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Abstract 

Energy storage devices are an essential part of hybrid and electric vehicles. The most commonly 

used ones are batteries, ultra capacitors and high speed flywheels. Among these, the flywheel is the 

only device that keeps the energy stored in the same form as the moving vehicle i.e. mechanical 

energy. In order to connect the flywheel with the vehicle drive line, a suitable means is needed 

which would allow the flywheel to vary its speed continuously, in other words a continuously 

variable transmission (CVT) is needed. To improve the efficiency and speed ratio range of the 

variators, a power spilt CVT (PSCVT) can be employed. This paper discusses the kinematics of PSCVT 

used to connect the flywheel to the driveline. A methodology describing the characteristic equations 

of speed ratio, power flow and efficiency of the PSCVT for various types including power 

recirculating and multi regime in both directions of power flow, has been presented. An example of 

a PSCVT for a flywheel energy storage system (FESS) is computed using the derived equations and 

the results compared.  

Keywords: Flywheel, Planetary gear set, Continuously variable transmission, Kinematics, Efficiency 

 

1. Introduction 

Flywheels have been used to store energy since many years. High speed flywheels have the 

characteristics of high specific power, high specific energy, long cycle life, high energy efficiency, 

quick recharge, low cost and environmental friendliness. They do not suffer from temperature 

dependence and their state of charge is most easily determined. Their attractive properties make 

them an excellent secondary storage device to be used in hybrid vehicles (HV) and electric vehicles 

(EV). The flywheel needs to be connected to the driveline in a manner that allows the flywheel to 

change its speed independently of the velocity of the vehicle. The flywheel hybrid vehicle can have 

both parallel and series layout, though usually the parallel layout is used. The various configurations, 

their advantages and disadvantages have been presented by Dhand and Pullen1. As the flywheel 

usually gains speed when the vehicle is slowing down and loses speed when the vehicle is 

accelerating, the transmission has to be continuously variable in nature. The CVT can be electrical or 

mechanical, though the mechanical is the more attractive option since it avoids energy conversion 



and is expected to be lower in cost. One main difference between the mechanical CVT used in 

conventional vehicle as compared to the ones required for FESS is that they have to be bi-directional 

and highly efficient in both directions. Besides the efficiency, the ratio range which is defined as the 

maximum to minimum speed ratio is a very significant parameter of the CVT.  

There are different types of variators and the most common ones used in automotive application are 

the rolling traction drives and the belt drives. In the belt type power is transmitted over a belt, chain 

or band clamped between two pulleys. The speed ratio is varied by varying the axial clamping forces 

for the two halves of the pulleys thereby changing the rolling radii on the pulleys. The clamping 

forces are usually controlled via hydraulics. In the rolling traction drives, the power is transmitted 

between two rolling elements separated by lubricant film. In the toroidal drive the inclination of the 

roller disc in the toroidal cavity is changed to vary the ratio. The required system torque is set by 

applying a force to the roller hydraulically which allows the roller to follow the ratio automatically, 

thus the drive is torque controlled. Fuchs et al.2 and Srivastava and Haque3 have given a detailed 

review of the toroidal variator and the belt type respectively. However the disadvantage for these 

variators is that their ratio range which is defined as the maximum to minimum ratio is very limited. 

Currently most designs have a ratio span from around 0.4 to 2.4 giving a ratio range of 6, which 

generally is not sufficient for FESS. Their efficiencies are usually lower than fixed ratio gearing. Kluger 

and Long4 suggested that the highest achievable overall efficiencies for manual transmission and 

automatic transmission (AT) are 96.7% and 86.7% respectively, while the CVT is expected to be 

88.4% and 91% for the belt and the toroidal type. Though the efficiency of currently available 

variators is expected to have increased, these numbers give an indication of the difference.   

 

The PSCVT has traditionally been used to improve the efficiency of the variator. The idea of a PSCVT 

is that part of the power is transmitted through the highly efficient direct mechanical linkage and the 

rest is transmitted through variator. The essential elements in a PSCVT are variator and a planetary 

gear set. The planetary gear set (PGS) is a speed coupling device commonly used in ATs in 

conventional cars. The components of the PGS are sun, planets, ring and carrier as shown in fig. 1. 

The PGS gives the advantage of having multiple ratios in a compact space. In the conventional AT 

case usually one of the arms of the PGS is held stationary and the others act as input and output. 

However to be used in PSCVT it has to be used as a two degree of freedom device implying that all 

the branches should be free to rotate. As a speed coupling device it has the property that speeds of 

two branches can be independently controlled and the speed of the third one is dependent on the 

other two. The power flows and kinematics of a lossless PGS have been explained in great detail by 

White5. Further a methodology to create the mechanical efficiency of the two degree of freedom 

PGS has been described by Pennestri and Freudenstein6. The advantage of White’s5 analysis is that it 

does not assign specific branches of the PGS to its general kinematic equation thereby leading to a 

set of equations that can be applied to any PGS configuration within the PSCVT.  



 

Figure 1 Planetary Gear Set
7
 

 

The PSCVT can be designed to achieve the desired speed ratio range and high efficiency by 

increasing its complexity. A number of authors have discussed the concept of PSCVT (White5, 8, Yu 

and Beachley9, Hsieh and Yan10, 11, Mangialardi and Mantriota12, 13, Mantriota14, 15, 16, 17, 18, Fussner and 

Singh19). Either these have been discussed as lossless systems or as one directional systems. Only a 

few authors (Beachley et al.20, Martinez-Gonzales21, Bottiglione and Mantriota22) have partly 

discussed the PSCVT for a FESS. Martinez-Gonzales21 applied White’s5 treatment of PGS ratio to the 

design method for a general single regime input coupled PSCVT presented by Fussner and Singh19 to 

design a single regime PSCVT for FESS.  

The following paper discusses the PSCVT concept for a FESS and the various modes of operation 

possible including power recirculation and multi-regime mode. It extends the technique used by 

Martinez-Gonzales21 to design single as well as multi-regime PSCVTs to meet the desired speed ratio 

coverage for FESS. It presents an application of the treatise of Pennestri and Freudenstein6 to derive 

equations specifying ratio of variator to input power and efficiency for the PSCVT in both directions 

of the power flow including the efficiency of the variator, fixed gears and PGS for power recirculating 

and multi-regime systems. The resulting simple methodology can be applied to design a transmission 

for FESS to provide any required speed ratio coverage and predict its efficiency in both directions of 

power flow.   

The structure of the paper is described as follows. In section 2 the kinematics of the generic PGS are 

explained. Further the configurations of the generic PSCVT and its kinematics are briefly explained in 

section 3. Section 4 touches upon the basics of multi-regime PSCVT. The general requirements of the 

transmission for FESS are given in section 5, which is followed by specific requirements for an 

example of FESS in terms of limits of operation. The further sections 6, 7 and 8 present the 



methodology to design the single regime, multi-regime without power recirculation and two-regime 

with negative power recirculation PSCVT systems respectively to meet the speed ratio requirements 

given in section 5. Section 9 and its sub sections derive equations specifying the power flow and 

efficiency in both directions, of the three systems designed previously. Further section 10, compares 

the results of the speed ratio, ratio of variator to input power and efficiency of the three systems. 

Finally section 11 lists the conclusions of the paper. 

 

2. Planetary Gear Set 

As mentioned before, the power flows and kinematics of the PGS have been explained in great detail 

by White5. For a PGS, the basic ratio R can be defined as the ratio of speeds of any two shafts when 

the third one is held stationary. With different members being taken as the input, output and the 

stationary element, six ratios can be defined, though they can be easily derived from one another. In 

this analysis, like that of White’s5 the PGS members will not be specifically defined and generalised 

equations will be created. The fig 2 shows the general PGS with three branches labelled as 1, 2 and 

3. In fig. 2 and all the figures describing the PSCVT which follow in the paper, the arrows signify 

power. The sign convention is that power flowing into the system is taken as positive and the power 

flowing out of the system is taken as negative. Equations 1-2 define the basic ratio. Equation 2 of the 

basic ratio R  is kept the same throughout the paper. The lossless PGS in equilibrium is defined by 

equations 3-5. In all following equations throughout the paper P , n  and T  signify power, speed 

and torque respectively. 

 

 

Figure 2 Schematic of PGS (Arrows signify power. Power into the system is taken positive and out of the system as 
negative) 
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3. Configurations of PSCVT 

As mentioned previously, the two elements needed to create a PSCVT are variator and PGS. The PGS 

can be connected to the variator in two ways. The input coupled (IC) system, where the torque is 

split at the common input shaft, speed remaining the same and the power is recombined via the PGS 

at the output. The second is the output coupled (OC) where the speed is divided at the input shaft 

connected to the PGS and the power is recombined at the common output shaft. The fig 3 shows the 

schematic of the two systems. The variator ratio is labelled as V  in the fig. 3. In the IC system power 

is input at branch 5 and output at branch 3 and in the OC system input at branch 3 and output at 

branch 5 as shown in fig. 3. 

 

Figure 3 Input Coupled and Output Coupled PSCVT systems 

 

Considering the IC PSCVT, the following equations 6-7 define the speed ratio of PSCVT ( r ) and the 

speed ratio of the variator (V ). Using equation 2 and equations 6-8, equation 9 gives the 

relationship between r , V and R .  
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The power flowing in the variator is of special concern as that is usually the least efficient part of the 

two branches. According to the power flow, three cases are defined for the IC PSCVT (and OC 

PSCVT), which are shown in fig 4. The first case is the no power recirculation case, the second is the 

case of positive recirculation which is distinguished by the fact that the power going through the 

variator is in the same direction as the output power and the third case of negative recirculation, in 

which the power going through the variator is in the opposite direction to that of the output power.  

 

Figure 4 Different Power Regimes of PSCVT 

 

For the case of a lossless IC PSCVT, the following equation 10 defines the ratio of variator power ( vP ) 

to input power ( iP ). Now using equation 5, 7, 9 and 10, equation 11 defines the value of ratio of 

variator power to input power in terms of R and r .  
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Further equations 12-13 define the ratio range of the PSCVT ( tr ) and that of the variator ( tV ). 

min

max

r

r
rt             (12) 

min

max

V

V
Vt             (13) 

Now it can be easily derived, as has been shown by White5, that for tt Vr  , power recirculation has 

to exist. The important difference is that to have tt Vr  , for the case of negative recirculation minr

will occur at maxV and vice versa, whereas for positive recirculation this condition is minr at minV and 

vice versa. In other words, for positive recirculation or no recirculation, a numerical increase in value 

of V will result in a numerical increase value of r and the opposite is true for negative recirculation. 

Table 1 shows the conditions for the three types for IC PSCVT. 

 

Table 1 Conditions for different power modes of PSCVT to occur 
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power 








i

v

P

P
 

PSCVT operating mode 

tt Vr   
0

i

v

P

P
 

Negative recirculation 

tt Vr   
10 

i

v

P

P
 

No recirculation 

tt Vr   
1

i

v

P

P
 

Variator only  

tt Vr   
1

i

v

P

P
 

Positive recirculation 

 

Power recirculation also gives the opportunity to create a geared neutral and reversing PSCVT. This 

can be easily seen from graph (A) in fig. 5 where for an IC PSCVT, the value of r can go to zero or 

even negative with positive values of V depending on value of R . However to achieve 0r , the 

power recirculation will be very high as can be seen in graph (B) in fig. 5.    

 



 

Figure 5 Graph (A) shows the variation of variator ratio vs. PSCVT ratio. Graph (B) shows the variation of ratio of variator 
power to input power vs. PSCVT ratio 

 

The OC PSCVT looks an inverse of the IC PSCVT; however they have different characteristics. 

Beachley et al.20 showed that for a designing a geared neutral and reversing OC PSCVT, the variator 

should have the ability to achieve zero and reverse ratio respectively. This is not possible by either 

the toroidal or belt variator as the sign of the speed ratio is fixed by mechanism23. 

 

4. Multi regime PSCVT 

The disadvantage of increasing the ratio range by using a power recirculating design is that in most 

cases more power will be flowing through the variator which will reduce the efficiency and the 

variator would have to designed bigger and heavier. The other way of increasing the ratio range in a 

PSCVT without power recirculation is the multi regime synchronous PSCVT which is discussed by 

White8 and later by Mantriota14, 15, 16.  

White8 discusses that there are four different types of configuration possible by utilizing two 

clutches, a variator and PGS. They are the direct drive and input coupled transmission, direct drive 

and output coupled transmission, two input coupled stages and two output coupled stages, which 

are shown in the fig 6. The author also showed that the systems having a direct drive (DD) stage will 

involve negative recirculation. These systems are therefore not useful if one is trying to avoid 

negative recirculation. That leaves the other two systems which have either two input coupled 

stages or two output coupled stages. In this case the variator ratio will increase in the first stage 

along with the PSCVT ratio and in the second stage the variator ratio will decrease while the PSCVT 

ratio continues to increase. For this to occur in a two IC stage PSCVT, the condition 10  R needs 

to be satisfied8. 



 

 

Figure 6 Different types of Multi Regime PSCVT Systems 

 

5. Requirements for FESS 

In case of a FESS, the power will be flowing in both directions of the PSCVT during operation, so the 

IC PSCVT in the forward direction will behave as the OC PSCVT in the reverse power flow direction. In 

terms of ratio coverage it is not a problem since the IC PSCVT and the OC PSCVT will have the same 

coverage in both directions. Additionally if losses are not considered the ratio of variator power to 

input power will be same in both directions. However if losses are considered then the ratio of 

variator power to input power will be different and has to be separately analysed. The PSCVT for 

FESS does not require a speed reversal as the flywheel will only be used during forward motion. 

Therefore a clutch would be necessary for disconnecting the PSCVT during reverse vehicle motion. 

The IC PSCVT design can be used to create geared neutral, as it was shown before, however the 

power recirculation will be very high. Since a clutch would be present, it would make sense to use it 

to achieve neutral condition by allowing it to slip. 

An example is now taken to describe the analysis for a FESS. The flywheel in a FESS usually rotates at 

high speeds; in this case its operation is from 15,000 rpm to 30,000 rpm. The other shaft which is 

connected to the vehicle driveline operates from 0 rpm to 10,390 rpm. With the help of a slipping 

clutch the shaft can operate from 1000 rpm to 10,390 rpm. This gives us the following conditions for 

the limits of PSCVT (equations 14-16). 
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The limits of the variator are taken to be the following (equations 17-19). 
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6. Design of single regime PSCVT 

For designing the PSCVT to achieve specific limits of operation, additional gearing is necessary, as 

explained by Fussner and Singh19. The fig 7 below shows the schematic of the PSCVT in 

consideration. The additional gears are represented by gear ratios mG  and vG . 

 

Figure 7 Schematic of single regime PSCVT with additional gearing to achieve required operation limits 

In this case the following equations 20-24 define the kinematics of the PSCVT system in the forward 

power flow direction. 
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Now using equation 9 and modifying it for the above system, the following equation 25 defines the 

relationships between various ratios. 

)1( RVGRGr vm            (25) 

The other thing to look at is the ratio of variator power to input power to the PSCVT. The following 

equation 26 gives the ratio for a lossless system. 
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As it is observed in the requirements for the transmission specified in section 5, tt Vr  , therefore 

power recirculation would be necessary in any single stage design. 

 

6.1. Case of positive power recirculating design of PSCVT 

First the case for positive power recirculation is considered, which implies minr occurs at minV and 

vice versa. Taking a fixed value of R , the values of mG and vG can be calculated by simultaneously 

solving the following two equations 27-28. 

)1(maxmax RGVRGr vm           (27) 

)1(minmin RGVRGr vm           (28) 

 

Now the numerical value of R will depend on how branches of the PGS are defined physically, as 

shown in table 2. Taking a reasonable value of 3 for ratio of ring gear diameter to sun gear diameter, 

the last column of table 2 shows the different numerical values of R .The diameters of the ring and 

sun gears are labelled as rD and sD  in table 2. As can be observed from table 2, the definition 1R

can be used to derive all the other definitions. In other words each definition can be used to derive 

the others. 

 

Table 2 Definitions of basic ratio of the PGS depending on branch connections 

Symbol Definition Basic ratio Value of basic 
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Using the numerical values of R  from the last column of table 2, and specific limits of the PSCVT 

defined in equations (14-19), the corresponding values of mG and vG are calculated by using 

equations 27-28 and shown in table 3.  

 

Table 3 Values of Gm and Gv to achieve required PSCVT ratio limits in case of positive power recirculation 

Case 1 2 3 4 5 6 

R  0.25 4 -0.33 -3 0.75 1.33 

mG  1: -2.54 1: -40.6 1:3.35 1:30.4  1: -7.62 1: -13.5 

vG  1:2.28 1: -9.13 1:4.04 1:12.18 1.31:1 1: -1.004 

 

As can be seen from the table 3, mG and vG can be defined for any value of R , although some of the 

values might be impractical like cases 2, 4, 5 and 6.  

 

6.2. Case of negative power recirculating design of PSCVT 

Similarly for the case of negative power recirculation equations 27-28 will become the following. 

)1(maxmin RGVRGr vm           (29) 

)1(minmax RGVRGr vm           (30) 



In other words the condition will be that minr occurs at maxV and vice versa. Again using the above 

equations 29-30, values of R  from table 2 and limits of the PSCVT defined in equations (14-19) and 

solving for mG and vG , table 4 shows the corresponding values for negative power recirculation. 

 

Table 4 Values of Gm and Gv to achieve required PSCVT ratio limits in case of negative power recirculation 

Case 1 2 3 4 5 6 

R  0.25 4 -0.33 -3 0.75 1.33 

mG  3.28:1 1:4.86 -2.46:1 1: -3.65 1.09:1 1:1.62 

vG  1: -2.28 1: 9.13 1: -4.05 1: -12.18 1.31:1 1:1.01 

 

Similar to the positive power recirculation case, there are some combinations such as cases 2 and 4 

which would be impractical.  

 

6.3. Comparison of Power flow in case of positive and negative power recirculation designs 

 

Using equation 26, the ratio of variator to input power can be calculated for the case of positive and 

negative power recirculation as a function of PSCVT ratio. The following fig 8 shows the ratio of 

variator power to input power for both positive as well as negative power recirculation in terms of 

magnitude. It can be seen from the fig 8 that at lower ratios the 
i

v

P

P
value can be very high for both 

cases and especially for the case of negative recirculation. Although it can also be seen that for 

higher values of r , the ratio 
i

v

P

P
for negative recirculation can be below unity which would mean 

that less power would be going through the variator. Since the variator has to be sized to carry the 

power, the negative recirculation case would not be suitable. In the further analysis the case of 

negative power recirculation will not be considered. Note that the values shown in fig. 8 for positive 

power recirculation and negative power recirculation will be the same for any combination of R , 

mG and vG shown in tables 3 and 4. 



 

Figure 8 Ratio of variator power to input power vs. PSCVT ratio for positive and negative power recirculation 

 

7. Design of multi regime PSCVT without power recirculation 

The other option of increasing the ratio range without power recirculation is using a multi regime 

PSCVT. 

7.1. Two-regime PSCVT without power recirculation 

Fig 9 shows a two-regime PSCVT. There are two clutches used for synchronous shift between the 

two regimes and are labelled as A and B in fig. 9. Also 1G , 2G  and 3G are gear ratios of additional 

gears necessary to achieve the required ratio range. The following equations define the ratio range 

for the two-regime PSCVT. Equations 31-33 are common for the PSCVT, while equations 34-35 give 

the PSCVT ratio for stage 1 and stage 2.  
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In the first stage, clutch A will be closed and clutch B will be open. The variator ratio V will go from 

minV to maxV  and at the end of the first stage the speed 4n will be equal to 7max nV  . For the 

synchronization to happen to shift from stage 1 to stage 2, the following condition (equation 36) 

should be there. 

max3 VG             (36) 

During synchronisation, clutch A will be opened and clutch B will be closed. In this second stage, V

will go from maxV  to minV and r  will keep on increasing till it reaches maxr  . 

 



 

Figure 9 Two-Regime PSCVT without power recirculation 

 

Now it can be easily shown that for two-regime system tr will be equal to tV . Using equations 34-35, 

the following equations 37-38 define the end conditions for the system.  
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Using equations 36, 37 and 38, the following condition can be reached. 
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From equation 39, it can thus be concluded that a two-regime PSCVT (without power recirculation) 

cannot be used to increase the ratio range of the PSCVT beyond the ratio range of the variator. 

According to the authors, the simple derivation of this condition has not been presented previously. 

Mantriota16 mentioned that the ratio range for a 4-regime PSCVT is equal to 2

tV . For the present case 

where the required ratio range is around 21, the system most suitable would be a three-regime 

PSCVT which will be discussed further.  

 

7.2. Three-regime PSCVT without power recirculation 

 

Fig 10 shows the general 3-regime PSCVT. Again clutches A, B and C are labelled in fig. 10, which are 

needed for synchronous shifts. Again 1G , 2G  , 3G , 4G and 5G  are gear ratios of additional gears 

necessary to achieve the required speed ratio range. 

 

 

Figure 10 Three-Regime PSCVT System without power recirculation 

 

Equations 40-46, give the general definitions for the PSCVT. 
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For stage 1, the clutch A will be closed and clutches B and C will be open. The following equation 47 

gives the ratio for PSCVT in stage 1. 

)1(4151 RGGGRVGr           (47) 

In this stage the variator ratio V will go from minV to maxV  and at the end of the first stage the speed 

4n will be equal to 19max GnV  . Now if the following condition (equation 49) is satisfied, 

synchronisation will take place.  

1max3 GVG             (48) 

For stage 2, the clutch C will be closed and clutches A and B will be open. Equation 49 gives the 

PSCVT ratio for stage 2. 

 

V

RGG
GRGr

)1(34
53


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Now following the same procedure for stage 3, clutch B will be closed and clutches A and C will be 

open. In this case equation 50 gives the synchronisation condition, which can also be written in 

terms of 1G using equation 48. Equation 51 gives the PSCVT ratio. 
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As in the case of power recirculation, the values of 1G , 4G and 5G can be computed for a given value 

of R to achieve the end conditions of PSCVT ratio. In this case two parameters to compute are given 

by the following equations 52-53. 

5115 GGG             (52) 

4114 GGG             (53) 

Now using equations 47, 51, 52 and 53, the equations for PSCVT ratio end conditions are given by 

equations 54-55 as follows. 

)1(1415minmin RGGRVr           (54) 

)1(1415maxmax RVGGVRVr tt          (55) 

 

Again using the numerical values of R  from the last column of table 2, and specific limits of the 

PSCVT defined in equations (14-19), the corresponding values of 14G  and 15G are calculated by using 

equations 54-55 and are shown in table 5.  

 

Table 5 Values of G14 and G15 to achieve required PSCVT ratio limits in case of three-regime system  

Case 1 2 3 4 5 6 

R  0.25 4 -0.33 -3 0.75 1.33 

14G  0.0221 -0.0055 0.0125 0.0042 0.0664 -0.0498 

15G  0.164 0.0103 -0.123 -0.0137 0.0547 0.0308 

 

Using the values of 14G  and 15G from the table 5, equations 52-53 and assuming suitable value for

1G , the values of 4G and 5G can be computed. Although it might seem that 1G is redundant, its 

importance can be gauged from the above table 5. If 1G is taken to be unity, then 4G and 5G will have 

highly impractical values.  

Though the three-regime system is beneficial in terms of the ratio of variator power to input power, 

which will be always less than unity, it increases the complexity of the system. Another option which 



is a compromise between the single regime system and three-regime system is the two-regime 

system with negative power recirculation as was briefly mentioned in section 4. 

 

8. Design of two-regime PSCVT with negative power recirculation 

 

The third option would be a two stage system with negative power recirculation. As mentioned in 

section 4 such a system would have one direct stage; the other being an OC or IC stage and this 

other stage would involve negative power recirculation. Moreover the direct drive stage can either 

be the first stage or the second stage. Fig. 11 shows this kind of system with the first stage as DD and 

second stage as IC. There are two clutches used for synchronous shift between the two regimes and 

are labelled as A and B in fig. 11. Also vG , mG  and G are gear ratios of additional gears necessary 

to achieve the required ratio range. An example of this design is shown by White24. 

 

 

Figure 11: Two-regime PSCVT system with power recirculation 

 

The following equations 56-62 define the system. 
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For stage 1, clutch A is closed and B is open and equation 63 gives the PSCVT ratio. 

vVGr             (63) 

For stage 2, clutch A is open and B is closed, with the ratio given by equation 64. 

))1((* RVGRGGr vm           (64) 

For synchronous shift to happen between stage 1 and stage 2, the following condition should be 

satisfied. 
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Now using the limits of the variator ratio and the PSCVT ratio, vG and mG can be calculated as 

follows. 
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An interesting point is that in this case unlike others the value of vG is fixed with the limits and does 

not change with respect to R . Again using the numerical values of R  from the last column of table 

2, and specific limits of the PSCVT defined in equations (14-19), the corresponding values of mG  and 

*G are calculated by using equations 65 and 67, and are shown in table 6.  

 



 

Table 6 Values of Gm and G* to achieve required ratio limits for two-regime PSCVT with negative power recirculation 

Case 1 2 3 4 5 6 

R  0.25 4 -0.33 -3 0.75 1.33 

mG  1: -1.26 1:5.04 1.057:1 1:2.83 1: -11.34 1:15.12 

*G  -3.97:1 1:1.006 -2.23:1 1: -1.341 -11.9:1 8.94:1 

 

9. Efficiency of PSCVT 

 

9.1. Efficiency of the PGS 

 

Up till now the PSCVT system has been considered to be lossless and equations involving power flow 

were derived taking into account this assumption. In reality all the mating elements of the PSCVT 

system will have efficiencies. The next set of equations will take the efficiency into account. 

Pennestri and Freudenstein6 derived a methodology to define the mechanical efficiency of the two 

degree of freedom PGS. The methodology has been used here to create the efficiency of the PGS. 

Only the meshing losses have been considered in the analysis. Pennestri and Valentini25 

demonstrated the numerical equivalence of the various approaches available in literature to 

calculate the mechanical efficiency of the PGS.  

According to Pennestri and Freudenstein6, a two degree of freedom PGS can be represented as 

shown in the following fig 12. In the fig. 12 m , n  and p  are the three branches of a generic PGS. 

 

Figure 12 Power Flow in PGS 

Now assuming that power is input into the system through branches m and n , and using the 

principle that there are two power flow paths as shown in the fig. 12, the following equations 68-70 

can be derived. The symbols  , P , T and n in the following equations represent efficiency, power, 

torque and speed. Equation 68 represents the speed relationship between different branches of the 

PGS. Equation 69 represents the efficiency of the PGS. Since the power flows in two different paths 

represented by pP'  and pP '' , and with their efficiencies represented by 1 and 2 , equation 70 

represents the power balance in the PGS. 
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1K and 2K are constants which depend on the gear ratios in the PGS. Now combining equations 68-

70, the efficiency of the PGS can be defined in terms of 1 and 2 as shown in equation 71. 
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Now utilizing the principle explained above the efficiency of the PGS can be calculated depending on 

the direction of power. The efficiency of the individual path in the PGS is defined as )( pnm  where m

is the fixed link and the power is flowing from n to p . Two cases (case 1 and case 2) of different 

power flows are shown below in fig 13 which represent the power flows in the PGS of an IC PSCVT 

and OC PSCVT as shown in fig. 3. 

 

Figure 13 Cases of Power Flow in PGS of IC PSCVT and OC PSCVT from fig. 3 

Using the principle from above, the efficiencies of the case1 and case 2 are defined by equations 72-

73 respectively. 
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9.2. Efficiency of the IC PSCVT without power recirculation 

 

Now applying equation 72 to the case shown in fig 7 (IC PSCVT, no power recirculation) and using 

equations 20-24, the efficiency of the PSCVT is defined as follows in equation 74. The symbols v ,

Gm and Gv represent the efficiencies of the variator, fixed gears mG and vG respectively. It is 

assumed that these efficiencies are the same in both forward and reverse power flow, though in 

reality the efficiency especially that of the variator would be different in both directions and can be 

easily incorporated in the equations.  
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As stated before, the ratio of variator power to input power will also depend on the efficiency. 

Introducing efficiencies in the PGS system, equation 5 will become the following. 
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Now using equation 75 and 26, the variator power to input power ratio for the case IC PSCVT and no 

power recirculation is shown by equation 76. 

)31(2

)32(17

5

7

4

)1( 



















Gm

m

Gvv

v

Gvv

v

Gv
Gv

i

v

R

RGVG

VG

P

P

P

P

P

P
      (76) 

 

9.3. Efficiency of the OC PSCVT without power recirculation 

 

During reverse power flow, the IC PSCVT will behave like an OC PSCVT which is shown in figure 14. 



 

Figure 14 Schematic of OC PSCVT without power recirculation 

 

Equations 77-81 define the OC PSCVT. It is easily seen that the values of r ,V , vG and mG are just the 

inverse of IC PSCVT (equations 20-23). The equation of R is kept the same throughout the paper 

(equation 2). 
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Now using equation 73 and 77-81, the efficiency for the OC PSCVT can be defined as follows. 
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Equation 5 can be re written for this case as follows. 
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The following equations 84-85 will describe the ratio of variator power to input power utilizing 

equations 77-81 and 83.  
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It can be appreciated that equations (76 and 85) describing the ratio of variator power to input 

power are different for the case of IC PSCVT and OC PSCVT once the efficiencies are considered.  

 

9.4. Efficiency of the Single regime PSCVT with positive power recirculation 

 

9.4.1. Efficiency of the single regime IC PSCVT with positive power recirculation  

The Equations derived previously are for the case with no power recirculation. However for the case 

of positive recirculation with efficiencies different set of equations need to be derived. Considering 

the case for positive power recirculation for IC PSCVT shown in fig 15 and including the efficiencies, 

the following (equations 86-87) can be derived, using the terminology stated in equations 20-24. 

 

Figure 15 Schematic of IC PSCVT with positive power recirculation 

)1(

)12(37

5

7

4

R

RGVG

VG

P

P

P

P

P

P

Gmm

Gvv

v

Gvv

v

Gv
Gv

i

v





 







      (86) 

vGv

v
Gmm

PSCVT RVG
RG

r







)1(
)12(3

)32(1









        (87) 

 



9.4.2. Efficiency of the single regime OC PSCVT with positive power recirculation  

Similarly for the case of OC PSCVT with positive power recirculation as shown in fig 16, the following 

equations 88-89 can be derived. The terminology used is defined in equations 77-81. 

 

 

Figure 16 Schematic of OC PSCVT with positive power recirculation 
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Again it can be seen from equations 76 and 86 that with the inclusion of efficiencies, the ratio of 

variator power to input power is different for the case of no power recirculation and positive power 

recirculation. It can therefore be said that when efficiencies are concerned, different cases have to 

be analysed separately.   

 

9.5. Efficiency of the Three-regime PSCVT without power recirculation 

 

9.5.1. Efficiency of the three-regime IC PSCVT without power recirculation  

 

Using the above methodology, the PSCVT efficiency and variator power to input power ratio can be 

derived for the three-regime PSCVT shown in fig 10 in both power flow directions. Losses are only 

considered in the gears which are in the path of the power flow from input to output of the PSCVT 



during the individual stages. Table 7 shows the corresponding equations for three-regime IC PSCVT. 

The terminology used is defined in equations 40-46. 

 

Table 7 Equations for three-regime IC PSCVT system 
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9.5.2. Efficiency of the three-regime OC PSCVT without power recirculation 

 

For the reverse power flow direction equations 90-96 define the parameters. As previously for the 

case of reverse power flow the values of r ,V , 1G , 2G , 3G , 4G and 5G are inverted. 
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Table 8 shows the corresponding equations for three-regime OC PSCVT. 

Table 8 Equations for three-regime OC PSCVT system 
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9.6. Efficiency of the Two-regime PSCVT with negative power recirculation 

 

9.6.1. Efficiency of the Two-regime IC PSCVT with negative power recirculation 

 

Similarly for the two-regime system with negative power recirculation, the table 9 shows equations 

for the IC PSCVT system. The terminology used is defined in equations 56-62. 

 

Table 9 Equations for two-regime IC PSCVT system with negative power recirculation 
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9.6.2. Efficiency of the Two-regime OC PSCVT with negative power recirculation 

 

For the reverse power flow direction equations 97-101 define the parameters. As was the case in the 

previous section for reverse power flow, the values of r ,V , mG , vG and *G are inverted.  
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Table 10 shows equations for the OC PSCVT system. 

 

Table 10 Equations for Two-regime OC PSCVT system with negative power recirculation 
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10. Results of different designs of PSCVT for the FESS 

 

In the previous sections equations for speed ratio coverage, power flow and efficiency for different 

types of PSCVT were derived for the requirements of the FESS given in section 5. Using equations 

and values derived in section 6-8, the ratio coverage of the three designs is shown in the fig. 17 

below. The synchronous shifts can be easily seen. 

 



 

Figure 17 PSCVT ratio vs. variator ratio for single, two-regime and three-regime systems 

 

 

Further in order to show the results of the power flow and efficiency of the three systems using the 

derived equations, the efficiency of the individual elements is needed. For the sake of simplicity the 

efficiencies of the variator and the fixed gears are assumed to be constant and the efficiency of the 

PGS is taken to be same in all directions, though it can also be derived depending on the direction of 

power flow (Macmillan26, Pennestri and Freudenstein6). The efficiency of the individual components 

such as variator can be taken as variable depending on their operating conditions. 

Assuming the following efficiency values shown in equations 102-104 and applying the formulae 

derived previously for the three systems in section 9, the variator power to input power ratio and 

the overall efficiency for the example stated before are calculated.  
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The fig 18 shows the results in the direction of forward power flow and reverse power flow. The IC 

PSCVT is taken as forward power flow and consequently OC PSCVT is reverse power flow. The graph 

(A) in fig. 18 shows the ratio of variator power to input power for the three systems in both 

directions of power flow. It can be seen than the single regime system has high ratio of variator 

power to input power especially towards the lower speed ratios. Also the difference between 

forward and reverse flow is pronounced in this case towards the lower speed ratios. The three-



regime system, of course has this ratio less than unity and the difference between forward and 

reverse directions is insignificant. For the third system the negative ratio of variator power to input 

power can be seen for the second stage.  

Consequently the effect of the ratio of variator power to input power can be seen on the system 

efficiency in the graph (B). The three-regime system has the highest efficiency of the three systems 

except towards higher speed ratios, where the two-regime system shows higher efficiency. The two-

regime system has a drop in efficiency towards the start of the second stage, where it even drops 

below that of the single regime system. At this point the difference in efficiency between the 

forward and reverse power flow is also pronounced for the two-regime system. 

 

 

Figure 18 Graph (A) shows the ratio of variator power to input power vs. PSCVT ratio for the three systems in both 
directions. Graph (B) shows the efficiency vs. PSCVT ratio for the three systems in both directions 

 

Although the efficiency of the three-regime PSCVT is higher than power recirculating PSCVTs, the 

trade-off is increased complexity. Another thing to note is that up till now, the IC PSCVT has been 

taken for the forward power flow and consequently the PSCVT behaves as OC for the reverse power 

flow. However if OC PSCVT is taken for the forward power flow, the values of efficiency and ratio of 

variator to input power will remain the same for OC and IC. The difference would be that the 

position of efficiencies versus the PSCVT ratio will be opposite as compared to the previous case and 

naturally the values of the fixed gear ratios will change. In other words if in previous case the 

efficiency of the PSCVT was higher towards higher PSCVT ratios, in this case it will be lower towards 

higher PSCVT ratios. Similarly in case of the two-regime system, currently the direct drive is the first 

stage and IC is the second stage. By switching the direct drive to second stage and IC to first stage 

the position of PSCVT efficiency vs. ratio can be switched as well. Fig. 19 summarises the presented 

methodology.  



 

 

Figure 19 The PSCVT design methodology 

 

11. Conclusions 

The flywheel is an important energy storage device for application in hybrid and electric vehicles. 

The flywheel needs a CVT mechanism to connect it to the vehicle driveline. The requirements for the 

CVT for a FESS are quite different from the ones used in conventional vehicles. The PSCVT is used to 

improve the efficiency and ratio range of the conventional variators. The paper presents the 

kinematics of the PSCVT for FESS. The main contributions of this paper are the extension of the 

technique used by Martinez-Gonzales21 to design single and multi-regime PSCVTs for the required 



speed ratio range and the application of the treatise of Pennestri and Freudenstein6 to derive the 

equations for ratio of variator to input power and efficiency of the PSCVT in both directions of the 

power flow including the efficiency of the variator, fixed gears and PGS for power recirculating and 

multi regime systems. The presented methodology can be applied to design a PSCVT for FESS in 

order to achieve any required speed ratio range and predict its efficiency in both directions of power 

flow i.e. for acceleration and brake regeneration. Using this methodology results were derived for 

three different types of PSCVT for an example of FESS.  
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Notation 

AT Automatic transmission 

A, B, C Clutches 

CVT Continuously variable transmission 



Ds, Dc, Dr Diameter of sun, carrier and ring gears of PGS 

EV Electric vehicle 

FESS Flywheel energy storage system 

FG Fixed gear 

G Gear ratio 

HV Hybrid vehicle 

IC Input coupled 

K Constant of PGS 

n Angular speed 

ns, nc, nr Angular speed of sun, carrier and ring gears of PGS 

η Efficiency 

OC Output coupled 

P Power  

PGS Planetary gear set 

PSCVT Power split continuously variable transmission 

Pv Power input into variator 

Pi Power input into PSCVT 

R Basic ratio of PGS 

r Speed ratio of PSCVT 

rt PSCVT ratio range 

rmin, rmax Maximum and minimum value of PSCVT speed ratio 

T Torque 

V Variator ratio 

Vt Variator ratio range 

Vmin, Vmax Maximum and minimum value of variator speed ratio 

 


