
              

City, University of London Institutional Repository

Citation: Glen, F., Smith, N. D. & Crabb, D. P. (2013). Saccadic eye movements and face 

recognition performance in patients with central glaucomatous visual field defects. Vision 
Research, 82, pp. 42-51. doi: 10.1016/j.visres.2013.02.010 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/6156/

Link to published version: https://doi.org/10.1016/j.visres.2013.02.010

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Vision Research 82 (2013) 42–51
Contents lists available at SciVerse ScienceDirect

Vision Research

journal homepage: www.elsevier .com/locate /v isres
Saccadic eye movements and face recognition performance in patients
with central glaucomatous visual field defects

Fiona C. Glen, Nicholas D. Smith, David P. Crabb ⇑
Department of Optometry and Visual Science, City University London, Northampton Square, London EC1V 0HB, UK

a r t i c l e i n f o
Article history:
Received 12 September 2012
Received in revised form 7 February 2013
Available online 26 February 2013

Keywords:
Glaucoma
Face recognition
Eye movements
Visual fields
Quality of life
Visual disability
0042-6989/$ - see front matter � 2013 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.visres.2013.02.010

⇑ Corresponding author.
E-mail addresses: fiona.glen.1@city.ac.uk (F.C. Glen

Smith), david.crabb.1@city.ac.uk (D.P. Crabb).
a b s t r a c t

Patients with more advanced glaucoma are likely to experience problems with everyday visual tasks such
as face recognition. However, some patients still perform well at face recognition despite their visual field
(VF) defects. This study investigated whether certain eye movement patterns are associated with better
performance in the Cambridge Face Memory Test. For patients with bilateral VF defects in their central
10� of VF, making larger saccades appeared to be associated with better face recognition performance
(rho = 0.60, p = 0.001). Associations were less apparent for the patients without significant 10� defects.
There were no significant associations between saccade amplitude and task performance in people with
healthy vision (rho = �0.24; p = 0.13). These findings suggest that some patients with likely symptomatic
glaucomatous damage manifest eye movements to adapt to VF loss during certain visual activities.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Patient-reported measures have repeatedly suggested that
glaucoma leads to problems with performing everyday activities
and a poorer perceived quality of life (Glen, Crabb, & Garway-
Heath, 2011; Ramulu, 2009). However, the subjective nature of
these studies mean that results are susceptible to bias, and as such,
studies involving more objective ‘performance-based measures’ of
visual disability have begun to complement these research find-
ings. Such studies involve the direct assessment of a person’s abil-
ity to perform activities such as reading, mobility tasks, driving,
searching for objects and face recognition, using standardised con-
ditions and predetermined criteria (Glen et al., 2012; Haymes et al.,
2008; Kotecha et al., 2009; Ramulu et al., 2009; Smith, Crabb, &
Garway-Heath, 2011; Turano, Rubin, & Quigley, 1999). These
findings suggest that the performance of patients with glaucoma
is significantly reduced on average, compared with people with
healthier vision. However, a common feature in data reported in
these studies is the high between-patient variability in task perfor-
mance; simply put, some patients continue to perform well at vi-
sual tasks despite the severity of their visual field (VF) loss. For
example, patients with significant damage to the central 10� of
VF performed worse, on average, at a face recognition task
compared to people with normal vision of a similar age, but some
patients still performed well at the task (Glen et al., 2012). We
ll rights reserved.

), ndsmith3@gmail.com (N.D.
hypothesise that eye movements, an element of visual function
not typically considered in glaucoma, may explain some of this
variability in visual task performance.

Eye movements are a vital tool for processing visual informa-
tion; since acuity naturally attenuates with increasing eccentricity
from the point of regard, an individual must move their eyes to
bring new information onto the fovea in order to analyse details
of a visual scene. Prior studies have suggested that some patients
with glaucoma may be forced to sample information differently
during everyday tasks, and that these changes may therefore
underlie any apparent functional deficits. For example, when pa-
tients were shown dynamic movies of road traffic scenes, they
were found to produce more fixations and saccades than controls
with healthy vision (Crabb et al., 2010). Other research suggests
that VF loss may lead to restrictions in eye movements in less dy-
namic tasks, with patients shown to produce fewer saccades and to
view different locations of static naturalistic scenes than visually
healthy people (Smith et al., 2012). Evidence in people with normal
vision suggests that the type and difficulty of task influences the
manner in which people move their eyes (for a review see Rayner,
2009), suggesting the importance of considering eye movements in
different contexts. There is some compelling evidence that ‘train-
ing’ in eye movement control can improve task performance in
subjects with age-related macular degeneration (AMD) (Seiple,
Grant, & Szlyk, 2011; Seiple et al., 2005) and hemianopia (Pamba-
kian et al., 2004). It has also been suggested that eye movements
play a functional role in normal face recognition; for example,
scanning behaviour may underlie some of the face recognition def-
icits seen in older adults, with the way faces are sampled at first
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viewing influencing subsequent recognition accuracy (Chan et al.,
2011; Firestone, Turk-Browne, & Ryan, 2007).

This report aims to examine data from a ‘performance-based’
task in order to see if there is a link between eye movement behav-
iour and performance in glaucoma. Specifically we test the hypoth-
esis that better performance at a face recognition task is associated
with aspects of saccadic eye movements in patients with bilateral
glaucomatous VF loss in the central 10� and that this association is
not apparent in people with normal vision.
2. Methods

Patients with repeatable VF defects in both eyes as a result of
Primary Open Angle Glaucoma (and no other ocular disease) were
recruited from Moorfields Eye Hospital NHS Trust. People with
healthy vision (controls) were selected from the Fight for Sight
clinic at City University London. Prior to participation in the study,
visual acuity (VA), measured in logMAR, of all participants was re-
corded using an Early Treatment Diabetic Retinopathy Study
(ETDRS) chart. A requirement of the study was a binocular VA of
at least 0.18 (Snellen 6/9). The contrast sensitivity (CS) of all pa-
tients was also recorded using a Pelli-Robson chart. Participants
were verified as ‘within normal limits’ on the Oculus C-Quant
(Oculus CmbH, Wetzlar, Germany), a measure of straylight indicat-
ing levels of lens opacity. In addition, visual fields (SITA Standard
24-2 and 10-2) in both eyes were recorded on a Humphrey Field
Analyzer (HFA, Carl Zeiss Meditec, CA, USA) in all patients. The
Glaucoma Hemifield Test (GHT), an algorithm which detects signs
of glaucomatous damage, was flagged as ‘‘outside normal limits’’ in
all recorded VFs, though patients were purposely recruited to have
a range of VF defect severities. The HFA output also shows the
mean deviation (MD); a standard summary measure of the overall
severity of VF loss that takes the participant’s age into account. Fol-
lowing on from previously published research suggesting the pres-
ence of central glaucomatous defects may impact face recognition
performance (Glen et al., 2012), patients were subsequently classi-
fied according to whether or not they had ‘significant’ defects in
the 10-2 VF in both eyes using the MD values. As previously re-
ported, a ‘significant’ defect was defined as one where the MD on
the HFA output was flagged as being worse than the 1% normative
value [MD p < 1%]). To determine the impact of binocular vision in
the central 10� on task functioning, greyscales for integrated visual
fields (IVF) were also constructed for each patient using their 10-2
VFs (as the central 10� was the primary focus of this investigation).
This method involves combining monocular VFs by taking the best
total deviation (TD) sensitivity value at each VF location to
represent the state of the individual’s binocular vision (Crabb &
Viswanathan, 2005). None of the control subjects (who completed
SITA-FAST 24-2 VFs in both eyes to screen for VF defects) failed the
GHT. All participants passed the Middlesex Elderly Assessment of
Mental Status (MEAMS) test (Kutlay et al., 2007), indicating they
were of sufficient cognitive health and did not show any signs of
dementia or any other isolated cognitive deficit.

The study was approved by research governance committees of
the participating institutions in addition to receiving approval from
a UK National Health Service, National Research Ethics Service
committee. The study conformed to the declaration of Helsinki,
and all participants gave their informed written consent prior to
taking part. Data was anonymised and stored in a secure database.
Fig. 1. Example trials from the CFMT. In the viewing stage of the study, participants
are asked to memorise a face, which is shown at three different viewing angles for
three seconds each. Participants are introduced to six different faces in total. In the
recognition stage of the task, participants are given forced-choice trials whereby
they must pick out the face they recognise from amongst the distractor faces. The
scanpaths of saccades [blue] and fixations [red] made by an example participant as
they carry out the task are also shown. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
2.1. Procedure

Participants completed the Cambridge Face Memory Test
(CFMT) (Duchaine & Nakayama, 2006) on a 2200 monitor (Iiyama
Vision Master PRO 514, Iiyama Corporation, Tokyo, Japan) at
resolution of 1600 � 1200 at 100 Hz. In the test, participants binoc-
ularly view six new faces at three different viewing angles for three
seconds each (n = 18 ‘‘viewing trials’’). Their recognition of these
faces is subsequently tested in a series of forced-choice recognition
trials (n = 51), whereby they are required to distinguish the previ-
ously seen face from an additional two unfamiliar faces. The CFMT
is a freely available, validated test, initially designed to test for the
neurological condition prosopagnosia but has also been used to
investigate face recognition deficits in other clinical conditions
(Hedley, Brewer, & Young, 2011; Wilson et al., 2010). It appears
to have good reliability and is capable of measuring face recogni-
tion independent of IQ (Bowles et al., 2009; Wilmer et al., 2010)
and has featured in a number of recent research studies (Bate
et al., 2008; Degutis et al., 2007; Herzmann et al., 2008; Iaria
et al., 2009). A full description of the methodology is described in
the original paper by Duchaine and Nakayama in which the test
validation is described (Duchaine & Nakayama, 2006). The out-
come measure for the test is the percentage of correctly identified
faces. Fig. 1 shows example images from the viewing and recogni-
tion stages of the task, in addition to the eye movements made by
an example participant as they viewed these images during the
task. Participants completed the CFMT at a viewing distance of
60 cm, and had their head mounted in a comfortable head-rest to
minimise head movements. All participants wore trial frames with
the correct refractive correction for the viewing distance. The
images subtended a viewing angle of 7.4� horizontally and 11.1�
vertically, which was calculated to be equivalent to viewing a real
face at a distance of roughly 1 m in the real world.

2.2. Eyetracking

Eye movements during task performance were monitored using
the Eyelink 1000 system (SR Research Ltd., Ontario, Canada). Pupil
position was monitored monocularly at 1000 Hz (the chosen eye
was alternated across participants). The Eyelink’s proprietary
algorithm was used to calibrate and verify the subject’s point of re-
gard in response to prompts shown at different locations of the
screen. It was required that the system stated that accuracy was
of a ‘‘good’’ level prior to beginning the task (signifying minimal



Fig. 2. Image A shows an example of one of the unmodified ‘viewing trials’ from the CFMT. In images B and C (depicting a viewing and recognition trial respectively), the ROIs
used in the analysis are shaded. The locations of the fixations made by one of the participants as they looked at these images are indicated by the red dots. The number of
fixations that fell within a mapped ROI was calculated using a specifically created computer program written in C#. In this example, the majority of fixations fell on the nose
or eyes. Fixations outside the marked regions are classed as landing on ‘other regions’. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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non-linearity when fixating different target positions). Between
the presentations of each new set of images, participants were re-
quired to fixate on a centralized stimulus and a drift correction was
performed. If a large drift was detected, the eyetracker was
recalibrated using the original algorithm. Throughout the task,
the Eyelink system automatically recorded each saccade and fixa-
tion and the size of saccades (saccade amplitude) made.
2.3. Analysis

Significant VF defects in the central 10� of vision are detrimen-
tal for face recognition (Glen et al., 2012). Patients were therefore
classified according to whether or not they had significant defects
in the central 10� of vision. A VF defect was classed as being ‘signif-
icant’ in the central 10� if both MDs in their 10-2 VFs were flagged
as being worse than the 1% normative value (MD p < 1%): from this
point onwards, such cases will be referred to as having ‘‘significant
10� defects’’. Those patients who did not have MD p < 1% for both
10-2 VFs were classed as not having significant 10� defects. The
third group consisted of the visually healthy control subjects
who had no VF defects.

The performance measure for the task was the percentage of
correctly identified faces. Eye movements were investigated
separately for the trials when the participant first viewed the faces,
and for the ‘recognition’ trials, where they were given a selection of
three faces and required to pick out the face they recognised (see
Fig. 1). The eye movement response variables were the mean
number of saccades made per second and mean saccade amplitude
across trials for each participant. Spearman’s rho was used to
investigate associations between eye movements and task perfor-
mance in each of the study groups. The contributions of age, VA
and CS were also investigated using partial correlations controlling
for the effects of these factors. Fisher’s r to z transformation was
used to determine whether correlations for the patient groups
and the controls were statistically different from one another. A
multiple regression analysis was used to consider the contribu-
tions of all measured eye movements (saccade rate, saccade ampli-
tude in viewing and recognition task stages), visual (VA, CS, best
eye 24-2 MD and 10-2 MD) and personal (age, % score in MEAMS)
variables for overall performance in the face recognition task (per-
centage correctly identified faces).
2.3.1. Regions of Interest (ROI) analysis
Where people look is also useful for understanding how people

process visual information. The secondary analysis therefore con-
sidered the fixation locations of the participants in relation to
key regions of interest (ROI) on the face. Key facial features were
manually marked out on each image trial using Adobe Photoshop
(Adobe Photoshop CS5, Adobe Systems Incorporated, CA, USA).
These were the regions occupied by each eye (combined to form
1 region), nose and mouth. All other areas were classed as ‘other
regions’ (Fig. 2). The number of fixations that fell on each of the
mapped out areas was then calculated using a specifically created
computer program written in C#. The results were expressed in
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terms of the relative proportion of the fixations that fell within
each ROI (meaning the sum of fixations across the ROIs would be
one for each trial). This procedure coincides with other published
work (Watanabe et al., 2011).

A multivariate General Linear Model (GLM) Analysis of Variance
(ANOVA) was used to calculate differences in the proportion of fix-
ations allocated to each of the ROIs between the three study
groups. Spearman’s rho correlations were used to examine the
relationship between proportion of fixations allocated to a partic-
ular region and overall task performance within each study group.

2.4. Inclusion and exclusion information

All data recorded by the Eyelink system for the participants was
included in the analysis except for misclassified blinks (i.e. theoret-
ically impossible saccade amplitudes recorded that were larger
than the maximum size of the screen [66.8�]). Furthermore, all sac-
cades of amplitude less than 0.5� were excluded. This criteria has
been used in several studies using Eyelink software as a method
of excluding noise within the eye tracking data (Foulsham, Teszka,
& Kingstone, 2011; Smith, Glen, & Crabb, 2012; Smith et al., 2012;
Tatler & Vincent, 2008) and meant that 4.8% of each patient’s data
and 5.6% of the controls’ data on average was subsequently
removed (the proportion of exclusions between groups was not
statistically significant; independent t-test p = 0.39).

Data was analysed using the statistical software package SPSS
18 (IBM Corporation, Somers, NY, USA), with figures produced
using the ggplot2 package in the open source environment R
(version 2.12.1) (R Development Core Team, 2008).
3. Results

Fifty-one patients and 39 controls with healthy vision took part
in the study. Of the patients, 28 were classed as having significant
10� defects in both eyes (10-2 MD p < 1%) whilst 23 did not have
significant 10� defects (10-2 MD p > 1%). Descriptive statistics for
the three study groups are displayed in Table 1.

The previously reported differences (Glen et al., 2012) in aver-
age performance (percentage of correctly identified faces) between
these groups was confirmed in this smaller sample of participants,
with the patients with significant 10� defects performing worse on
average (mean = 68% correctly identified faces, SD = 14%) than
those without significant 10� defects (mean = 77%, SD = 11) and
controls (mean = 77%, SD = 11%). These average differences were
statistically significant (univariate ANOVA F = 4.56; p = 0.01), with
post hoc comparisons revealing that the difference in scores
between patients with significant 10� defects and controls was
statistically significant (p = 0.02). Boxplots displaying the range of
face recognition scores within each group are displayed in Fig. 3.
It is apparent that whilst patients with significant 10� defects
Table 1
Mean (SD) visual and personal information for participants in each study group.

Group p-Value

Significant 10�
defects N = 28

Non-significant
10� defects N = 23

Controls
N = 39

24-2 MD (dB) �9.9 (5.7) �3.1 (3.1) 0.0 (1.1) <0.000001
10-2 MD (dB) �11.7 (5.3) �1.4 (1.5) N/A <0.000001
VA (logMAR) 0.08 (0.08) 0.03 (0.12) �0.06 (0.09) <0.000001
CS (log) 1.78 (0.21) 1.90 (0.11) 1.95 (0.00) <0.000001
Age (years) 70 (7) 68 (8) 66 (9) 0.12
Score in

MEAMS
(%)

98.1 (2.7) 98.4 (3.9) 98.1 (3.7) 0.93

N/A: not available.
performed worse on average in the task than those patients with-
out significant 10� defects, and the controls, there was still a large
amount of variability in performance between individuals.

3.1. Eye movements when first viewing faces

Spearman’s rho correlations were used to consider the relation-
ship between the percentage of correctly identified faces and the
average number of saccades made per second, and the average
saccade amplitude respectively, within each defect group. The
results of the correlations are displayed in Table 2: none of the
correlations for the viewing stage reached statistical significance.

Partial correlations (controlling simultaneously for age, VA and
CS) between saccades per second and face recognition performance
were �0.37 (p = 0.07) for the patients with significant 10� defects,
�0.18 (p = 0.46) for those without significant 10� defects and�0.14
(p = 0.40) for the controls. The partial correlations for the relation-
ship between saccade amplitude and performance in the viewing
stage of the task were �0.10 (p = 0.62) for the patients with 10� de-
fects and 0.14 (p = 0.55) and �0.04 (p = 0.84) for the patients with-
out significant 10� defects and controls respectively.

3.2. Eye movements during ‘recognition’

Spearman’s rho correlations between eye movement parame-
ters and task performance for the recognition stage of the task,
for each group, are also displayed in Table 2. Within the group of
patients classed as having significant 10� defects, a significant
association was found between the number of saccades made per
second and percentage of correctly identified faces. There was an
even stronger relationship between performance and average sac-
cade amplitude of these patients (rho = 0.60; p = 0.001; Fig. 4).
These relationships remained significant when accounting for
age, VA and CS within the correlation (saccades per second coeffi-
cient: �0.44, p = 0.03; saccade amplitude: 0.57, p = 0.003). Cook’s
distance measure was used to investigate the influence of each
point on the correlations and revealed that no points had an influ-
ence exceeding 0.2 (values above 1 are usually considered indica-
tive of excessive influence).

The relationship between saccades per second and performance
was less apparent for those patients without significant 10� de-
fects. Spearman’s rho correlation between saccade amplitude and
performance within this patient group was significant; however,
the relationship was no longer statistically significant when con-
trolling for age, VA and CS within the correlation (partial r = 0.40;
Fig. 3. Boxplots of face recognition scores for those patients with, and without,
significant defects to the central 10�, and controls. (Boxes represent interquartile
range (IQR) and whiskers depict maximum and minimum values.)



Table 2
Spearman’s rho correlations (p-values) between eye movements and performance
within each group for the viewing and recognition stages of the face recognition task.
Significant correlations are highlighted.

Percentage correctly identified faces

Significant 10�
defects

Non significant 10�
defects

Controls

Viewing stage
Saccades per

sec
�0.26 (p = 0.31) �0.29 (p = 0.19) �0.18 (p = 0.29)

Saccade
amplitude

�0.15 (p = 0.51) 0.18 (p = 0.40) �0.11 (p = 0.52)

Recognition stage
Saccades per

sec
�0.37* (p = 0.05) �0.19 (p = 0.39) �0.24 (p = 0.15)

Saccade
amplitude

0.60* (p = 0.001) 0.49* (p = 0.02) �0.24 (p = 0.13)

* p < 0.05.
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p = 0.07). There were no significant relationships between task per-
formance and saccades per second, nor saccade amplitude, in the
Fig. 4. Scatterplots showing the relationship between saccade amplitude when recogn
defects (A), patients without significant 10� defects (B), and controls (C).
controls. Partial correlations controlling for age, VA, and CS in the
controls were not statistically significant (coefficient for saccade
rate and performance was �0.21; p = 0.21; and for performance
and saccade amplitude �0.19; p = 0.25).

Fisher’s R to Z transformation, accounting for the differences in
sample size in each group, was then used to determine whether
the significant partial correlations obtained for the patients with
significant 10� defects were actually significantly different from
those yielded in the controls. For the correlations between saccade
rate and performance, z was �0.87 (p = 0.19). The correlation be-
tween performance and saccade amplitude obtained in the patient
group was statistically different from the correlation observed in
the controls (z = 3.26; p = 0.002).

The relative contributions of all measured variables (age, VA,
CS,% in MEAMS, best eye 24-MD and 10-2 MD) and eye movement
parameters (saccades per second and saccade amplitude in the
viewing and recognition stage respectively) on overall face recog-
nition performance (percentage of correctly identified faces) were
investigated in a multiple regression analysis. For the patients with
significant 10� defects, these variables combined were found to ac-
count for 62% of the total variance in performance (adjusted
ising faces and subsequent task performance for the patients with significant 10�



Table 3
Results of multiple linear regression of all measured vision, demographic and eye
movement variables on percentage of correctly identified faces for the patients with
significant 10� defects.

Parameter Estimate S.E. p-Value

Average saccade amplitude in recognition stage 9.4 3.6 0.02
Contrast sensitivity 21.6 10.6 0.06
Average saccades per sec in viewing stage �11.1 6.1 0.14
Best eye 24-2 MD 0.9 0.6 0.15
Age �0.5 0.4 0.21
Average saccade amplitude in viewing stage �5.6 4.5 0.23
Cognitive ability (MEAMS%) 1.1 0.8 0.20
Best eye 10-2 MD �0.4 0.7 0.59
Average saccades per sec in recognition stage �1.3 6.1 0.83
Visual acuity �0.7 23.6 0.97
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r2 = 0.62). The most (and only) statistically significant predictor of
percentage correctly identified faces in the model was average sac-
cade amplitude during the recognition stage (beta = 9.4; p = 0.02;
Table 3). Severity of VF defect did not appear to be an important
factor: this is illustrated further in Fig. 5 showing how patients
with similar defects often behaved differently in the task.

When considering the same variables for those patients without
significant 10� defects, they were found to explain 24% of the total
variance in task performance within this group (adjusted r2 = 0.24).
Average saccade amplitude was no longer a significant predictor of
face recognition performance (beta = 1.05; p = 0.81). Whilst no sin-
gle variable was a significant predictor of task performance, some
p-values were close to significance (i.e. age beta = �0.80;
p = 0.06; best eye 24-2 MD beta = �3.84; p = 0.07).

In the controls, the entered variables (excluding VF information
as this was not measured) accounted for 19% of the variance in per-
formance (adjusted r2 = 0.19). None of the variables alone were sig-
nificant predictors of performance.

3.3. Region of Interest (ROI) analysis

Table 4 shows the mean (SD) proportion of fixations that were
allocated to the eyes, nose, mouth, and other regions for each of the
three groups. For all groups, the most fixated ROI was the nose, fol-
lowed by the eyes. The GLM ANOVA analysis showed that there
were no statistical differences in terms of the proportion of fixa-
tions allocated to the ROIs between the groups in either stage of
the task.

The relationship between overall task performance and the pro-
portion of fixations allocated to face regions were investigated
using spearman’s rho correlations. No correlations for the relation-
ship between proportion of fixations on a region and performance,
in neither the viewing nor recognition stage, reached statistical sig-
nificance for any of the groups (correlations are listed in Appendix
A).

4. Discussion

Defects within the central 10� of the VF appear to be particu-
larly detrimental for functioning in everyday tasks such as reading
(Fujita et al., 2006) and a good predictor of self-reported limita-
tions in vision related activities (Tabrett & Latham, 2012). Our pre-
vious research also showed the importance of the central 10�, as
people with advanced glaucomatous VF defects (specifically within
the central 10�) performed worse on average at face recognition
than people with less advanced defects, and visually healthy
controls of a similar age (Glen et al., 2012). However, as in other
performance-based studies (Kotecha et al., 2009; Smith, Crabb, &
Garway-Heath, 2011), those results were based on average effects
between groups, and it was evident that there was still a large
degree of variability in task performance within each group. For
instance, some patients classed as having advanced VF loss still
managed to identify close to 100% of the faces correctly during
the task. This implied the existence of some sort of ‘optimal’ strat-
egy that may help some patients overcome their VF loss, and the
evidence presented in the current study appears to suggest that
this could be related to aspects of the patient’s eye movement
behaviour.

Evidence from some studies has suggested that the eye move-
ments made when first viewing a face are important for successful
face recognition (Chan et al., 2011; Firestone, Turk-Browne, &
Ryan, 2007; Henderson, Williams, & Falk, 2005). However, in the
current study, there was no real indication that the eye movements
made by the patients when first viewing a single face in the CFMT
were correlated with overall face recognition performance. Never-
theless, eye movements when ‘recognising’ a face (i.e. searching for
the face they recognised) appeared to be related to overall success
at this task. In particular there was a notable association between
the size of saccades made and the percentage of correctly identified
faces. This association was less apparent for the patients who did
not have significant defects in their central 10� of vision, and was
non-existent in the controls. The idea that certain eye movements
were associated with better task performance for some people
with glaucoma, but less so in controls with normal vision, also
emerged in another study investigating the impact of glaucoma
on visual search of targets in images of everyday scenes. In that
case, an increased saccade rate appeared to be associated with fas-
ter search times within the patient group, but not in the controls
(Smith, Glen, & Crabb, 2012). Taken together, these findings may
suggest that changes in eye movements could offer a useful tool
for improving performance in a number of visual tasks, but that
the best strategy may depend on specific features of the task at
hand.

In addition, the current study attempted to consider whether
there were any differences between the patients and controls in
terms of how they sampled facial features: specifically whether
there may be any differences in terms of the proportion of fixations
that were allocated to specific regions of the face. In support of
other research it was found that the participants did not allocate
equal numbers of fixations to all facial features (Janik et al.,
1978; Klin et al., 2002; McCullough & Emmorey, 1997; Watanabe
et al., 2011), with participants in this study allocating the majority
of their fixations to the nose region, and then the eyes. However,
there was no statistically significant difference between groups
in terms of how frequently they fixated each face region. Further-
more, the proportion of fixations allocated to the eyes, nose,
mouth, or other regions did not appear to be associated with over-
all task performance within any of the groups. So, the observed
associations between eye movements and performance are unli-
kely to reflect specific sampling of parts of the face. Note, however,
the high frequency of fixations to the nose region reported here
may simply reflect the requirement of participants to fixate
regularly at a central point for drift corrections to be applied
throughout the task, introducing significant bias in terms of gaze
position. Increased fixations to the nose regions may, on the other
hand, indicate the use of a more holistic processing strategy
(Bombari, Mast, & Lobmaier, 2009); often seen in the processing
of upright faces. The relatively small size of the faces for the view-
ing distance is also likely to be an issue here; since the features
were quite small, participants may have been less likely to pay
particular attention to individual features. Future studies may wish
to investigate this idea further by manipulating the size of the
images (Bullimore, Bailey, & Wacker, 1991; Lott et al., 2005).

Whilst it appeared that producing larger saccades was associ-
ated with better task performance, it is unclear at this stage what
exactly was driving some patients to make different eye
movements to others. Participant recruitment was deliberately



Fig. 5. Saccadic eye movements made during selected face recognition trials and corresponding 10-2 VFs for six example patients (greyscales of integrated visual field displayed
in centre). The average saccade amplitude and performance of each patient is displayed within the graph. For illustrative purposes, ‘large saccades’ [>4 deg] are coloured green,
whilst ‘small’ saccades [<4 deg] are blue. Each fixation is coloured red. An increased proportion of saccades made by patients B, D and F are large: these patients also performed
better in the task than patients A, C and E. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Mean (SD) relative proportion of fixations allocated to regions of interest (ROI) in the
viewing and recognition stages of the task for the three study groups.

Significant
10� defect

Non-
significant
10� defect

Controls p-Value

Viewing stage
Eyes 0.26 (0.21) 0.18 (0.19) 0.25 (0.17) 0.29
Nose 0.44 (0.21) 0.55 (0.21) 0.46 (0.19) 0.13
Mouth 0.12 (0.11) 0.10 (0.09) 0.15 (0.18) 0.27
Other regions 0.18 (0.15) 0.17 (0.15) 0.15 (0.15) 0.64

Recognition stage
Eyes 0.17 (0.16) 0.16 (0.18) 0.19 (0.18) 0.80
Nose 0.46 (0.17) 0.48 (0.21) 0.45 (0.20) 0.75
Mouth 0.14 (0.16) 0.11 (0.14) 0.14 (0.16) 0.64
Other regions 0.23 (0.12) 0.25 (0.15) 0.22 (0.17) 0.82
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restricted to those aged between 50 and 80 with preserved VA
(equal to or better than Snellen 6/9) but there were still differences
between, groups in terms of age, VA and CS (Table 1). However, the
reported effects between eye movements and task performance
did not substantially change when these variables were accounted
for within the correlations. Furthermore, the results of the multiple
regression analysis revealed that there did not appear to be any
strong relationship between eye movements and the severity of
VF defect (as measured by best eye MD for the 24-2 and 10-2
HFA VFs). Therefore, it seems unlikely that the saccadic behaviour
differences observed in the face recognition task were strongly re-
lated to the severity of damage in the VF. This point is illustrated in
Fig. 5 which shows how patients with very similar binocular de-
fects in their central 10� of vision produced very different saccade
patterns and also performed differently to each other in the task.
For example, patient A, despite having a very similar binocular de-
fect in the central 10�, performed better then patient B and also ap-
peared to make a higher proportion of larger eye movements. They
also appeared to display a more systematic strategy than patient B
as they looked for the face they recognised. Perhaps the strategy is
related to other factors more specific to the individual’s relation-
ship with their VF defect, such as how aware they are of it; a topic
which may benefit from future research. It is also possible that
more intricate aspects of the defect, such as specific locations with-
in the central 10�, were of influence, but there was not enough data
here to be able to quantify the effects of different VF defect loca-
tions. Furthermore, some studies have suggested that glaucoma
is linked to processing deficits, such as difficulty with the detection
of global forms (Loffler, 2008; McKendrick, Badcock, & Morgan,
2005). The ability to detect contrast has also been shown to be
linked to face recognition ability in other low vision populations
(Barnes, De L’Aune, & Schuchard, 2011; Dinon & Boucart, 2005).
Suprathreshold contrast discrimination also appears to be affected
by glaucoma, and may provide a more accurate depiction of real
world function than other visual measures (McKendrick et al.,
2010). Future studies may therefore also wish to investigate in
more detail whether such underlying processing difficulties trans-
late to behavioural changes in a face recognition task.

The idea that the eye movement strategy becomes more influ-
ential for task performance once damage has occurred within the
central 10� of VF was supported by multiple regression analyses
of the data. When all measured variables were entered into the
model, the most influential variable when predicting task perfor-
mance, for patients with significant 10� defects, was average sac-
cade amplitude when recognising a face. However, interestingly,
this variable was less important in explaining variance in task per-
formance within the group of patients who did not have significant
10� defects, and in the control group. The apparent importance of
the central VF is not all that surprising given the nature of the
current task: for instance, the average size of the faces presented
to the participants roughly subtended to the region covered by
the 10-2 VF. Therefore, making larger saccades may be more ben-
eficial for a person with VF defects in this region. It is also worth
noting that some of the patients classed as not having significant
10� defects had a MD p < 1% in their worst eye 10-2 VF. Unfortu-
nately, there was not enough data here to determine whether there
were any statistically significant differences in performance for
those who had more advanced vision loss in one eye versus those
with truly intact 10-2 VFs. Further research involving patients with
monocular defects may therefore reveal additional information
regarding the nature of any compensatory processes occurring dur-
ing tasks such as face recognition.

It is very important to note that the results reported here were
based on associations, and therefore it cannot be said that the rela-
tionship is a causative one or that the results are definitely a sign of
some adaptive strategy in glaucoma. There are other limitations
about our experiment too: for example, the results may have been
linked to the memory and cognitive skills of the participant beyond
what was estimated by the MEAMS test. Since there was no time
limit for recognition (the trial progressed until the participant
made their response) it is possible that certain psychological fac-
tors may have contributed to the results; for instance some partic-
ipants may have felt less motivated or confident in their decision
than others and this may have influenced their behaviour. Future
studies may therefore wish to consider information regarding the
participant’s perceived level of confidence in their response or
whether restricting the length of time for recognition to occur
has any bearing on the results. Whilst all participants underwent
a short practice session prior to taking part in the study, this in-
volved cartoon faces as opposed to faces similar to those used
within the task. Practice effects may have influenced the results
as participants gained more experience with the faces used in
the actual task but this is unlikely to have had an effect on the
average between group differences in eye movements reported in
this study. Moreover, the CFMT, whilst previously shown to be a
valid face recognition measure, is removed from real world con-
texts; for instance, the images are black and white and all were dis-
played at only one, fairly small, size.

Nevertheless, overall these data highlight the potential of exam-
ining eye movements for furthering understanding into visual
functioning in glaucoma. It would also be interesting to know,
for example, via a more controlled experiment whether any change
in eye movements seen in a patient is a conscious strategy, or
whether it may be more related to an underlying biological compo-
nent of the disorder (Lamirel et al., 2012). More support for this
idea could suggest a method for vision rehabilitation, a concept
that has already been explored in other eye disorders. For instance,
‘eccentric viewing training’ for patients with AMD involves the
encouragement of patients to make use of their peripheral vision
by relocating fixation to a functioning area of the retina adjacent
to the macular scotoma (commonly termed the ‘preferred retinal
locus; PRL; for a review see Schuchard, 2005). It has been reported
that training some participants to use eccentric viewing techniques
improved patients’ abilities to carry out Activities of Daily Living
(as measured by the Melbourne Low Vision ADL Index (Haymes,
Johnston, & Heyes, 2001)) compared with those who did not take
part in the intervention (Vukicevic & Fitzmaurice, 2009). Another
study found that gradually training participants to make larger
eye movements lead to improvements on a reading task (Seiple
et al., 2005). Similarly, ‘‘explorative saccade training’’ in patients
with hemianopia appeared to lead patients to make more eye
movements into their blind field. These patients also later reported
subjective improvements in their performance in daily activities
(Roth et al., 2009). Once a causative link is established it might
be useful to encourage patients with glaucoma to utilise more



Table A1
Spearman’s rho correlations (p-value) between percentage of correctly identified faces and the proportion of fixations allocated to ROIs within each of the groups.

Eyes Nose Mouth Other regions

Viewing stage
Percentage of correctly identified faces

Sig. 10� defect �0.14 (p = 0.50) �0.21 (p = 0.30) 0.16 (p = 0.43) 0.32 (p = 0.11)
Non-sig. 10� defect 0.11 (p = 0.61) 0.35 (p = 0.09) �0.37 (p = 0.08) �0.39 (p = 0.07)
Control �0.06 (p = 0.71) �0.14 (p = 0.39) �0.28 (p = 0.09) �0.16 (p = 0.34)

Recognition stage
Percentage of correctly identified faces

Sig. 10� defect 0.02 (0.92) �0.19 (0.32) �0.21 (p = 0.27) 0.27 (p = 0.16)
Non sig. 10� defect �0.03 (p = 0.91) 0.33 (p = 0.12) �0.18 (p = 0.40) �0.39 (p = 0.07)
Control �0.09 (p = 0.58) 0.21 (p = 0.20) �0.29 (p = 0.07) �0.20 (p = 0.20)
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deliberate eye movements during specific visual tasks in everyday
situations. In turn this could help alleviate some of the functional
difficulties experienced by patients as a result of glaucoma, thus
improving their perceptions of quality of life.
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