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Abstract 

There is now a substantial literature on the effects of rebalancing on portfolio performance. It is 

widely argued in the theoretical literature that rebalanced strategies are inherently likely to 

generate greater terminal wealth than unrebalanced strategies, although empirical studies do not 

generally support this claim. We show that this claim is based on a misattribution between 

‘rebalancing returns’ which are specific to the act of rebalancing, and ‘diversification returns’ 

which can be earned by both rebalanced and unrebalanced strategies. Confusion appears to have 

increased because in some situations these two distinct effects have the same magnitude. This 

issue has important implications for return attribution in diversified portfolios. Misleading claims 

about the benefits of rebalancing are likely to lead investors into strategies which involve 

insufficient diversification and excessive transactions costs. 
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DIVERSIFICATION RETURNS, REBALANCING RETURNS AND VOLATILITY 

PUMPING  

1. Introduction 

Investment strategies are often classified as passive or active – although the distinction between 

these two approaches is a matter of degree.  Passive strategies usually involve choosing portfolio 

weights according to some predetermined rule. A key practical element in a passive strategy is 

the frequency and hence cost of rebalancing. At one extreme, initial weights are chosen and no 

further rebalancing takes place, so the weights evolve over time according to the relative returns 

on the component assets. This is a buy and hold (B&H) strategy. A market-cap index is an 

example of B&H (although in practice, some rebalancing takes place when some low return 

stocks are replaced by “new” stocks). At the other extreme, some passive portfolio approaches 

assume continuous rebalancing to keep asset weights constant (this often produces tractable 

closed form results). Evaluation of alternative passive strategies may involve a “theoretical 

approach” using continuous time mathematics or Monte Carlo simulation or, most often, actual 

historical returns data. In all three approaches, incorporating transactions costs in sufficient detail 

to mimic “real world” outcomes is often problematic and simple fixed round-trip transactions 

costs are often used to determine the “optimal rebalancing frequency”.  

A branch of the portfolio choice literature which is complementary to the above methods 

is the optimal growth approach. Portfolio weights are chosen to maximise the expected geometric 

growth rate of the portfolio value – consistent with maximising the expected logarithm of final 
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wealth (Kelly 1956, Thorpe 2010, Luenberger 1997). This approach often includes an 

examination of a portfolio consisting of one risky asset and one risk-free asset, as well as a 

portfolio of N risky assets. Another strand of the literature considers weights that are often not 

“optimal” but constitute an arbitrary fixed weight portfolio which is compared with a B&H 

strategy (e.g. Fernholz and Shay 1982, Luenberger 1997, Booth & Fama 1992, Mulvey et al.  

2007, Qian 2012, Willenbrock, 2012). A theoretical result from this approach is that a portfolio 

of  independently and identically distributed (IID) assets sees more rapid portfolio growth than 

the corresponding B&H strategy, and this “excess growth” increases with the volatility of the 

underlying portfolio assets. “Volatility pumping” is a strategy which seeks to take advantage of 

this by adding high volatility assets to a portfolio and rebalancing to fixed weights. This 

outperformance is attributed to the fact that a rebalanced strategy automatically “buys on the 

upticks and sells on the downticks” (Fernholz and Shay 1982).  

In this paper we concentrate on this choice between constant portfolio weight rebalancing 

strategies and the corresponding B&H strategy. We examine under what circumstances and for 

what reasons one strategy outperforms the other. More precisely, we examine whether under 

similar stochastic conditions, a periodic rebalancing strategy gives a better outcome than a B&H 

strategy. We are particularly concerned with performance over a finite horizon, since this is of 

interest to most investors. The purpose of this paper is to correct misleading claims that are 

widely made about the benefits of rebalancing (and which are likely to lead to poor investment 

decisions); to investigate the implications of these claims on portfolio construction and to provide 

intuitive reasons for these results. We also examine some results from the continuous time 
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literature and show how they can be interpreted in terms more familiar to investment 

practitioners. 

Specifically, we reject the claim that rebalancing strategies automatically generate “excess 

growth” and hence greater terminal wealth than buy-and-hold strategies even when there is no 

predictable time structure to asset returns.  We demonstrate instead that the different growth rates 

of these strategies are entirely explained by the different volatility levels of these portfolios 

(because a rebalanced portfolio tends to remain better diversified) with no evidence of the buy-

low-and-sell-high effects that proponents claim. This has important implications for investors. 

The misleading claim that rebalancing generates excess growth encourages investors to hold 

volatile assets and to rebalance frequently in order to increase geometric returns. More efficient 

portfolios can be constructed simply by diversifying effectively and thus minimizing volatility 

drag. 

The existence of a predictable element of time structure in relative asset returns can 

influence the performance of rebalanced portfolios. Mean reversion in relative asset returns tends 

to lead to higher terminal wealth for rebalanced strategies since, for example, assets which have 

recently underperformed are bought during rebalancing and subsequently tend to outperform. 

Conversely, momentum in returns tends to favour B&H. Thus in practice, the outcome of 

rebalancing versus a B&H strategy depends on the time series properties of the assets chosen as 

well as the weighting scheme and the performance metric used, the investment horizon, the 

frequency of rebalancing and transactions costs. 
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We demonstrate mathematically that unrebalanced portfolios also generate growth which 

is greater than the average growth of the underlying assets (this is the definition of “excess 

growth” generally used in this literature). Furthermore, we show that growth rates of 

unrebalanced and rebalanced portfolios are initially identical, and only diverge gradually as the 

composition of the unrebalanced portfolio gradually diverges from its initial weights. 

Specifically, we show that ─ contrary to the claims that are often made ─ for a portfolio of assets 

with IID returns which follow geometric Brownian motion, rebalancing only affects the expected 

portfolio growth rate to the extent that it alters portfolio volatility: the portfolio volatility of the 

strategy fully determines the expected portfolio growth. 

Confusion on this issue appears to have arisen in part because of the difficulty in making 

meaningful comparisons between rebalanced and unrebalanced portfolios, since even when the 

portfolios are initially identical the composition of an unrebalanced portfolio tends to shift over 

time. We derive like-for-like comparisons between rebalanced and unrebalanced portfolios which 

show that in the absence of mean reversion in relative asset prices the difference is entirely 

explained by the different volatilities of the two portfolios. 

The rest of this paper is structured as follows. In section 2 we provide a review of the 

relevant literature. Section 3 defines concepts such as the diversification return, excess growth, 

volatility drag and rebalancing return. In Section 4 we use continuous time math and simulation 

to analyze the outcome of B&H and rebalancing strategies on the expected geometric return of a 

portfolio of risky assets. Section 5 demonstrates that the widely-cited positive expected growth 
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rate on a portfolio of one risk-free and one risky asset (each of which has zero expected growth 

rate) is due to the risky asset having a positive expected arithmetic return rather than – as is 

claimed – being due to the rebalancing trades themselves being profitable. It also explores the 

reasons for confusion in the existing literature by considering the distribution of final wealth from 

these two strategies and the probability that one dominates, over finite (and infinite) investment 

horizons. Finally, we examine the impact on investors of the misleading claims made in the 

previous literature. Section 6 concludes.  

 

2. Literature Overview 

Cheng and Deets (1971) compare the performance of B&H and rebalancing strategies assuming 

risky assets returns ri are each IID but with different mean returns iμ . They consider an equally 

weighted portfolio of N risky assets. The B&H strategy and the rebalancing strategy give the 

same outcome for expected terminal wealth when the mean returns of all risky assets are equal 

(furthermore, if returns are IID then expected terminal wealth is independent of the variance of 

individual asset returns). However, if at least one pair of assets have different mean returns 

i kμ μ≠  then an initially equally weighted (1/N) B&H strategy always gives a higher expected 

terminal wealth than the corresponding rebalancing strategy: Intuitively, a B&H portfolio is 

likely over time to give increasing weights to the assets with higher μi. This relative superiority of 

B&H in terms of expected wealth is found to be larger the more frequently the portfolio is 
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rebalanced to equal weights, the greater the dispersion in the iμ  and the longer the investment 

horizon and is smaller the greater the number of assets in the portfolio.  

Evaluating the impact of rebalancing is important in a wide range of situations. 

Rebalancing back to constant weights is an important component of universal portfolios (Cover, 

1991). Rebalancing is also inherent in any portfolio weighting strategy other than capitalisation-

weighting, so it plays a part in the debate over fundamental and alternative forms of equity 

indexing (Kaplan, 2008; Hsu et al. 2011; Arnott, Hsu and Moore, 2005). Diversification returns 

have already been shown to be important in contexts other than equities and bonds. For example 

they account for a large part of the growth rate of portfolios of commodity futures (Gorton and 

Rouwenhorst 2006a and 2006b, Erb & Harvey 2006).  

One important strand of the literature uses Black-Scholes continuous time framework to 

compare constant-weight rebalancing strategies (i.e. not necessarily equal weights) with 

corresponding static B&H strategy. This builds on the earlier work of Kelly (1956) and Thorpe 

(1967). A specific situation which is widely analysed (e.g. Gabay and Herlemont 2007, 

Luenberger 1997, Perold & Sharpe 1988 and Fernholz and Shay 1982) is a portfolio consisting of 

a proportion 1 π−  in the risk-free asset (which pays zero interest) and a proportion π  in a single 

risky asset S which follows a lognormal diffusion process, with periodic drift μ. The risky asset 

follows exp( ( ))tS gt W tσ= +  where 2 / 2g μ σ= −  and ( )W t is a Wiener process. Hence, if we 
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set 0g =  the long term growth rate of tS approaches zero: 
1

lim ln 0tS gt
t

 − = 
 

 as t → ∞ . 

However, the terminal wealth for the rebalanced cash, risky-asset portfolio is: 

                               
*

( )reb g t
t tV S eπ=   where  * 2(1 ) / 2g π π σ= −    (1) 

The term *g is referred to as the “excess growth rate” of the portfolio (in excess of the 

weighted average of the growth rates of the component assets, which in this case is zero). The 

portfolio excess growth rate is positive for 0 1π< < , increases with volatility σ (hence the term 

“volatility pumping” given to this rebalancing strategy), and is maximized for 1/ 2π = . The 

B&H portfolio has terminal wealth:  

& (1 )B H
t tV Sπ π= − +       (2) 

Hence for the risk-free plus risky asset portfolio: 

2
&

1
ln (1 ) ln

2 1

reb
t t
B H

t t

V S
t

V S

π

σ π π
π π

= − +
− +

    (3) 

The log of relative wealth for the two strategies depends positively on volatility and the 

time horizon and the distribution of relative wealth depends on the stochastic path of the risky 

asset. Dempster, Evstigneev and Schenk-Hoppe (2007) use a more general setting of stationary 

stochastic processes for returns to show that an equally-weighted rebalanced portfolio of N risky 

assets generates excess growth. They note that if individual assets have zero long-run growth, this 

“volatility pumping” seems to provide the rebalanced portfolio with “something for nothing”.  
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It will already be apparent that one distinctive feature of the literature on rebalancing is 

that some studies use expected geometric growth rate (GM return) as their performance metric 

instead of more conventional metrics such as the mean portfolio return, variance, maximum 

drawdown, Sharpe ratio, information ratio, Fama-French 4-factor alpha and expected utility (or 

certainty equivalent return).1 Our objective in this paper is to clear up the confusion which is 

apparent in the literature over the effects of rebalancing on these different metrics. 

Granger et al. (2014) use a Black-Scholes framework to show that the terminal wealth for 

the cash plus risky asset portfolio leads to a fattened left tail for the rebalanced strategy in 

comparison to the B&H strategy, exacerbating drawdowns. As Perold and Sharpe (1988) note, a 

constant-weight rebalanced strategy which buys more risky assets after they have 

underperformed is doing the opposite of a portfolio insurance strategy, and could thus be seen as 

selling such portfolio insurance to other investors. The negative convexity of the rebalanced 

strategy is exacerbated if there are pronounced divergences in asset performance (e.g. between 

stocks and bonds over the period June 2008 to April 2009 when a B&H strategy outperformed a 

rebalanced strategy by 5% cumulative return). Granger et al. (2014) show conversely that a 

                                                      
1 Using the GM as a target raises a number of questions. For example, maximising the GM will maximise 

the welfare of an investor whose utility is a logarithmic function of terminal wealth. It is less clear that it is 

an appropriate target for investors with other utility functions. This topic has previously been the subject 

of a long and rancorous debate, which we do not wish to revisit here. For our purposes it is sufficient to 

note that investors are encouraged to choose strategies such as volatility pumping or rebalanced strategies 

on the basis of their expected GM returns. This paper seeks to clarify how these apparently attractive GM 

returns come about. 
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momentum strategy (a moving average cross-over system) gives rise to positive convexity even 

when returns are not serially correlated. They therefore recommend augmenting a rebalanced 

stocks/bond portfolio with a momentum overlay (e.g. with 10% of funds allocated to the 

momentum strategy) which can offset the additional risk of large drawdowns that is inherent in 

rebalancing. 

Rebalancing clearly has important implications for portfolio risk, but our key interest in 

this paper is in the claims that are made for the growth rates and terminal wealth achieved by 

rebalanced portfolios (either in expectation or asymptotically as t→∞). In particular, we examine 

the claims originally made in Fernholz and Shay (1982) and endorsed by an increasing number of 

subsequent papers (e.g. Luenberger 1997, Mulvey et al.  2007, Stein et al., 2009, Qian 2012, 

Willenbrock, 2012, Bouchey et al. 2012) that the process of rebalancing directly boosts long-term 

growth rates and terminal wealth even when returns have no predictable time structure (for 

example when asset prices evolve following geometric Brownian motion), and that rebalanced 

portfolios must be expected to outperform because they generate these “rebalancing returns” 

(also referred to as “excess growth”).  

A large empirical literature has attempted to assess the net effects of rebalancing in a 

simple two asset equity/bond portfolio. The results have varied, which is likely to be the result of 

the different performance metrics used, different markets and time horizons considered, the 

details of the rebalancing strategy (notably the frequency of rebalancing or the divergence levels 

which trigger rebalancing trades) and the extent to which transactions costs are taken into 
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account. Some have found that a rebalancing strategy outperforms a B&H strategy (Arnott and 

Lovell, 1993, Tsai 2001, Donohue and Yip, 2003, Tokat and Wicas 2007, Harjoto and Jones, 

2006, Bolognesi et al., 2013), while others have found the reverse. (Jaconetti, Kinniry and 

Zilbering 2010). Naturally, the metrics considered have an important impact on conclusions, for 

example Plaxco and Arnott (2002) conclude that a B&H strategy “may appear to outperform in a 

strongly trending market”, but that rebalancing outperforms on a risk-adjusted basis. Another 

sizeable strand of the literature seeks to identify the optimal parameters for a rebalancing strategy 

(for example in terms of the frequency or divergence threshold used), such as Buetow et al. 

(2002), Masters (2003), Smith and Desormeau (2006), McLellan et al (2009). [There is little 

consensus from these studies on the optimal rebalancing frequency or no-trade interval around 

desired weights].  

A common feature of many of these studies is that they test alternative rebalancing 

strategies in specific historic periods. Dichtl, Drobetz and Wambach (DDW, 2012) note that these 

studies consider at most a small number of different sets of realised equity and bond returns, and 

hence cannot attribute any statistical significance to their findings. DDW instead use a block 

bootstrap approach to generate a large number of alternative realisations whilst preserving any 

short-term time structure of the original historical data (for a portfolio initially 60% stock, 40% 

bond portfolio, using US, UK and German data 1981-2010 ). They find that constant proportions 

rebalancing strategies generate average returns which are “only marginally” and not consistently 

better: Rebalanced strategies generate higher average terminal wealth in the UK and Germany, 

but in the US buy and hold generates greater terminal wealth than rebalancing. They find instead 
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that the key benefit of rebalancing strategies lies in volatility reduction, leading to 

outperformance on risk-adjusted measures such as the Sharpe ratio. 

In a wide ranging study using 14 alternative constrained optimal weighting schemes and 

on various portfolios of US returns data (mostly over 1963-2004), DeMiguel et al (2009) find that 

an equally-weighted portfolio of N assets with monthly rebalancing does consistently better on 

three alternative performance metrics (i.e. Sharpe ratio, certainty equivalent return and turnover), 

than the optimal weighting schemes. They also report that the “B&H case in which the investor 

allocates 1/N at the initial date and then holds this portfolio until the terminal date” gives results 

that are similar to those for the case with rebalancing”. Hence it appears that a 1/N B&H portfolio 

may perform as well as a monthly rebalanced 1/N portfolio over a 40 year period – we investigate 

this possibility in our simulations below.  

Plyakha et al. (2012) take a single period (1967-2009), but construct many alternative 

portfolios by randomly sampling 100 stocks from within the S&P500 index, allowing them to 

attribute statistical significance to their results. They find that rebalanced equally-weighted 

portfolios outperform in terms of mean return as well as risk-adjusted measures. Only some of 

this can be attributed to the fact that such equally-weighted portfolios give a higher weight to 

small and value stocks, since they also generate a significantly higher four-factor alpha. Reducing 

the frequency of rebalancing, and also evaluating the performance of rebalanced, but 

(approximately) capitalisation-weighted portfolios, helps to identify the source of this 

outperformance . The authors attribute it to the fact that rebalancing is “a contrarian strategy that 
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exploits reversal in stock prices”, consistent with the evidence of such reversals that has 

previously been identified (eg. Jegadeesh 1990, and Jegadeesh and Titman, 1993, 2002). 

However, the finding that rebalancing strategies may outperform because of such empirical 

regularities is very different from the claim made in the more theoretical literature that 

rebalancing strategies automatically outperform even when asset returns follow a geometric 

Brownian motion, and hence have no identifiable time structure. 

The large body of empirical and theoretical research into the effects of rebalancing is 

testament to the practical importance of this issue to investors and the difficulty of deriving 

robust theoretical results. In this paper our focus is on the strand of research which claims that 

rebalancing directly generates “excess returns” even when returns exhibit no predictable time 

structure. This claim has important implications for investors, but we demonstrate that it is very 

misleading. 

3. Terminology: Volatility Drag/Diversification Return vs. Rebalancing return/Excess 
Growth 

This paper investigates the claimed outperformance of rebalanced strategies made by a number of 

prior papers which use expected growth rates as their performance metric. Use of the expected 

growth rate means that we must take account of “volatility drag". This effect will be familiar to 

many investors, and can be understood directly from the standard relationship between the 

arithmetic and geometric mean returns2:  

                                                      
2 Fama and Booth (1992) derive this relationship using a Taylor expansion for the expected continuously 

compounded return E[log(1+r)] around E[r]. This derivation makes no assumption about the nature of the 
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2
][][

2σ−≈ AMEGME                          (4) 

This tells us that, all else equal, an asset or portfolio will generate a lower expected GM if 

it has a higher volatility. This is because the GM (and similarly, the continuous growth rate) is a 

concave function of terminal wealth3. If we compare two strategies with identical expected 

terminal wealth, the one with lower volatility will generate a higher E[GM] because this concave 

relationship effectively penalizes both exceptionally high and exceptionally low terminal wealth 

outturns (terminal wealth (TW) being a linear function of the AM). Figure 1 illustrates this 

volatility drag.  

[Figure 1] 

Volatility drag is inherent in the compounding relationship between periodic returns and 

terminal wealth and, as equation 4 shows, is merely a function of the volatility of returns. It 

affects both rebalanced and unrebalanced portfolios. A rebalanced portfolio will suffer lower 

volatility drag only to the extent that rebalancing keeps its variance lower than the corresponding 
                                                                                                                                                                            
asset or portfolio which generates these returns (except that the distribution of returns is differentiable 

with finite derivatives), yet it is an accurate approximation when compounding over small time periods 

over which E[r] is also small. The precise expression derived by Fama and Booth is E[GM] = E[AM] - 

σ2/2(1+E[r])2, but we use it here in the form in which it is most normally cited, which is of course still a 

good approximation for small E[r].   

 
3GM=(Terminal wealth/Initial wealth)1/n–1 in discrete time, or the equivalent continuous time growth rate 
1/Tlog(Terminal wealth/Initial wealth). Both are concave functions of terminal wealth. For simplicity we 

normalise initial wealth to 1. 
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unrebalanced portfolio. Another entirely different effect is that portfolio rebalancing could boost 

expected terminal wealth if there is negative autocorrelation in relative asset returns, since a fixed 

weight rebalancing strategy sells some of the assets that outperformed in the most recent period 

and buys assets that underperformed. Thus it will profit if these relative price movements tend to 

reverse in future.  

These two effects are entirely distinct: one is an increase in the expected growth rate 

which results from any reduction in portfolio volatility, the other is an increase in expected 

terminal wealth which occurs only if there is (a) rebalancing, and (b) negative autocorrelation in 

relative asset returns. We argue in Section 5 below that proponents of rebalancing strategies tend 

to confuse these two effects by claiming that rebalancing generates “rebalancing returns” (excess 

growth) which are entirely absent from unrebalanced portfolios, but which are not dependent on 

any time structure in asset returns. 

Equation (4) holds for any asset or portfolio. We can apply it to a diversified portfolio p 

and also to a portfolio containing a single asset i. Subtracting one of the resulting equations from 

the other gives us: 

)][()][(][][ 2
2

12
2

1 iippip AMEAMEGMEGME σσ −−−≈−   (5) 

For simplicity we will assume that all these assets are IID4. Without this assumption, 

assets with larger expected returns are likely over time to comprise a larger proportion of an 

                                                      
4 Fernholz and Shay (1982) [and…] similarly assume that all assets have identical expected growth rates. 
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unrebalanced portfolio, raising the expected return of the portfolio as a whole, as shown by 

Cheng and Deets (1971). By removing this effect, our assumption of IID asset returns simplifies 

the analysis − it is also generous to rebalanced portfolios. We show below that even with this 

assumption, unrebalanced portfolios give expected geometric returns equal to those of rebalanced 

portfolios with equal levels of volatility. Without it, unrebalanced portfolios would outperform. 

Rebalancing is worthwhile to the extent that it stops the portfolio variance from rising because 

the portfolio becomes more concentrated in the best-performing assets, but rebalancing does not 

have any direct effect on returns (the “rebalancing returns” that are widely claimed).  

By definition, the expected portfolio AM is the weighted average of the expected AM of 

it component assets: E[AMp]=ΣwiE[AMi]. With E[AM] assumed equal for every asset, 

E[AMp]=E[AMi] regardless of the composition of the portfolio (we assume zero leverage, so 

portfolio weights always sum to unity). This gives us: 

)(][][ 22
2

1 piip GMEGME σσ −≈−
                     (6)

 

Booth and Fama (1992) define the “diversification return” as the degree to which the 

expected GM of a portfolio is greater than the weighted average of the expected GMs of its 

component assets.  Our assumption of IID asset returns means that every asset has an identical 

E[GM] and so the weighted average of these component returns is the same for any unleveraged 

portfolio of these assets. Equation 6 thus represents the diversification return of shifting from a 

single asset to a portfolio of similar assets. It also tells us that this diversification return is entirely 

due to the associated reduction in portfolio volatility. This derivation makes it clear that the 
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diversification return should be seen as simply the reduction in volatility drag caused by 

improved diversification. By contrast the "rebalancing return" is portrayed as resulting from a 

very different process, as rebalancing trades consistently buy on downticks and sell on upticks.  

 
Multi-Asset Portfolios 

We noted in section 2 above the widely-cited case in which a rebalanced portfolio which keeps a 

constant proportion Π of its value in a risky asset (and (1-Π) in cash). The risk-free and risky 

assets are both assumed to have zero expected growth rate, but a rebalanced portfolio 

nevertheless generates a positive expected growth of * 2(1 ) / 2g π π σ= − per period. We return in 

Section 5 to consider the interpretation of this widely-quoted result, but in this section we first 

consider the more general case of portfolios containing more than one risky asset. 

Fernholz and Shay (1982) claim that an equally-weighted portfolio of IID assets generates 

“excess growth” (a growth rate which is greater than the weighted average growth of its 

component assets) and so will outperform the corresponding unrebalanced portfolio, which they 

claim has the same expected growth rate as its component assets (i.e. zero excess growth). The 

higher growth achieved by the rebalanced portfolio they ascribe directly to the rebalancing 

process “buying on downticks and selling on upticks”. This claim has been endorsed by 

subsequent papers (e.g. Qian, 2012, Luenberger, 1997, Bouchey et al., 2012, Willenbrock, 2012, 

Stein et al. 2012) and in the practitioner literature. 
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We can assess this claim directly and with complete generality by taking an unrebalanced 

portfolio and modelling it as two sub-portfolios which are initially of equal value. These sub-

portfolios have growth paths described by the random variables x and y: 

௨ܲ ൌ 0.5݁௫+ 0.5݁௬      (7) 

Using the Taylor expansion: 

௨ܲ ൎ 12 ൅	2ݔ ൅ ଶ4ݔ ൅ 12 ൅ 2ݕ ൅ ଶ4ݕ 	 																																																															ሺ8ሻ 
	⟹ ௨ܲ ൎ 1 ൅	 	௫ା௬ଶ ൅ ଵଶ ቀ௫ା௬ଶ ቁଶ ൅ ଵ଼ ሺݔ െ 	ሻଶݕ ൎ 	 ݁ೣశ೤మ ൅ ଵ଼ ሺݔ െ 			ሻଶݕ  (9) 

Equation (9) shows that an unrebalanced portfolio has excess growth of 	ଵ଼ ሺݔ െ  ሻଶ. This isݕ

zero if Pu consists of only one asset, but if instead it can be divided into two non-identical sub-

portfolios then this term is unambiguously positive.5 Thus any diversified portfolio has “excess 

                                                      
5 For clarity the analysis above expanded only to the quadratic terms, but the excess growth clearly remains positive 

if we add the third and fourth power terms of the expansion. Adding the extra terms to equation (5) gives us: 

௨ܲ ൎ 12 ൅	2ݔ ൅ ଶ4ݔ ൅ ଷ12ݔ ൅ ସ48ݔ ൅	12 ൅ 2ݕ ൅ ଶ4ݕ ൅	ݕଷ12൅	ݕସ48 	 																																					 
ൌ 1 ൅ ݔ	 ൅ 2ݕ ൅ 12 ൬ݔ ൅ 2ݕ ൰ଶ ൅ 18 ሺݔ െ 	ሻଶݕ ൅ 16 ൬ݔ ൅ 2ݕ ൰ଷ ൅	 348 ሺݔ ൅ ݔሻሺݕ െ ሻଶݕ ൅	 124 ൬ݔ ൅ 2ݕ ൰ସ ൅ 6384 ሺݔଶ െ ଶሻଶݕ

൅ 1384 ሺݔ െ  ሻସݕ

This gives us all the terms up to the fourth power in the Taylor expansion of expቀ௫ା௬ଶ ቁ plus additional terms which 

represent "excess growth" by which growth in the portfolio exceeds the average (equally weighted in this case) of the 

growth rates of its components:  

௨ܲ ൎ exp ൬ݔ ൅ 2ݕ ൰ ൅ 18 ሺݔ െ ሻଶݕ ൅ 348 ሺݔ ൅ ݔሻሺݕ െ ሻଶݕ ൅	 6384 ሺݔଶ െ ଶሻଶݕ ൅	 1384 ሺݔ െ  ሻସݕ
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growth” even if it is not rebalanced.6 This directly contradicts the explicit claims made by 

proponents of rebalancing strategies. Labelling these “rebalancing returns” is extremely 

misleading – they are better regarded as the result of reduced volatility drag, since they clearly 

arise for any diversified portfolio. 

We can demonstrate the same point using simulation. Such numerical techniques have 

been little used in this literature since without rebalancing portfolio asset weights tend to vary 

over time, making it difficult to derive like-for-like comparisons between rebalanced and 

unrebalanced strategies. Even when all asset returns are IID there are two effects which might be 

thought to cause E[GM] of rebalanced and unrebalanced portfolios to differ. First, unrebalanced 

                                                                                                                                                                            
If our portfolio consists of a single asset then x and y will be identical and the excess growth terms will all be equal 

to zero. If instead the portfolio is diversified then x and y are non-identical and these excess growth terms are: 

݄ݐݓ݋ݎ݃	ݏݏ݁ܿݔܧ ൎ 18 ሺݔ െ ሻଶݕ ൅	 348 ሺݔ ൅ ݔሻሺݕ െ ሻଶݕ ൅ 6384 ሺݔଶ െ ଶሻଶݕ ൅	 1384 ሺݔ െ  ሻସݕ

ൌ 164 ሺݔ െ ሻଶݕ ൬4 ൅	ሺݔ ൅ ݕ ൅ 2ሻଶ ൅	16 ሺݔ െ  ሻଶ൰ݕ

This excess growth is clearly always positive for x≠y. We cannot rule out the possibility that over long horizons 

higher order terms will become significant, but at least for modest investment horizons (where x and y are well 

below 1) these can be safely ignored. Thus, contrary to what proponents of rebalancing explicitly claim, 

diversification unambiguously raises the expected growth rate of an unrebalanced portfolio, and this is true 

regardless of whether the portfolio is rebalanced. 

6 The growth rate gu of a B&H portfolio over a horizon T can be expressed in terms of the growth rates gi of 

its component assets as the following, since the terminal portfolio value is simply the sum of the terminal values of 

the component assets: ሺ1 ൅ ݃௨ሻ் ൌ 	∑ ௜ሺ1ݓ ൅ ݃௜ሻ்௡௜ୀଵ 		where wi are the initial portfolio weights of the assets. 

However, this complex non-linear relationship does not in general imply the simpler relationship ݃௨ ൌ	∑ ௜݃௜௡௜ୀଵݓ 	that is sometimes alleged and which would if true imply that by definition a B&H portfolio generates no 

“excess growth”. 
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strategies are likely to suffer greater “volatility drag” as they become less diversified over time, 

leading to higher portfolio volatility and a lower E[GM]. Second, it is widely claimed that there is 

an additional effect on E[GM] which is directly due to the act of rebalancing – a claim that we 

reject.  

It is nevertheless possible to use simulations to disentangle these two possible effects. We 

simulate IID returns so that the mean portfolio return is the same in both strategies. We show that 

when the B&H and rebalanced portfolios have the same portfolio volatility, they have the same 

E[GM].  Hence, there is no additional impact on E[GM] from the act of periodic rebalancing to 

fixed weights. E[GM] is instead completely determined by portfolio volatility.    

To simulate rebalanced and unrebalanced strategies with a wide range of different 

portfolio variances we use two approaches. First, we compare portfolios with different numbers 

of risky assets and second, we compare portfolios of two risky assets and alter the initial weights 

given to each assets.  

We first consider portfolios containing N risky assets which we vary from N=2 to 100. 

For each value of N we simulate (i) an equally-weighted 1/N  portfolio with rebalancing each 

month and (ii) an unrebalanced portfolio with initial weights 1/N, but with the weights then 

evolve with relative asset returns (ie. B&H). As discussed above, monthly asset returns are 

assumed to be NIID, with annualized (arithmetic) mean 10% and standard deviation 20% per 

annum for each asset. For each portfolio we conduct 10,000 simulations, each over a horizon of 

100 years. 
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[Figure 2 around here] 

The results are shown in Figure 2. For both rebalanced and unrebalanced portfolios the 

portfolio variance falls as N rises. However for each level of N the unrebalanced portfolios have 

higher expected variances. Asset returns are all assumed identically distributed, so an equally 

weighted portfolio gives the minimum variance. Without rebalancing, the weights on each asset 

tend to diverge over time, leaving the portfolio less effectively diversified. The expected AM 

return remains constant for every portfolio (since the portfolio is unleveraged and all assets have 

identical expected AMs), but the geometric mean returns of these portfolios increase as their 

variances decrease, consistent with E[GM] ≈ E[AM] - σ2/2. 

Figure 3 presents the same results, but with the average variance for each set of 

simulations plotted against the corresponding expected GM. The results for the rebalanced and 

unrebalanced portfolios now coincide. This shows that rebalancing affects the expected GM only 

to the extent that it affects the portfolio variance, and hence generates different levels of volatility 

drag. By contrast, if rebalancing generated returns by “buying low and selling high” as 

proponents suggest, we should expect different GMs for these portfolios even after correcting for 

their different variances.  

[Figure 3 around here] 

Next we examine the relationship between the expected GM and portfolio variance for 

portfolios of two risky assets with a range of different initial asset weights (Figure 4). A fixed 
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50:50 weighting is the minimum variance portfolio, with unrebalanced portfolios seeing higher 

variances as the portfolio weights subsequently drift over time. However if the initial portfolio 

weights are highly unequal (with one asset accounting for 86% or more of the portfolio) then the 

drift of these portfolio weights in the unrebalanced portfolios on average reduces variance 

because it can lead to weights becoming substantially more equal over time.  

[Figure 4 around here] 

Figure 5 plots the same results in terms of mean realised variance versus mean GM return 

for each set of simulations. The results coincide for rebalanced and unrebalanced portfolios just 

as they did for our earlier simulations. Furthermore, on this figure we have combined the results 

of both sets of simulations (i) varying the number of assets (with equal initial weights) and (ii) 

varying the initial weights in a two-asset portfolio. This shows that all these simulations describe 

the same linear relationship (E[GM] ≈ E[AM] - σ2/2), confirming that rebalancing only affects 

the average GM to the extent that it affects the average portfolio variance. The average GMs of 

our simulated portfolios differ by a maximum of only 0.8 basis points from those implied by this 

equation7. Thus the different E[GM]s of the rebalanced and unrebalanced portfolios can be 

                                                      
7 Annex 1 shows that even though the portfolio variance shifts over time for an unrebalanced portfolio, 

when compounding over multiple short periods equation 1 is still a good approximation for the whole-

horizon expected GM as a function of the average expected AM and average variance over this horizon. 

Using monthly (rather than continuous) compounding is inherently an approximation, but these results 

show that in these simulations it is a very good approximation. 
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entirely explained by the different degrees to which they suffer from volatility drag, and we have 

no evidence of “rebalancing returns” caused by the rebalancing trades themselves being 

profitable. For robustness we repeated the simulations using asset returns drawn from uniform 

and t distributions. These show the same result: that portfolios with the same variance generated 

the same expected GM regardless of whether they are rebalanced. 

[Figure 5 around here] 

Fernholz and Shay (1982) state that a fixed weights portfolio “buys on a downtick and 

sells on an uptick”, and Luenberger (1997) that it will automatically “buy low and sell high”. 

These authors claim that these effects boost returns even if asset returns follow a geometric 

Brownian motion, but Dempster et al. (2009) rightly note that any such profits are conditional on 

presume negative autocorrelation of returns. The rebalancing process will by construction sell 

some of an asset after a period in which it outperformed the rest of the portfolio, but this sale is 

only profitable if it takes place before a period (of whatever duration) of relative 

underperformance. Indeed, if rebalancing really did buy low and sell high, then it would increase 

the expected AM as well as the expected GM, but none of the proponents of rebalancing that we 

cite above claim that it does, and our simulations clearly show that it does not. 

Similarly, Willenbrock (2011) argues that “the underlying source of the diversification 

return is the rebalancing”, and Qian (2012) states that a “diversified portfolio, if left alone and not 

rebalanced, does not provide diversification return”. These statements are misleading. 
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Rebalancing can be used to keep the portfolio at its minimum-variance weights and hence 

maximize the diversification return, but this does not imply that the diversification return will be 

zero in unrebalanced portfolios. Equation (9) and our simulations both clearly show that 

unrebalanced portfolios achieve higher expected GMs than their component assets as long as they 

retain some element of diversification. 

Whether asset returns are autocorrelated in practice is an empirical question. Rebalancing 

will be profitable in markets which tend to mean-revert, and loss-making in markets which tend 

to trend (as assets which have underperformed in the past ─ and so are bought by the rebalancing 

strategy ─ tend to continue underperforming in the future, and vice versa). The misleading 

conclusion that rebalancing boosts expected GM returns even without any mean-reversion 

encourages investors to pursue strategies which may be inappropriate for the markets concerned.  

4. Portfolios of One Risky Asset and One Risk-Free Asset 

The previous section showed that a diversified portfolio generates an expected growth rate that is 

greater than the weighted average of its component assets. In the terminology used in this 

literature this shows that even unrebalanced portfolios generate “rebalancing returns”. We 

demonstrated this algebraically in complete generality and numerically for portfolios of many IID 

assets (a scenario which should be least favourable to unrebalanced portfolios). In this section we 

return to a simpler situation: a portfolio consisting of risk-free deposits and a single risky asset 

with variance σa
2. This example is important, since it is widely used in the academic and 

practitioner literature and because the misleading conclusions drawn from it encourage investors 
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to hold volatile assets and poorly diversified portfolios so as to maximise the scale of the 

rebalancing trades. It is important to understand how these papers have reached misleading 

conclusions. 

These authors assume that the risk free and the risky asset have identical expected 

geometric mean returns. For simplicity we follow Dempster et al. (2007) and Qian (2012) in also 

normalising these returns to zero8. Under these assumptions these authors find that the expected 

geometric mean return of a portfolio which is 50% risky asset and 50% risk-free is σa
2/8. The fact 

that this return is achieved by combining two assets which each have zero expected GM makes 

this seem almost like achieving something out of nothing. Furthermore, maintaining the 50% 

asset weights requires the investor to rebalance by selling some of the risky asset after it has 

generated a positive return and buying some following a negative return. The positive GM return 

generated by this strategy is interpreted as resulting from these rebalancing trades. As Fernholz 

and Shay (1982) put it: 

“...a balanced cash-stock portfolio will buy on a downtick and sell on an uptick. The act 

of rebalancing the portfolio is like an infinitesimal version of buying at the lows and 

                                                      
8 Without this normalisation, the AM and GM figures in Table 1 would all be increased by the risk-free 

rate. However the key result would remain unchanged: that the risky asset must by implication have 

E[AM] which is greater than the risk-free rate, and that this should be seen as the underlying source of the 

positive expected GM on the 50/50 portfolio, which has half the E[AM] of the risky asset but only one 

quarter of the volatility drag.  
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selling at the highs. The continuous sequence of fluctuations in the price of the stock 

produces a constant accrual of revenues to the portfolio.”  

The language used here suggests that these price movements are temporary and rapidly 

reversed but the authors explicitly assume a geometric Brownian motion in which the risky asset 

has an expected growth rate of zero, so after the asset price has initially diverged from its original 

value, the expected geometric return on any shares bought or sold at this new price is zero. This 

applies in every period, so any rebalancing trade shifts some wealth from one asset into another 

which is as likely to outperform as underperform the asset it replaces. This shift will raise the 

expected portfolio growth rate if it improves diversification and so reduces volatility drag, but the 

language used by proponents of rebalancing strategies suggests a very different effect is at work. 

We can also demonstrate that the rebalancing trades are not the source of the increased 

expected growth rate by deriving the expected size of this increase without using any dynamic 

expressions, but instead merely using the standard arithmetic/geometric mean relationship 

(E[GM] ≈ E[AM] - σ2/2). This equation is of general applicability, and makes no presumption 

about rebalancing − it applies to the returns of both rebalanced and unrebalanced portfolios, and 

indeed to all positive numbers. In this case it tells us that the risk-free asset must have zero 

expected AM (since it is assumed to have zero GM and zero variance). The risky asset is 

assumed to have variance σa
2, but zero expected growth rate, so this equation tells us that it must 

have a positive expected AM of σa
2/2 (see Table 1). This positive arithmetic mean is generally 

not made explicit in discussions of this strategy, thus helping to maintain the impression that the 
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expected geometric mean return on the 50:50 portfolio is caused by the rebalancing trades buying 

low and selling high. 

 
Table 1: Expected AMs and GMs derived using E[GM]≈E[AM] - σ2/2 

E[AM] Variance E[GM] 

Risky asset σa
2/2 σa

2 0 

Risk-free asset 0 0 0 

50:50 fixed 
weight portfolio σa

2/4 σa
2/4 σa

2/8 

 

The 50:50 portfolio has an expected AM equal to half that of the risky asset, but only one 

quarter of the variance. Thus it must have an expected growth rate of σa
2/8. Fernholz and Shay 

(1982) derive this result using stochastic calculus to model the dynamics of the portfolio, but it 

follows directly from the standard AM:GM relationship which applies for all assets and 

portfolios, regardless of whether they are rebalanced. This return is better interpreted as arising 

because the risky asset itself has a positive arithmetic mean return. For the 100% risky asset 

portfolio this positive expected AM is perfectly offset by volatility drag. By contrast, the 50/50 

portfolio has an expected AM which is half as large, but it suffers only one quarter of the 

volatility drag, leaving it a positive expected GM. The positive E[GM] of the rebalanced portfolio 

is thus explained entirely by the reduced volatility drag, so there is no evidence of the buy-

low/sell-high effects which are claimed. 
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Portfolio rebalancing played no part in deriving the size of the expected GM for this 

portfolio, but in practice if there is no rebalancing then the proportion a of the portfolio which is 

held in this single risky asset is likely to vary from one period to the next. The expected AM in 

any period increases in direct proportion to a, whilst the variance of the portfolio increases with 

a2. Thus the expected GM in any period has a quadratic relationship9 with a, with the maximum 

expected GM at a = 0.5 as shown in Figure 6. 

 

[Figure 6 around here] 

 

Rebalancing is required to maximise E[GM] by keeping the portfolio composition at 

50/50. If a falls to zero then the portfolio is composed entirely of risk-free asset, with zero GM. If 

a rises to 1 then the portfolio is entirely risky asset and the volatility drag will completely offset 

the positive E[AM], leaving E[GM] zero. However, for short time horizons the proportion of the 

risky asset in the portfolio should not be expected to diverge substantially from its initial 50%, so 

                                                      
9  E[GM] = E[AM] – σp

2/2 = a σa
2

 /2 - a2σa
2/2= a(1- a) σa

2/2. This result is derived by Qian (2012) and, in 

continuous time form, by Fernholz and Shay (1982). [If there is only a single risky asset, with an expected 

GM equal to the risk-free rate, then the 50:50 fixed weight portfolio will indeed be the most attractive 

option for an investor who wishes to maximise his expected portfolio GM. But in practice there are likely 

to be many alternative risky assets which are less than perfectly correlated. This allows clearly superior 

strategies to be constructed. If, for example, two or more assets have the same expected AM and variance 

then a portfolio of them (however weighted) will have the same expected AM, but a lower variance, and 

thus a higher expected GM. Combining this multi-asset portfolio with a fixed a% of cash will (for any 

a>0) generate an expected GM which is greater than that shown in Figure 6.] 
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the expected GM will be only slightly below the expected GM of the rebalanced portfolio. Annex 

2 confirms this by showing that an unrebalanced portfolio which is initially 50% cash generates 

expected growth of approximately 
ఙమ௧଼ െ	ఙర௧మ଺ସ , compared to 

ఙమ௧଼  for the equivalent rebalanced 

portfolio. Thus expected growth for the unrebalanced portfolio is not the zero that is claimed. 

Indeed, for short time horizons the σ4t2 term will be negligible, showing that the rebalanced and 

unrebalanced portfolios initially have identical expected growth. This gradual divergence of 

expected growth rates for these two portfolios is inconsistent with the claim that one always 

generates rebalancing returns and the other does not. By contrast, it is entirely consistent with the 

different growth rates being due to the gradual increase in volatility (and hence volatility drag) as 

the unrebalanced portfolio’s composition gradually drifts away from its initial weights. Similarly, 

Annex 2 also shows that an unrebalanced portfolio containing multiple IID assets has expected 

growth which is non-zero, and which only gradually drifts away from the growth achieved by the 

corresponding rebalanced portfolio. 

If instead the risky asset tends to revert to previous levels, then the rebalancing trades will 

generate additional profits that are not available to a B&H strategy. This can be illustrated using 

the simplest possible example of two consecutive periods of duration t over which the risky asset 

price evolves according to a geometric binomial distribution, either rising or falling by a factor 

σ√t. The portfolio is initially equally-weighted, with 0.5 in the risky asset and 0.5 in the (zero 

return) risk-free asset. If the risky asset rises in the first period, our portfolio then has 0.5(1+ σ√t) 

in the risky and 0.5 in the risk-free asset. The rebalancing trade then sells half of the first period 
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gains on the risky asset (an amount 0.25σ√t) in order to return to equal weights. If the risky asset 

price falls in the second period (by σ√t) then this trade generates a profit of σ2t/4, and this is the 

amount by which the rebalanced portfolio outperforms the unrebalanced portfolio (which simply 

returns to its starting value, as do the assets held throughout both periods by the rebalanced 

strategy, so the difference between the terminal wealths generated by the rebalanced and 

unrebalanced portfolios is entirely due the profitability of the rebalancing trade). The rebalancing 

strategy makes an identical profit if the risky asset falls in the first period and then rebounds in 

the second. Conversely, the rebalanced portfolio underperforms in the other two scenarios, in 

which the risky asset either rises in both periods (in which case the rebalancing trade sold some 

of this asset at the end of the first period before it continued to outperform in the second) or falls 

in both periods (so the rebalancing trade buys more risky asset at the end of period 1 before its 

price falls in the second). Thus over this two period horizon a rebalancing strategy generates 

greater terminal wealth than the B&H strategy at a rate of σ2t/8 per period, but this is strictly 

contingent on the assumption that the risky asset price reverts to exactly its starting value at the 

end of the horizon. 

The same result can be derived if the price of the risky asset follows a standard geometric 

Brownian motion: ܵ௧ ൌ ܵ଴݁൬ఓି഑మమ ൰௧ାఙௐሺ௧ሻ
. Without loss of generality we normalise S0=1, and we 

follow Fernholz and Shay (1982) in assuming that the risky asset has zero expected growth rate, 

implying that μ=σ2/2 and ܵ௧ ൌ ݁ఙௐሺ௧ሻ. A portfolio Pr which is constantly rebalanced to keep 50% 

in the risky asset and 50% in the risk-free asset will always have half the upward drift rate and 
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half the standard deviation of the risky asset itself (μ=σ2/4 and standard deviation σ/2), giving us 

௥ܲ ൌ ݁഑మఴ ௧ା഑మௐሺ௧ሻ. 
Fernholz and Shay (1982) note that whenever the unrebalanced portfolio returns to its 

initial weights (i.e. W(t)=0, implying St=S0), the rebalanced portfolio will have outperformed by 

a factor ݁഑మఴ ௧ (since ௥ܲ ൌ ݁഑మఴ ௧	whilst the unrebalanced portfolio ௨ܲ ൌ 0.5 ൅ 0.5ܵ௧ will merely 

have returned to its initial value of 1). Thus the rebalanced portfolio has a growth rate (i.e. 

‘excess growth’) of σ2t/8 compared to the zero growth rate of each of its component assets, but 

again this is contingent on the assumption that the risky asset returns at the end of the horizon to 

exactly its starting value. 

One reason for the apparent confusion in the literature may be that this equally weighted 

risky/risk-free asset portfolio generates two very different forms of return which happen to be of 

equal magnitude. First, we have the extra terminal wealth generated by the rebalancing trades if 

the risky asset reverts to its starting value. Second, as we saw above, we have the diversification 

return which means that this rebalanced portfolio generates an expected growth rate of σ2t/8 

whereas each component asset has a growth rate of zero (the assumption that μ=σ2/2 means that 

the risky asset has zero growth as the volatility drag perfectly offsets the positive drift μ, but the 

equally-weighted portfolio has half the drift (μ/2=σ2/4) and only one quarter of the volatility, 

implying volatility drag of only σ2/8 and a portfolio growth rate of σ2/8). These two effects have 

the same magnitude, but they use different metrics. The first is an increase in terminal wealth (a 

move along the horizontal axis in Figure 1) whilst the second is an increase in the growth rate 
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(the vertical axis). Moreover the first is contingent on the risky asset price reverting to its starting 

value, whilst the second is not. 

Fernholz/Shay (1982) is still very widely cited in support of rebalancing strategies. It 

supports its claim that such strategies benefit from “buying on downticks and selling on upticks” 

by noting, as above, that every time that the B&H portfolio returns to equal proportions the 

corresponding rebalanced portfolio will have outperformed, and also noting that as t→∞ “this 

will occur infinitely often with probability one”. This statement is formally correct, and it appears 

to imply that every rebalancing trade must eventually end up generating a profit, but it is very 

misleading to assume that this will be of any practical benefit to investors with finite horizons. 

Figure 7 shows that for typical parameter values it takes several millennia for the probability that 

the rebalanced portfolio outperforms the unrebalanced portfolio to get anywhere close to unity. 

Over horizons of up to 100 years Pr outperforms Pu in less than 70% of our 10,000 simulations10.  

[Figure 7 around here] 

 

Furthermore, even though the proportion of paths which at some point return to St=S0 

tends to 1, each period the subset of paths which have not yet returned to S0 will on average have 

diverged further from S0 than in the previous period, so that a rebalancing trade made when it 

                                                      
10 Gabay and Herlemont (2007) derive a closed form solution for the single risky asset case which shows 

similarly slow convergence to unity of the probability that the rebalanced portfolio outperforms.  
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first diverged from S0 will on average be recording ever-larger losses.11 It is only by taking both 

these subsets into account that we can make meaningful statements about the expected return on 

the rebalanced portfolio. Figure 8 shows that Pu outperforms at both tails of the distribution. 

Rebalancing trades are profitable on average on paths where St tends to mean revert, leaving only 

small positive or negative cumulative returns. Conversely, when St makes large cumulative 

moves in either direction (i.e. tends instead to trend) then Pr underperforms Pu.  

[Figure 8 around here] 

 

As time passes the left tail of the Pr distribution becomes vanishingly small, since the 

expected growth rate of this portfolio is positive, and fewer and fewer outturns see Pr below 0.5. 

But on the right tail, Pu shows more extreme outturns than Pr. Over time this tail represents a 

smaller and smaller probability space, but the average size of (Pu-Pr) in these cases keeps 

increasing. It is straightforward to demonstrate that the expected terminal wealth is in fact greater 

for the unrebalanced portfolio than the rebalanced12. This ever-more-extended, but ever-less-

                                                      
11 Similarly, we have the standard result that the expected length of time required for a geometric 

Brownian motion with zero expected growth rate (μ=σ2/2) to converge to any arbitrarily distant level is 

infinite. The time to convergence for many paths may be very short, and the proportion of paths which 

reach this level inevitably rises over time, but the remaining paths that have not yet converged will on 

average have moved in the opposite direction. 
12 As above, portfolio Pr is constantly rebalanced to keep 50% in the risky asset and 50% in a risk free 

asset evolves according to ௥ܲ ൌ ݁഑మఴ ௧ା഑మௐሺ௧ሻ.	 Using a Taylor expansion and simplifying using the standard 

properties of the Wiener process (E[W(t)=0 and E[W2(t)]=t) gives us: ܧሾ ௥ܲሿ ൎ ݁഑మ೟ర . Similarly, ܧሾ ௨ܲሿ ൌ
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likely right tail explains why this is so even though the probability that Pr>Pu tends to 1 as time 

passes. It also tells us that over finite investment horizons it is very misleading to ignore this right 

tail by assuming (as Fernholz and Shay (1982) explicitly do) that Pr always outperforms Pu – a 

property that is only true for infinite investment horizons.  

 

5. Conclusion 

A sizeable literature has now developed concerning the effects of rebalancing strategies. Within 

this it is widely claimed that rebalancing strategies generate “rebalancing returns” by buying on 

downticks and selling on upticks. This paper demonstrates instead that the difference between the 

expected growth rates of rebalanced and unrebalanced portfolios of IID assets can be entirely 

explained by their different degrees of volatility drag, with no evidence of “rebalancing returns”. 

This paper also shows that the arguments used by key proponents of rebalancing strategies are 

based on properties of returns at infinite horizons which are not applicable over practical investor 

lifetimes unless we assume that risky asset prices return to precisely their starting values. 

ሾ0.5ܧ                                                                                                                                                                             ൅ 0.5ܵ௧ሿ ൎ 0.5 ൅ 0.5݁഑మ೟మ  (the accuracy of these approximations depends on standard assumptions 

that higher moments are well behaved). By inspection, the ratio E[Pr]/E[Pu] clearly tends to zero as the 

time horizon increases, and our simulations confirm that the average terminal value is higher for 

unrebalanced portfolios. Cheng and Deets (1971) demonstrate a similar result in discrete time and we 

noted its antecedents in continuous time in the introduction. 
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Specifically, we demonstrate that all diversified portfolios generate expected growth rates 

greater than the average growth of their component assets (the definition of “excess growth” used 

in this literature). This is in direct contradiction of the claims made by proponents of rebalancing 

strategies that such excess returns are the direct result of the process of rebalancing, and so are 

entirely absent from unrebalanced portfolios. By contrast, we show that unrebalanced portfolios 

initially generate the same expected growth as the corresponding rebalanced portfolios and these 

growth rates only diverge as the composition of the unrebalanced portfolio evolves.  

The misleading arguments that are widespread in the literature have important 

implications, since they lead to a misinterpretation of the benefits of rebalancing. Specifically, 

they encourage investors to hold portfolios which are concentrated in volatile assets so as to 

increase the scale of the resulting rebalancing trades: “The pumping effect is obviously most 

dramatic when the original variance is high. After being convinced of this, you will likely begin 

to enjoy volatility, seeking it out for your investment rather than shunning it” (Luenberger, 1997). 

Investors would be better advised to seek to minimize volatility drag by diversifying effectively 

and to rebalance no more than is necessary to keep their portfolio compositions adequately close 

to their target allocations. Frequent rebalancing is likely to be costly due to transaction and 

market impact costs. Furthermore, the desire to maximise these transactions may push investors 

into sub-optimal asset allocations.  
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Annex 1 

Fama and Booth (1992) show that the continuously compounded holding period return is well 

approximated by the expected return expressed in continuously compounded terms minus a 

fraction of the variance of the simple returns. 
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This equation holds in each period, so we can sum each side over periods 1 to T: 
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Rearranging and dividing through by T: 
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If each period is short then E[rt] will be small and the continuously-compounded GM and AM 

above will be close to their more commonly-used discretely compounded equivalents. Thus we 

end up with a form of the standard relationship E[GM] ≈ E[AM] - σ2/2  which applies even if the 

distribution of rt varies over time: the expected GM over the whole multi-period horizon is 

approximately equal to the average expected return over these periods minus half of the average 

variance. The linear relationships shown in Figures 3 and 5 confirm that this relationship holds 

for the unrebalanced portfolio, whose E[AM] and variance shift over time. 
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 Annex 2: Expected Growth Rates Of Rebalanced and Unrebalanced Portfolios 
 
(a) Single Risky Asset  

		ௗௌௌ ൌ ݐ݀ߤ ൅ ,ܹ݀ߪ	 			ܵ௧ ൌ ݁൬ఓି഑మమ ൰௧ାఙௐሺ௧ሻ				where	μ=σ2/2,	S0≡1	The	rebalanced	portfolio  Pr	follows	ௗ௉௥௉௥ ൌ ఓଶ ݐ݀ ൅ ఙଶ ܹ݀ ⇒ ௥ܲ ൌ ݁഑మఴ ௧ା഑మௐሺ௧ሻ				
⇒ ሾlogሺܧ ௥ܲሻሿ ൌ 8ݐଶߪ 	 	The	unrebalanced	portfolio  Pu =0.5 + 0.5St = 0.5 + 0.5݁ఙௐሺ௧ሻ 	 log(Pu)=log(	0.5	+	0.5e஢୛ሺ୲ሻ)		A	Taylor	expansion	of	the	exponent	up	to	terms	in	σ4W(t)4	gives:	

 logሺP୳ሻ ൎ log	൭12 ൅ 12ቆ1 ൅ σWሺtሻ ൅ σଶWሺtሻଶ2 ൅ σଷWሺtሻଷ6 ൅ σସWሺtሻସ24 ቇ൱ 		A	Taylor	expansion	of	the	log	up	to	terms	in	σ4W(t)4	gives:			 logሺ ௨ܲሻ ൎ σWሺtሻ2 ൅ σଶWሺtሻଶ4 ൅ σଷWሺtሻଷ12 ൅ σସWሺtሻସ48 	
െ 12ቆσଶWሺtሻଶ4 ൅ σଷWሺtሻଷ4 ൅ σସWሺtሻସ16 ൅ σସWሺtሻସ12 ቇ ൅ 13ቆσଷWሺtሻଷ8 ൅ 3σସWሺtሻସ16 ቇ
െ 14ቆσସWሺtሻସ16 ቇ		Substituting	 in	 standard	 assumptions	 for	 the	 cumulative	 Wiener	 term	 in	 geometric	 Brownian	motion	E[W(t)]≡E[W(t)3]≡0,	E[W(t)2]=t,	E[W(t)4]	=3t2:		 Eሾlogሺ ௨ܲሻሿ ൎ E ቈσଶWሺtሻଶ8 ൅ σସWሺtሻସ ൬ 148 െ 132 െ 124 ൅ 116 െ 164൰቉ ൎ 8ݐଶߪ െ	ߪସݐଶ64 			Thus	for	small	horizons	(where	the	above	will	be	a	very	good	approximation)	the	expected	growth	of	Pu	 is	 identical	 to	 that	of	Pr.	The	expected	growth	rate	of	Pu	gradually	declines	over	 time	as	 the	
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composition	of	 the	unrebalanced	portfolio	 shifts.	This	 is	 inconsistent	with	 the	key	claim	made	by	proponents	 of	 rebalancing	 that	 Pr	 generates	 expected	 excess	 growth	 at	 a	 constant	 rate	 of	 σ2/8,	whilst	Pu	has	no	rebalancing	returns	and	hence	zero	excess	growth.	By	contrast,	the	gradual	decline	of	the	expected	growth	rate	of	Pu	is	entirely	consistent	with	our	contention	that	this	decline	is	due	to	increased	volatility	drag	as	the	composition	of	the	portfolio	drifts	away	from	the	optimal	50:50	mix.				
(b) Portfolio Of N Risky Assets Each	asset	is	assumed	to	follow	a	standard	Wiener	process		ௗௌௌ ൌ ݐ݀ߤ ൅ ,ܹ݀ߪ	 		implying	
ܵ௧ ൌ ݁൬ఓି഑మమ ൰௧ାఙௐሺ௧ሻ	where	S0	is	normalized	to	1.	A	rebalanced	portfolio Pr	which	gives	equal	weight	to	each	of	n	such	assets	follows:	݀ܲݎܲݎ ൌ෍ߤ௜݊ ݐ݀ ൅෍ߪ௜݊ ݀ ௜ܹ	But	the	assets	are	IID:		 ⇒ ݎܲݎܲ݀	 ൌ ݐ௜݀ߤ ൅ ௜√݊෍݀ߪ ௜ܹ√݊ 	The	constant	composition	of	this	rebalanced	portfolio	means	that	∑ ௗௐ೔√௡ 	has	constant	unit	variance	(like	 dW	 in	 the	 standard	wiener	 process	 above).	 Thus	 application	 of	 Ito’s	 lemma	 gives	 a	 similar	result	for	Pr,	which	simply	reflects	the	 lower	standard	deviation	ߪ௜ √݊	⁄ of	the	rebalanced	portfolio	[and	hence	the	reduced	volatility	drag].	

⇒ ௥ܲ ൌ ݁ሺఓିఙ೔మଶ௡ሻ௧ାఙ೔√௡∑ௐ೔ሺ௧ሻ	
⇒ ݐ1 ሾlogሺܧ ௥ܲሻሿ ൌ ߤ െ ௜ଶ2݊ߪ 		The	unrebalanced	portfolio	 ௨ܲ ൌ ଵ௡ ∑ ௜ܵ௧ ൌ ଵ௡ ∑ ݁ሺఓି഑೔మమ ሻ௧ାఙ೔ௐ೔ሺ௧ሻ			 		
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These	IID	assets	share	a	common	trend	term:	
௨ܲ ൌ ݁ሺఓିఙ೔మଶ ሻ௧ 1݊෍݁ఙ೔ௐ೔ሺ௧ሻ			  

logሺ ௨ܲሻ ൌ ቆߤ െ ௜ଶ2ߪ ቇ ݐ ൅ 	log	൬1݊෍݁ఙ೔ௐ೔ሺ௧ሻ൰			  	Taylor	expansion	of	the	exponent	to	the	fourth	power	gives:		 logሺ ௨ܲሻ ൌ ቆߤ െ ௜ଶ2ߪ ቇ ݐ ൅ log	ቆ1݊෍ቆ1 ൅ ௜ߪ ௜ܹሺݐሻ ൅ ௜ଶߪ ௜ܹଶሺݐሻ2 ൅ ௜ଷߪ ௜ܹଷሺݐሻ6 ൅ ௜ସߪ ௜ܹସሺݐሻ24 ቇቇ			 			Taylor	expansion	of	the	log	term	to	the	fourth	power	gives:		 logሺ ௨ܲሻ ൌ ቆߤ െ ௜ଶ2ߪ ቇ ݐ ൅ ௜ߪߑ ௜ܹሺݐሻ݊ ൅ ௜ଶߪߑ ௜ܹଶሺݐሻ2݊ ൅ ௜ଷߪߑ ௜ܹଷሺݐሻ6݊ ൅ ௜ସߪߑ ௜ܹସሺݐሻ24݊
െ 12	ቌ൫ߪߑ௜ ௜ܹሺݐሻ൯ଶ݊ଶ ൅ ቀߪߑ௜ଶ ௜ܹଶሺݐሻቁଶ4݊ଶ ൅ ൫ߪߑ௜ ௜ܹሺݐሻ൯ ቀߪߑ௜ଶ ௜ܹଶሺݐሻቁ		݊ଶ
൅ ൫ߪߑ௜ ௜ܹሺݐሻ൯ ቀߪߑ௜ଷ ௜ܹଷሺݐሻቁ	3݊ଶ ቍ ൅ 13	ቌ൫ߪߑ௜ ௜ܹሺݐሻ൯ଷ݊ଷ ൅ 3൫ߪߑ௜ ௜ܹሺݐሻ൯ଶ ቀߪߑ௜ଶ ௜ܹଶሺݐሻቁ	2݊ଷ ቍ
െ 14	൭൫ߪߑ௜ ௜ܹሺݐሻ൯ସ݊ସ ൱				 	
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Note	 that	 E[Wi(t)]≡E[Wi3(t)]≡0,	 so	 E[off-diagonal	 terms]=0	 so,	 for	 example,	 E[(ΣWi(t))2]=	E[ΣWi2(t)]:			 ሾlogሺܧ ௨ܲሻሿ ൌ ቆߤ െ ௜ଶ2ߪ ቇ ݐ ൅ ቆߪ௜ଶ2݊ െ ߑൣܧ௜ଶ2݊ଶቇߪ ௜ܹଶሺݐሻ൧ ൅ ௜ସ24݊ߪ ߑൣܧ ௜ܹସሺݐሻ൧
െ ௜ସ2ߪ ܧ	 ቎൫ߑ ௜ܹସሺݐሻ ൅ ߑߑ ௜ܹଶሺݐሻ ௝ܹଶሺݐሻ	൯ 			4݊ଶ ൅ ൫ߑ ௜ܹସሺݐሻ ൅ ߑߑ3 ௜ܹଶሺݐሻ ௝ܹଶሺݐሻ	൯	3݊ଶ ቏
൅ ௜ସ3ߪ ܧ	 ቈ3ߑ ௜ܹସሺݐሻ ൅ ߑߑ6 ௜ܹଶሺݐሻ ௝ܹଶሺݐሻ	2݊ଷ ቉ െ ௜ସ4ߪ ܧ	 ቈߑ ௜ܹସሺݐሻ ൅ ߑߑ6 ௜ܹଶሺݐሻ ௝ܹଶሺݐሻ	݊ସ ቉			ߑൣܧ ௜ܹଶሺݐሻ൧ ൌ ߑൣܧ			,ݐ݊ ௜ܹସሺݐሻ൧ ൌ 	ଶݐ3݊ (standard	 assumptions	 for	 the	 Wiener	 term)	 and	E[ΣΣwi

2wj
2]=n(n-1)t2	since	the	ΣΣ	terms	above	are	defined	for	i≠j.		⇒ ሾlogሺܧ	 ௨ܲሻሿ ൌ ቆߤ െ ௜ଶ2݊ቇߪ ݐ ൅ ߑൣܧ௜ସߪ ௜ܹସሺݐሻ൧ ൬ 124݊ െ 18݊ଶ െ 16݊ଶ ൅ 12݊ଷ െ 14݊ସ൰൅ ߑߑൣܧ	௜ସߪ ௜ܹଶሺݐሻ ௝ܹଶሺݐሻ	൧ ൬െ 1			8݊ଶ െ	 1			2݊ଶ ൅ 1			݊ଷ െ	 6	4݊ସ൰		ൌ ቆߤ െ ௜ଶ2݊ቇߪ ݐ ൅ ଶݐ௜ସߪ ൤3 ൬ 124 െ 724݊ ൅ 12݊ଶ െ 14݊ଷ൰ െ ሺ݊ െ 1ሻ ൬ 5			8݊ െ 1			݊ଶ ൅	 3	2݊ଷ൰൨			For	small	t	the	ߪ௜ସݐଶ	term	is	negligible,	so	Eሾlogሺ ௨ܲሻሿ ൌ Eሾlogሺ ௥ܲሻሿ ൌ ቀߤ െ ఙ೔మଶ௡ቁ Eሾlogሺ	so	significant	becomes	term	ଶݐ௜ସߪ	the	Thereafter	.ݐ ௨ܲሻሿ ൏ Eሾlogሺ ௥ܲሻሿ.	The	term	in	square	brackets	is	zero	for	n=1	and	negative	for	all	n>1.	An	intuitive	 interpretation	is	that	initially	Pu=Pr,	since	the	two	portfolios	start	with	identical	composition.	Thereafter	the	arithmetic	mean	of	the	two	portfolios	remains	identical	(since	the	underlying	assets	are	assumed	IID),	but	Pu	becomes	less	well	diversified	over	time,	so	it	suffers	from	increasing	volatility	drag.	But	it	is	not	true	to	claim	(over	finite	horizons)	that	Pu	never	shows	any	excess	growth. 
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FIGURE 1  

Rebalanced and unrebalanced portfolios – varying number of assets 

This chart shows how volatility in terminal wealth results in a lower expected 

growth rate, in accordance with equation (4). A zero-volatility terminal 

wealth outturn of (A) generates a growth rate (B), but although two equally 

likely outturns equidistant above and below (A) generate the same expected 

terminal wealth, they generate lower expected growth (C) because the 

curvature of the log function effectively penalises both exceptionally high and 

exceptionally low outturns. 
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FIGURE 2 

Rebalanced and unrebalanced portfolios – varying number of assets 

This chart shows the annualized GM and variance of rebalanced and 

unrebalanced portfolios comprising different numbers (from 2 to 100) of 

component assets. This gives a total of 198 variants. Asset returns are 

assumed normal and IID, with annualized arithmetic mean 10% and variance 

4%. Each path is calculated over 100 years, and the figure reports the average 

annualized GM and variance over 10,000 simulated paths. 
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FIGURE 3 

GM vs. Variance for Rebalanced and Unrebalanced Portfolios  

(Varying Number of Assets) 

This chart shows the same simulation results as in Figure 2, but plots the 

average annualized GM and variance for portfolios of each size N=2 to 100. 

The figure reports the average annualized GM and variance over 10,000 

simulated paths for rebalanced and unrebalanced portfolios. The results show 

that the expected GM return depends on the average level of portfolio 

variance, but that for a given level of variance it makes no difference whether 

the portfolio is rebalanced or not. 
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FIGURE 4 

Rebalanced and Unrebalanced Portfolios – Varying Initial Portfolio Weights 

This chart shows the annualized GM and variance of portfolios comprising 

two assets. The unrebalanced portfolio initially starts with the weight shown 

for asset A, but the weights are then allowed to evolve in line with relative 

asset returns. For the rebalanced portfolio the weight of asset A is returned at 

the end of each period to its initial value. Initial portfolio weights are given 

101 different values (from 0% to 100% asset A) for both rebalanced and 

unrebalanced portfolios − a total of 202 variants.  Asset returns are assumed 

normal and IID, with annualized arithmetic mean 10% and variance 4%. Each 

path is calculated over 100 years, and the figure reports the average GM and 

variance over 10,000 simulated paths. 
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FIGURE 5 

GM vs. Variance for Rebalanced and Unrebalanced Portfolios  

This chart shows the same simulation results as in Figures 2 and 4, but plots 

the average annualized GM against the variance.  The upper part of the figure 

shows the relationship between GM and variance when we vary the number 

of assets in the portfolio (which are initially equally weighted).  The lower 

part of the figure shows the relationship between GM and variance for a two 

asset portfolio for different initial weights in asset A. The results show that 

rebalancing affects the expected GM return via its “volatility drag” effect on 

portfolio variance (following the linear relationship E[GM] ≈ E[AM] – σ2/2), 

but it has no direct impact on the GM. 
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FIGURE 6 

Volatility Pumping – Single Risky Asset 

This chart shows the arithmetic and geometric means of  portfolios 

comprising a risk-free asset (zero expected AM return and zero variance) and 

a risky asset (expected AM return 2%, and variance 4%). Equation (1) 

implies that the risky and risk-free assets each have zero expected GM, but 

for portfolios with a positive weight on each asset the expected GM must be 

positive. 
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FIGURE 7 

Proportion of Outcomes where Pr>Pu 

 
This chart shows the proportion of the simulated paths for which the terminal 

wealth of the rebalanced portfolio Pr is greater than the unrebalanced portfolio 

Pu. This proportion is shown for simulations with a wide range of different 

time horizons. We follow Fernholz & Shay (1982) in assuming asset returns 

follow a geometric Brownian motion with zero expected geometric return. 

We consider two portfolios with starting value $1. Both invest $0.50 in a risk-

free asset which has an interest rate of zero and $0.50 in the risky asset. The 

rebalanced portfolio rebalances back to 50/50 asset mix every month. We 

assume σ is 10% per annum for the risky asset (other simulations, not 

reported here, show our results are robust to alternative assumptions). 
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FIGURE 8 

Probability Density of the Terminal Wealth of Rebalanced and Unrebalanced 

Portfolios after 100 Years 

The chart shows the distribution of terminal wealth over 10,000 simulated 

paths of a 100 year time period. The parameters of the simulated values are 

the same as for Figure 7. 
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