesaran and Timmermann’s test is asymptotically distributed as a

standard normal under the null hypothesis of no capability to detect turning
points, the values in Tables can be interpreted either as raw numbers to
rank estimators (the larger the value of the statistics, the higher the turning
points detection capability), or we may compare them with quantiles of the
normal distribution to test whether each estimator predicting capability is
significant or not.
The main findings can be summarized as follows.
The impact of heterogeneity on the capability of forecasting turning

points produces similar results as in Theil’s U statistic case under mild cross
sectional dependence; moreover, as shown in Tables 1, 3, 5, 7, 9 and 11,
there exists always an estimator which has a statistically significant capa-
bility of detecting turning points. Low heterogeneity leads to the choice of
homogeneous estimators, whilst with high levels of heterogeneity (like it is
the case when considering Theil’s U statistics) the capability of homogeneous
estimators to detect turning points worsens. Conversely, shrinkage/Bayesian
estimators become the best ones as heterogeneity increases, always outper-
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forming heterogeneous estimators. It is worth noticing the following interest-
ing regularity: in presence of large heterogeneity there is an improvement in
predicting turning point, as can be seen from the higher values attained by
Pesaran and Timmermann statistic.. The presence of heterogeneity always
improves the predictive ability of heterogeneous and shrinkage/Bayesian esti-
mators, with the latter being always the best when heterogeneity is high (the
statistic is always different from zero, the only exception being the case of
large cross sectional dependence). This pattern changes when the amount of
contemporaneous dependence across units increases, and it makes homoge-
neous estimators less capable to forecast turning points even in the presence
of near homogeneity (H = 0.1); Tables 4, 6, 8, 10 and 12 do not contain any
case of estimators capable to predict turning points.

Other results as far as Pesaran and Timmermann’s statistics is concerned
are reported below.
As far as the impact of cross sectional dependence is concerned, as al-

ready pointed out in the previous point, in presence of mild levels of cross
dependence it is always possible to find an estimator whose turning point
prediction ability is statistically significant, but when we have large cross
sectional dependence it is virtually impossible to find an estimator capable
of predicting turning points, with a few exceptions in the class of Bayesian
estimators.
The time series size T has an impact on the Pesaran and Timmermann’s

statistic, which has greater predictive performance when T increases. This
does not apply when we evaluate to the cross sectional dimension N of the
panel. For instance, when T = 5 and cross dependence is small, it is still pos-
sible to find estimators that are significantly capable of identifying turning
points. In this case, an increase in N has the effect of improving the fore-
casting performance. Note that for T = 5 and N = 20, the predictive ability
of Individual estimators is significant and very close to be the best among all
estimators, albeit these estimates are computed for each unit with a degree
of freedom equal to 2. This outcome is completely different with respect to
the previous case, and it should lead to the conclusion that predictive per-
formance measured with Theil’s U statistics is different and unrelated with
this aspect of forecasting performance.
The impact of the error dynamics has some commonalities with the

Theil’s U statistic case. Here too a nearly integrated error term results
in having a better predictive performance on the side of first difference ho-
mogeneous estimators when heterogeneity is limited; in this case as well the
presence of either heterogeneity or cross sectional correlation makes predic-
tive performance worse. The presence of a nearly integrated dynamics makes
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homogeneous estimators based on the first differenced model the best, as
shown by the third column in all Tables. However, their significance is heav-
ily affected by the presence of cross dependence: the tests are significant
when there is mild or no cross dependence but insignificant when the system
exhibits a large degree of covariance among units.

4.4 The main features of our findings

In this final section, we summarize the main features of the various experi-
ments commented above. Tables 1-12 report a summary of the three sets of
statistics. Each of the tables is divided in three panels. The first one reports
the best estimators according to Theil’s U statistics. In the second panel,
using the Diebold and Mariano (1995) test (DM), we report the comparison
between the second best and the best estimator between the above estima-
tors (DM1) and between the best estimator and the best Bayesian estimator
(DM2), Finally, the last panel (PT) reports the best estimator according to
the Pesaran and Timmerman (1992) statistic.

[Insert somewhere here Table 1-12]

The most important finding in this paper is the impact of heterogeneity
on the predictive ability of alternative panel estimators, which reinforces and
extends previous findings in the empirical literature - see e.g. Baltagi and
Griffin (1997), Baltagi, Griffin and Xiong (2000), Baltagi, Bresson, Pirotte
(2002, 2004), Baltagi, Bresson, Griffin and Pirotte (2003) and Brucker and
Silivertovs (2006). The main features of the impact of heterogeneity are:

1. mild levels of heterogeneity lead to similar results as in Baltagi and Grif-
fin (1997), Baltagi, Griffin and Xiong (2000), Baltagi, Bresson, Pirotte
(2002), Baltagi, Bresson, Griffin and Pirotte (2003), and Brucker and
Silivertovs (2006), whilst as heterogeneity increases shrinkage estima-
tors have a better performance (and the forecasting capability of ho-
mogeneous estimators worsens), leading to similar results as in Baltagi,
Bresson and Pirotte (2004);

2. particularly, increases in heterogeneity lead to both a worsening in the
perfomance of homogeneous estimators and also an improvement in the
accuracy of predictions based on shrinkage estimators, which reinforces
the previous conclusion;

3. the same pattern occurs for other measures of forecasting accuracy as
Pesaran and Timmermann’s (1991) statistic to detect the capability of
predicting turning points.
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Other important findings are the following ones.
When cross sectional dependence is mild, the best class of estimators is the

homogeneous one when heterogeneity H is limited or the shrinkage/Bayesian
when heterogeneity is set to a large value. This regularity always takes place,
irrespective of any other feature of the data.
When cross sectional dependence is large, the best estimators are almost

always the shrinkage/Bayesian ones for T larger than 5. This does not hold
when the error term exhibits a nearly integrated dynamics, as in such case
estimates based on the first differenced data achieve the best performance.
When T = 5 it should be pointed out the poor performance of both hetero-
geneous (which is likely to be due to the limited degree of freedom in each
equation) and shrinkage/Bayesian estimators, mainly due to that in this case
their prior is not designed to take account of the presence of contemporaneous
correlation.

5 CONCLUDING REMARKS

In this paper, we compare the predictive performance of several homoge-
neous, heterogeneous and shrinkage/Bayesian estimators. We analyze the
forecasting performance of 28 alternative estimators by varying the degree
of heterogeneity and cross dependence in the panel, and by considering var-
ious combination of T and N , and using alternative specifications for error
dynamics.
Our simulations show that the relative performance of the alternative es-

timators is affected by heterogeneity, being independent of the error term
dynamics and of the time and cross sectional dimensions (N,T ). The main
conclusion is that heterogeneity greatly affects the performance of the vari-
ous estimators. Whilst mild levels of heterogeneity entail the superiority of
homogeneous estimators, as heterogeneity increases the shrinkage/Bayesian
estimators and the Hierarchical Bayes estimator in general show a better fore-
casting performance across all experiments, regardless of sample size (T , N)
and error dynamics. Another important finding is that the degree of cross de-
pendence leaves the ranking of estimators virtually unchanged, even though
the predictive performances of different estimators become more similar as
cross dependence increases.
Our findings provide a clear guideline to practitioners when panel data

are available for forecasting purposes. As a preliminary stage, individual es-
timators could be used and an indication as to the degree of heterogeneity
could be derived e.g. considering the standard deviation of individual co-
efficients around their mean. Homogeneous estimators should be employed
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in presence of low and mild levels of heterogeneity, whilst when the degree
of heterogeneity is high, shrinkage/Bayesian procedures deliver a superior
forecasting performance.
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Table 1: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (5,10) (5,10) (5,10) (5,10)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous OLS FDGMM FD-2SLS GMM
0.4276 1.4166 0.3257 1.4278

Theil’s U Heterogeneous Swamy Average OLS Average OLS Average OLS
0.4319 1.7823 0.4520 1.5321

Shrinkage It. Bayes It. Bayes It. Bayes It. Bayes
0.4853 0.5307 0.3895 0.4832

DM1 OLS vs Swamy It. Bayes vs FDGMM FD-2SLS vs It. Bayes It. Bayes GMM
DM (0.3190) (-2.1966)(**) (2.0660)(**) (-2.3024)(**)

DM2 It. Bayes vs. OLS
(0.8880)

Homogeneous FDGMM Within FD-2SLS-KR Within
1.6805(*) 1.7426(*) 2.8158(**) 1.8785(*)

PT Heterogeneous Average OLS Ind. OLS Ind. OLS Ind. OLS
1.3451 2.2208(**) 2.0630(**) 2.7630(**)

Shrinkage Bayes OLS It. Bayes I.B. OLS I.B. OLS
1.4275 2.3312(**) 2.1101(**) 2.7696(**)

Note: This Table reports results for the case (N,T ) = (5, 10) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 2: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (5,10) (5,10) (5,10) (5,10)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous MLE FDGMM Within-2SLS FDGMM
0.7618 1.1896 0.8000 1.2822

Theil’s U Heterogeneous Swamy Average OLS Swamy Average OLS
0.7646 2.2297 0.8303 1.6972

Shrinkage It. Bayes It. Bayes It. Bayes It. Bayes
134.84 61.45 53.46 13.27

DM1 Swamy vs. MLE Average OLS vs. FDGMM Swamy vs. Within-2SLS Average OLS vs. FDGMM
DM (0.1387) (4.1188)(**) (-0.0170) (4.1035)(**)

DM2 It. Bayes vs. MLE It. Bayes vs. FDGMM It. Bayes vs. Within-2SLS It. Bayes vs. FDGMM
(0.8286) (-1.2647) (0.0293) (-1.0731)

Homogeneous FDGMM Within FDGMM Within
0.9682 1.4618 1.1872 1.5026

PT Heterogeneous Ind. OLS Ind. OLS Ind. OLS Ind. OLS
0.5177 1.5606 0.6647 1.7540(*)

Shrinkage Bayes OLS It. Bayes I. B. OLS It. Bayes
0.5809 1.6961(*) 0.7912 1.8367(*)

Note: This Table reports results for the case (N,T ) = (5, 10) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 3: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (5,20) (5,20) (5,20) (5,20)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous OLS Between FD-2SLS Between
0.4405 1.2063 0.2923 1.3196

Theil’s U Heterogeneous Swamy Swamy Average OLS Average OLS
0.4427 1.4297 0.4628 1.2699

Shrinkage It. Bayes It. Bayes It. Bayes It. Bayes
0.4752 0.4988 0.4037 0.4899

DM1 Swamy vs. OLS Between vs. It. Bayes It. Bayes vs. FD-2SLS Average OLS vs. It. Bayes
DM (0.2034) (-2.2382)(**) (2.4040)(*) (1.1141)

DM2 It. Bayes vs. OLS
(0.7101)

Homogeneous WLS Between-2SLS FD-2SLS-KR Between-2SLS
1.8422(*) 1.1574 2.8153(**) 1.2569

PT Heterogeneous Swamy Ind. OLS Average OLS Ind. OLS
1.8025(*) 1.7207(*) 2.2450(**) 2.5424(**)

Shrinkage It. Bayes It. Bayes It. Bayes I. B. OLS
1.7747(*) 1.8769(*) 2.2987(**) 2.5547(**)

Note: This Table reports results for the case (N,T ) = (5, 20) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 4: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (5,20) (5,20) (5,20) (5,20)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous MLE FDGMM OLS FDGMM
0,7763 1.1415 0.8136 1.2668

Theil’s U Heterogeneous Swamy Swamy Swamy Swamy
0.7763 1.3863 0.8369 1.4654

Shrinkage It. Bayes It. Bayes It. Bayes It. Bayes
4.2762 6.3261 121.25 10.4824

DM1 Swamy vs. MLE Swamy vs. FDGMM Swamy vs. OLS Swamy vs. FDGMM
DM (0.1870) (1.1881) (0.5656) (1.3239)

DM2 It. Bayes vs. MLE It. Bayes vs. FDGMM It. Bayes vs. OLS It. Bayes vs. FDGMM
(0.7609) (-0.9985) (0.2129) (-0.7957)

Homogeneous FD-2SLS Between -2SLS FD-2SLS-KR Between-2SLS
0.9331 0.8203 1.2184 0.8228

PT Heterogeneous Swamy Average OLS Average OLS Ind. OLS
0.7311 0.3977 0.7358 1.2785

Shrinkage I. B. OLS It. Bayes I. B. OLS I. B. OLS
0.7217 1.2584 0.8544 1.3933

Note: This Table reports results for the case (N,T ) = (5, 20) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 5: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (10,20) (10,20) (10,20) (10,20)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous WLS GMM FD-2SLS EC2SLS-AR(1)
0.4367 0.8725 0.2911 0.8408

Theil’s U Heterogeneous Average 2SLS Ind. OLS Ind. 2SLS Ind. OLS
0.4393 0.4755 0.4495 0.4462

Shrinkage I. B. OLS It. Bayes It. Bayes It. Bayes
0.4592 0.4342 0.4243 0.3874

DM1 Average 2SLS vs. WLS Ind. OLS vs. It. Bayes It. Bayes vs. FD-2SLS Ind. OLS vs. It. Bayes
DM (0.1913) (0.3638) (2.5319)(**) (0.5813)

DM2 I. B. OLS vs. WLS
(0.1424)

Homogeneous Within Between-2SLS FD-2SLS-KR FD-2SLS
1.8706(*) 1.1768 2.8141(**) 1.993(**)

PT Heterogeneous Average OLS Ind. OLS Average 2SLS Ind. 2SLS
1.8543(*) 1.9827(**) 2.2883(**) 2.6172(**)

Shrinkage I. B. OLS It. Bayes It. Bayes Bayes 2SLS
1.8304(*) 2.0116(**) 2.2921(**) 2.6198(**)

Note: This Table reports results for the case (N,T ) = (10, 20) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 6: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (10,20) (10,20) (10,20) (10,20)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous 2SLS-KR GMM WLS GMM
0.7216 1.0270 0.7561 1.0339

Theil’s U Heterogeneous Average OLS Ind. OLS Average 2SLS Ind. OLS
0.7319 0.7430 0.7597 0.7086

Shrinkage I. B. 2SLS Bayes OLS I. B. 2SLS Bayes OLS
0.7165 0.6358 0.7281 0.6294

DM1 2SLS-KR vs. I. B. 2SLS Ind. OLS vs. Bayes OLS WLS vs. I. B. 2SLS Ind. OLS vs. Bayes OLS
DM (-0.1842) (-0.3241) (-0.5509) (-0.5827)

DM2

Homogeneous FDGMM Between-2SLS FD-2SLS-KR Between-2SLS
0.9797 0.8761 1.2275 0.8505

PT Heterogeneous Average 2SLS Ind. OLS Ind. OLS Ind. OLS
0.7796 1.3693 0.8809 1.5320

Shrinkage I. B. OLS I. B. 2SLS I. B. OLS Bayes OLS
0.8872 1.4408 1.0679 1.5962

Note: This Table reports results for the case (N,T ) = (10, 20) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 7: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (10,50) (10,50) (10,50) (10,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous OLS Between FD-2SLS Between
0.4244 0.9130 0.2743 0.9504

Theil’s U Heterogeneous Average OLS Ind. OLS Ind. OLS Ind. 2SLS
0.4249 0.4250 0.4441 0.5004

Shrinkage I. B. 2SLS I. B. 2SLS It. Bayes I. B. OLS
0.4263 0.3566 0.4128 0.4191

DM1 Average OLS vs. OLS Ind. OLS vs. I. B. 2SLS It.Bayes vs. FD-2SLS Ind. 2SLS vs. I. B. OLS
DM (0.1919) (-0.3208) (2.5529)(**) (-0.4254)

DM2 I. B. 2SLS vs. OLS
(0.1294)

Homogeneous Within FD-2SLS-KR FD-2SLS Within
2.0593(*) 1.8359(*) 2.8517(**) 1.5140

PT Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
2.0511(**) 2.7020(**) 2.4851(**) 2.2132(**)

Shrinkage I. B. OLS I. B. 2SLS It. Bayes Bayes OLS
2.0343(**) 2.7046(**) 2.3819(**) 2.2358(**)

Note: This Table reports results for the case (N,T ) = (10, 50) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 8: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (10,50) (10,50) (10,50) (10,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous 2SLS-KR FD-2SLS-KR 2SLS-KR FD-2SLS-KR
0.7132 1.0412 0.7443 1.1162

Theil’s U Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
0.7260 0.7238 0.7509 0.6933

Shrinkage I. B. OLS I. B. 2SLS I. B. 2SLS I. B. OLS
0.7097 0.7190 0.7190 0.6143

DM1 I. B. OLS vs. 2SLS-KR Ind. OLS vs. I. B. 2SLS 2SLS-KR vs. I. B. 2SLS Ind. OLS vs. I. B. OLS
DM (-0.1522) (-0.3148) (-0.4638) (-0.3885)

DM2

Homogeneous 2SLS-KR Within FD-2SLS-KR Within
1.0630 1.3108 1.2919 1.3212

PT Heterogeneous Average OLS Ind. OLS Average OLS Ind. OLS
1.0218 1.4738 1.0929 1.6247

Shrinkage I. B. OLS Bayes OLS I. B. 2SLS Bayes OLS
1.0756 1.5318 1.2143 1.6810(*)

Note: This Table reports results for the case (N,T ) = (10, 50) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 9: Forecasting accuracy measures: Theil’s U, Diebold and Mariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (20,50) (20,50) (20,50) (20,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous WLS EC2SLS-AR(1) FD-2SLS EC2SLS-AR(1)
0.4243 0.9244 0.2744 0.8767

Theil’s U Heterogeneous Average OLS Ind.OLS Average 2SLS Ind. 2SLS
0.4256 0.3826 0.4458 0.3399

Shrinkage I.B. 2SLS I.B. OLS I.B. 2SLS I.B. 2SLS
0.4254 0.3786 0.4374 0.3323

DM1 I.B. 2SLS vs. WLS I.B. OLS vs. Ind. OLS I.B. 2SLS vs. FD-2SLS Ind. 2SLS vs. I.B.2SLS
DM (0.1666) (-0.1734) (2.7041)(**) (-0.3480)

DM2

Homogeneous Within Within FD-2SLS FD-2SLS-KR
2.0342(**) 1.5275 2.8517(**) 1.8432(*)

PT Heterogeneous Average OLS Ind. OLS Average 2SLS Ind. 2SLS
2.0290(**) 2.3158(**) 2.4560(**) 2.6993(**)

Shrinkage Bayes OLS Bayes OLS I.B. 2SLS I.B. 2SLS
2.0191(**) 2.3199(**) 2.3377(**) 2.7002(**)

Note: This Table reports results for the case (N,T ) = (20, 50) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 10: Forecasting accuracy measures: Theil’s U, Diebold andMariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (20,50) (20,50) (20,50) (20,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous 2SLS FD-2SLS-KR WLS GMM
0.7055 1.0049 0.7203 1.0140

Theil’s U Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
0.7050 0.5927 0.7282 0.5899

Shrinkage I.B. 2SLS Bayes OLS I.B. 2SLS Bayes OLS
0.6970 0.5806 0.7132 0.5779

DM1 Average 2SLS vs. I.B. 2SLS Ind. OLS vs. Bayes OLS WLS vs. I.B. 2SLS Ind. OLS vs. Bayes OLS
DM (-0.7593) (-0.4589) (-0.2570) (-0.3689)

DM2

Homogeneous 2SLS-KR Within FD-2SLS-KR FD-2LSLS-KR
1.0785 1.3531 1.2978 1.2116

PT Heterogeneous Average 2SLS Ind. 2SLS Average OLS Ind.OLS
1.0502 1.6131 1.1505 1.7262(**)

Shrinkage I.B. OLS Bayes OLS I.B. 2SLS Bayes OLS
1.0797 1.6308 1.1829 1.7403(**)

Note: This Table reports results for the case (N,T ) = (20, 50) under ”mild” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 11: Forecasting accuracy measures: Theil’s U, Diebold andMariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (50,50) (50,50) (50,50) (50,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous WLS EC2SLS-AR(1) FD-2SLS EC2SLS-AR(1)
0.4217 0.8658 0.2954 0.7992

Theil’s U Heterogeneous Average 2SLS Ind. OLS Ind. 2SLS Ind. 2SLS
0.4246 0.3982 0.4551 0.3848

Shrinkage Bayes OLS I.B. OLS Bayes 2SLS I.B. 2SLS
0.4225 0.3952 0.4495 0.3817

DM1 Bayes OLS vs. WLS Ind. OLS vs. I.B. OLS Bayes 2SLS vs. FD-2SLS Ind. 2SLS vs. I.B. 2SLS
DM (0.0333) (-0.1316) (2.7075)(**) (-0.1940)

DM2

Homogeneous Between-2SLS Within FD-2SLS Within
2.0165(**) 1.2593 2.8223(**) 1.3702

PT Heterogeneous Average OLS Ind. OLS Average 2SLS Average OLS
2.0217(**) 2.1208(**) 2.4043(**) 2.0217(**)

Shrinkage I.B. OLS I.B. OLS I.B. Bayes 2SLS I.B. OLS
1.9996(**) 2.1461(**) 2.3046(**) 1.9996(**)

Note: This Table reports results for the case (N,T ) = (50, 50) under ”mild” cross dependence (the support of
ζ i is [0,0.2]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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Table 12: Forecasting accuracy measures: Theil’s U, Diebold andMariano (1995) and Pesaran and Timmermann
(1992) for homogeneous, heterogeneous and shrinkage/Bayesian estimators.

(T,N) (50,50) (50,50) (50,50) (50,50)
(ρ, ϑ,H) (0,0,0.1) (0,0,0.9) (0.9,0.9,0.1) (0.9,0.9,0.9)

Homogeneous 2SLS EC2SLS WLS EC2SLS
0.6992 1.0227 0.7172 0.9964

Theil’s U Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
0.6989 0.5929 0.7251 0.5997

Shrinkage I.B. 2SLS Bayes OLS I.B. 2SLS Bayes 2SLS
0.6931 0.5870 0.7153 0.5937

DM1 Average 2SLS vs. I.B. 2SLS Ind. OLS vs. Bayes OLS WLS vs. I.B. 2SLS Ind. OLS vs. Bayes 2SLS
DM (-0.7603) (-0.3006) (-0.074) (-0.2384)

DM2

Homogeneous 2SLS Within FD-2SLS-KR Within
1.0319 1.0604 1.2413 1.0262

PT Heterogeneous Average 2SLS Ind. OLS Average 2SLS Ind. OLS
1.0137 1.4924 1.1154 1.6103

Shrinkage I.B. 2SLS Bayes OLS I.B. 2SLS Bayes OLS
1.0529 1.5384 1.1665 1.6500(*)

Note: This Table reports results for the case (N,T ) = (50, 50) under ”large” cross dependence (the support of
ζ i is [-1,3]), two different degrees of heterogeneity (low, with H = 0.1 and high with H = 0.9) and two different
specifications for the error term dynamics (the white noise case with (ρ, ϑ) = (0, 0) and a nearly integrated one
where (ρ, ϑ) = (0.9, 0.9)). Forecasting horizon h = 10 periods ahead.
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