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ABSTRACT 
 

The present study investigates the rather under-explored topic of passenger waiting times at public 

transport facilities. Using data collected from part of London’s bus network by means of physical 

counts, measurements and observations, and complemented by on-site passenger interviews, the 

waiting behaviour is analysed for a number of bus stops served by different numbers of lines. The 

analysis employs a wide range of statistical methods and tools, and concentrates on three aspects: 

passenger interarrival time, passenger actual waiting time, and passenger perceived waiting time. The 

results suggest that there is a clear difference in terms of the passenger arrivals rate between stops 

served by up to two lines and stops served by three lines or more, as it appears that passengers in the 

former time their arrival at the stop to coincide with bus arrivals as much as possible. Also, it is found 

that waiting time at such stops is best approximated by the exponential distribution, with the gamma 

distribution also offering an adequate fit. Finally, as concerns the passengers’ perception of waiting 

time, it is found that this follows a lognormal or a gamma distribution, and generally overestimates 

the actual waiting time; however, this effect fades as the actual waiting time increases. 

 

 

1 INTRODUCTION 
 

The fact that travel time in road networks is not constant, but entails an element of variability, 

resulting in uncertainty when attempting to predict it, has been recognised in the literature for a long 

time. Already in a very early study by Wardrop (1) it was noted that travel times follow a skewed 

distribution with a long ‘tail’ representing the few very slow vehicles, such that it is very likely for the 

mean travel time to be exceeded. In a later study by Thomson (2), travel time variability was 

identified as an important characteristic of road networks and it was pointed out that the 

unpredictability of travel time is one of the most important sources of time losses. 

The importance of travel time variability has been the objective of much research in the past 

and has therefore been extensively analysed from the traveller’s perspective. Many studies have 

concluded that although travel time is an important factor affecting the traveller’s route choice 

behaviour, travel time variability can be even more important. Travellers are interested in how long it 

will take them to reach their destination, but are even more concerned with how reliable their 

prediction of total travel time is. A wrong travel time prediction results in either an early arrival at the 

destination or in a delay. None of these situations are appreciated by the traveller, with delays usually 

having more severe consequences for him/her (e.g. late arrival at the workplace) and therefore not 

being tolerated (3-5). 

Hence, much research has focussed on quantifying and modelling travel time variability. This 

has almost exclusively concentrated on motorised vehicular traffic. As opposed to road networks, 

however, where traffic congestion can be fairly easily identified as the sole source of uncertainty, 

passengers in public transport networks of large cities may be exposed to delays arising from a 

number of sources, such as service reliability and overcrowding. For instance, an important 

component of travel time in public transport, currently only superficially considered by journey 

planners, is waiting time. In fact, travellers are more sensitive to the waiting time at public transport 
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stops than the actual time spent on board (6), and from an operational perspective, this may lead to 

them changing their route and mode choice, and sometimes even their final destination (7). And while 

this is a major problem in large cities’ public transport networks, there does not seem to be any broad 

agreement in the literature on how waiting time should be measured and quantified. 

The aim of this study is, hence, to shed light into the under-explored topic of passenger 

waiting time at public transport facilities, with a view of providing results for input into transport 

models. Focussing on part of London’s bus network and using data obtained from counts and 

measurements, the study proceeds in three stages. First, the rate of arrivals of passengers at bus stops 

of different characteristics (mainly differing by the number of lines served) is looked at. Then, 

coupled with observations of bus and passenger departures, waiting time measurements are carried 

out, and conclusions with respect to the statistical distribution of waiting time are drawn. Finally, the 

study is complemented by a passenger survey exercise investigating the perceived waiting time along 

with a number of other characteristics, and comparisons are made between the perceived level of 

service and the actual one. 

The present paper is structured as follows: Section 2 presents the background of the study, 

focussing primarily on previous research on the topic of the public transport waiting time modelling. 

Section 3 then goes on to present the study area and the data collection methods employed, and 

describes the analysis methodology. Section 4 presents the results of the analysis, and discusses the 

patterns of passenger interarrival times, actual waiting times and perceived waiting times at bus stops. 

Section 5, finally, concludes the paper and identifies areas of future research. 

 

 

2 BACKGROUND 
 

A number of studies in the past have attempted to understand and determine passenger arrival rates 

and waiting times at public transport facilities (7-12). All of them agree that passenger behaviour is 

schedule-dependent when the service has long headways (low frequency). In this case, most 

passengers time their arrival at the stop to coincide with the service arrival as much as possible, 

minimising thus their waiting time. In the case of shorter headways (high frequency) on the other 

hand, passenger arrivals become random. The main difference between the various studies in the 

literature is in the waiting time threshold that schedule-dependent arrivals become random. 

 The first study that looked into the topic of waiting time was that of Weber (6), which 

concluded from an analysis of Stuttgart’s bus network that passengers start behaving schedule-

dependently when the headway exceeds 7-8 minutes. The same threshold value was found in a later 

study by Seddon and Day (9), where a linear equation relating passenger waiting times and headways 

was derived, based on an analysis of bus headways in Manchester. A different threshold value, 

however, was found in the study by Joliffe and Hutchinson (10), which used bus data from London 

and concluded that passenger arrivals are random for waiting times up to 12 minutes. This threshold 

was additionally confirmed in a later study by O’Flaherty and Mangan (12) in Leeds, but it was 

pointed out that it applied only to off-peak periods; for peak periods, the threshold reduced to 5 

minutes.  

The study of Braendli and Mueller (11) was the first to acknowledge that regular passengers 

on a route are more likely to know the timetable, as opposed to occasional users. It proposed a 

passenger arrival model, in which passengers are divided into schedule-dependent with knowledge of 

the timetable, and schedule-independent without knowledge of the timetable. The study then derived 

distribution curves of passenger arrivals with respect to the public transport headways at stops 

according to these two types of passenger, revealing that passengers arrived near scheduled departure 

times within a short headway of 6 minutes. 

Other studies have developed passenger waiting time models based on distribution curves of 

passenger arrival rates and the integral calculus method (7, 13). Specifically, Luethi et al (7) also 

divided passengers into schedule-dependent and schedule-independent, and proposed a model for 
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passenger arrival rates using a logarithmic function. The study proposed that passenger arrivals 

distribution can be modelled as a superposition of a uniform distribution (for the timetable-

independent passengers) and a shifted Johnson SB distribution (for the timetable-independent 

passengers). The study also concluded that passengers begin to arrive at stations near the scheduled 

departure times, even for very short headways. Guo et al (6), on the other hand, fitted normal, 

exponential, lognormal and gamma distributions to arrival rates of passengers transferring from rail to 

buses and concluded that the lognormal and gamma distributions had the most appropriate fit for 

passengers transferring directly and non-directly.  

A limitation of all studies performed to date is that they have only analysed stops served by a 

single line, and have estimated passenger waiting time only by statistical analysis of the bus headways 

and the so-called Platform Waiting Time (PlatWT), which has been defined by Luethi et al (7) as the 

actual time the passenger has waited on the platform (or the bus stop). Furthermore, while analysis of 

the data collected by these studies can provide useful information on waiting times from a purely 

operational perspective, it does not offer any insight into passengers’ perceived waiting time, which is 

additionally influenced by psychological factors and has been found to be more significant from the 

point of view of customer satisfaction (14). 

The present study extends existing knowledge in two ways: on one hand it conducts actual 

passenger counts and observations at bus stops served by multiple lines and analyses passenger arrival 

rates and waiting times; and on the other hand it complements this analysis with additional data on 

waiting time perception, collected through surveys. The methodology is presented in the next section. 

 
 

3 METHODOLOGY 

  
The data collection and analysis methodology are outlined in this section. This includes first a short 

description of the study area, and is followed by an account of the data collection methods and tools 

employed. Then, the analysis methods used are explained, in preparation for the reporting of the 

results in Section 4. 

 

3.1 Study area 

 

The area selected for this study is Harrow in North-West London. It is one of the 32 boroughs of 

Greater London, with an area of 50 km2 and a population of roughly 250,000 (15). The rationale 

behind the selection of Harrow is that the area benefits from good rail connections to Central London, 

but these are part of London’s largely radial rail and underground networks, and as such do not 

accommodate trips within Harrow itself, which rely almost entirely on the local bus network. The 

latter consists of 16 bus lines, serving the entire borough and connecting it to the adjacent areas. The 

location and the structure of the Harrow bus network are shown in Figure 1. 

A set of bus stops from the study area have been chosen to perform counts, observations and 

interviews. In order to ensure that the passenger behaviour monitored is as representative as possible, 

it has been deemed appropriate to survey stops located within approximately 15-20 minutes’ walk 

from the nearest railway station, so as to avoid the case when walking and other modes may act as an 

alternative to buses. In total 18 bus stops have been surveyed, of which six are served by one line, 

another six by two lines, two by three lines, two by five lines, and another two by six lines. 

The data collection has been carried out between 5 November 2013 and 17 March 2014. 

Appropriate one-hour survey slots have been identified on school day mornings from 08:00 to 09:00, 

so as to ensure that the network is surveyed during the peak period, thus maximising the amount of 

data collected. Each bus stop has been surveyed only once, as surveying on additional days would 

introduce a bias in the results due to double-counting, given the fact that the vast majority of the 

travellers at that time are commuters and are likely to perform the same journey every day.   
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FIGURE 1: Left: Location of Harrow (16); Right: Harrow bus network (17) 

 

3.2 Data collection methodology 

 

Two data collection methods have been used in this study, namely physical counts and on-site 

passenger interviews at bus stops. 

 

  

 
FIGURE 2: Top left: The StopWatch app (18) used in the recording of passenger arrivals and departures; Top 

right: Counting sheet used in the recording of bus arrivals; Bottom: Interview questionnaire 
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Physical counts have been conducted with two observers at each bus stop surveyed, who have been 

allocated separate tasks. The first observer has been responsible for recording the time of passenger 

arrival occurrences at the bus stop, while the second observer has recorded the times of bus arrival 

and passenger bus boarding occurrences. The recording of passenger arrival and departure times has 

been facilitated by the use of two mobile devices running the StopWatch app (18). The recording of 

bus departure times, on the other hand, has been carried out with the help of counting sheets (Figure 

2).  

Passenger interviews have been conducted by one interviewer at the same time as the physical 

counts. They have been facilitated by a questionnaire, whose aim has been to collect passenger 

perception-specific information as possible, while also being non-intrusive and allowing for the 

interview to be fast. As such, following a pilot experiment, demographic questions and other general 

questions on the respondent’s journey have not been included, and interviews have instead focused 

entirely on waiting-time-specific questions, such as the traveller’s usual waiting time (i.e. the waiting 

time usually experienced by a regular traveller) and budgeted waiting time (i.e. the total time allowed 

for waiting at the bus stop in order to minimise the chances of arriving late at the final destination in 

case the service does not run on schedule (14), as well as the use of travel information. The 

questionnaire used is shown in Figure 2. 

It should be noted that due to practical limitations relating to the conduct of the counts and 

interviews, passenger departure times have not been recorded at stops served by more than two lines, 

and interviews have been conducted only at stops served by one line. 

 

3.3 Analysis methodology 

 

The analysis of the collected data consists of three main tasks, in each one of which different 

characteristics of the waiting behaviour of bus passengers are observed.  

 

1. Analysis of passenger arrival rates  

Considering all 18 stops surveyed, these are categorised by type, which in this case is based on the 

number of lines serving the stop. Hence, three stop categories are defined, namely “1 line”, “2 lines” 

and “3+ lines”. Frequency distributions of the passenger interarrival time (i.e. the time between 

individual passenger arrival occurrences) for each of the three stop categories are extracted, and key 

statistics, such as mean, standard deviation, skewness and kurtosis are computed. The analysis then 

proceeds by investigating similarities and differences between the distributions of the three stop types, 

verified by means of statistical significance tests, and draws conclusions with respect to the arrival 

patterns of passengers at bus stops. 

 

2. Analysis of passenger actual waiting times  

Focussing on the “1 line” and “2 line” stops, the actual dwelling time for each passenger 

observed/counted at each stop is established by subtracting the arrival time from the departure time; 

this, naturally, corresponds to the passenger’s PlatWT. At the same time, the so-called “Average 

Waiting Time” (AvWT) is calculated for each stop and each line from the measured bus headways 

(time between bus departure occurrences). This is defined by Furth et al (14) as the sum of the halves 

of the squares of the measured headways, divided by the total time between the first and last observed 

bus departure. The PlatWT values are then normalised by the AvWT, and distributions of the 

normalised PlatWT for each of the two stop types are derived, and key statistics, such as mean, 

standard deviation, skewness and kurtosis are computed. The analysis then goes on to identify 

similarities and differences between the distributions of the two stop types, verified through 

appropriate statistical significance tests. It is additionally investigated whether the observed data can 

fit a standard probability distribution with the same characteristic values. 
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3. Analysis of passenger perceived waiting times  

Focussing on stops served by one line only, the responses to the interviews are looked at, and in 

particular the survey responses relating to the perceived waiting time (PerWT) and the budgeted 

waiting time (BudgWT) are analysed. Following the same analysis method as for the actual waiting 

times, the values of PerWT and BudgWT are normalised by the AvWT for each stop, and probability 

distributions are deduced from them. These are compared with the normalised PlatWT distribution, 

and differences and similarities between the three are identified and verified by means of statistical 

significance tests. It is additionally investigated whether the observed PerWT and BudgWT data can 

fit a standard probability distribution with the same characteristic values. 

 

 

4 RESULTS 
 

The data collected are analysed using the methods described in Section 3.3, and the results are 

presented in this section according to each of the three tasks outlined. 

 

4.1 Passenger arrival rates 

 

A total of 870 measurements of passenger interarrival times have been collected across the 18 stops 

surveyed. This corresponds to 164 measurements of “1 line” stops, 189 measurements of “2 lines” 

stops, and 517 measurements of “3+ lines” stops. The interarrival time distributions for each of the 

three stop categories are presented in the form of histograms in Figure 3, and their characteristic 

values are also given. 

From a first glance, it becomes apparent that the distributions of the interarrival times for the 

three stop types are heavily left-skewed, with a significantly higher frequency of observations of 

smaller interarrival times than higher ones. This is in agreement with what is found in the literature, 

where passenger arrivals are often modelled as a Poisson process (and hence interarrival time follows 

an exponential distribution).  

Comparing the three histograms and the corresponding statistical measures, it can be seen that 

the “1 line” and “2 line” distributions are fairly similar. Indeed, a two-sample two-tailed 

homoscedastic t-test confirms that there are no significant differences between them (p-value = 0.718, 

which means that the null hypothesis that the two samples are the same cannot be rejected at the 0.05 

level). However, the histogram of “3+ lines” is different to the other two, and has a lower mean and 

standard deviation and a much higher kurtosis, which points to a narrower and more “peaked” 

histogram. T-tests confirm this finding (p-values of 0.000 in the comparison with both the “1 line” 

and the “2 lines” distributions mean that the null hypothesis that they come from the same population 

is rejected at the 0.05 level). This effect becomes more apparent in the cumulative distribution plots of 

Figure 4a (the “3+ lines” plot is steeper and narrower than the other two), and suggests that the 

interarrival times at stops served by three or more lines are generally much shorter; in other words, 

passengers arrive more frequently and more regularly at stops served by three or more lines. 

It can, of course, be argued that this is an intuitive finding, as when three lines serve a stop, it 

will attract more passengers than if it was served by one or two lines, and so it will result in more 

passenger arrival occurrences during the same time, and consequently in shorter interarrival times. To 

shed more light on this effect, a normalisation process of the interarrival times is carried out, whereby 

the inverse of the interarrival time (i.e. the rate of arrivals) is divided by the average rate of arrivals at 

each stop (i.e. the total number of arrivals in the observation period divided by the duration of the 

period). 
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(a) 

 

 

Mean =  1.195 min 

Median =  1.150 min 

Std. dev. =  2.318 min 

Skewness =  1.622 

Kurtosis =  2.117 

 

 

 

(b) 

 

 

Mean =  1.876 min 

Median =  1.200 min 

Std. dev. =  2.290 min 

Skewness =  1.835 

Kurtosis =  3.786 

 

 

 

(c) 

 

 

Mean =  0.690 min 

Median =  0.300 min 

Std. dev. =  1.031 min 

Skewness =  2.920 

Kurtosis =  11.565 

 

FIGURE 3: Passenger interarrival times at bus stops served by (a) one, (b) two, and (c) three or more lines 

 

The normalised cumulative distribution plots for each of the three stop categories are shown in Figure 

4b. T-tests between the three normalised samples (in pairs) again show that “1 line” and “2 lines” 

distributions are similar, and that “3+ lines” is significantly different. But the most important effect 

that can now be recognised is that, even if the bias introduced by the different passenger volume is 

offset, there is still a difference in the way passengers arrive at different stop types. Specifically, the 

normalised “1 line” and “2 lines” distributions have a high concentration of very high and very low 

arrivals rates, such that their cumulative plots are steep for small values, “bend” at a cumulative 

probability of roughly 0.55, and then become almost horizontal. This indicates a high concentration of 

very short and very long interarrival times, which is consistent with schedule-dependent behaviour, 

where passengers arrive at the stop shortly before arrival of the bus. On the other hand, the “3+ lines” 
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cumulative normalised arrivals rate plot “bends” at a lower probability value (0.40), and then makes a 

much more gradual ascent. This suggests that interarrival times are much more evenly distributed, 

such that passengers arrive at stops serving three or more lines independently of bus arrivals.  

 

 

 

(a) 

 

 

(b) 

FIGURE 4: Cumulative distribution plots for (a) interarrival time and (b) normalised arrivals rate for each of 

the three stop types 

 

4.2 Passenger actual waiting times 

 

Due to practical limitations relating to the tracking of specific passengers at bus stops, it has not been 

possible to record the departure time and the bus line boarded of passengers at stops served by three 

lines or more, and hence waiting time analysis concentrates on stops served by one or two lines. This 

includes 12 stops and a corresponding 342 measurements of passenger actual waiting time (PlatWT), 

of which 163 refer to “1 line” stops and 179 to “2 lines” stops. When examining the two resulting 

distributions in raw form, however, any conclusions could again be biased, as the PlatWT is heavily 

dependent on the bus line frequency of service, and so measurements relating to different lines may 

not comparable. To allow for a comparison, the PlatWT measurements are normalised by the AvWT 

metric as defined in Furth et al (14). The normalised PlatWT distributions for each of the two stop 

categories considered are presented in the form of histograms in Figure 5, and their characteristic 

values are given.  
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From a first glance, it is evident that both distributions are left-skewed, which is consistent with what 

can be found in the literature. Also, it can be seen that the two distributions have many similarities 

(the only characteristic value that is different is the kurtosis, which indicates a slightly stronger 

“peakedness” of the “2 lines” distribution). A two-sample two-tailed homoscedastic t-test confirms 

this observation, and shows that there are no significant differences between them (p-value = 0.912, 

which means that the null hypothesis that the two distributions are the same cannot be rejected at the 

0.05 level). This is also in line with the finding of the similarity of the “1 line” and “2 lines” 

interarrival time distributions. 

 

 

 

(a) 

 

 

Mean =  0.673 

Median =  0.502 

Std. dev. =  0.607 

Skewness =  0.926 

Kurtosis =  0.116 

 

 

 

 

(b) 

 

 

Mean =  0.679 

Median =  0.506 

Std. dev. =  0.571 

Skewness =  0.974 

Kurtosis =  0.224 

 

 

 

(c) 

 
K-S test results: 

D0.05
crit = 0.074 

D0.05
crit = 0.088 

 

Exponential: 

D = 0.053, accepted at level 0.05 
 

Lognormal: 

D = 0.151, rejected 
 

Gamma: 

D = 0.084, accepted at level 0.01 
 

FIGURE 5: Passenger actual waiting time (PlatWT) distribution at bus stops served by (a) one and (b) two lines; 

(c) cumulative distribution plots of PlatWT compared with exponential, lognormal and gamma plots. 
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Since the “1 line” and “2 lines” PlatWT distributions are essentially the same, it is more appropriate to 

consider the combined PlatWT distribution of the two stop types when fitting a standard probability 

distribution. Given the left-skewed shape, appropriate standard distributions would be the exponential, 

the lognormal and the gamma distributions. The fitting is performed by first deducing the cumulative 

PlatWT distribution, and then generating exponential, lognormal and gamma cumulative plots on the 

basis of the same characteristic values (i.e. mean and standard deviation). The resulting cumulative 

plots are then compared with the PlatWT distribution by means of Kolmogorov-Smirnov (K-S) tests, 

and their goodness-of-fit is assessed. 

The cumulative PlatWT distribution, and the corresponding exponential, lognormal and 

gamma cumulative plots, are shown in Figure 5c. In an initial visual assessment it can be seen that 

that lognormal distribution with the same mean and standard deviation as the actual PlatWT 

distribution is not a good fit; this is confirmed by the K-S test, which is rejected at both the 0.05 and 

the 0.01 levels (the K-S statistic of 0.151 is larger than the critical values at both levels). The other 

two plots, on the other hand, seem to reflect the actual observations much better, and the respective 

goodness-of-fit tests reinforce this finding. Specifically, the gamma distribution is a fairly good match, 

as the K-S statistic of 0.084 is rejected at the 0.05 level but accepted at the 0.01 level, and the 

exponential distribution is an even better match, with the K-S statistic of 0.053 being accepted at the 

0.05 level.      

 

4.3 Passenger perceived waiting times 

 

The final stage of the analysis considers the passenger interviews at bus stops served by one line. This 

includes 6 stops and a corresponding 95 responses, of which 40 (42%) come from male respondents 

and 55 (58%) from female ones, and of which 38 (40%) have stated that they have been pre-informed 

on actual bus arrival times using a smartphone app accessing Transport for London’s Live Bus 

Arrivals database (Hardy et al, 2012). Among the data collected, the present study looks at the 

responses relating to the PerWT and the BudgWT. Again, to allow for comparisons, PerWT and 

BudgWT values are normalised by the AvWT; the distributions are presented in the form of 

histograms in Figure 6, and their characteristic values are given. 

 From initial interpretation and comparing the histograms and characteristic values of the 

PerWT and BudgWT distributions in Figures 6a and 6b with that of PlatWT in Figure 5a, it can be 

observed that PerWT has a higher mean than PlatWT, and that BudgWT has a higher mean than 

PerWT. Statistical significance tests confirm this finding (a p-value of 0.000 is obtained for both two-

sample one-tailed t-tests carried out, thus rejecting the null hypotheses that PlatWT > PerWT and that 

PerWT > BudgWT respectively at the 0.05 level). The cumulative plots for the three distributions 

(Figure 6c) make this finding even more apparent, but also reveal some additional effects. Specifically, 

it can be clearly seen that the BudgWT is always longer than the PlatWT (which is a sensible finding, 

as passengers allow for longer waiting times than their usual ones to make sure that they do not miss 

their bus), but also that it gets closer to the PlatWT, as the latter increases. Additionally, it can be 

observed that the PerWT lso consistently overestimates the PlatWT, but that this effect is much 

stronger at lower PlatWT values and disappears at higher values (more than 1.5 times the AvWT).  

With respect to the shapes of the histograms, it can be seen that both PerWT and BudgWT are 

left-skewed, but not as much as PlatWT. As concerns the cumulative plots, it can be observed that the 

PerWT and BudgWT curves are more S-shaped, as opposed to the PlatWT one, which, as expected, is 

consistently concave without any points of inflection. This suggests that appropriate standard 

distributions for PerWT and BudgWT could be the normal, the lognormal and the gamma 

distributions. Again, the fitting is performed by generating normal, lognormal and gamma cumulative 

plots on the basis of the same characteristic values, and comparing them with the actual PerWT and 

BudgWT distributions by means of K-S tests. 
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(a) 

 

 

Mean =  1.047 

Median =  0.908 

Std. dev. =  0.425 

Skewness =  0.956 

Kurtosis =  0.833 

 

 

 

 

(b) 

 

 

Mean =  1.541 

Median =  1.567 

Std. dev. =  0.589 

Skewness =  0.392 

Kurtosis =  -0.753 

 

 

 

(c) 

 
 

T-test results: 
 

 

1. H0: PlatWT > PerWT:  

       p = 0.000, rejected at 0.05 

 PlatWT < PerWT 
 

2. H0: PerWT > BudgWT:  

       p = 0.000, rejected at 0.05 

 PerWT < BudgWT 
 

 PlatWT < BudgWT 
 

FIGURE 6: (a) Passenger perceived waiting time (PerWT) distribution at bus stops served by one line; (b) 

passenger budgeted waiting time (BudgWT) distribution at bus stops served by one line; (c) cumulative 

distribution plots of PlatWT, PerWT and BudgWT.  
 

The cumulative PerWT and BudgWT distributions, and the corresponding normal, lognormal and 

gamma cumulative plots are shown in Figure 7. In an initial visual assessment of Figure 7a, it can be 

seen that that all three standard distributions with the same mean and standard deviation as the actual 

PerWT distribution are fairly good fits. This is confirmed by the K-S tests, which are accepted for the 

lognormal and gamma plots at the 0.05 level (the respective K-S statistics of 0.086 and 0.103 are 

smaller than the critical value of 0.140), as well as for the normal plot, though only at the 0.01 level 

(the K-S statistic of 0.150 is smaller than the relevant critical value of 0.167). Similarly, from Figure 

7b it can be seen that the lognormal and gamma plots are good fits of the BudgWT distribution, and 
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the acceptance of the relevant K-S tests at the 0.05 level confirm this. On the other hand, the same 

cannot be said about the normal plot, a finding that is also verified by the K-S test, which is rejected at 

both the 0.05 and the 0.01 levels. 

 

 

 

(a) 

 
K-S test results: 

D0.05
crit = 0.140 

D0.05
crit = 0.167 

 

Normal: 

D = 0.150, accepted at level 0.01 
 

Lognormal: 

D = 0.086, accepted at level 0.05 
 

Gamma: 

D = 0.103, accepted at level 0.05 

 

 

(b) 

 
K-S test results: 

D0.05
crit = 0.140 

D0.05
crit = 0.167 

 

Normal: 

D = 0.246, rejected 
 

Lognormal: 

D = 0.107, accepted at level 0.05 
 

Gamma: 

D = 0.091, accepted at level 0.05 
 

FIGURE 7: Cumulative distribution plots of (a) PerWT and (b) BudgWT compared with normal, lognormal 

and gamma plots. 
 

 

5 CONCLUSIONS 
 

The aim of the present study has been to investigate the topic of passenger waiting time at stops, using 

data from actual counts, measurements and interviews on part of London’s bus network. Specifically, 

data from different stop types (differing by the number of lines serving the stop) have been collected 

and analysed by means of statistical tools and methods. The analysis has looked at three main aspects 

of passenger waiting behaviour: arrivals rate, actual waiting time, and perceived waiting time. 

 A number of useful conclusions can be drawn from the results of this study. First and 

foremost, looking at the findings of the interarrival times analysis, it appears that the arrivals rate at 

stops served by one or two lines is similar, and tends to intensify in the proximity of the bus departure 

times, such that passengers behave in a relatively schedule-dependent way and time their arrival at the 

stop to coincide with that of the bus as much as possible. Stops served by three or more lines, on the 

other hand, exhibit a much different pattern, where interarrivals are more uniformly spread and appear 

to be independent of the bus departures. This is an important finding, which identifies the need for 

further research into the waiting behaviour of passengers at stops served by a higher number of lines, 

and which has not been investigated here due to practical limitations. 

Another conclusion that can be drawn here is from the analysis of the passenger actual 
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waiting time (PlatWT), and is that of the similarity of the waiting time probability distribution at stops 

served by one and two lines. From a practical point of view, this means that, provided that a 

normalisation by the bus service headway is done, the same distribution can be introduced in relevant 

planning and operations models, such as route finding and transit assignment. It has also been found 

that the current assumption of exponentially distributed waiting time is a valid one, but also that the 

gamma distribution can offer an adequately good fit. 

 Useful conclusions are also drawn from the analysis of the perceived and budgeted waiting 

times. It is shown that both perceived and budgeted waiting time can be approximated by a lognormal 

or a gamma distribution, and that for the perceived waiting time the normal distribution also offers an 

adequate fit. Most importantly, though, it is found that the perceived waiting time consistently 

overestimates the actual waiting time, but also that this effect is mainly noticeable at lower waiting 

time values, and tends to fade at higher ones. This challenges the current state-of-practice on the value 

of waiting time, where it is usually assumed that it is constant, and highlights the need of further 

research into this topic. For example, it may not be a good business case for a bus service operator to 

implement a measure or a system that reduces the waiting time from 5 to 3 minutes, as it is likely that 

it will not be noticed by the passenger; however, it may be worth implementing the same measure if it 

is to reduce the waiting time from 20 to 18 minutes. 

 While the present study has shed some light onto the relatively under-explored topic of public 

transport waiting time, research in this direction continues. Further work will concentrate on the more 

detailed investigation of the passenger waiting behaviour at bus stops served by three or more lines, 

particularly as concerns the actual and perceived waiting times. Moreover, a comprehensive 

investigation of the behaviour of passengers will be carried out, with a view of understanding the 

factors that lead to specific types of behaviours. A similar analysis is also foreseen for data collected 

from train and light rail stations, which may result in much different patterns. Overall, it is anticipated 

that the research will provide a framework, according to which waiting time can be comprehensively 

modelled and incorporated into transport planning models and algorithms.  
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