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Abstract 

Purpose 

The presence of a bright light source in the visual field can generate visual discomfort. 

Based on empirical observations we can predict to a reasonable degree of accuracy 

how uncomfortable a given lighting installation is likely to be; yet very little is known 

about the mechanism or physiological underpinnings that lead to visual discomfort. 

This study attempts to elucidate some of the underlying mechanisms by controlling 

the amount of light reaching the retina and by varying photometric properties of the 

glare-source. 

 

Methods 

The participants were required to view a source of light presented against a simulated 

residential-street background in the form of uniform flashes of light of varying 

intensity. Discomfort-glare thresholds were estimated using a staircase procedure; the 

dependent variable was retinal illuminance. The size of the glare-source and the 

luminance of the surrounding background were varied systematically. 

 

Results 

Across glare-source sizes or background luminances the discomfort-glare threshold 

varied less in terms of retinal illuminance than it did in terms of pupil-plane 

illuminance or light flux. A two-stage model based on saturation of photoreceptors 

followed by summation of an edge response signal that defines the edges of the glare-

source accurately predicted the data. 

 

Conclusions 

Discomfort glare in central vision is more closely associated with the spatial 

properties of the glare-source, such as contrast-defined edges, than the overall amount 

of light entering the eye. The results suggest that discomfort glare in lighting 

installations could be reduced while maintaining adequate illuminance levels by an 

appropriate choice of illuminant source size.   
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Introduction 

 

 When a person views a light source that is sufficiently bright they may 

experience glare. There are two aspects to glare that emerged largely from empirical 

observations and were first described formally by Stiles and his colleagues 
1
; the first 

is concerned with how a glare source affects the visibility of other objects in the 

visual scene 
2,3

 primarily through the role of scattered light 
4–6

, whereas the second 

examines how a glare source can distract, annoy or hinder the observer, without 

necessarily affecting visibility or visual performance 
7
. The first of these topics is 

known as disability glare and by its nature has been more straightforward to define 

and study. The second topic is known as discomfort glare and has proved more 

problematic in both definition and study 
8
. The lighting industry, in an attempt to 

minimise glare, has studied both of these phenomena and a number of metrics have 

arisen in an attempt to quantify them 
9
. However, in elucidating the underlying 

mechanisms, the study of disability glare has been the more successful. It is well 

understood how forward-light scatter by the ocular media results in a veil of light over 

the retina, which reduces the contrast of the retinal image 
10

, and in certain conditions 

can impair vision 
11,12

. Yet very little is understood about the mechanism or 

physiological underpinnings of discomfort glare. 

 The majority of studies on discomfort glare have focused on how different 

properties of the glare source affect discomfort. Glare source luminance 
7,13

, angular 

size 
14

, eccentricity from the observer 
2,14,15

, spectral content 
16,17

, arrangement of the 

glare source (or sources) and illuminance in a defined plane have all been investigated 

18,19
. Measures of discomfort are typically obtained as either a rating on a 9-point 

scale, known as the De Boer scale 
20

 or by method of adjustment, whereby the 

observer adjusts the intensity of a glare source to the borderline between comfort and 

discomfort (BCD) 
14

. Many of these studies have been concerned with road lighting 

or interior lighting, and they have led to the introduction by the CIE of a number of 

glare-index metrics, which attempt to quantify the level of discomfort for a given 

lighting installation 
21,22

. The metrics involve a weighting between glare source 

luminance, glare source size and surrounding or background luminance. The various 

weightings have been estimated empirically and generally, for a given source and 

background luminance, increasing the size of the source increases the discomfort, but 

to a much lesser extent than can be achieved by increasing source luminance 
8
. Little 
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has been said from a physiological perspective about why in many scenarios source 

luminance, rather than total light flux, has a greater role in inducing discomfort; the 

detection of each would involve different retinal and neural mechanisms 
23

. 

Determining more precisely the contributions of source luminance and overall light 

flux may shed light on the mechanisms underlying discomfort glare. 

 There have been a number of attempts to link discomfort glare with certain 

physiological indices. Early work focused on pupil size fluctuations 
24

, particularly 

pupillary hippus (an involuntary, rhythmic spasm of the pupil) 
25,26

, however, later 

work showed little correlation with pupil size fluctuations and discomfort glare 
27

. 

More recent studies employing electromyographic techniques (EMG) have examined 

facial muscle activity under conditions of discomfort and suggested that EMG could 

be used as an objective test for discomfort glare 
28,29

. Stringham and colleagues 

employed similar techniques 
17,30

 and based on their findings regarding spectral 

sensitivity to discomfort glare 
31,32

 suggest that the most likely physiological 

mechanism is input from intrinsically-photosensitive retinal ganglion cells (ipRGC’s) 

to the trigeminal system 
32

.  

   A different line of research has revealed that visual scenes departing from 

natural image statistics result in higher visual discomfort 
33–35

 which is thought to be 

caused by hyper-excitability of neurons in response to unnatural stimuli 
34,36,37

. High-

luminance light sources typically employed in discomfort glare studies are likely to 

cause hyper-excitability or saturation of a given set of neurons. However, in assessing 

potential physiological mechanisms for visual discomfort one needs to be aware of 

the large variability in the stimuli that can induce it 
8
; it is quite likely that different 

mechanisms would underlie a visual discomfort response arising from a small 

centrally-viewed glare source, than from one that dominates the whole field of view.  

 This study measures discomfort glare thresholds for high-luminance LED 

light-sources viewed centrally. Pupil diameter was measured throughout allowing 

precise quantification of the amount of light reaching the retina. Discomfort glare 

thresholds were estimated using a staircase procedure. The size and surrounding 

background luminance of the glare source were varied systematically. To limit visual 

adaptation, the glare stimuli were presented as brief flashes. A simple model based on 

the saturation of retinal transduction mechanisms will be put forward to explain the 

results.  
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Methods 

 

Participants 

 The sample for the primary experiment examining the effect of glare-source 

size on discomfort glare thresholds consisted of 53 participants. Prior to the 

experiment the participants undertook an ocular examination, which was conducted 

by an optometrist on-site. Based on the results of this examination three of the 53 

participants were excluded; exclusion criteria included the presence of ocular disease, 

damage, intraocular lenses or  surgery. The final sample all had normal or corrected-

to-normal visual acuity and consisted of 28 males and 22 females, with an age range 

of 21-73 years.  

 A smaller separate sample of 12 participants took part in a second study to 

examine the effects background luminance on discomfort glare thresholds. This group 

had an age range of 25-35 years and was composed of 6 males and 6 females. All 12 

participants had normal or corrected-to-normal visual acuity.  

 The complete study was approved by the Ethics Committee at City University 

London, and adhered to the principles of the Declaration of Helsinki. All participants 

provided written consent to take part in the study.  

 

 

Stimuli and apparatus 

 The glare source used in the experiments consisted of a 4-primary LED unit 

(produced by PerkinElmer). A light homogeniser was mounted in front of the LED to 

ensure uniform luminance over a disc of ~30 mm diameter. The glare source unit was 

placed over a hole drilled into a large board, which was covered with a print of a 

residential street at night. When viewed from the front, the subject saw the glare 

source as a disc of light on one side of the street in the middle of the scene. A multi-

aperture wheel under computer control was placed between the glare source and the 

board and allowed selection of glare source size. The chromaticity of the LED was set 

to a neutral chromaticity of x = 0.305, y = 0.323 (CIE 1931 chromaticity space). 

Conventional lamps were used to vary the ambient luminance of the surrounding area. 

The whole unit was in an otherwise darkened room.  

 The participant was seated 60 cm from the glare source. An infrared (IR) 

sensitive, 50 Hz Pulnix camera was mounted on an optics bench to the left of the 
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participant to record pupil diameter. The camera was synchronised with a pulsed, IR 

illumination system designed to produce a dark pupil. The pupil diameter was 

computed in real time using the programs developed for the P_SCAN system 
38

. The 

glare source stimulus had a duration of 300 ms. 600 ms prior to stimulus onset, three 

dim, 50 ms flashes separated by 100 ms were used to attract the observer’s point of 

regard. 

 The purpose of the study was to investigate the effects of two variables: target 

size and background luminance. Five different target sizes, 0.28°, 0.62°, 1.04°, 1.33° 

and 1.73°, were used; all were presented at the fovea and the background luminance 

was set to 2.6 cd/m
2
. To investigate the effect of background luminance, three 

background luminances, 0.26 cd/m
2
, 2.6 cd/m

2
 and 26 cd/m

2
 were used; the source 

size was kept constant at 1.33° and, again, all targets were presented at the fovea.  

 

Procedure 

 The discomfort glare threshold was estimated using a two-alternative forced 

choice procedure. After viewing the stimulus, the observer indicated the presence or 

absence of discomfort using a keypad. The stimulus intensity was modulated 

according to a 1-up-1-down staircase; the step size was reduced at each of the 9 

reversals used. The mean of the last 6 reversals was taken as the discomfort glare 

threshold. Log retinal illuminance was used as the dependent variable for the 

staircase. To accomplish this, pupil diameter was measured prior to stimulus onset; 

this value was used when setting the stimulus intensity in order to provide the 

required retinal illuminance. 
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Results 

Glare source size 

 Mean discomfort glare thresholds from a group of 50 participants are shown in 

Figure 1(a). The discomfort glare thresholds are given in terms of retinal illuminance 

(log Td) and pupil plane illuminance (log lx). As the glare-source size increases, there 

is a corresponding, rapid increase in discomfort glare thresholds, when defined in 

terms of pupil plane illuminance; conversely, when discomfort glare thresholds are 

defined in terms of retinal illuminance, an opposite, but more gradual trend is 

observed. Both of these trends are highly significant. A one-way repeated measures 

ANOVA, with source size as the factor, was carried out for both dependent variables, 

retinal illuminance and pupil plane illuminance, and each show a significant main 

effect of source size, F(4, 196) = 13.262, p < 0.001, F(4, 196) = 132.608, p < 0.001, 

respectively. Also, the discomfort-glare thresholds in terms of flux entering the eye 

(not shown) had the same trend as that observed in the pupil plane illuminance results, 

this is because the mean pupil diameters differed little between source sizes. The 

mean pupil diameters were 4.71, 4.56, 4.51, 4.41 and 4.41 mm for the glare-source 

diameters of 0.28°, 0.62°, 1.04°, 1.33° and 1.73°, respectively 

 A similar pattern of results was observed in one participant tested repeatedly 

over a number of days, shown in Figure 1b. The data points represent the mean 

discomfort glare thresholds of six independent runs at each glare-source size used. 

Like the mean data, significant main effects of source size are present in the 

individual data when both retinal illuminance, F(4, 20) = 3.347, p < 0.05, and pupil 

plane illuminance, F(4, 20) = 62.227, p < 0.001, are used as dependent variables. The 

individual data presented in Figure 1(b) also illustrates the low within subject 

variation at each particular source size. In contrast to the low variation present in the 

individual data, there is substantial variation amongst observers in their discomfort 

glare thresholds at each source size. Figure 1(c) shows a histogram of the deviations 

from the mean for all source sizes in terms of retinal illuminance; the deviations are 

calculated separately for each source size, using the corresponding mean for that 

particular source size. The distribution is close to normal when expressed in terms of 

log retinal illuminance, and individual subjects can differ by just over one log unit 

with respect to the mean. However, individual participants show the same trend as 

observed in the mean data, regardless of large differences in their discomfort glare 

thresholds, see Figure 1(d). 
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Figure 1. Source size and discomfort glare thresholds. (a) Mean discomfort glare thresholds for 50 

observers. For each participant, thresholds were obtained at five different glare-source sizes and each 

threshold is the average of four interleaved staircases. Thresholds are given in terms of retinal 

illuminance (log Td) and pupil plane illuminance (log lx). The error bars represent ±2 SE. (b) 

Discomfort glare thresholds at different sources sizes for one young observer. Each point represents the 

mean of six independent runs carried out on separate occasions; each run consisted of four interleaved 

staircases. The error bars represent ±2 SD. (c) Histogram of the deviations from the retinal illuminance 

mean data shown in (a). As the means differed between source sizes the deviations were calculated 

separately for each source size. (d) Inter-individual variation in discomfort glare thresholds. Thresholds 

for five observers from the sample of 50 are shown, illustrating large inter-individual variation. The 

error bars represent ±2 SD. 

 

 

 

The effect of age and sex on discomfort glare 

 To investigate the effect of age on thresholds for discomfort glare, the retinal 

illuminance data from 50 participants was binned into 5 age groups: 21-30, 31-40, 41-

50, 51-60 and 61-80 years. A one-way between subjects ANOVA, with age as the 

factor, was carried out on the binned data, revealing no main effect of age on 

discomfort glare thresholds, F(4, 45) = 0.563, p = 0.691. The binned age data are 

shown in Figure 2. 

 Similarly there was no effect of sex on the discomfort glare thresholds in 

terms of retinal illuminance, t(48) = 0.318, p = 0.752.  
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Figure 2. Discomfort glare thresholds and age.  
 

Discomfort glare thresholds plotted as a function of age. Mean thresholds were calculated for every 

subject by averaging the results measured for each of five glare source sizes. The results are shown for 

subjects within each age group; the box shows the median and the interquartile range (first and third 

quartiles) and the whiskers represent the range of the data. Discomfort glare thresholds appear to be 

independent of age. 

 

 

 

 

Effect of background luminance 

Figure 3 shows the effects of background luminance on discomfort glare thresholds. 

Each data point represents the mean threshold in terms of retinal illuminance for 12 

participants. The results show an increase in discomfort glare thresholds with 

background luminance. This was confirmed as significant using a repeated measures 

ANOVA test,  F(2, 22) = 9.001, p < 0.01.   
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Figure 3.   Mean discomfort glare thresholds measured for a sample of 12 participants for 

three background luminances: 0.26, 2.6 and 26 cd/m
2
. There is a significant increase in 

discomfort glare thresholds with background luminance. 

 

 

Light scatter and effective retinal illuminance  

 Light from a glare source is scattered by the optics of the eye causing a 

reduction in retinal illuminance over the glare source. This reduction is more 

pronounced for smaller light sources because a higher proportion of scattered light 

falls outside the light source. The ‘effective’ retinal illuminance of the target i.e. the 

actual retinal illuminance on the retina in the region of the target, was estimated by 

convolving the point spread function of the human eye 
5,39

 with simulated target 

images. There was, as expected, a larger difference between the effective retinal 

illuminance and the measured retinal illuminance for smaller source sizes. However, 

the significant trend of smaller source sizes having higher discomfort glare thresholds 

is still maintained, F(4, 196) = 7.442, p < 0.001.  

An additional consideration in relation to the reduction of effective retinal 

illuminance is the directional sensitivity of the cone photoreceptors 
41

. Accounting for 

the Stiles-Crawford effect, however, had little impact on the results (there was less 

than a 2% difference between the largest and smallest source size), as the mean pupil 

diameters for each source size were similar.  
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Figure 4. Light scatter and effective retinal illuminance. (a) The effective retinal 

illuminance for each participant was estimated by convolving a simulated glare source with 

the point spread function of the human eye. (b) The horizontal luminance profile of the five 

source sizes tested after convolution. In the target region smaller source sizes have a larger 

reduction in retinal illuminance due to light scatter. (c) The threshold for discomfort glare is 

plotted in terms of the measured and effective retinal illuminance of the target. The thresholds 

are lower in terms of effective retinal illuminance, particularly for smaller sources sizes, 

however the significant trend of smaller source sizes having higher discomfort glare 

thresholds is maintained.  

  

 

Discomfort glare and saturation 

The mean discomfort-glare thresholds for each glare-source size differed less in terms 

of effective retinal illuminance than in terms of pupil plane illuminance (which 

determines the total light flux entering the eye), the largest differences being 0.30 and 

1.25 log units, respectively. We hypothesized that discomfort glare could be the result 

of saturation or hyperexcitability of visual mechanisms involved in contrast vision. 

Typically, models of contrast vision begin with the filtering of a photoreceptor signal 

through centre-surround midget ganglion cells, resulting in a large response to edges 

within an image. A simple model is presented in Figure 5, which captures the 

saturation of a photoreceptor response and also accounts for the size dependence of 

discomfort glare thresholds by accounting for the response of ganglion cells around 
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the effective boundary of the source. The edge response was taken as the 

circumference of a photoreceptor signal image weighted by the midget ganglion cell 

density 
42

. The eccentricity of the edge response varies as a function of light level in a 

disproportional manner for different source sizes. Smaller source sizes have a higher 

proportion of scattered light outside of the source in comparison to larger source 

sizes, and this results in a relatively larger edge eccentricity, or radius, in the 

photoreceptor signal image. The difference in gradient between the blue and red 

dashed lines in Figure 5(d) illustrates this effect.  

 

 

Figure 5. Discomfort glare saturation model. (a) Convolved target image with the point spread 

function of the eye (b) Photoreceptor response function modelled as a Michaelis-Menton function, 

           ,   = retinal illuminance,   = 39.81 Trolands (1.6 log Trolands) represents the half 

response and was based on the average background retinal illuminance,   = 1.33 resulting in 

approximately a 3 log-unit range response. (c) Midget ganglion cell sampling density as a function of 

eccentricity 
42

. (d) Model predictions of discomfort glare threshold as a function of source size. The 

blue dashed line represents the circumference of the glare source weighted by the retinal ganglion cell 

density. The weighting was accomplished by multiplying the circumference of each source size by its 

ganglion cell density at the eccentricity of its circumference; the reciprocal for each source was then 

scaled so that the overall mean matched that of the measured discomfort glare thresholds. The red 

dashed line represents the effective edge prediction: the circumference of the target in the 
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photoreceptor signal image weighted by the ganglion cell density (the weighting carried out as above). 

The photoreceptor signal is the image generated when the convolved target image (a) is passed through 

the Michaelis-Menton function (b). The target image was set to the retinal illuminance at which the 

Michaelis-Menton function saturates: 3.5 log Trolands (corresponding to a signal of 0.997). For each 

source size the target radius in the photoreceptor signal image was taken as the radius at which the 

photoreceptor signal equalled 0.5. Each circumference, and thus effective edge, were based on such 

radii.  

 

 

Discussion 

 

The vast majority of studies on discomfort glare have been concerned with improving 

our ability to predict the discomfort level for a given lighting installation 
8,43

. There 

has been much agreement amongst the various studies and the Unified Glare Model 
44

 

consolidates much of what we know about how glare-source size, luminance, angular 

position, eccentricity and surrounding luminance affect discomfort glare ratings. 

However, we know very little about what mechanisms underlie each component of 

the Unified Glare Model. This study found that for centrally viewed light sources of 

different sizes the retinal illuminance, rather than illuminance at the plane of the 

observer, was more closely related to discomfort. The relative discomfort glare 

thresholds at different glare-source sizes were predicted by a simple model based on 

saturation of photoreceptors and ganglion cells.  

 Many of the results replicated what has been found previously in the literature. 

Discomfort glare thresholds were independent of age 
45

 and sex 
45,46

 at all glare-source 

sizes tested. There was large inter-individual variation 
14,45

 in the thresholds for 

discomfort. The trend for smaller source sizes having higher discomfort-glare 

thresholds agrees with results from the early work by Luckiesh and Guth 
14,47

. These 

studies used a different measure of discomfort (participants adjusted the brightness of 

a source to the borderline between comfort and discomfort (BCD)) but, when both 

sets of results were expressed in terms of luminance of the source, there was 

agreement in both the trend and in the luminances judged to be uncomfortable. Also, 

as Guth and others observed, it was found that discomfort-glare thresholds tended to 

increase with an increase in background luminance 
14,43

.  

 In a first attempt to explain the relationship between source size and 

discomfort-glare thresholds, the effect of forward light scatter of the eye was 
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considered. Forward light scatter is the primary cause of disability glare as it reduces 

the contrast of the image on retina due to the addition of a veil of light 
4
. In the 

domain of discomfort, however, it could also play a role; scattered light, particularly 

when the source luminance is high, could stimulate regions of the retina eccentric to 

the position of the light source. Also, smaller glare-sources lose more of the light 

from the source region than a larger glare-source, so the effective retinal illuminance 

is proportionally lower for small source sizes. This was indeed found to be the case, 

although a trend still existed where smaller source sizes had higher discomfort-glare 

thresholds. 

 Given that the discomfort-glare thresholds for different source sizes were 

more closely related to the retinal illuminance (a quantity proportional to the amount 

of light per unit area of the retina) rather than pupil plane illuminance or light flux 

entering the eye, a role for contrast vision was suspected. Although a mechanism for 

light flux detection has an important role to play in human vision and may well 

involve photoreceptor signals and melanopsin-driven, intrinsically-photosensitive, 

retinal ganglion cells (ipRGCs) at high light levels 
23,48

 its contribution to discomfort 

glare to directly viewed light-sources may be limited. Furthermore, pictorial 

representations of bright light sources that reproduce the appearance of glare by using 

saturated highlights and the gradual reappearance of spatially structured images away 

from the centre of the glare source can often cause a sensation of discomfort, even 

when projected onto screens at luminance levels that would normally be associated 

with comfortable viewing. These observations suggest that the sense of discomfort is 

more closely related to the spatial distribution of light on the retina and the 

corresponding changes in the appearance of objects, rather than the overall quantity of 

light, implying a more significant role for contrast vision.  

 A two-stage model, involving saturation of photoreceptors followed by 

estimation of an edge response, predicted relative discomfort-glare thresholds for 

different source sizes. The edge response was modeled by weighting the 

circumference of the glare-source (in the photoreceptor signal image) by the midget 

ganglion cell density. A similar result can be obtained using a more complex model, 

whereby the photoreceptor signal image is filtered through ‘Difference of Gaussians’ 

filters, which are typically used to model on-off centre surround ganglion cell activity 

in the retina 
49

. The simpler model was preferred, given its simplicity and possible 

practical utility. This model can also account for the effect of background luminance 
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on discomfort-glare thresholds; the half-response of the photoreceptor dynamic range 

would be set by the surrounding or background luminance.  

 The model does not, however, predict an individual’s discomfort-glare 

threshold. Each person could set their own criterion to what is uncomfortable based 

on the degree of saturation; this variability in criteria setting may account for the 

observed variability in discomfort-glare thresholds. Additionally, a model based on 

edges, and thus the circumference of a glare source, may not be suitable to account for 

discomfort glare thresholds in the periphery or when large sources sizes are used. A 

model based on saturation may still be accurate but the properties of the peripheral 

retina are very different than that of the fovea. The receptive fields of cone-driven 

retinal ganglion cells increase in size as one goes further into the peripheral retina, 

and rods are far more numerous, the signals of which are pooled over even larger 

areas of the retina by ganglion cells. Both of these effects in the periphery are not 

suited for detecting edges in an image, and may bias discomfort glare to be more 

associated with pupil plane illuminance rather than luminance defined edges. Indeed, 

results presented by Luckiest and Guth 
14

 found that the BCD luminance increased 

with horizontal eccentricity; there was over a 6-fold difference between presentation 

at the fovea to that at 80 degrees, using the same glare-source. However, BCD’s in 

terms of pupil plane illuminance (our calculations) differed by no more than 0.22 log 

units across all eccentricities up to 80 degrees. Moreover, at 80 degrees the BCD 

pupil plane illuminance was nearly equivalent to the foveal presentation.  

 Saturation or hyperexcitability has already been implicated in a number of 

phenomenon related to discomfort glare, such as visual discomfort 
34,37

, photophobia 

50,51
 and light-induced migraine 

52–54
. Hyperexcitability is thought to relate to visual 

discomfort through a homeostatic process 
36

. Cortical areas that are hyperactive have 

a higher metabolic demand and it is suggested that the discomfort itself is a 

homeostatic response, which may initiate certain behavior that will reduce the 

metabolic load 
36,37

; the metabolic demands of neuron firing and synaptic transmission 

are quite substantial 
55,56

. 

 The findings from this study suggest that photoreceptor saturation plays a key 

part in determining discomfort glare thresholds. Forward light scatter in the eye is 

also important since it reduces the contrast of the retinal image and it also extends the 

glare source boundaries by causing saturation of photoreceptor signals and the loss of 

spatial detail in the vicinity of the source. In addition, the amount and angular 
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distribution of forward scatter in the eye causes a decrease in the retinal illuminance 

of the glare source in a way that varies with source size. The immediate consequence 

of this reduction is to allow for an increase in the retinal illuminance needed to reach 

saturation, this may explain the absence of significant age effects, in spite of increased 

scatter with aging. The small but significant reduction in discomfort thresholds with 

increasing glare source size is well accounted for by the predicted variation in the 

number of ganglion cells that respond to the boundaries of the source. Although 

strongly related to photoreceptor saturation and the subsequent loss of spatial detail, 

discomfort glare thresholds reflect a subjective perceptual experience that is 

dependent on the subject’s response criterion. It is therefore not surprising that 

discomfort glare thresholds vary by as much as one log unit from the mean (when 

expressed in terms of retinal illuminance). In spite of this variation, the relatively 

small dependence on glare source size may have significant implications in the design 

of lighting installations. The findings from this study show that desired or adequate 

levels of illuminance in the absence of discomfort glare could be achieved in many 

lighting applications through appropriate selection of source size.   
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