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Abstract 

This study asks how users of British Sign Language (BSL) recognise individual 

signs in connected sign sequences. We examined whether this is achieved through 

modality-specific or modality-general segmentation procedures.  A modality-specific 

feature of signed languages is that, during continuous signing, there are salient transitions 

between sign locations.  We used the sign-spotting task (Orfanidou et al., 2010) to ask if 

and how BSL signers use these transitions in segmentation.  Ninety-six real BSL signs 

were preceded by nonsense signs which were produced in either the target location or 

another location (with a small or large transition). Half of the transitions were within the 

same major body area (e.g., head) and half were across body areas (e.g., chest to hand).  

Deaf adult BSL users (a group of natives and early learners, and a group of late learners) 

spotted target signs best when there was a minimal transition and worst when there was a 

large transition.  When location changes were present, both groups performed better 

when transitions were to a different body area than when they were within the same area.  

These findings suggest that transitions do not provide explicit sign-boundary cues in a 

modality-specific fashion.  Instead, we argue that smaller transitions help recognition in a 

modality-general way, by limiting lexical search to signs within location neighbourhoods, 

and that transitions across body areas also aid segmentation in a modality-general way, 

by providing a phonotactic cue to a sign boundary.  We propose that sign segmentation is 

based on modality-general procedures which are core language-processing mechanisms. 
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Signed language produced by Deaf people in everyday conversation consists of a quasi-

continuous stream of overlapping hand and facial movements.  Comprehenders of signed 

language have to segment such input streams in order to be able to recognize individual 

signs, and hence to understand other signers’ messages.  How then is signed language 

segmented?  We attempt to answer this question here by comparing sign segmentation 

with what is known about speech segmentation.  Speech also consists of a quasi-

continuous stream of articulatory movements, so it too needs to be segmented.  It is 

possible that, in spite of the substantial physical differences between spoken and signed 

language, there are general segmentation principles which can be used across input 

modalities.  Alternatively, sign segmentation may be based, at least in part, on principles 

which reflect the specific characteristics of signed language.  We ask here what the 

balance is between modality-general and modality-specific principles in the segmentation 

of British Sign Language (BSL).  

The structure of BSL signs 

Sign linguists agree that, across a range of signed languages, signs are 

decomposed into a set of minimal phonological parameters.  For example, a wide set of 

studies have established that BSL signers use these phonological parameters during sign 

comprehension (Corina & Knapp, 2006; Dye & Shih, 2006; Orfanidou, Adam, McQueen, 

& Morgan, 2009; Orfanidou, Adam, Morgan & McQueen, 2010; Thompson, Emmorey & 

Gollan, 2005).  The basic phonological structure of a BSL sign, as in other signed 

languages such as American Sign Language (ASL; Stokoe, 1960; Stokoe, Casterline, & 

Croneberg, 1965), consists of four parameters (Sutton-Spence & Woll, 1999; Cormier, 

Schembri & Tyrone, 2008; Thompson, Vinson & Vigliocco, 2010): (a) location, or where 
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the signing hand is located in relation to the body, (b) movement, or how the signing 

hand moves in space (e.g., in a circle or an arc, with wiggling fingers),  (c) handshape, 

the form of the hand itself (e.g., fist, index, circular) and (d) orientation.  We are 

concerned in the current investigation only with the first three parameters. Signs can 

share one or more of these parameters.  For example, the BSL signs NAME and 

AFTERNOON are a minimal pair as they have identical handshape and movement but 

differ in their location (Sutton-Spence & Woll, 1999). Signed languages are therefore 

composed of signs with internal structure.  Note that there are currently several 

competing models of sign phonology (e.g., Brentari, 1998; Sandler & Lillo-Martin, 

2006), but in the current research we are dealing with a level of detail that these models 

agree on, namely, with the primary sign parameters of location, movement, handshape, 

and orientation (see e.g. Brentari, 1998), and with a level of detail that allows us to 

assume crossover from work on ASL to BSL. In this respect we follow several previous 

investigations of on-line processing in various sign languages (e.g.,Catalan: Baus, 

Gutierrez-Sigut, Quer, & Carreiras, 2008; Spanish: Carreiras, Gutierrez-Sigut, Baquero,  

& Corina, 2008; American: Corina & Emmorey, 1993; Corina & Knapp, 2006; Emmorey 

& Corina, 1990; British: Dye & Shih, 2006). 

The location parameter appears to be especially important in sign processing.  It is 

the first parameter to be identified in gating (Emmorey & Corina, 1990); it consistently 

produces inhibition in priming studies (Corina & Hildebrandt, 2002; Corina & Emmorey, 

1993; Carreiras et al., 2008); it is the parameter that is acquired first by children (Meier, 

2000; Morgan, Barrett-Jones & Stoneham, 2007); and it is the least affected parameter in 

acquired language impairment (Corina, 2000) and in misperception errors (Orfanidou et 
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al., 2009).  The question we ask here, then, is what roles location information and 

especially transitional movements between locations play in sign segmentation. As we 

will argue below, there are several sources of information used in sign segmentation. In 

the current study, however, we investigate the impact of location information because of 

its primacy in previous psycholinguistic investigations.   

There are two ways a sign can include a transitional movement between two 

locations.  The first type is not a transition between locations but instead occurs within a 

single sign as a handshape change.  As a sign is articulated, the handshape could begin as 

one configuration and finish as another (for example the sign starts with a closed hand 

and finishes as open).  We do not investigate these types of transitions here.  The second 

type of transition (and the one we investigated) is between two locations in a sequence of 

signs.  One sign is articulated and then, for the next sign, the action moves to another 

location.  Because we are interested in the segmentation of signs in continuous signing, 

we focus in the current set of studies on the effect of transitional movements between 

locations in sign sequences. 

Transitions as modality-specific segmentation cues 

A characteristic of BSL and other signed languages is the existence of salient 

visual gaps occurring between individual signs in signed sequences.  For example, in the 

BSL sentence MAN WANT EAT, ‘the man wants to eat’, the hands move from the chin 

to the trunk and back to the chin.  There are transitional movements between the first and 

second sign and between the second and third sign.  These transitions between spatial 

locations may be one of the reasons why sign is slower than speech (Emmorey, 2002).  

Transitions provide potentially very useful cues to the temporal locations of sign 
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boundaries in the input sign stream: If sign comprehenders can identify and temporally 

locate a transition, then they would know a new lexical sign is likely to be about to start. 

If transitions provide explicit sign-boundary cues in this way, then recognition of 

a sign following a large and visually salient transition from another sign in a distant 

location should be easier than following another sign in the same location.  If this 

recognition difference were found, it would suggest that sign segmentation is based (at 

least in part) on a modality-specific principle.  The phonological parameters of a sign 

(i.e., location, handshape, movement and orientation) are produced with temporal 

overlap, whereas the phonological components of speech are expressed in a much more 

sequential fashion.  This means that sign language can be characterized as appearing over 

time as a sequence of clusters of parameters appearing more or less in parallel but often 

separated by transitional movements, whereas speech appears over time as a more serial 

sequence of sounds.  Vocal-tract articulators do of course have to move from one place of 

articulation to another between speech sounds, but there is nothing to distinguish 

transitions between sounds within words unambiguously from transitions between sounds 

across word boundaries.  In addition, the speech articulators move very small distances 

and are often invisible to the interlocutor.  Transitional movements in speech therefore 

cannot signal word boundaries in the way just hypothesized for sign language.  So if sign 

transitions were to signal boundaries in the way just proposed, then this kind of 

segmentation would be something special to sign language.   

Note, however, that sign segmentation cannot be based only on the use of 

transitional boundary cues, since there would then be no way to segment two signs 

produced in the same location.  In addition, a transition to a following sign can include 
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not only a change in the location features, but also a change in selected fingers, 

configuration, orientation, or in manner of movement, or a combination of these.  For the 

purposes of the current research, however, we focus on the effect of location changes on 

sign segmentation, while trying to control for changes in other features of the signs (see 

Methods section).  Note also that there may be other modality-specific ways in which 

signs are segmented which are not considered here (e.g., segmentation based on a spatial 

frequency analysis of the sign stream or movements of the head and/or eyes).  The 

question, therefore, is whether segmentation based on transition-cued boundaries 

complements other sign-segmentation procedures or whether there is no such modality-

specific segmentation procedure. 

Transitions as modality-general segmentation cues 

An alternative possibility, however, is that sign transitions provide information 

which can be used by modality-general procedures.  On this view, sign segmentation 

would work like speech segmentation.  How then is speech segmented?  The consensus is 

that spoken-word recognition is based on the simultaneous evaluation of multiple lexical 

hypotheses, and competition among those hypotheses (see, e.g., McQueen, 2007, for 

review).  Segmentation emerges out of this evaluation and competition process (that is, 

boundaries between words are found as the recognition system settles on the best lexical 

hypothesis for each part of the continuous input).  Multiple sources of information (e.g., 

from metrical structure, Cutler & Norris, 1988, phonotactics, McQueen, 1998, and 

acoustic fine detail, Gow & Gordon, 1995) can influence the segmentation process by 

probabilistically cueing the location of likely word boundaries, and those multiple cues 
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may vary in their efficacy (Mattys, White & Melhorn, 2005), but the core mechanism that 

they feed into is still that of competition among multiple lexical hypotheses. 

Sign recognition may indeed be based on this kind of evaluation and competition 

process.  In a series of lexical decision and priming experiments, Carreiras et al. (2008) 

showed that recognition of signs in Spanish Sign Language is influenced by the signs’ 

lexical neighborhoods (i.e., the number of signs with the same location or handshape 

parameter as the target sign).  Facilitatory neighbourhood effects were taken to reflect the 

process of accessing multiple signs, and inhibitory neighbourhood effects were taken as 

evidence of competition among those signs.  In Experiment 1 we ask whether sign 

transitions influence BSL segmentation by modulating this sign competition process. 

Analytically, transitional information could help sign comprehenders constrain 

sign competition by narrowing the lexical search space.  Consider the situation where 

there is a large transition from one sign to another.  Here, as the transition begins, many 

signs may follow (all signs with a location different from the starting location; e.g., for a 

transition starting from a sign on the head, all signs lower than the head).  If, in contrast, 

there is no transition to a different location, then the locational search space is maximally 

constrained: The next sign must be in the same location.  This hypothesized use of 

transitional information to determine which signs are part of the lexical competition 

process is equivalent to the use of acoustic-phonetic information to constrain spoken-

word recognition.  In the Cohort model of speech recognition (Marslen-Wilson, 1987), 

the cohort of lexical candidates is gradually narrowed down to one winning candidate as 

acoustic-phonetic information rules out phonetically non-matching candidates.  Similar 

processes constrain the competition process (and hence word segmentation and 
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recognition) in other models, including TRACE (Elman & McClelland, 1987) and 

Shortlist (Norris, 1994; Norris & McQueen, 2008).  Thus, if transitional information 

constrains sign segmentation by narrowing the lexical search, then this would be 

evidence of a modality-general procedure. Previous research has indeed pointed to 

modality-independent processes in sign language segmentation (Orfanidou et al., 2010). 

Very little is understood, however, about the role of transitions in sign segmentation, and 

hence it is not clear whether they will too will be treated in a modality-general way. 

Predictions 

In Experiment 1 we therefore tested whether transitions have a modality-specific 

or a modality-general effect on sign segmentation.  The two accounts make opposite 

predictions.  On the one hand, if transitions provide modality-specific explicit sign 

boundary cues, then signs should be easier to segment and recognize after large 

transitions than when there is no transition.  On the other hand, if transitions narrow 

lexical search in a modality-general fashion, then signs should be harder to segment and 

recognize after large transitions than when there is no transition.  

We predicted that transitions would have a modality-general effect, for two 

related reasons.  First, evidence over the past 30 years or so on different signed languages 

has demonstrated that remarkably similar patterns exist across the speech and sign 

modalities, both at the behavioral level (Emmorey, 2002; Klima & Bellugi, 1979; Meier, 

2002) and at the neural level (Corina, San Jose-Robertson, Guillemin, High, & Braun, 

2003; McSweeney, Woll, Campbell, McGuire, David, Williams, Suckling, Calvert, & 

Brammer, 2002; Petitto, Zatorre, Gauna, Nikelski, Dostie, & Evans, 2000).  Second, and 

more specifically, our recent work has already suggested that sign segmentation is based 
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on modality-general principles (Orfanidou et al., 2010).  In particular, research in speech 

segmentation has indicated that listeners segment speech so as to avoid impossible words 

(Norris, McQueen, Cutler & Butterfield, 1997).  To do so, they make use of a Possible 

Word Constraint (PWC): Lexical parses that include impossible words are disfavored in 

the lexical competition process (Norris et al., 1997; Norris & McQueen, 2008).  Evidence 

for the PWC has been found in a range of typologically diverse spoken languages 

(English: Norris et al., 1997; Dutch: McQueen & Cutler, 1998; Japanese: McQueen, 

Otake& Cutler, 2001; Sesotho: Cutler, Demuth & McQueen, 2002; Cantonese: Yip, 

2004; Slovak: Hanulíková, McQueen &Mitterer, 2010; and German: Hanulíková, 

Mitterer& McQueen, 2011).  It appears that a lexical viability constraint also operates in 

BSL segmentation.  Deaf signers of BSL found it easier to spot real BSL signs in 

nonsense contexts when the context was a possible BSL sign than when it was not 

(Orfanidou et al., 2010).  

In spite of this evidence for modality-general sign segmentation, it was still 

possible, however, that transitions could have a modality-specific effect.  Large 

transitions between signs are highly salient, so could easily act to demarcate sign 

boundaries.  This was indeed the initial intuition of the third and fourth authors (native 

and fluent BSL signers respectively).  Furthermore, the fact that lexical viability 

constraints appear to be used in BSL segmentation in a modality-general way (Orfanidou 

et al., 2010) does not entail that transitions will be treated similarly. 

In Experiment 1 we therefore asked Deaf signers of BSL to try to spot real BSL 

signs in nonsense-sign contexts.  This sign-spotting task is the analogue of the word-

spotting task used in speech-segmentation research (Cutler & Norris, 1988; McQueen, 
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1996) and has already been used successfully in research on BSL (Orfanidou et al., 

2010).  There was either a minimal transition between the nonsense context sign and the 

following target sign, or a physically small or large transition (see below for details).  

According to the modality-specific (boundary cue) hypothesis, the large-transition 

condition should be the easiest; according to the modality-general (lexical search) 

hypothesis, however, this should be the hardest condition. 

Within the small- and large-transition conditions, we also manipulated the nature 

of the transitions, such that they were made either within a major location (Battison, 

1978; Brentari, 1998) or across two major locations.  According to Brentari, there are five 

major locations: head, trunk, arm, non-dominant hand, and neutral space.  One important 

generalisation with respect to the location parameter is that the major body area (e.g., the 

head) remains constant within a sign, but different subareas (e.g., the chin, forehead) can 

be combined within that sign if it is a compound sign (a single lexical sign derived from 

two different lexical signs e.g., MAN, WOMAN are combined with some articulation 

reductions in the single sign PEOPLE).  This observation is often referred to as Battison’s 

Place constraint: “There can be only one major body area specified in a sign” (Sandler & 

Lillo-Martin, 2006, p.138).  There are some exceptions to this constraint, in both ASL 

and BSL, especially where two signs have become a compound.  In both sign languages, 

however, the constraint is a phonotactic preference that applies to the majority of signs in 

the lexicon (Hohenberger, 2007; Sutton-Spence & Woll, 1999; see also Orfanidou et al., 

2009).  Since listeners use phonotactic knowledge to segment speech (McQueen, 1998; 

Suomi, McQueen & Cutler, 1997), and since BSL signers show evidence of using such 

knowledge in sign recognition (Orfanidou et al., 2009), it was possible that signers also 
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use this knowledge in segmentation.  If so, they should be faster to spot real signs when 

the transition involves moving to a different major location (since there must be a sign 

boundary at this point) than when the transition involves moving to another subarea 

within the same major location (which could be a within-sign transition).  This would be 

evidence of another kind of modality-general segmentation procedure, analogous to that 

demonstrated in speech, where a word is easier to spot when phonotactics require there to 

be a syllable boundary at the word’s edge than when there is no phonotactically necessary 

boundary (McQueen, 1998; Suomi et al., 1997).  

 The possibilities of segmentation based on competition and on phonotactics are 

not mutually exclusive, so it was possible that we would observe an effect of the 

narrowing of the lexical search space (large transitions worse than small transitions worse 

than minimal transitions) and of phonotactic knowledge (within-location transitions 

worse than between-location transitions).  Similarly, segmentation based on transitional 

boundary cues and on phonotactics are not mutually exclusive, so it was possible that we 

could observe a boundary effect (large transitions better than small transitions better than 

minimal transitions) and a phonotactic effect. 

Age of Acquisition 

When studying signed language processing, a crucial factor to take into 

consideration is the language learning experience of the Deaf participants.  Because 90-

95% of Deaf children are born to hearing parents who do not sign, native-like language 

acquisition which results from early and consistent exposure to a language is not the 

norm.  Previous work has demonstrated that age of exposure to sign language results in 

subtle but measurable differences in processing (Carreiras et al., 2008; Corina & 
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Hildebrandt, 2002; Newport, 1990; Mayberry & Fischer, 1989; Newman et al., 2002). 

During sentence recall and shadowing, for example, late learners of American Sign 

Language (ASL) produce a disproportionate number of phonological substitutions (i.e., 

signs that are phonologically similar to the target signs but differ in meaning) relative to 

native signers (Mayberry, Lock, &Kazmi, 2002). Mayberry (1994) has interpreted this 

phenomenon as evidence that delayed learners of ASL focus more attention on the 

phonological form of signs than native or early learners because they find phonological 

processing more difficult (i.e., late learners have a “phonological bottleneck”). 

In the present study, therefore, we included age of sign-language acquisition as a 

between-participant factor.  In our previous work on sign segmentation using the word 

spotting task, however, we did not find a significant effect of AoA (Orfanidou et al., 

2010).  For this reason, we decided that it would be sufficient in the present experiments 

to distinguish between only two groups of signers based on AoA: those who learnt BSL 

from birth to 5 years of age and those who learnt BSL after age 5.  This allowed us to ask 

if the phonological bottleneck affects ease of sign segmentation.  We expected the 

native/early group to be, overall, faster and more accurate than the late learner group.  In 

addition, it was conceivable that the late learners of BSL, experiencing a phonological 

bottleneck, would need to work harder to be able to make segmentation judgments.  If so, 

transitions between signs could be found to be more important for cueing segmentation 

for them than for the native signers and early learners of BSL. 

Experiment 1 

Method 
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Participants. Thirty-nine Deaf BSL signers between the ages of 18 and 50 years 

took part.  Twenty-three were native/early Deaf BSL signers (exposed to sign before 5 

years of age, 19 out of the 23 had Deaf parents), and sixteen were late BSL learners 

(exposed to sign after 5 years of age and before 16 years of age).  All had normal or 

corrected vision. We used the Raven’s Matrices test of cognitive abilities (Raven, 1938) 

to evaluate nonverbal cognitive abilities.  All participants scored within the normal range 

on this test. Each participant completed a questionnaire about his/her sign-language 

exposure (e.g., parents’ level of signing, extent of mixed/sign used in the home, etc.), 

socio-economic background and academic qualifications, including level of English 

fluency. 

Materials.  The stimulus set consisted of 96 monosyllabic and monomorphemic 

BSL signs, including mostly nouns and verbs (see Appendix A). It was split into three 

groups of 32 signs.  These groups were matched on familiarity (on a scale from 1 to 7, 7 

being very familiar; Vinson, Cormier, Denmark, Schembri, & Vigliocco, 2008), location 

neighbourhood size, and handshape neighborhood size.  As we were not controlling for 

phonological structure beyond particular handshapes and locations, the neighborhood 

estimates for location and handshape were obtained using the same dictionary method as 

in Carreiras et al. (2008). Neighbourhood estimates were calculated by counting how 

many signs in the BSL dictionary (British Deaf Association, 1992) were articulated in 

each possible location in BSL (20 distinct locations).  Location neighborhood ranged 

from 3 to 1022 signs.  This last number refers to the many signs in BSL that are specified 

as occurring in neutral sign space (somewhere in front of the body).  These signs are in 

fact articulated at different heights (e.g., upper or lower neutral space).  Because of the 
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lack of a detailed phonological description of this particular location in BSL (or indeed in 

any signed language; Sandler & Lillo-Martin, 2006), we included only six signs with this 

location (two signs in each of the three groups of the 32 signs).  For handshape, the 

neighborhood estimates were obtained by counting how many signs in the BSL 

dictionary were articulated with each specific handshape (58 handshapes; range: 1-285 

signs).  A one-way ANOVA, where group was entered as a fixed factor and familiarity, 

location neighborhood and handshape neighbourhood were the dependent variables, 

showed no difference between groups on any of these variables (familiarity, F(2,126)  = 

1.3, p = 0.246: location neighborhood, F < 1; handshape neighborhood, F< 1).  Over all 

groups (96 signs), mean familiarity was 5.6, mean location neighborhood was 118 signs, 

and mean handshape neighborhood was 90 signs. 

Following word-spotting methodology (McQueen, 1996), we created three 

preceding nonsense contexts for each sign in each group, one context with a minimal  

transition between the real BSL sign and the preceding nonsense sign, one with a small 

transition (less than 20 cm) and one with a large transition (greater than 20 cm).  The 

term minimal transition means that there was no transition to a different location, but that 

there could be a change of state in some of the other parameters (handshape, orientation) 

and/or a re-articulation of the approach to that location. Note that the distances of smaller 

or larger than 20 cm were chosen to be small and large relative to the body size of the 

signer, but that we are not making any absolute claim that the cut-off between small and 

large transitions is always precisely 20 cm. 

In each of the three groups of target signs, half of the transitions (n = 16) were 

within the same major body location, for example, transitions from the lower arm to the 
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target POLICE, located on the wrist (small transition) or from the upper arm (large) to the 

target POLICE, located on the wrist (large transition).  These will be referred to as 

‘within transitions.’  The other half were across body locations (‘across transitions’), for 

example, transitions from the neck/throat to the target YESTERDAY, located on the 

cheek (small transition) or from the stomach to the target YESTERDAY, located on the 

cheek (large transition).  Transitions within the head, the trunk, and the arm were 

considered as ‘within’ transitions, while transitions across these areas were considered as 

‘across’ transitions.  A transition within the neutral space (low, middle, high) was 

considered as a “within” transition. In Figure 1 we provide an example of a minimal 

transition stimulus.  In Figure 2a-2b we provide an example of a small transition within 

the same location and in Figure 2c-2d a large transition within the same location.  Figure 

3a-3b shows a small transition across locations and Figure 3c-3d shows a large transition 

across locations.  Appendix B provides a detailed description of all the nonsense contexts 

and can be found as supplementary material on the project website 

http://www.ucl.ac.uk/dcal/documents/transitions_appendix 

 

   //INSERT FIGURES 1, 2 AND 3 ABOUT HERE// 

To ensure that the nonsense contexts were similar in all other respects apart from 

the transition, the three nonsense contexts (minimal transition, small transition, large 

transition) had the same handshape, movement, and orientation, and were matched in 

location neighborhood size.  The inclusion of the minimal transition nonsense context 

meant that all nonsense contexts were essentially matched in location neighborhood size 

to the real BSL sign to which they were paired.  Due to other restrictions in creating the 

http://www.ucl.ac.uk/dcal/documents/transitions_appendix
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nonsense contexts described above (i.e., the requirement to use different locations in 

order to achieve small and large transitions, within or across) we included transitions 

from a higher to a lower location neighborhood, or vice versa, in only twelve cases (see 

Appendix B). 

With regards to the differences between the nonsense context and the target sign 

(apart from the location change depending on the condition), almost all pairings of 

nonsense contexts and target signs included a handshape change (apart from six stimuli, 

CAT, CHEESE, CULTURE, COMPLAIN, JUMPER, WRISTWATCH), that is, the 

target sign had a different handshape to that used in the three contexts for this particular 

target.  Importantly, the handshape change was present and was the same in all the types 

of nonsense context for a particular target, so that, if the change of handshape is used as a 

cue for segmentation, then it could be used equally across all the conditions of the 

experiment.  As mentioned in the previous paragraph, the handshape was the same for all 

the types of nonsense context for a particular target (see Figures 1, 2 and 3 and Appendix 

B). With respect to the movement, the nonsense context had a different movement than 

the target sign in most of the stimuli (n = 69). With respect to orientation, the nonsense 

context had a different orientation than the target sign in half of the stimuli (n = 49).  

Figures 1, 2 and 3 portray an example in which the movement and orientation of the 

target sign and the nonsense context are the same but the handshape is different.  It is 

critical to note that, even if these changes in handshape, movement and orientation 

between the nonsense context and the target sign could be used to signal a change in the 

lexical sign (and, hence, a sign boundary), they could be used in all the conditions equally 

(minimal transition, small transition within/across, large transition within/across) as they 
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were present in all these types of nonsense contexts.  The only way in which the nonsense 

contexts were different was with respect to the presence and type of location transition.  

These differences between the nonsense contexts and the target signs were unavoidable 

as it would be impossible to create nonsense contexts that are non-existent signs and are 

articulated in the same location (for the minimal transition),  and have the same 

movement and orientation as the target sign.  It would be potentially possible for the 

transition conditions (as the location would be different), but then we would introduce a 

difference between our experimental conditions (no change in movement, orientation or 

handshape between target and nonsense context in the transition conditions, but a change 

in some or all of these parameters in the minimal transition condition). 

All the nonsense signs were evaluated by four native Deaf signers as to whether 

they were indeed non-existent signs in BSL and its regional dialects and any signs which 

were not unanimously accepted as being non-existent were excluded.  All the nonsense 

contexts included only one location, four included a repetition of movement, seven 

included a hand internal movement, and they were all non-existent but phonologically 

possible combinations of handshape, location and movement.  

The three groups of real BSL signs were rotated across each of the different 

conditions (minimal transition, small transition, large transition) and were paired with the 

appropriate nonsense context for each condition, creating a three-version experiment for 

presentation to three sets of participants.  Each participant saw all 96 targets only once: 

32 embedded in a minimal transition nonsense context, 32 embedded in a small transition 

nonsense context, and 32 embedded in a large transition nonsense context. Thus, for 

participant X in version 1, the targets 1-32 would appear combined with a minimal 
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transition, targets 33-64 would appear combined with a small transition, and targets 65-96 

would appear with a large transition.  For participant Y in version 2, the targets 1-32 

would appear with a large transition, targets 33-64 with a minimal transition, and targets 

65-96 with a small transition.  In version 3, participant Z would see targets 1-32 with a 

small transition, targets 33-64 with a large transition, and targets 65-96 with a minimal 

transition.  The actual order in which these targets appeared in each version of the 

experiment was randomized.  One hundred and thirty-six fillers, consisting of two 

nonsense signs, were pseudo-randomly mixed with the target bearing stimuli.  The only 

difference between the three versions lay in the contexts in which the targets appeared. 

The nonsense fillers were non-existent combinations of phonological parameters but in 

contrast to the nonsense contexts, they included a larger variety of combinations (e.g., 

two locations, two path movements, combination of internal movement with path 

movement, repetition of movement, etc.).   

A Deaf native BSL signer (the third author) practised each sign in isolation and 

then produced them in the prescribed two-sign sequences (nonsense-target for 

experimental sequences, nonsense-nonsense for filler sequences).The materials were 

filmed in a professional Filming Studio and clips were then edited into separate files 

using iMovie software.  Videos with examples of stimuli are available at 

http://www.ucl.ac.uk/dcal/documents/transitions_clips/ 

Procedure. Each session started with a practice block, during which it was made 

clear to the participants that the targets were simple, frequent signs and that no lexical 

compounds, or signs which describe location and movement of entities (i.e., classifiers) 

were included in the experiment.  The practice was followed by one version of the main 

http://www.ucl.ac.uk/dcal/documents/transitions_clips
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experiment, which was split in two blocks. The stimuli were presented on a 19-inch 

computer screen using DMDX software (Forster & Forster, 2003). Each trial lasted 4s, 

with 2s between the onsets of the stimuli. Participants were asked to press the right-

button (green) on a button-box if they saw a real BSL sign and then to sign to a camera in 

front of them what the sign was.  No response was required if participants did not spot a 

real BSL sign.  The experiment lasted approximately 20 minutes. 

Results and Discussion 

Analyses of variance (ANOVAs) by participants (F1) and items (F2) were 

performed for Reaction Times (RTs) and Error Rates (ERs).  Mean RTs measured from 

video onset and mean ERs are shown in Table 1. We also include additional analyses of 

the RTs from video onset where the number of video frames was entered as a covariate.  

We thus report an analysis of RTs from video onset (see also Orfanidou et al., 2010) and 

an analysis from of RTs from video onset with number of video frames as a covariate. A 

similar pattern of results was found in a third analysis with RTs from target onset.  The 

results of this analysis are given in Appendix C.  We opted for analyses from video and 

target onset instead of an analysis from video offset that is often used in spoken word 

spotting experiments (McQueen, 1996) as we wanted to minimize the effect of the 

duration of the nonsense context on the participants’ RTs.  Video duration can only be 

estimated, since actual playing times may vary across trials (J. Forster, pers. comm., June 

26th 2009). Convergence between the three analyses is critical to ensure that any 

differences between conditions are real and not an effect of different video durations 

between conditions.   
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Such durational differences were indeed present. The average number of frames 

in the minimal transition condition was 70 (~2329 ms, SD = 5.4, MIN = 53, MAX = 86), 

74 (~2487 ms, SD = 6.6, MIN = 60, MAX = 89) in the small transition condition, and 75 

(~2466 ms, SD = 6.7, MIN = 57, MAX = 95) in the large transition condition.  An 

analysis of variance showed that there was a significant difference between conditions in 

the number of frames (F(2,190) = 38.2, p<0.001).  Pairwise comparisons showed that the 

minimal transition stimuli had fewer frames than the small (mean difference = -4 frames, 

p< 0.001) and large transition stimuli (mean difference = -4 frames, p< 0.001).  There 

was no difference in number of frames between the small and large transitions (mean 

difference = 1 frame, p = .837).  In the transitions conditions, an ANOVA with the 

factors Size (small vs. big) and Type (across vs. within) revealed that there was no 

difference in frames between within and across transitions (effects of Size, Type, and 

Size x Type, all Fs < 1). The average number of frames was 74 for transitions both across 

and within major body locations (small transitions within SD = 6.1, MAX = 87, MIN = 

60, small transitions across SD = 7.1, MAX = 89, MIN = 60, large transitions within SD 

= 5.9, MAX = 89, MIN = 57, large transitions across SD = 7.5, MAX = 95, MIN = 64). 

These differences in duration across conditions underline the need for convergent 

evidence across the different RT analyses. 

 

//INSERT TABLE 1 HERE// 
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Analyses from video onset and analyses of covariance 

In the by-participant analyses, Context was included as a within-participants 

factor with three levels: minimal transition, small transition, and large transition.  Version 

was included as a between-participants factor.  In the by-item analyses, Context was 

included as a within-items factor, with three levels (minimal transition, small transition, 

and large transition).  In both participants and items analysis Group was included as a 

between-participants factor, with two levels (Native/Early learners, Late learners).  For 

the Analyses of Covariance (ANCOVAs), we performed univariate ANOVAs in which 

response times (or error rates, for the analysis of the errors) were entered as the 

dependent variable, Context and Group were entered as fixed factors, and Number of 

Frames was entered as a covariate.  Two items with disproportionate error rates across all 

versions of the experiment (above 65% error rate) were excluded from the analyses.  

Trials where participants pressed the button but then failed to sign the correct target to the 

camera (item 53; 1.4% of target-bearing trials) were treated as errors. No outlier (very 

fast or very slow) RTs were trimmed prior to statistical analysis. The significance level 

adopted in this study is p< 0.05. An effect is treated as significant when p< 0.05 was 

found for all three F-values (F1, F2, and minF’)”.  

Latencies.  There was no effect of Group either as a main effect (F1, F2< 1) or as 

an interaction with Context (F1, F2< 1).  There was a main effect of Context (F1(2,66) = 

14.7, p < 0.001, F2(2,554) = 18.2, p < 0.001, minF’(2,200) = 8.1, p < 0.001), suggesting 

differences in performance as a function of the transition condition.  The ANCOVA 

showed a main effect of Context (F2(3,554) =  18.6, p < 0.001), a main effect of number 

of frames F2(1,553) = 6.2, p = 0.013)  and a main effect of Group (F2(1,554) = 6.8, p = 
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0.009) but no interaction between Group and Context (F2<1).  Pairwise comparisons 

with Bonferroni correction showed a significant difference between the Minimal and 

Small Transition (mean difference = -104.5, p < 0.001) and the Minimal and Large 

Transition (mean difference = -131.3, p = 0.001). There was no difference between Small 

and Large transitions (mean difference = -26.8, p = 1.0).  As shown in Figure 4, 

participants were faster for the minimal transitions than the small and large transitions, 

and faster for the small than large transitions, although this latter difference did not reach 

significance.   

The above analyses revealed differences between the minimal-change context and 

the contexts in which there was either a small or large location change but, because type 

of location change (within vs. across location) does not apply to the minimal-change 

condition, these analyses necessarily ignored type of location change. Additional t-tests 

were therefore carried out comparing the minimal-context condition first with the within-

location transitions and then with the across-location transitions. These tests showed that, 

for transitions within the same location, responses to signs with minimal transitions were 

significantly faster than those to signs with small and large transitions (minimal transition 

vs. small within t1(38) = 3.8, p = 0.001, t2(91) = 3.7, p < 0.001; minimal transition vs. 

large within t1(38) = 4.3, p < 0.001, t2(92) = -5.9, p < 0.001).  But when the transitions 

were across locations, the difference was significant only for large transitions (minimal 

transition vs. small across t1(38) = 1.5, p = 0.155, t2(90) =-2.7, p = 0.008, minimal 

transition vs. large across t1(38) = 2.5, p = 0.019, t2(89) = 3, p = 0.003).  

 

//INSERT FIGURE 4 HERE// 
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For a more detailed examination of the differences between the transition 

conditions, additional ANOVAs were performed in which the minimal transitions were 

not included.  In these analyses, transition Size and transition Type were entered as 

within-participant factors with two levels (small vs. large and within vs. across 

respectively).  Version and Group were entered as between-participant factors.  There 

was no main effect of transition Size (Small vs. Large: F1(1,33) = 4.1, p = 0.052, 

F2(1,365) = 4.9, p = 0.027, minF’(1,105) = 2.2, p = 0.138) indicating that participants 

were not faster in sign-spotting when there was a small transition than when there was a 

large transition. The effect of transition Type was significant by participants only (within 

vs. across F1(1,33) = 26.3, p< 0.001, F2(1,365) = 3.0, p = 0.084, minF’(1,396) = 2.7, p = 

0.101) reflecting faster RTs for transitions across locations than within-location 

transitions. There was no interaction between transition Size and transition Type (F1< 1, 

F2(1,365) = 1.9, p = 0.164, minF’(1,46) = 0.301, p = 0.585) suggesting that the effect of 

transition type was not influenced by the size of the transition. Paired t-tests showed that 

the benefit from the major location change was present mainly for large transitions (see 

Table 1) (small within vs. small across t1(38) = 3.7, p = 0.001, t2< 1, large within vs. 

large across t1(38) = 4.1, p< 0.001, t2(90) = 2.4, p = 0.020).  In the participants analysis, 

there was a three-way interaction between Size, Type and Group (F1(1,33) = 5.4, p = 

0.026, F2< 1, minF’(1,373) = 0.8, p = 0.361) reflecting the fact that the late learners 

group was slower than the native/early learners group for large transitions within the 

same location (2467 ms vs. 2417 ms, see  Table 1).  Also, the native/early learners 

benefited more from a small transition across locations than the non-natives (Table 1). 
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This three-way interaction was not significant. There was no other effect of Group, either 

as a main effect or as an interaction with transition Size or Type (all Fs < 1). In the 

ANCOVA the effect of Size was no longer significant, but the effect of Type was now 

significant (Size: F2(1,364) = 2.4, p = 0.120, Type F2(1,364) = 4.9, p = 0.028, Size by 

Type F2(1,364) = 2.0, p = 0.107, Frames F2(1,364) = 2.9, p = 0.086). 

Errors. There was a main effect of Group by items only (F1(1,33) = 1.7, p = 

0.207,  F2(1,564) = 16.4, p< 0.001, minF’(1,40) = 1.5, p = 0.221) but no interaction with 

Context (F1, F2< 1). There was a significant main effect of Context in the participants 

and items analysis but not in minF’ (F1(2,66) = 6.6, p = 0.003, F2(2,564) = 3.0, p = 

0.049, minF’(2,431) = 2.1, p = 0.128).  In the ANCOVA, the effect of Context was still 

significant when number of frames was entered as a covariate, while the effect of number 

of Frames was not significant (Context (F2(2,554) = 4.2, p = 0.015, Frames F2(1,554) = 

3.4, p =0.062). The effect of Group was not significant  (F2(1,554) = 2.9, p = 0.086) and 

there was no interaction with Context (F2<1). 

Participants were more accurate in the minimal transition condition than in any 

other conditions (minimal transition vs. small transition, mean difference = -0.022, p = 

0.010; minimal transition vs. large transition, mean difference = -0.052, p = 0.017).  

Additional t-tests showed that participants were more accurate in the minimal-transition 

condition than the transition conditions when this transition was within the same location 

(minimal transition vs. small within, t1(38) = -1.9, p = 0.063, t2(95) = -3.6, p< 0.001; 

minimal transition vs. large within, t1(38) = -3.6, p = 0.001, t2(95) = -5.1, p< 0.001;  

minimal transition vs. small across, t1(38) = 1.7, p = 0.096, t2< 1; minimal transition vs. 

large across, t1< 1, t2(93) = -1.5, p = 0.128).  Unlike in the RT data, there was a 
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significant difference in accuracy between the small and large transition conditions (more 

accurate on small transitions: mean difference = -0.031, p = 0.016). Overall, it seems that 

participants benefited more from a minimal transition or a transition across locations, 

especially if this was in the context of a small transition. 

The analysis on the location-change conditions (i.e., excluding the minimal-

transition condition) showed a main effect of transition Type (within vs. across F1(1,33) 

= 23.3, p< 0.001, F2(1,372) = 21.7, p< 0.001, minF’(1,129) = 11.2, p = 0.001) but no 

effect of transition Size (small vs. Large, F1(1,33) = 5.8, p = 0.022, F2(1,372) = 1.9, p = 

0.172, minF’(1,297) = 1.4, p = 0.232) . Participants were more accurate in spotting the 

real sign when there was a transition across locations than when there was a transition 

within locations (see Table 1). Similarly to the RT data, paired t-tests showed that this 

was true for both small and large transitions (small within vs. small across t1(38) = 3.7, p 

= 0.001, t2(93) = -2.8, p = 0.006, large within vs. large across t1(38) = 3.9, p< 0.001, 

t2(93) = -3.5, p< 0.001). The interaction between transition Type and transition Size was 

not significant (F1, F2< 1). 

In summary, Deaf signers of BSL were faster and more accurate in spotting real 

BSL signs embedded in nonsense-sign contexts when the nonsense signs were articulated 

in the same location as the real BSL signs than when there was a change of location.  But 

each nonsense sequence in Experiment 1 was produced separately.  Hence, the target 

signs in each of the three contexts were physically different.  Possible differences in 

fluency, clarity or speed of articulation of targets across contexts could thus account for 

the differences in sign-spotting performance across conditions.  Experiment 2 was run to 

control for this possibility.  As in many spoken-word-spotting studies (e.g., Cutler & 
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Norris, 1988) and a sign-spotting study (Orfanidou et al., 2010), the targets were digitally 

excised from their contexts and presented to new participants in a go/no-go lexical 

decision task, that is, participants had to press a button every time they saw a real BSL 

sign in a list of words and nonwords. We hoped to show that there would be no difference 

in lexical decision performance between signs taken from the different transition 

conditions. 

 

Experiment 2 

Method 

Participants. Nineteen native/early Deaf signers took part (12 with Deaf parents).  

None had participated in Experiment 1, and all had normal or corrected vision.  They 

were paid to take part. 

Stimuli, design and procedure. Each of the target signs from Experiment 1 was 

excised from its context using iMovie software.  We took as the starting point for the 

target the point in time at which the handshape of the target had been formed.  Fillers 

were created by excising, using the same criterion, the second nonsense sign in each of 

the Experiment 1 fillers. The experiment was exactly analogous to Experiment 1 (i.e., 

same critical materials, design, and running order) except that each target and each filler 

was presented without its original context.  The instructions of Experiment 1 were 

modified slightly: participants were asked to press the button whenever they saw a real 

BSL sign (they again signed targets what they detected to a video camera). 

Results and Discussion 
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Table 2 shows the mean RTs and mean error rates on lexical decisions in 

Experiment 2 to the Experiment 1 targets after the targets had been extracted from their 

contexts.  In ANOVAs parallel to those in Experiment 1 there was, as predicted in this 

control experiment, no effect of the context from which the targets had been taken, either 

in RTs (F1, F2 < 1) or errors (F1(2,32) = 2.5, p = 0.096, F2(2,279) = 1.6, p = 0.211, 

minF’(2,116) = 1.2, p = 0.306).  The same was true when number of frames was entered 

as a covariate (RTs Context F2(2,278) = 1.3, p = 0.271, Frames F2(1,278) = 9.9, p = 

0.002, Error rates Context F2(2,278) = 1.2, p = 0.303, Frames F2(1,278) = 1.7, p = 

0.196).  To directly compare the effects of Context in each of the two experiments, the 

two experiments were compared in an ANOVA with Context as a between-participant 

factor with three levels (minimal, small, large), and Experiment and Version as between- 

participant factors.  The data for Experiment 1 included RTs from video onset and RTs 

from target onset.  The effect of Context was significant (video onset F1(2,104) = 9.1, p 

< 0.001, F2(2,674) = 5.6.5= 0.002, target onset F1(2,104) = 43.4, p < 0.001, F2(2,674) = 

5.3, p = 0.005) but importantly there was a significant interaction between Experiment 

and Context (video onset F1(2,104) = 4.3, p = 0.016, F2(2,674) = 2.2, p = 0.115, target 

onset F1(2,104) = 24.5, p < 0.001, F2(2,674) = 3.5, p = 0.030) indicating that the effects 

of context were different in the two experiments.  Experiment 2 shows that the 

differences in the ease of spotting real BSL signs that had been embedded in minimal-

transition contexts relative to those in small- and large-transition contexts were not due to 

differences in the way the real signs had been articulated in those different contexts. 

 

//INSERT TABLE 2 HERE// 
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General Discussion 

 

The aim of this research was to investigate whether the segmentation of a 

continuous stream of signing relies on modality-specific mechanisms or whether it 

follows modality-general principles that have already been identified for speech 

segmentation.   Specifically, in Experiment 1 we tested whether transitional movements 

between locations in sign sequences (salient visual gaps between individual signs) 

provide information which can be used either by modality-general or by modality-

specific segmentation procedures.  We hypothesised that if transitions provide modality-

specific explicit sign boundary cues, then signs should be easier to segment and recognize 

after large transitions than when there is no such transitions between signs.  However, if 

transitions constrain the lexical search space to within particular phonological 

neighbourhoods, in a modality-general fashion, then signs should be harder to segment 

and recognize after large transitions than when there is no transition. 

We also asked if sign phonotactics are used, in a modality-general way, to guide 

segmentation.  Specifically, we hypothesized that if sign comprehenders can use 

Battison’s Place constraint (“There can be only one major body area specified in a sign”; 

Sandler & Lillo-Martin, 2006, p.138), sign spotting should be easier in the context of a 

transition across major body areas than in the context of a transition within a major body 

area.  The change of location across major areas should signal that a sign boundary must 

be present.    

The results point towards two modality-general effects stemming, respectively, 

from either the lexicon or the phonotactic knowledge of the BSL users.  First, minimal 

transitions were better than small or large transitions – because, we would argue, the 
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absence of a transition to another location constrains the lexical search space to a specific 

sign location.  In doing so, this information reduces the possible lexical candidates that 

the perceiver needs to consider, effectively by taking the location parameter out as a 

variable in the search.  Second, transitions across major locations led to better sign-

spotting performance than transitions within a major location.  An across-location 

transition provides the cues of a sign boundary and thus guides segmentation.  There was 

no evidence of a modality-specific transition effect that is unique to sign language (i.e., 

large transitions being best because they are the most salient boundary cues in the signal).  

Finally, Experiment 2 showed that the effects found in Experiment 1 were not due to 

physical differences in signs across contexts.  

One issue that may seem problematic for drawing these conclusions concerns 

stimulus duration. The minimal transitions were shorter stimuli (as evidenced by the 

number of video frames) than the small or large transitions, and the effect of number of 

frames was significant in some of the covariance analyses.  One might then argue that 

what the present results show is that the signers were modulating their response times 

based on the duration of the stimuli (e.g., waiting until the end of the stimulus to respond, 

or being able to identify signs earlier in shorter stimuli). But four aspects of the results 

refute this duration hypothesis.  First, performance in sign spotting was better in the 

minimal transition condition compared to the other conditions also in the error rate data 

(i.e., not only in the response time data).  In the accuracy data, according to the duration 

hypothesis, the physical duration of the stimuli should not affect performance.  Second, 

participants were faster and more accurate for the across-location transitions compared to 

the within-location transitions even though there was no significant difference in the 
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number of frames across these two conditions.  Similarly, participants were more 

accurate for the small than for the large transitions even though there was again no 

significant difference in durations.  If durational differences between stimuli were the 

sole cause of the observed differences in sign-spotting performance, no behavioural 

differences should have been found when there were no durational differences.  Thirdly, 

and most importantly, the significant effects of context did not disappear in any of the 

analyses when number of frames was entered as a covariate.   The main effect of number 

of frames appeared significant in only one of the covariance analyses.  Thus, although 

there were durational differences between the stimuli in the different conditions, and 

these could potentially have influenced performance, we believe that a purely duration-

based explanation cannot account for the present data.  Lastly, the pattern of findings was 

remarkably consistent between the analysis on the RTs from video onset (where 

durational differences between the different contexts could have influenced the data) and 

the analysis from target onset, where the duration of the nonsense context had been 

subtracted from the RT data.  

Transitions as modality-general cues: Restricting the lexical search space 

A core mechanism in spoken-word recognition involves the evaluation of and 

competition among various lexical candidates.  Once the best lexical candidate for each 

part of the continuous input has been established, the recognition system can use this 

information to identify boundaries between words.  We propose then that sign 

recognition is based on evaluation and competition processes among multiple candidates.  

Indeed, other recent evidence has shown that sign recognition in priming studies is 

influenced by the signs’ lexical neighbourhoods, as measured by the number of signs 
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consisting of the same handshape or location (Carreiras et al., 2008).  For low familiarity 

signs, a location with high neighborhood density slowed down lexical decision responses, 

while a handshape with high neighborhood density facilitated responses.  In speech, 

acoustic-phonetic cues are used to constrain spoken-word recognition (Cohort model, 

Marslen-Wilson, 1987; TRACE, Elman & McClelland, 1987; Shortlist, Norris, 1994; 

Norris & McQueen, 2008).  In a similar way, information about the phonological 

components of the sign, and specifically location, could be used to constrain sign 

recognition.  In the case where there is no location change (i.e., a minimal transition), the 

lexical search is more constrained than when there is a location change.  

 The fact that segmentation appears to benefit from shared location might appear 

to be at odds with other data from psycholinguistic studies on sign-language processing 

indicating that effects of shared location are inhibitory (e.g., Carreiras et al., 2008).  

There are several reasons for this difference, however, including the characteristics of the 

stimuli and the nature of the tasks (word spotting vs. lexical decision).  With respect to 

the stimuli, it is important  to note that the inhibitory effects of location in the Carreiras et 

al. (2008) study emerged for low familiarity signs (average 2.7 on a 7-point scale) but not 

for high familiarity signs (average 4.3). In the present study, average familiarity of the 

target signs was even higher (average 5.6).  It is thus possible that effects of location may 

be either facilitatory or inhibitory depending on sign familiarity.  With regards to the 

nature of the task, word-spotting requires segmentation, whereas lexical decision does 

not.  It is conceivable that shared location could have a facilitatory effect on segmentation 

(by narrowing the lexical search space, as we have suggested) while it could have an 
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inhibitory effect on lexical decisions to signs presented in isolation (because potential 

signs articulated in the same location are likely to be competing for recognition).   

This importance of the location parameter in sign recognition is consistent with a 

number of previous findings.  In gating studies the location parameter is identified first, 

followed by handshape and finally movement. In Tip Of the Finger states some 

information about location and handshape is available sooner than movement information 

(Thompson, Emmorey, & Gollan, 2005).  Form-based priming studies in American Sign 

Language (ASL, Corina and Emmorey, 1993) and Spanish Sign Language (Carreiras et 

al., 2008) reported inhibitory effects when targets shared an articulatory location with the 

primes.  In these priming tasks, inhibition between signs that share the same location can 

be explained as competition between sign candidates activated early during sign access 

on the basis of their shared location feature.  During sign recognition, identification of 

location thus occurs first and produces the initial cohort of candidate signs.  Again, the 

inhibitory effects of phonological similarity are consistent with models of spoken-word 

recognition, which postulate a process of relative evaluation of possible lexical 

candidates (Luce &Pisoni, 1998; McClelland & Elman, 1986; Norris & McQueen, 2008). 

Transitions as modality-general cues: Use of phonotactics 

Transition information becomes meaningful for segmentation not as a simple 

visual cue to a sign boundary but when it is combined with other knowledge – either 

lexical knowledge, as when it narrows the lexical search – or phonotactic knowledge, as 

when Battison’s Place constraint (Battison, 1978; Sandler & Lillo-Martin, 2006) appears 

to be engaged.  Participants were faster to spot real signs when the transition involved 

moving to a different major location than when the transition involved moving to another 
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sub-area within the same major location.  It is not the case that two separate signs cannot 

be located in different parts of the same body area, therefore, transitions between signs 

within the same sub-area are still legal.  But the problem is that single signs can move 

between locations in the same body area as well, making differentiation between a single- 

and a two-sign sequence more difficult.  Critically, however, it cannot be the case that 

signed manual activity that moves across a major body is made up of just a single sign. 

Once the sign moves to a new major area, the perceiver can infer that this must be a new 

sign.  It seems that the proposed phonotactic constraints in the ASL literature have some 

psychological validity in BSL: signers use phonotactic knowledge to segment sign 

language – like listeners use phonotactic knowledge to segment speech. In other words, 

the violation informs the sign perceiver that there must be a sign boundary at the point of 

the violation.  This argument is supported by analogous findings in the speech 

segmentation literature (McQueen, 1998; Suomi et al., 1997) that listeners find spoken 

words easier to spot when they are aligned with a syllable boundary containing a 

sequence of segments that would be phonotactically illegal within the syllable or word.  

Thus, although this particular application of phonotactics is unique to a visual phonology 

– the constraint concerns restrictions about signs in particular locations – it appears that 

this tendency reflects a modality-general segmentation procedure.   

Alternative Hypotheses 

Let us consider other possible accounts of the present data pattern.  One is that the 

signers’ response latencies reflected differences in the duration of the stimuli across 

conditions.  As we have already argued, there are four reasons to reject this hypothesis.  

Another alternative account is based on differences in shifts of visual attention across 
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conditions.  Such shifts are likely to take time, and thus one might argue that the longer 

RTs to targets with larger transitions may reflect longer attentional shifts.  Again, there 

are four reasons to disfavour this hypothesis.  First, it is based on the untested assumption 

that there are shifts of attention between consecutive signs.  If the sign comprehender is 

attending to the linguistic message in each input sequence, and trying to spot real signs in 

those sequences, their attention does not need to shift (e.g., to some other message).  

Second, we would argue that the account based on modality-general segmentation 

procedures is more parsimonious than one in which segmentation is based on different 

mechanisms across modalities.  Third, the time-constrained attention-shifting hypothesis 

offers no explanation for the error data (sign spotting was more accurate in the minimal 

transition condition).  Fourth, this hypothesis offers no account of the difference between 

the within- and between-area results, where transition distance (and hence the 

hypothesized attentional shift time) was controlled.  For these reasons we prefer the 

explanation based on use of modality-general segmentation procedures.  

Furthermore, it is important to emphasize that whatever the true explanation 

might be for the advantage of minimal transitions over larger transitions in sign 

segmentation, the present demonstration of this advantage is certainly evidence against 

the modality-specific hypothesis.  If sign comprehenders used transitions as sign-specific 

boundary cues, they ought to have found it easiest to spot target signs when those 

boundary cues were strongest or most salient (i.e., the large transitions).  This was not the 

case.   

Age of Acquisition 
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Finally, we note that there were no differences between groups in how they used 

the transitions. We had predicted that because late learners are more attentive to the 

phonological form of the signs (because of a “phonological bottleneck” in processing, 

Mayberry, 1994), they would appear to rely more in sign segmentation on cases where 

phonotactic information unambiguously signals a sign boundary.  Contrary to this 

prediction, both groups benefited from a major location change.  It is important to note, 

however, that this was not a pure saliency effect.  If it were, then we should have 

observed effects of pure transition size.  In other words, late and native/early learners did 

not prefer large transitions over small or minimal transitions.  In this sense, the minimal 

transitions, which functioned to reduce lexical neighborhood density, were robust sources 

of information which all signers, independent of their particular native skills with BSL, 

could use in segmentation.   Related to this, an alternative explanation of the difference 

between within and across transitions would suggest that it reflects perceptual confusion 

of closely articulated non-sign and signs and has little to do with sign phonotactics and 

the one-place constraint. However, this account cannot provide a full explanation of the 

data.  It would be difficult to assume that this factor comes into play only for the 

comparison of the within and across location transitions, but does not affect the minimal 

transitions, where perceptual confusion between the real and the nonsense sign is the 

most likely.  This account, thus, wrongly predicts that performance should have been 

poorest in the minimal transition condition. 

Conclusion 

The present data add to a growing body of evidence for common language 

processing mechanisms irrespective of modality (Emmorey, 2002; Klima & Bellugi, 
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1979; Meier, 2002).  They also extend our initial findings on sign segmentation, which 

suggested that language comprehension is guided by modality-general principles 

(Orfanidou et al., 2010).  This is not to say that modality-specific mechanisms do not play 

a role in sign segmentation.  Spatial-frequency analysis of the sign input or information 

from other parts of the sign (e.g. handshapes) could provide segmentation cues as well.  

What we have shown here, therefore, is that the transitions between different locations in 

space do not provide a modality-specific segmentation cue.  To gain a better 

understanding of how signers recognize individual signs in continuous signing, future 

research should examine the interplay between, on the one hand, the modality-general 

mechanisms identified here and in Orfanidou et al. (2010), and, on the other hand, other 

possible segmentation mechanisms afforded to signers specifically by the visual-spatial 

modality of their language. 

In summary, we have presented evidence that BSL users do indeed mind the gap 

in sign segmentation, not by using a modality-specific procedure based on larger gaps 

providing more salient sign boundary cues, but rather by using at least two modality-

general procedures.  First, we have argued that sign comprehenders pay attention to the 

gap in the sense that the absence of a transition to another location helps them to narrow 

the lexical search space.  Second, we have argued that sign comprehenders mind the gap 

as transitions can provide phonotactic cues to sign boundaries. 
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Appendix A 

Experiments 1 & 2: 96 targets (real BSL signs) 

ANNOUNCE, ARGUE, ARRIVE, ASK, BATTERY, BED, BELIEVE, BELT, 

BINOCULARS, BISCUIT, BREAD, BREATHE, BROWN, BUY, CAT, CHARMING, 

CHEESE, CHERRY, CHOCOLATE, COMPLAIN, CONFIDENT, COPY, COUGH, 

CRUEL, CRY, CULTURE, DEER, DEMAND, DONATE, DRILL, EASY, EAT, 

EMOTION, EVENING, FLOWER, GIRL, GOSSIP, GUILTY, HAPPY, HEARING-

AID, HELP, ICECREAM, IGNORE, IMPORTANT, JACKET, JUMP, JUMPER, 

LOCK, LOOK, LOUD, LUCK, MORNING, MOTHER, MOUSE, NEW, PAPER, 

PARENTS, PERFUME, PLEASED, POLICE, POOR, PRINT, PRISON, RABBIT, RED, 

REFUSE, RELAX, RESPONSIBILITY, RIGHT, RUDE, SANDWICH, SCARF, 

SHAMPOO, SHOCK, SICK, SING, SKIRT, SMILE, SORRY, START, STRICT, 

SWALLOW, TELL, THINK, TIE, TIME, TOILET, TOMATO, TRANSLATE, WANT 

WATER, WIN, WORRIED, WRISTWATCH, YESTERDAY, TRUE 
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Appendix B 

Analyses from target onset 

For this analysis, targets were excised from their context using iMovie software.  We 

took as the starting point for the target the point in time at which the handshape of the 

target had been formed.  The duration of these targets was used for the calculation of the 

target onset for the purposes of the analysis from target onset reported here (video 

duration – target duration = nonsense context duration).  The resulting nonsense context 

duration was then subtracted from the raw RTs. 

In the by-participant analyses, Context was included as a within-participants 

factor with three levels: minimal transition, small transition, and large transition.  Version 

was included as a between-participants factor.  In the by-item analyses, Context was 

included as a within-items factor, with three levels (minimal transition, small transition, 

and large transition).  In both participants and items analysis Group was included as a 

between-participants factor, with two levels (Native/Early learners, Late learners).  An 

ANCOVA including number of frames was also run. 

Latencies.  There was no effect of Group either as a main effect (F1, F2< 1) or as 

an interaction with Context (F1, F2< 1).  There was a main effect of Context (F1(2,66) = 

98.5, p< 0 .001, F2(2,554) = 18.9, p< 0.001, minF’(2,601) = 15.9, p< 0.001), suggesting 

differences in performance as a function of the transition condition.  Pairwise 

comparisons with Bonferroni correction showed a significant difference between all types 

of transitions (all ps < 0.001, with the exception of minimal vs. small in the analysis by-

items p = 0.105).  As shown in Table 3, participants were faster for the minimal 

transitions than the  large transitions, and faster for the small than large transitions.  The 
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ANCOVA showed a main effect of Context (F2(2,552) = 16.4, p<0.001), no main effect 

of Group (F2 < 1), no main effect of Frames (F2(2, 552) = 1.6, p = 0.212) and no 

interaction between Group and Context  (F2 < 1). Pairwise comparisons with Bonferroni 

correction showed a significant difference between all types of transitions (all ps< 0.001, 

again with the exception of minimal vs. small p = 0.303).  

A closer look at these differences revealed that the minimal transition was faster 

than the large transition condition rather than the small transition (minimal transition vs. 

small within t1, t2< 1; minimal transition vs. small across t1(38) = 1.4, p< 0.160, t2< 1; 

minimal transition vs. large within t1(38) = -5.4, p< 0.001, t2(94) =-5.3, p< 0.001; 

minimal transition vs. large across t1(38) = -2.9, p = 0.007, t2(91) = -2.2, p = 0.029).  

 

//INSERT TABLE 3 ABOUT HERE// 

 

The analysis on the location-change conditions (i.e., excluding the minimal-

transition condition) showed a main effect of transition Size (small vs. large F1(1,33) = 

74.0, p = 0.052, F2(1,365) = 18.0, p < 0.001, minF’(1,334) = 15.1, p = 0.002) and a main 

effect of transition Type by participants only (within vs. across F1(1,33) = 22.2, p< 

0.001, F2(1,365) = 3.2, p = 0.076, minF’(1,389) = 2.8, p = 0.095) indicating that 

participants were faster in sign-spotting when there was a small transition and a transition 

across locations.  In contrast with the previous analysis from video onset, there was a 

significant interaction between transition Size and transition Type (F1(1,33) = 17.6, p< 

0.001, F2(1,365) = 5.1, p = 0.024, minF’(1,315) = 3.9, p = 0.047) suggesting that the 

effect of transition type was influenced by the size of the transition.  As shown in Figure 
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5, the difference between the two types of transition (across, within) was more 

pronounced in the large transitions compared to the small transitions.  Paired t-tests 

showed that the benefit from the major location change was dependent on the size of the 

transition (small within vs. small across t1, t2< 1, large within vs. large across t1(38) = -

4.8, p< 0.001, t2(90) = -2.4, p = 0.016). There was no three-way interaction between 

Size, Type and Group (F1< 1) (although, numerically, the native/early learners benefited 

more from a small transition across locations than the non-natives, see Table 3) and no 

effect of Group, either as a main effect or as an interaction with transition Size or Type 

(all F’s < 1). The ANCOVA showed similar effects, that is, a main effect of Transition 

Size (F2(1,364) = 15.6, p < 0.001) and of Type (F2(1,364) = 6.9, p = 0.009). However, 

the interaction between Size and Type was no longer significant (F2(1,364) = 1.1, p = 

0.146). The effect of Frames was not significant (F2(1,364) = 3.2, p = 0.072). 

 

//INSERT FIGURE 5 ABOUT HERE// 
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Figure Captions 

Figure 1: Example of a minimal transition stimulus.  The nonsense context is articulated 

on the cheek (Figure 1a). The target sign ANNOUNCE follows, which is articulated also 

on the cheek. Note the handshape change between nonsense context and target stimulus. 

Figure 2: Example of a transition within the same location, small (Figure 2a-2b) and big 

(Figure 2c-2d). In Figure 2a the nonsense sign is articulated on the lower arm, followed 

by the real target sign POLICE (Figure 2b), which is articulated on the wrist. In Figure 2c 

the nonsense sign is articulated on the upper arm, followed by the real target sign 

POLICE articulated on the wrist (Figure 2d). 

Figure 3: Example of a transition across locations, small (Figure 3a-3b) and big (Figure 

3c-3d). In Figure 3a the nonsense sign is articulated on the lower neck, followed by the 

real target sign YESTERDAY (Figure 3b), which is articulated on the cheek. In Figure 3c 

the nonsense sign is articulated on the stomach/lower trunk, followed by the real target 

sign YESTERDAY, which is articulated on the cheek (Figure 3d). 

Figure 4: Mean Reaction Time (RT, in ms, from video onset) collapsed for the two 

groups of participants in each Context Condition. Error bars represent one standard error. 

Figure 5: Mean Reaction Time (RT, in ms, from target onset) collapsed for the two 

groups of participants in each Context Condition. Error bars represent one standard error. 

 


