

City, University of London Institutional Repository

Citation: Zisman, A. (2007). A Static Verification Framework for Secure Peer-to-Peer

Applications. Paper presented at the Internet and Web Applications and Services, 2007.
ICIW '07. Second International Conference on, 13 - 19 May 2007, Mauritius.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/633/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Static Verification Framework for Secure Peer-to-Peer Applications

Andrea Zisman
Department of Computing

City University – Northampton Square, EC1V 0HB
London, UK

a.zisman@soi.city.ac.uk

Abstract

In this paper we present a static verification framework to
support the design and verification of secure peer-to-peer
applications. The framework supports the specification,
modeling, and analysis of security aspects together with the
general characteristics of the system, during early stages of
the development life-cycle. The approach avoids security
issues to be taken into consideration as a separate layer that is
added to the system as an afterthought by the use of security
protocols. The main functionality supported by the framework
are concerned with the modeling of the system together with
its security aspects by using an extension of UML, modeling of
abuse cases to represent scenarios of attackers and assist with
the identification of properties to be verified, specification of
properties to be verified in a graphical template language,
verification of the models against the properties, and
visualization of the results of the verification process.

1. Introduction

In the last years, various approaches have been proposed to
address security issues during the development of software
systems. A new area of research called secure software
engineering has emerged to support the integration of security
and software engineering [1][27]. This new area of research
has been proposed to fulfill the lack (a) in existing approaches,
techniques, and methodologies in the area of software
engineering to provide support for the analysis and design of
security requirements and properties, and (b) in existing
approaches for security engineering which concentrate on
security issues and consider limited aspects of the software
system as a whole. The normal procedure is to add security
characteristics as another layer in the system on an ad-hoc
basis after the system is built, which generates conflicts
[10][27]. Moreover, in such setting, an application is
considered to be secure when it uses security protocols and
cryptographic techniques.

The use of security protocols and cryptographic techniques
gave rise to the development of formal verification techniques
for security protocols [1][17][18][25][29]. Verification of
software systems has been the subject of extensive research in
which various approaches and tools have been proposed to
support checking and analyzing that the system conforms to its
requirements and specifications [8][12][19]. However, existing
formal verification techniques that supports security are (i)

limited to verify protocol designs, (ii) cannot guarantee
security properties of protocol implementations, (iii) do not
consider the system as a whole, and (iv) uses disjoint security
models and system design models that are expressed in
different ways [20]. As suggested in [3][10][11][15][24][26],
security should be considered from the early stages and
through all the stages of software development. Therefore, it is
necessary to propose verification approaches that consider
security aspects to be specified, modeled, and analyzed during
early stages of the development life-cycle, as well as
embedded with other characteristics of the system, and not as a
separate layer that is added to the system as an afterthought in
the form of security protocols.

The above situation is important to peer-to-peer
applications. The high distribution, autonomy, and dynamic
characteristics of the peers may cause security vulnerability to
the system as a whole. Therefore, it is necessary to consider
security since early stages of the system development and to
consider the verification of security issues together with other
aspects of the system.

The work presented in this paper focus on a static
verification framework to support the analysis of abstract
behavioral specifications of secure peer-to-peer systems. More
specifically, the static verification framework requires
capabilities to address some important challenges including
the provision of support for:
• The construction of design models representing abstract

behavioral of peer-to-peer system specifications that takes
into consideration both security and general
characteristics of the system;

• The construction of abuse cases representing scenarios of
attackers in order to consider ways in which the system
can be attacked, identify threats to the system, and elicit
ways in which the security of the system can be
invalidated;

• The specification of security and general application
properties (requirements) to be verified against the
abstract behavioral system specifications;

• The static verification of system specifications against
security and general application properties (requirements);

• The visualization of the results of the static verification
process.

The above challenges have been specified based on
requirements and scenarios identified by industrial partners in
the areas of media and security in an European project
focusing on mobile peer-to-peer security (PEPERS) [28].

These challenges, scenarios, and requirements have been the
main drivers to the framework described in this paper.

The static verification framework assumes the use of an
extension of UML (viz. UMLSec [21][22]) to describe the
design models of the system to be verified and the use of UML
to specify the abuse cases. The framework also includes a
property editor to support the specification of the properties to
be verified and a property selector to assist the designers to
choose the properties to be verified from a library of
properties. The verification of the properties against the design
models is executed by the model checker SPIN [31] after
translating the properties and design models into LTL [34] and
SPIN Promela language, respectively. The verification of
security protocols is executed by using AVISPA tool [4]. The
results of the verification process is presented to the designer
by highlighting the parts in the design models that have
violated a certain property, by indicating that the property has
not been violated, or by indicating that a conclusion cannot be
drawn from the verification process for a certain property.

The remainder of this paper is structured as follows. In
Section 2 we present an example that will be used throughout
the paper to illustrate our approach. In Section 3 we describe
the static verification framework. In Section 4 we give an
account of related work. Finally, in Section 5 we summarize
the work and present directions for future work.

2. Example

In order to illustrate, consider an example of a peer-to-peer
system to exchange job tasks and associated data between
different journalists and photographers working in a media
company. This example has been extracted from the scenarios
specified by the industrial partners of the PEPERS project. In
the example the system is composed of several peers with
different roles such as managers, chief journalists, journalists,
photographers, editors, legal and advertisement staff. The
access to the system by the peers is either by the use of
desktop computers or mobile devices (PDAs).

Consider the scenario with six peers participating in a new
assignment. These peers have the roles of one manager, one
chief journalist, two journalists, one photographer, and one
editor. Suppose that an important international event is about
to happen and the manager of the company identifies this
potential event and contacts one of the chief journalists to
discuss a plan to cover the event. The chief journalist selects a
team of people that will be able to cover the event. This team
of people is composed of two journalists, one photographer
that works together with one of the journalists, and one editor.
The two journalists and the photographer are already on the
site of the event and will be responsible for covering, writing
notes, and taking pictures of the event. The editor is located in
the main branch of the company and should dedicate all his
time to give support for preparing and editing the reports of
this event during the next three days.

Given the importance of the event, the manager and chief
journalist would like their company to have exclusivity of the
story and, therefore, all information and requests exchanged

between any of the peers should not be intercepted by anyone
else inside and outside the company. In addition, each of the
two journalists covering the event should not exchange notes
and reports about the event, since the chief journalist is
interested in receiving independent information about the
event from each journalist. Moreover, it is necessary to make
sure that the exchanged information between the different
peers is always from the correct party so that false information
is not sent and received from unauthorized and malicious
parties. Furthermore, it is also necessary to guarantee that the
information sent from one peer to another is not modified
when in transit.

The journalists and photographers communicate with the
chief journalist by mobile devices. The chief journalist,
manager, and editor communicate with each other and with the
other members of the team by using their respective desktop
computers. Table 1 shows a summary of the tasks executed by
the different peers in the scenario.

Table 1: Tasks executed by the peers in the scenario
Manager becomes aware of a new event and contacts chief
journalist about the event

Chief journalist selects team of people to cover the event and
contacts them about the event

Chief journalist sends messages to journalists and
photographer about the coverage of the event and any relevant
information for them to execute the task

Journalists and photographer attend the event and prepare
notes and take pictures about the event

Journalists and photographer send material about the event to
chief journalist

Chief journalist receives the material, approves them, and
sends the material to editor

Editor receives the material, combines the notes into a single
report, and makes all necessary amendments and adjustments

Editor sends the report to chief journalist for approval

Chief journalist approves the report or suggest any further
amendments to editor

After final approval from chief journalist, editor sends report
to be printed

The described scenario includes some security properties
such as authentication, confidentiality, integrity, and role
based access control. A definition of these properties based on
definitions given in the literature is presented below:

• Authentication: It is concerned with the property of
guaranteeing the identity of a person or entity. An example of
authentication in the scenario is “the editor can only send the
report for final approval to the chief journalist”. In this

example, the chief journalist needs to be authenticated before
the editor sends the report.

• Confidentiality: Also known as secrecy, is concerned with
the property of guaranteeing that data is not made available to
unauthorized individuals. An example of confidentiality in the
scenario is “only the chief journalist can receive notes about
the events from the journalists covering the event”.

• Integrity: It is concerned with the property of guaranteeing
that data is not modified when in transit and that sent and
received data are the same. An example of integrity in the
scenario is given by the requirement that “the information sent
from one peer to another cannot be modified when in transit”.

• Role based access control: It is concerned with the access
rights of an entity over resources in the system based on
individual roles. An example of role based access control is
the scenario is: “the journalists prepare notes while the
photographer takes pictures of the event”.

3. Static Verification Framework

Figure 1 presents an overview of the architecture of the
static verification framework. As shown in the figure, the
framework is composed of (a) Design Model Constructor
(DMC), (b) Abuse Case Constructor (ACC), (c) Property
Editor (PE), (d) Property Selector (PS), (e) Static Verification
Tools (SVT), (f) Results Visualization Tool (RVT), and (g)
Translators. We explain below each of the components of the
framework.

3.1. Design model constructor

This component is responsible to support the design of
structural and behavioral models of the system being
developed together with its security aspects. In addition, if a
specific security protocol is used, this protocol can also be
modeled using this component. We propose the design models
and security protocols to be specified in an extension of
UMLSec [21]. As outlined in [11], the adoption and extension
of standards like UML to include modeling of security features
is quite attractive. Moreover, as affirmed by [14], an object-
oriented approach to support security should be preferred over
a procedural approach due to the value of information hiding
and encapsulation in the design of secure systems. The
rationale and advantages of using a UML-based approach to
support the modeling of the system and security protocols
specifications are many: (i) UML is the de facto standard to
support design of software systems, (ii) UML has been largely
used in industrial settings and there are a large number of
developers familiar and trained in UML, (iii) there are many
tools to support the use of UML, (iv) UML offers a relative
precise definition as well as notions of modularity,
compactness, and reuse, which comply to policy
representation, and (v) UML allows for the possibility of
unifying design of systems and security policies.

Figure 1. Architecture of static verification

framework

The design models and security protocols in our work are
based on an extension of UMLSec to allow modeling of
security requirements such as confidentiality, integrity,
authentication, and access control, and modeling of the
functionality of peer-to-peer applications such as roles,
resources, operation, and events.

UMLSec [21] provides stereotypes, tags, and constraints
described in a profile that can be used to represent security
requirements. In order to illustrate, consider part of the
scenario described in Section 2 modeled in a class and
sequence diagram with UMLSec extensions for journalist and
chief journalist classes shown in Figure 2. In this example the
classes are stereotyped as <<critical>>, denoting that these
classes have sensitive data. The stereotype <<critical>> has
associated tags {authenticity}, {secrecy}, and {integrity} to
represent the security requirements on the respective data. As
shown in the figure, the representation of these requirements
does not guarantee that the system really conforms to them
and need to be further verified (see Subsection 3.4). Due to
space limitations we do not represent here the whole scenario
in UMLSec and do not discuss all the different stereotypes
tags, and constraints of the profile.

3.2 Abuse case constructor

This component allows for the specification of scenarios
from the perspective of attackers or malicious users of the
system. More specifically, abuse cases can be used to assist
engineers of the system to consider ways in which the system
can be attacked, identify potential threats to the system, and
elicit ways in which the security aspects of the system can be
invalidated. We propose to define abuse cases as UML use
cases and state machine diagrams due to their popularity and
use to describe system scenarios. Moreover, the use of state
machine diagrams allow for a more detailed definition of the
behavior of the attackers.

In our framework, the abuse cases can be used to support
two activities: (a) identification or selection of properties and

Design Models
Constructor

Abuse Case
Constructor

Property Editor

Library of
Properties Design

Models

Abuse Cases

Translators

Static Verification
Tools Results

Results
Visualization Tool

Translator

Property
Selector

Properties

Design
Models Properties

Security
Protocols

Security
Protocols

(b) description of properties. In the first activity, the abuse
cases are represented as use cases and support the
identification or selection of properties to be verified by
illustrating situations that the designers may not be necessarily
aware. In the second activity, the abuse cases are represented
as state machines describing properties to be verified which
can be composed with the design models and verified for their
termination. In the case of termination, the property (state
machine) violates the design model.

As an example of using use cases as abuse case, consider
the abuse case shown in Figure 3 in which journalist J1
exchanges notes about the event with journalist J2 (bolded
arrows), invalidating one of the requirements in the system.
This situation helps the designer identify the following
property to be verified in the system: “there should be no
communication between journalists J1 and J2 during the
coverage of the event”.

Figure 2. Example of part of the scenario in UMLSec

3.3. Property editor and property selector

We propose to use a graphical property editor to specify
the various properties to be verified by the static verification
tool by using a template language. The idea of using such an
editor is to avoid having designers to express the properties
directly in formal languages such as temporal logic formulas

(CTL[9] and LTL[34]) or regular expressions, as required by
the majority of verification tools. All the specified properties
are stored in a Library of Properties.

Figure 3. Example of an abuse case

The template language of the property editor is based on

the work in [13] and specifies properties that will be translated
into LTL formulae as required by the verification tool (see
Subsection 3.4). The language allows for the specification of
expressions separated by operators.

As an example, consider the secrecy tag represented in
Figure 2 for eventnote data. More specifically, the tag, the
operations and dependability in the classes represent the
requirement that “during the coverage of the event Chief
Journalist should be the only member in the team that receives
notes of the event from the Journalists”. Or in other words, “no
other peer different from Chief Journalist should receive notes
of the event from Journalists”. The above requirement could
be expressed in LTL as:

<> receive(J1, CJ, eventnotes) or
[] !receive (J1, !CJ, eventnodes)

Figure 4 shows part of the property editor with the
specification of the above property. As shown in the figure,
the template provides predefined values for some of the main
elements in an expression from which the user can choose, or
allows the user to input a different value.

It should be noted that in some cases it might not be
possible to represent all properties to be verified in the
template language. In this case, the designer should be able to
specify the property directly in LTL and the property editor
supports this functionality.

In order for the designer to choose the properties to be
verified by the verification tool for a certain situation, the
static verification framework contains a Property Selector
component that allows the designer to browse and choose the
relevant properties from a library of properties. The selection
of properties is based on the design models, or the security
protocols to be verified, and the abuse cases.

Journalist_J1

Chief_Journalist

Journalist_J2

Prepare notes

Exchange notes

J1:Journalist <<critical>>
{authenticity = {(username,CJ)
 (password,CJ)}}
{secrecy = {eventnotes}}
{integrity = {eventnotes}}

username: String;
password: String;
eventnotes: String;

execute(snd:String,
 rcv:String; task:String)

CJ:ChiefJournalist <<critical>>
{authenticity = {(username,J)
 (password,J)}}
{secrecy = {task}}
{integrity = {task}}

username: String;
password: String;
tasks: String;

receive(snd:String, rcv:String,
 eventnotes:String)
approve(eventnotes:String)

J2:Journalist <<critical>>

<<send>>

<<send>>

CJ J1 J2 E

execute (task)

execute (task)

receive (eventnotes)

receive (eventnotes)

receive (approvedeventnotes)
. . .

Figure 4. Example of the property editor

3.4. Static verification and visualization tools

In the framework, we propose to use SPIN [31] as the

static verification tool to support the verification of design
models of the system, and AVISPA [4] to support the
verification of security protocols.

The decision to use model checkers as verification tools
instead of theorem provers in the framework are due to the
facts that: (a) theorem provers require human intervention
during the verification process with knowledge in logic while
model checkers execute the verification process automatically,
(b) theorem provers generate a large number of lemmas that
are not easy to be understood by designers while model
checkers generate counter examples when a property is
violated, and (c) the proofs in theorem provers are normally
complex and intellectually challenging.

The choice to use SPIN and AVISPA has been based on
our study of existing verification tools in which we analyzed
eleven verification model checker tools based on different
criteria namely: (a) handling of state space explosion problem,
(b) representation of different types of data structures by the
modeling languages, (c) representation and manipulation of
built-in-intruder models, (d) support for dynamic creation of
processes, (e) availability and extensibility of the tool, (f)
applicability of the tool, and (g) usability of the tool. These
criteria have been identified based on the requirements and
scenarios elicited by the partners in the PEPERS project [28].
The results of the study have demonstrated that SPIN can
satisfy the majority of the analysis criteria and that AVISPA
has been successfully in verifying a large number of security
protocols.

In order to present the results of the verification process,
the framework contains a graphical Vizualisation Tool that
shows the parts of the design models that may violate a certain
property together with the property. In the cases where a
property is not violated or cannot be processed by the tool (i.e.
a conclusion cannot be drawn), the visualization tool also
indicates these situations to the designer.

3.5. Translators

As shown in Figure 1, the static verification framework
contains various translators to support the mapping between
(a) design models represented in UMLSec into Promela [31]
specification language, (b) security protocols represented in
UMLSec into HLPLS AVISPA language [4], (c) properties
expressed in the template language into the property
specification language of the verification tools, (d) state
machine diagrams representing the abuse cases that can be
used as properties, and (e) results of the verification process
into the visualization tool.

3.6. Discussion

The static verification framework addresses the challenges
described in Section 1. In addition, it offers the following
advantages: (a) modeling of peer-to-peer applications together
with security aspects by using a de facto standard for modeling
distributed systems; (b) verification of general and security
requirements of the system; (c) verification of security
protocols independent of their applicability in the system by
using specific verification tool; (d) freedom of system
developers to design their systems independent of the static
verification process; (e) use of scenarios that consider ways in
which the system can be attacked or identify potential threats
to the system; (f) use of a graphical template language to
specify properties to be verified avoiding system designers to
be familiar with formal languages; (g) selection of properties
to be verified based on the design models, security protocols,
and abuse cases; (h) visualization of the results of the
verification process in a user friendly way.

Our approach is different from the work in [21][22], since
it supports the verification of both security properties and
general peer-to-peer applications. In addition, although in [22]
the authors propose the use of SPIN to support model
checking, this has been restricted to the verification of
cryptographic protocols. Moreover, the static verification
framework includes the notion of (a) abuse cases and their
constructors, (b) property editor, property library, and property
selection based on abuse cases and design models, and (c) a
visualization tool to allow the representation of the results of
the static verification process with respect to the original
design models and properties.

4. Related Work

Approaches to support secure software engineering can be
categorized in three main groups based on different software
development life-cycle phases: (a) security requirements
engineering and analysis, (b) security modeling and
development, and (c) secure software code analysis and
testing.

Some approaches for security requirements engineering
and analysis propose the use of misuse cases [2] and abuse
cases [24] in which a scenario is described from the point of
view of an attacker to the system. However, although they are

EXPRESSION

Operator:

Predicate:

Parameters:

Operator: . . .

Always
Eventually
Never
…
Other:

 receive Select from List

J1, CJ, eventnotes

effective to analyze security threats, they are inappropriate for
specifying security requirements. In our framework, we use
abuse cases to assist with the identification of properties to be
verified and propose ways of using abuse cases to represent
properties to be verified.

Other approaches for assisting requirements elicitation,
specification, and analysis are the common criteria [32] and
attack trees [35]. The work in [10] defends the idea of using
roles for defining goals and policies and introduces the notion
of anti-requirements to represent the requirements of malicious
users. In [33] the authors propose to use security goals and
anti-goals in which anti-goals represent malicious obstacles set
by attackers to threaten the security goals. As outlined in [27],
in all these approaches security is considered vaguely and
there is a lack of precise definition for security properties. In
[36] the authors propose to use i* to support security
requirements.

The approaches for security modeling and development
make use of patterns [13][14], agent oriented methodologies
[16], and extensions of UML [21][23]. Patterns can be used to
document common solutions to recurring problems by
describing security problems that occur in a context and
presenting solutions accepted among security experts.
However, the representation and selection of security patterns
are still empirical tasks and it is not easy to identify the
patterns to a specific situation. The work in [16] (Secure
Tropos), combines two software engineering approaches for
the development of a methodology that takes into account
security and trust issues as part of the development process. In
UMLsec [21] the authors proposed a special UML profile to
represent security requirements. SecureUML [23] integrates
the specification of access control policies into UML. The
approach uses UML class diagrams, object diagrams,
additional stereotypes, and OCL constraints. Our framework
uses UMLSec to model the system and provides other
advantages as discussed in Subsection 3.6.

Techniques for secure software code analysis and testing
have been advocated in [6][7][30]. These approaches make use
of static analysis tools to detect security flaw in source code
[7], theorem prover [6], and testing firewalls [30]. However,
they cannot solve all security problems and are normally used
to look for a fixed set of patterns or rules in a source code.

Although many approaches have been proposed to support
secure software engineering, to the best of our knowledge,
these approaches have tackled individual aspects of secure
software engineering. However, a framework that incorporates
all the functionality of the static verification framework
described in this paper has not yet been proposed.

5. Conclusion and Future Work

The work presented in this paper is part of a large program
of research to support verification of secure peer-to-peer
applications. We presented a framework for static verification
of peer-to-peer applications that allows for various
functionalities including (a) design of peer-to-peer systems
that considers general and secure characteristics of the system

based on UML, (b) use of abuse cases to support the
identification and specification of properties to be verified, (c)
specification of security and general application properties to
be verified in a graphical template language, (d) verification of
design models against properties, and (e) visualization of the
verification results embedded in the design models of the
system. The work presented in this paper contributes to the
area of secure software engineering by integrating security
into early stages of software engineering and not as an
afterthought layer when the system is developed. Currently,
we are implementing the main components of the framework
and evaluating the work with the industrial partners in the
PEPERS project.

ACKNOWLEDGMENT

The work reported in this paper has been funded by the

European Commission under the Information Society
Technologies Programme as part of the project PEPERS
(contract IST-26901).

6. References

[1] Abadi M., Blanchet B., and Fournet C. Just Fast Keying in the Pi
Calculus. Proceedings of the 13th European Symposium on
Programming (ESOP'04), volume 2986 of Lecture Notes on
Computer Science, Spain, 2004.

[2] Alexander, I., Misuse cases: Use cases with hostile intent. IEEE
Software, 20, 58-66, 2003.

[3] Anderson, R., Security Engineering: A guide to Building
Dependable Distributed Systems. Wiley Computer Publishing.

[4] AVISPA. http://www.avispa-project.org.

[5] Chang, C. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

[6] Chess B., Improving Computer Security Using Extended Static
Checking, Proc. IEEE Symp. Security and Privacy, IEEE CS Press,
2002.

[7] Chess B. and McGraw G., Software Security, IEEE security and
Privacy Magazine, 2(2):53-84, 2004.

[8] Clarke, E., and Grumberg, O., Model Checking. MIT Press,
1999.

[9] Clarke, E.M., Emerson, E.A, and Sistla, A.P. Automatic
Verification of Finite-State Concurrent Systems Using temporal
Logic Specifications. ACM Transactions on Programming Languages
and Systems, 8(2): 244-263, 1986.

[10] Crook, R., Ince, D., and Nuseibeh, B., Modelling Access
Policies Using Roles in Requirements Engineering. Information and
Software Technology, 45(14), 979-991, 2003.

[11] Devambu, P. and Stubblebine, S., Software Engineering for
Security: A Roadmap, Proceedings of the 22nd International

Conference on Software Engineering. Track on the Future of
Software Engineering, Limerick, Ireland.

[12] Duffy, D. A. Principles of automated theorem proving. Wiley,
1991.

[13] Dwyer, M.B., Avrunim, G.S., and Corbett, J.C., Patterns in
Property Specifications for Finite State Verification, in Proc. of the
21st International Conference on Software engineering (ICSE’99),
May 1999.

[14] Fernandez, E.B., Larrondo-Petrie, M.M., Sorgente, T., and
Vanhilst, M., A Methodology to Develop secure Systems Using
Patterns, in Integrating Security and Software Engineering Advances
and Future Visions, editors H. Mouratidis and P. Giorgini, ISBN 1-
59904-147-2, 2007.

[15] Giorgini, P., Massaci, F., and Mylopoulos, J., Requirements
Engineering Meets Security: A Case Study on Modelling Secure
Electronic Transactions by VISA and Mastercard, Proceedings on the
International Conference on Conceptual Modelling (ER), LNCS
2813, Springer-Verlag, 2003.

[16] Giorgini, P., Mouratidis, H., and Zannone, N., Modelling
Security and Trust with Secure Tropos, in Integrating Security and
Software Engineering Advances and Future Visions, editors H.
Mouratidis and P. Giorgini, ISBN 1-59904-147-2, 2007.

[17] Gritzalis, S., Spinellis, S., Georgiadis P., Security Protocols
Over Open Networks and Distributed Systems: Formal Methods for
their Analysis, Design, and Verification. Computer Communications,
22(8): 695-707, 1999.

[18] Heitmeyer, C., Applying Practical Formal Methods to the
Specification and Analysis of Security Porperties.

[19] Holzmann, G., Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[20] Jayaram K.R. and Mathur A.P., Software Engineering for Secure
Software – State of the Art: A Survey. Technical report of CERIAS
(Purdue University) and SERC, 2005.

[21] Jurjens J. Secure System Development with UML. Springer-
Verlag 2005
[22] Jurjens, J. and Shabalin P. Automated Verification of UMLsec
Models for Security Requirements, Proceedings of the Unified
Modelling Language Conference (UML 2004), Lisbon, Portugal, .
LNCS, Springer-Verlag. 2004.

[23] Lodderstedt, T., Basin, D., and Dorser, J., SecureUML: A UML-
based Modelling Language for Model Driven Security, Proceedings
on the UML’02 Conference, LNCS 2460, Springer-Verlag.

[24] McDermott, J. And Fox, C., Using Abuse Case Models for
Security Requirements Analysis, In ACSAC’99: Proceedings of the
15th Annual Computer Security Applications Conferences, USA,
1999.

[25] Meadows, C., Formal Verification of Cryptographic Protocols:
A Survey. International Conference on the Theory and Application of
Cryptology (ASIACRYPT), 1995.

[26] Mouratidis, H., Giorgini, P., and Manson, G., When Security
Meets Software Engineering: A Case of Modelling Secure
Information Systems. Information Systems, 30(8), 609-629, 2005.

[27] Mouratidis H. and Giorgini P., Integrating Security and Software
Engineering: An Introduction, in Integrating Security and Software
Engineering Advances and Future Visions, editors H. Mouratidis and
P. Giorgini, ISBN 1-59904-147-2, 2007.

[28] PEPERS. http://www.pepers.org/.

[29] Roscoe, A.W., Modelling and Verifying Key-Exchange
Protocols Using CSP and FDR. The 8th IEEE Computer Security
Foundations Workshop (CSFW '95), Ireland, 1995.

[30] Senn D., Basin D. and Caronni G., Firewall Conformance
Testing, in TestCom, pp. 226-241, 2005.

[31] SPIN. http://spinroot.com/spin/whatispin.html

[32] Stoneburner, G., Hayden, C., and Feringa, A., Engineering
principles for Information Technology Security (A Baseline for
Achieving Security), Computer Security Division, Information
Technology laboratory National Institute of Standards and
Technology, 2001.

[33] Van Lamsweerde, A., and Letelier E., Handling Obstacles in
Goal-Oriented Requirements Engineering, TSE, 26(10), 2000.

[34] Vardi, M.Y.. An automata-theoretic approach to linear temporal
logic. In Banff Higher Order Workshop, pages 238-266, 1995.

[35] Viega, J., McGraw, G., Building Secure Software: How to
Avoid Security Problems the Right Way, 1st edition, Addison-
Wesley, 2001.

[36] Yu E., Liu L., Mylopoulos, J., A Social Ontology for Integrating
Security and Software Engineering, in in Integrating Security and
Software Engineering Advances and Future Visions, editors H.
Mouratidis and P. Giorgini, ISBN 1-59904-147-2, 2007.

