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Abstract

Panel estimators can provide consistent measures of a long-run average parameter even
if the individual regressions are spurious. However, the ¢-test on this parameter is fraught
with problems because the limit distribution of the test statistic is nonstandard and rather
complicated, particularly in panels with mixed (non)stationary errors. A sieve bootstrap
framework is suggested to approximate the distribution of the ¢-statistic. An extensive Monte

Carlo study demonstrates that the bootstrap is quite useful in this context.
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1 Introduction

Most of the macroeconomic or financial variables researchers encounter are stochastic trend non-
stationary (integrated of order one or I(1) for short) and the theoretical long run relationships that
arise among them from arbitrage or market efficiency conditions have often proven rather elusive.
The error term in the empirical regressions used to characterize such relationships, albeit truly
stationary, can be observationally I(1) in finite samples. This may stem, first, from threshold or
Markov cointegration due to transaction costs, lumpy costs of adjustment or major events such as
changes in technology, government policy or the presence of bubbles in prices which can interrupt
temporarily the adjustment towards an underlying long run equilibrium (Balke and Fomby, 1997;
Chortareas et al., 2003; Psaradakis et al., 2004). Second, data aggregation over time or across
individuals can induce highly persistent disequilibria as Taylor (2001) demonstrates in the context
of spot exchange rate and relative prices. Third, long lags in the response of, say, energy demand
to prices or wages to inflation can also result in seemingly nonstationary disequilibria. Against
this background, the challenge is to extract the signal, that is, consistently estimate the long run
(average) association between the variables and to test whether it satisfies specific theoretical re-
strictions. Making reliable inferences about these theoretical relationships is important both for
forecasting and policy-making purposes.

The econometrics literature has recently established that one advantage of panels versus single
time series is that the danger of nonsense regression through lack of cointegration is mitigated.
In this context, Pesaran and Smith (1995) show that a cross-section regression for time averaged
data produces consistent long run measures. Kao (1999) and Phillips and Moon (1999) develop
multi-index asymptotic theory to demonstrate that the Least Squares Dummy Variable (LSDV)
and Pooled OLS (POLS) estimators are gaussian and v/N-consistent for a long run average effect.
One important message of this literature is that long run relations are not exclusively associated
with cointegrating regressions. For instance, purchasing power parity (PPP) or the long run
relation between spot exchange rates and relative prices has been traditionally associated with
mean-reverting real exchange rates. However, recent studies argue that it is possible to reconcile
PPP and nonstationary real exchange rates because the equilibrium real exchange rate may be a

moving function of unobserved I(1) factors (Coakley et al., 2004a).



The problem we seek to tackle is that the usual (or HAC robust) POLS and LSDV standard
errors lead to severely distorted t-tests in the context of I(1)-error regressions. This problem will
also occur in 4id or autocorrelated I(0)-error panels when the true (cointegrating) coefficients are
heterogeneous. More importantly, in heterogeneous panels with a mix of I(0)- and I(1)-error equa-
tions the asymptotic distribution of the LSDV and POLS estimators will depend in a complicated
manner upon a nuisance parameter, the fraction of I(1)-error equations.

Our study has two aims. First, it seeks to extend the existing work on nonstationary panels
by proposing a bootstrap ‘solution’ to the aforementioned inference problems. We make use of
the sieve bootstrap which can be regarded as a nonparametric procedure. The basic idea of this
bootstrap method is to approximate the error process by an AR model of order increasing with the
sample size. The sieve bootstrap has been successfully employed to test for an autoregressive unit
root (Psaradakis, 2001, 2003; Chang, 2004), to resample from cointegrating regressions (Chang
et al., 2006), to conduct inference with VAR models (Inoue and Kilian, 2002a) and to construct
prediction intervals for nonlinear time series using neural networks (Giordano et al., 2007). We
develop two resampling algorithms that build both on the fized regressor bootstrap of Hansen (2000)
and on the restricted residuals approach of Nankervis and Savin (1996). One scheme is based on
residual pretesting and constructs bootstrap samples that have the I(1) property by construction
whereas the other scheme applies the sieve bootstrap method directly to the residuals — we call
them, respectively, the pretesting sieve bootstrap (PSB) and the direct sieve bootstrap (DSB).

Second, the paper investigates via Monte Carlo simulation the effectiveness of the bootstrap
in controlling the null rejection probability of the usual ¢t-test and its power properties. We con-
sider regression models driven by both AR and MA innovations and allow for heterogeneity across
units. Unit root innovations with a negative MA component are also included — this data gen-
erating process (DGP) has attracted considerable attention in the literature because it produces
observationally iid sequences (Psaradakis, 2003; Chang, 2004). The Monte Carlo design covers
also: (i) probability distributions typical of economic data, (ii) near unit root or mixed I(0), I(1)
innovations, (iii) threshold unit root behavior, and (iv) cross-section dependence.

Several interesting findings emerge. First, asymptotic ¢-tests on the average slope coefficient
yield rejection rates of about 75% (at a nominal level of 5%) in simple homogeneous-slope panels

when just one individual error term is unit root persistent and the remaining N-1 errors are white



noise. These large size distortions apply to more general nonstationary panel settings and are shown
to worsen as the time dimension (T) increases. Second, the sieve bootstrap-t method proposed
is shown to facilitate robust inference in a variety of settings which include 7id or autocorrelated
I(0)-error panels, I(1)-error panels and panels comprising a mix of I(0) and I(1) errors. The sieve
bootstrap t-tests remain correctly sized in panel regressions with asymmetric, highly leptokurtic
innovations, I(1) errors with a negative MA component, and cross-section dependence. In the
problematic case of near-I(1) errors that may result from a threshold cointegrating mechanism, the
DSB scheme is shown to work better than the PSB algorithm. Moreover, the unit root pretesting
(PSB) effects some power loss in the ¢-tests. Hence, the practical recommendation that emerges
from this study is to employ the DSB testing approach.

The paper is structured as follows. Section 2 outlines the model and assumptions. Section 3
discusses the asymptotic properties of the panel estimators under study. Section 4 describes the

bootstrap techniques and Section 5 analyses the simulation findings. A final section concludes.

2 Panel model and assumptions

Let data be generated for N cross-section individuals (or units) and T time periods according to

Yie = p;+Bxiatuy, i=1,.,N, t=1,..,T, (1)
Tit = Tit—1 7t €it, Ui = PjUit—1 T Vit, (2)
vie = Ui(L)eq, eir ~iid(0,02,), (3)

where L is the lag operator and ¢,(z) = Y7 (¥, ;27 with ¢; 5 := 1. The assumptions made are:

(A1) The individual error process e; is strictly stationary for all i.

(A2) Statistical independence of the processes e and vis for all t and s.

(A3) The coefficients p; and B, are constant over time but may differ randomly over units, that
18, w; ~ iid(p, oi), B; ~ iid(ﬁ,a%), and (u;, ;) are distributed independently of x;; and w;y.

(A4) The innovation sequence {e;} satisfies Eley] =0, E[e}] = 02, > 0 and Ele};] < oo.

(A5) The sequence {t); ;} satisfies | Y 7=, ;| >0, 3272, jl; ;| < 00 and ¥;(2) # 0 for |2| < 1.
If |p;] < 1 for all 4, we have a cointegrating panel. If |p;| = 1 for all 4, there is one unit root in
u;+ and we have a non-cointegrating, I(1)-error panel which is just a univariate (single-regressor)

version of the setup in Phillips and Moon (1999; Sections 4 and 6). Assumption (A1) ensures that



x4 is an I(1) process. The exogeneity assumption (A2) allows us to build on the limit theory for
pooled estimators of I(0)- or I(1)-error panel regressions developed by Phillips and Moon (1999)
and Kao (1999). We allow for quite general temporal dependence in v;; through (3) which builds
on Wold’s decomposition theorem — every weakly stationary, purely non-deterministic stochastic
process can be written as a linear filter of uncorrelated random variables. Assumptions (A4) and
(A5) are sufficiently general to accommodate weakly dependent processes of practical relevance
such as the invertible ARMA with 4id innovations where [1); ;| decays at rate O(N) as j — oo for

A € (0,1). Thus the process v;; admits an AR(co) representation which can be approximated by
Vie =0i1Vi¢-1 + .+ 0 p Vig—p, T3, (4)

where eff = ey + Y70 4 0ijvii—j. It follows that Y257 1 6;; = o(p; ') from assumption (A5)
and so if p; increases with T, the error in finite approximation of v;; can be made arbitrarily small.
In sum, the regression errors u;; are allowed to be heterogeneous across units in the I(0) or I(1)
sense. Further stationary AR (or MA) dependence is also possible. Cross-section heteroskedasticity
is allowed and, since Var(u;t) = vio + tVar(vs) when p; = 1, the presence of a unit root implies
time-series heteroskedasticity also. The regression disturbances may be contemporaneously cor-
related across units, cov(ui, ujt) # 0. To simplify the exposition, the initial discussion abstracts
from cross-section dependence but this issue is revisited in the simulations below.

The static equation (1) typifies the empirical framework of many cross-country studies of PPP,
the Feldstein-Horioka puzzle or economic growth, inter alios. In the context of PPP, nominal
exchange rates (y;;) are regressed against price differentials (x;;). One goal is to test for a unit
long-run average price elasticity irrespective of the stationarity properties of the individual residual
sequences. The main idea is to accommodate innovations that are observationally I(1) due to
Balassa-Samuelson productivity effects and other real shocks, or stemming from measurement
error, transaction costs and other market imperfections such as limits to arbitrage (Taylor, 2001;
Coakley et al., 2004a). Several recent Feldstein-Horioka studies acknowledge protracted current
account imbalances due to productivity and demographic shocks, so it seems important to account
for observationally I(1) disturbances in country saving-investment regressions so as to measure
global average effects (Taylor, 1998; Herbertsson and Zoega, 2000; Coakley et al., 2004b). Likewise,

in growth studies output is regressed against the stock of physical capital and/or education, and



the error term captures technical progress. The individual equations are not long run equilibrium

relations if technology is I(1), but the average capital (or education) elasticity E(3;) is still of

i
interest for economists. As Temple (1999, p.126) puts it ‘[ ] given that the purpose of cross-country
empirical work is often to arrive at generalizations about growth, the averages are important’.

Pesaran and Smith (1995) and Phillips and Moon (1999) were the first to note that an average
or mean effect can be consistently estimated in panel equations with individual I(1) errors. By
drawing an analogy with classical regression, Phillips and Moon (1999) define the long run average
regression coefficient 5 = E(Qy,4,)/E(Qy,2,) where Qy,,, and Qg,,, are, respectively, the long run
covariance of Z;; = (yi, ;)" and long run variance of x;;. Phillips and Moon (1999) and Kao
(1999) prove theoretically that this mean effect § is consistently measured through the POLS and
LSDV estimators (3) when the individual errors u; are I(0) or I(1). They further demonstrate
that (3 converges to the normal distribution both in I(0)- and I(1)-error panels.

But there remain some inference problems. Suppose the goal is to test a hypothesis on the long

run average, Hy : § = 5, and H; : 8 # B,, using the t-statistic, I = (B - ﬂo)/SB where 3 is

cpors SN ST (g — g) (@i — )
_ L , 5a
’ vazl Zthl(xit —z)? o
HESPV _ SN S e — T (@i — 7)) ’ (5b)

N T —
doim1 2oy (@it — T;)?

with j = (NT)~! Zfil Zle yir and likewise for T. The standard error s is obtained from

N T
S%POLS = Zi:}vzt:%uzzt (NT — 2)
’ 2im =1 (@it — T)?

; (6a)

and

N T .
2 _ D im1 Dim1 u'?t (NT — N —1) (6b)
BLSDV = N T — 2 y
Zi:l Zt:1($it —T;)

if the regression disturbances are spherical, u;; ~ iid(0,02), or from an appropriate robust co-

variance matrix estimator in more general settings, e.g. heteroskedasticity and autocorrelation
(HAC) Newey-West style corrections. However, this testing exercise is fraught with difficulties if
(at least one of) the individual regression errors is I(1). The key issue is that the conventional
formulae (52) or HAC robust corrections dramatically underestimate the true dispersion of 3 in
the I(1)-error case. Kao’s (1999) simulations in a I(1)-error setup like ours, equations (1)-(2), but

simplified to abstract from heteroskedasticity and further stationary autocorrelations reveals that:



a) the true dispersion of the LSDV estimator B is unaffected by 7T, in line with the v/ N-consistency
property of B, b) the theoretical standard error s 3 falls rapidly with 7. As a result, the true
dispersion of the t¢-statistic grows significantly with 7" and so the t¢-statistic does not converge to
any meaningful distribution. Moreover, when the true DGP is a heterogeneous-slope panel, even
if u;; ~ iid there is an additional error component reflected in the residuals which is I(1) and
heteroskedastic, (5, — 8)x;t, because the LSDV and POLS estimators impose common slopes. For
a practical analysis of the role of heterogeneity, see Fuertes and Kalotychou (2006).

Asymptotic covariance matrices for I(1)-error panels are derived in Phillips and Moon (1999)
using multi-index asymptotics but they are quite cumbersome to estimate and this may partially
explain the absence of applications in the literature as yet. They require kernel estimates of
the long run covariance matrices for each i, and so their small sample properties are sensitive to
bandwidth choice — kernel estimators can be substantially biased in small and moderately sized
samples, yielding tests with finite sample properties that are very different from those predicted
in large-sample theory. Moreover, inference based on these asymptotic covariance matrices will be
problematic for mixed panels: if all error terms are I(0), the convergence rate of the POLS (LSDV)
estimator is /N, if all error terms are I(1) the convergence rate is V/N. Hence, the appropriate
normalization constant needed to derive the asymptotic covariance matrix is model dependent (it

depends on a nuisance parameter, the fraction of I(1) errors) and difficult to obtain.

3 Sieve bootstrap tests

This section presents bootstrap procedures for inference on the long run average coefficient. Section

3.1 discusses the construction of pseudodata while Section 3.2 deals with the bootstrap p-values.

3.1 Generating bootstrap panel samples

Our approach is in the spirit of the sieve bootstrap proposed by Biithlmann (1997) which relies on the
approximation of an infinite-dimensional, nonparametric model by a sequence of finite-dimensional
parametric models such that the dimension increases with the sample size. Accordingly, the tem-
poral dependence in the data is removed by an AR(p;(T")) approximation, a so-called sieve, where
pi(T) — oo and p;(T) = o(T) as T — oo. Biihlmann demonstrates the asymptotic validity of

the sieve bootstrap for a general class of nonlinear estimators. This is also proven by Psaradakis



(2001, 2004) and Chang (2004) for unit root tests, Chang et al. (2006) for cointegrating coeffi-
cients, and Inoue and Kilian (2002a) for smooth functions of VAR slope parameters and innovation
variances. Due to observational equivalence, apart from the linear class of stochastic processes,
the sieve bootstrap procedure may also be successful in cases where the series at hand is nonlinear
but satisfies an a-mixing condition, an issue which is explored in Section 4 below.

Two different algorithms are suggested, called the pretesting sieve bootstrap (PSB) and the
direct sieve bootstrap (DSB), which share three aspects. First, they build on the fized regressor
bootstrap approach of Hansen (2000) which amounts to treating the regressor as fixed in resampling,
that is, «}, = ;. Second, they build on the idea of restricted regression in resampling (Nankervis
and Savin, 1996; Li and Maddala, 1997) and so the scheme y}, = i+ Bz} +ul, or yiy = fi; + 52k +
u}, is employed. Here i (fi;) is the constrained POLS (LSDV) estimator of the intercept term,
and u}, are the bootstrap innovations obtained by resampling (as detailed below) the restricted
regression residuals. The latter are given by 4, = i — (o + Bozie) for POLS and by 4 =
Yit — (ft; + Bozir) for LSDV. Third, the sieve order p; is chosen through the Akaike Information
Criterion (AIC) or Schwarz Bayesian Criterion (SBC) alongside a sequential 0.05-level testing
down approach. Thus the sieve order p; is the integer that minimizes log ETQT +2p;/ T with AIC and
log c}%+2pi log T'/T with SBC, where 62T~ =71 ZtT=pi+1 &7, is the residual variance and T = T —p;

is the number of observations used in estimating the sieve.

Pretesting sieve bootstrap (PSB) algorithm

This approach to resampling the regression errors, u;:, deals separately with their unit root non-
stationary properties and with the remaining stationary dependence. To preserve the former, the
order of integration of the error term for each panel member, u;; ~ I(d;),d; € {0,1}, is built into
the bootstrap errors by construction — the presence of one unit root may be known a priori (from
an existing theory or consensus empirical evidence) or otherwise pretested. To establish results
of practical relevance, in the simulations the order of integration is identified by subjecting each
individual residual sequence {4, } to the ADF test using MacKinnon (1996) one-sided critical val-
ues. The augmentation order is selected by a 0.05-level testing down procedure from k4, = 10.
Accordingly, ;+ = 4 in the I1(0) case and 2;; = Ady; in the I(1) case.

Next a finite AR(p;) approximation or sieve, as given in (4), is consistently estimated by



single-equation OLS for each residual sequence {9;;} thereby allowing heterogeneity in individual
autocorrelation structures and variances (cross-section heteroskedasticity) such that ag,i # Ugj.
Since the individual-specific means of the POLS (or LSDV) residuals, N~' Y. #;;, are not nec-
essarily zero, an intercept is included in the sieve. Alternatively, if T is moderate and the panel
members are believed to be (near) homogeneous, efficiency gains can be obtained by employing a
single sieve, i.e. by fitting an AR model to the pooled NT x 1 residual vector ©. The bootstrap
residuals u, are constructed using any of two resampling tools, called b; and by, respectively.

. . * B . . .
In the by version, B stationary sequences {v3,} j=1 are generated recursively for each i using

l/rt = éOi + éliyzt—l 4+ ...+ épil/;:t—pi + 6;5, 8;& ~ ZZCZN(O, 6§,i)7 (7)

. ... ’ ~2
starting from some random initial values Vi = (v, vy, ..., V7, 1) » Where 67 ;
, ;

; is the squared

standard error of the sieve. Since using the same V' in every bootstrap loop may alter the
stationarity properties of 0;;, we follow the block initialization approach of Stine (1987) and divide
the sequence {¥;;:} into T'— p; + 1 overlapping blocks of length p;. A block is randomly selected
(with replacement) for Vj in each bootstrap. Bootstrap residuals v, are constructed with d;
unit roots imposed, Ads uf, = v},. Rewriting the latter using partial sums or stochastic trends, for
instance, for d; = 1 we generate uy, = ul; + ZZ=1 vy, with ujy = 0.

In bo, the residual sequence {u;} is constructed from {v}} in the same manner. However, one
important difference is that the pseudo-innovations ¢}, are drawn with replacement from the sieve

residuals for each unit i, after adjusting for location and scale, that is, from

T T
B =G —T 1) &),

rather than assuming a gaussian distribution. The PSB test is denoted I'; or I'; , respectively.

Direct sieve bootstrap (DSB) algorithm

This approach applies the sieve approximation directly to u;; rather than to the transformed

residuals ©;; = A%, d; € {0,1}. Accordingly, B sequences {u;‘t}f’:l are obtained for each 7 using
Uiy = Yoi + Y1iUi 1 F o F Vpihi 1—p, + Eits

assuming e, ~ 1dN (0, 6?71) as in the b; scheme above, or drawing €}, with replacement from the

sieve residuals as in by. The DSB test is denoted f‘;‘;l or fZQ, respectively, in each scheme.



This algorithm is motivated by the findings in Inoue and Kilian (2002b) regarding how to
bootstrap persistent processes of unknown order of integration. They demonstrate that the stan-
dard bootstrap algorithm for unrestricted autoregressions is asymptotically valid for many I(1)
processes. These include the important cases for applied work of a (near) random walk process
with drift and high-order autoregressive (near) unit root processes with or without drift. In our
context, the pooled LSDV (or POLS) residuals have zero mean by construction which is not the case
for the individual residual sequences, {;;}7_,. Thus in effect, the appropriate sieve for {d;}7_,
has a non-zero intercept. For the validity of the DSB scheme, it is required that (Yo;, ¥1is - ¥pi)’
is consistent. It is well known that OLS satisfies the latter when w;; is stationary (Brockwell and

Davies, 1991) and in the unit root case (West, 1988).

3.2 Bootstrap inference

In the spirit of the bootstrap-t method (see the monograph by Efron and Tibshirani, 1993; Ch.
12), for each of B bootstrap panel samples {(y};,},)}5-, we calculate the bootstrap t-statistic
I = (B* - B)/s; where B* and SZ are, respectively, the bootstrap POLS (LSDV) slope estimate
and its HAC robust standard error. The theoretical p-value of a two-tailed test is defined as
pr = Pg, (IT] > IT|) where T is the usual t-statistic computed from the observed sample and Pg, (-)
indicates probability under the null. This p-value is estimated as pz, = = le I (|f‘j| > |T]) where
{f"{, ,f};} is the sequence of bootstrap t-statistics and I(-) is an indicator function. The null
hypothesis is rejected if the bootstrap p-value, ]31’2, falls below the nominal level .

We consider a second method (an earlier use of the bootstrap) which makes use of the fact

that, in the present context, the distribution of B is known to be asymptotically normal. The

bootstrap estimator 52 = \/3*1 Zf:l(é; — )2 is used to approximate the standard error of 3,
where {Bi, B;, e B*B} is the sequence of long run average coefficients (with mean 3") estimated
for each of the bootstrap samples. The bootstrap-studentized ¢ statistic (denoted f‘*) obtained by

substituting 52 for s 5 in ' is used to make inferences on the basis of the N(0,1) quantiles.
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4 Finite sample properties
4.1 Simulation design

The finite sample behaviour of the sieve bootstrap t-tests on the long run average coefficient is

now analyzed by means of Monte Carlo experiments. The following DGP is used

Yit = ui+ﬁixit+uit, = 1,27...7]\77 t= 1,2,...,T, (8)
Azyy = ey, e = mieip—1 + &y,
Uit =  PiUit—1 T Vit,

where v;; obeys any of the stationary processes
(AR) viy = Oivip—1 + e, (MA) vy =€ +1Pi€i -1, 9)

for |0;] < 1. The innovations are generated according to

b 0 1 2
(Eitagit) ~ 1dN [( 0 )7( QOO'Q %00_0; >]7

where the signal-noise ratio is given by o2 and the endogeneity by . We set ¢ = 0 so that u;
and xz;, are independent for all ¢, s. The initial set of simulations rules out contemporaneous cross-
section dependence and is calibrated to match the sample dimensions and signal-noise ratio of
the post Bretton-Woods monthly OECD spot exchange rate (y) and price differential (x) panel
in Coakley and Fuertes (2001) — o2 = 0.2, N = 15, T' = 300. The first T, = 50 observations are
dropped for each i. The intercept is u; ~ 4idU(—0.5,0.5) and p; = 0 for the LSDV and POLS
simulations, respectively. All computations are programmed in GAUSS.

We set p; = 0 for all i to simulate a cointegrating panel. For the I(1)-error panel, we set
p; = 1 for all 4. Mixed I(0), I(1) panels are obtained by setting p, = 0 for a fixed fraction
of individuals 7 = 1,2,...,[AN] and p, = 1 elsewhere. A wide spectrum of cases is considered,
A =1{0.05,0.2,0.5,0.8,0.95}. We set m; = 0.5 to introduce temporal dependence in Az;; also.

The baseline v;; ~iid case is considered by setting 0; = 0 (¢, = 0). Next we allow for AR
processes, 0; € {0.5,0.9}, and MA processes, ©; € {0.5,0.9}. Cross-section heteroskedasticity in
vt is introduced through random coefficients 0; ~ #idU (0.3,0.5), ©; ~ 19dU(0.3,0.5), first, and 6; ~
19dU (0.2,0.9), ¢, ~ 1idU(0.2,0.9), second, to consider different degrees of heterogeneity. Negatively
correlated MA errors are introduced through ¢, € {—0.5,—0.8} and v, ~ #idU(—0.9,—0.2). The

11



case 1, = —0.8 has attracted considerable attention in the unit root testing literature (for instance,
see Psaradakis, 2001).

The assumption that the regression disturbances w;; are gaussian is relaxed by drawing e;;
from pdfs that have been shown to be empirically relevant in business and economics. These
include a Student’s ¢ with five degrees of freedom (D1 = t5), a shifted chi-squared (D2 =
X2 — 5) and, following Nankervis and Savin (1996), the highly leptokurtic mixture of normals
D3 = 0.8N(0,1)&0.2N(0,16). D1 captures fat tails whereas D2 characterizes asymmetry and
leptokurtosis. All distributions are rescaled to have unit variance.

Finally, the panel setup is generalised to accommodate threshold cointegration which is a

plausible rationale for observationally I(1) errors. We generalize (5) as follows

te+pi(uit—1 —c) +vie ifuip >,
Uit = Ui i—1 + Vit ifc>wi—1 > —c, (10)

—c+pi(uir—1 —c) +rvy fuy <—c

with v;; ~ 49dN(0,1). This model allows for discontinuous adjustment to equilibrium, namely,
a ‘band of inaction’ around zero. For large positive (negative) disequilibria wu;, there is mean
reversion towards ¢ (-¢). The idea is that only when wu;; exceeds a critical threshold, do the benefits
of adjustment exceed its costs and hence, economic agents act to move the system back towards
equilibrium. Balke and Fomby (1997) simulate (10) using p; = 0.4 and ¢ = {3,5, 10} to represent
geometrically ergodic processes satisfying a—mixing conditions. The resulting sequence {u;;}7_;
is observationally equivalent to an AR1 series with unconditional first-order autocorrelations of
0.90, 0.96 and 0.99, respectively. We use the same p; and the wider range ¢ € {1,2,3,...,12}.

The hypothesis of interest is Hy : § = ;. All tests are based on the ¢ statistic using the
HAC Newey-West covariance matrix with truncation lag L = |4 (%)2/9] The experiments deal
with two methods of inference. One uses the standard normal distribution (I'). The other is a
sieve bootstrap in its gaussian (I'; ) or semi-parametric (I'; ) form. Unless otherwise noted, the
bootstrap tests are based on the AIC in selecting the sieve lag order p; € {0,1,...,pr} where
0 signifies the 7id case. The maximum sieve order considered is pr = 10 which corresponds to
Buhlmann’s (1997) criteria, pr = |alog, T'], with a = 4.

Each of the Monte Carlo replications follows the steps: (i) Generate Z;; = (y;s, x;¢) data using
(5)-(9); (i) Test for Hy : 5 = (B, at the 5% significance level, and record R = 1 if rejection and 0

otherwise; (4ii) Repeat the above two steps M times; (iv) Compute the rejection frequency of the

12



test, R/M. M = 1,000 Monte Carlo replications and B = 500 bootstrap repetitions are used.

4.2 Simulation results

Finite sample performance in terms of size (or level) is studied first. We start with homogeneous-
slope panels, 3, = 1. Next, we allow for heterogeneity, 3, ~ 1idU(0.7,1.3). The hypothesized value is
o = 1. To allow for some random variation, a confidence interval for the Type-I error probability
estimate & is formed using the (binomial) standard error estimator o5 = +/a(l — a)/M. For
a = 0.05 and M = 1,000 this gives the two-standard error confidence interval (0.036, 0.064).
Figure 1 displays the empirical distribution function (EDF) of the LSDV ¢—statistic over 1,000
Monte Carlo replications, alongside that of a standard normal. The plots correspond to panel
DGPs where u,; ~ iidU(—0.5,0.5), 8, = 1, and 7; = 0.5. Plots A and B pertain to cointegrating
(p; = 0) regressions with éid errors (6; = 0) and AR1 errors (6; = 0.9), respectively. Plots C and D
correspond, respectively, to a non-cointegrating panel (p; = 1) and a mixed I(0)-, I(1)-error panel

— p; = 01in 80% of the units and p, = 1 elsewhere — with 6; = 0.9 in both.
[Figure 1 around here]

Plot A corroborates that standard asymptotic inference is valid in cointegrating panel regressions
with 4id errors. But when the error sequences are all 1(0) but strongly autocorrelated, all I(1)
or a mix the sampling variability of the t-statistic is well above that of the standard normal.
However, its distribution remains symmetric. The EDF of the LSDV estimator B for the same four
DGPs alongside a normal EDF with the same variance (Appendix Figure A1) lends support to the
extant panel theory. The distribution of B is centered on the true value of unity and approximately
normal except for the mixed I(0)- and I(1)-error panel where it shows significant leptokurtosis. The

Appendix material for the paper is available at www.cass. city.ac.uk/faculty/a.fuertes.

Homogeneous slope coefficients

Table 1 reports the empirical size of the ¢-tests based on the LSDV estimator in homogeneous-slope

panels. The results for the POLS estimator are quite similar (see Appendix Table Al).

[Table 1 around here]
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In the iid-error case, inference based in the N(0,1) quantiles is reliable as one would expect and so
I is correctly sized. Reassuringly, the same is true of the bootstrap-t approach (I';, and I'; ) with
empirical sizes that clearly lie within the two standard error confidence limits. The rejection rates
from the PSB and DSB methods are similar so, to preserve space, the table reports the former
only. But the main issue is whether correct rejection probabilities are attained with I(0)-errors
that are autocorrelated and possibly cross-sectionally heteroskedastic, and in I(1)-error panels.

As Table 1 shows, the test I' is still correctly sized in cointegrating panels with either homoge-
neous or heterogeneous AR (MA) dependence in ;. But a large degree of autocorrelation effects
significantly oversized tests — for 6; = 0.9 and 6; ~ U(0.2,0.9) the rejection rate jumps to 34.9%
and 16.4%, respectively. Reassuringly, the empirical significance level of the bootstrap tests is
reasonably close to the nominal level, despite two potential pitfalls of our resampling approach.
One is that we resample u;; and, hence, do not explicitly incorporate the information that x;; is
I(1). Another is that we do not correct for sieve order and parameter uncertainty. For small T'
samples, the AR estimates from OLS are downward biased, particularly for strongly autocorrelated
(persistent) series, so the bootstrap may not be as effective. However, the accuracy of the sieve
can be substantially improved using finite-sample bias corrections such as the median-unbiased
AR estimation approach of Andrews and Chen (1994). This issue is addressed below.

The right-hand side of Table 1 reports the empirical level of ¢-tests for I(1)-error regressions.
The simulations confirm the theoretical result that conventional asymptotic inference (T') leads to
unacceptably large size distortions of about 68% for the panel dimensions under study. By contrast,
the sieve bootstrap tests attain essentially the correct level. Other intercept or slope parameter
specifications give also qualitatively similar results. For instance, using 8, = 0, m; = 6; = 0 in
(5) so that y;; and x;; are now two independent random walks, and testing for Hy : 8 = 0 gives
rejection probabilities of 65.8% (') and 4.5% (I';,). Hence, sieve bootstrap-t tests will not suggest
a significant long run relationship when it actually does not exist.

Regarding the issue of pooled or individual resampling, Table 1 illustrates that both approaches
(reported in normal and italic font, respectively) give the correct level for T = 300. One exception
is the AR case for 8; = 0.9 where the pooled resampling generally works better. This may be
because, by pooling the residuals 7;;, a larger sample is effectively used in the sieve approximation

and so the downward bias problem (for 6; near 1) is mitigated.
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The alternative bootstrap-studentized ¢ approach yields correctly sized bootstrap tests in 1(0)-
error panels as long as the autocorrelation in the errors is not strong — for 6; > 0.9 the bootstrap
tests are somewhat distorted both for pooled and individual resampling. Likewise, there are some
distortions in the context of I(1) errors. Detailed results are given in Appendix Tables A2(a,b).
This suggests that computing the bootstrap version of the (improperly studentized) t-statistic I
for each bootstrap sample is more effective than calculating the bootstrap standard error of B in

order to studentize I'. Hence, we focus on the bootstrap-t approach hereafter.

Heterogeneous slope coefficients

In the context of I(1)-error panels with heterogeneous slopes §;, the first-order differenced residuals
measure v + (8; — ) Az where vy is an AR1 or MA1 process with innovations ;4 ~ itdN (0, 1).
The AR1 process (8; — 8)Ax; is orthogonal to e and has variance (3; — 3)° 02, The residual
sequence {Ad;;} for each i = 1,..., N is therefore a realization from AR1 or ARMA(1,1) processes
with heterogeneous coeflicients and cross-section heteroskedasticity. The DGPs considered are like
those in Table 1 but allowing 8; ~ U(0.7,1.3). The empirical size of the asymptotic and bootstrap
tests is, respectively, 72% and 5.6% on average for the different DGPs considered — results are
reported in Table A3 in the Appendix. Hence, the sieve bootstrap tests generally attain the correct

nominal size in heterogeneous-slope I(1) panels also.

Non-gaussian disturbances

The empirical level of the tests when the regression errors are non-gaussian I(1) is reported in
Table 2. For the panel dimensions under consideration (N = 15, T = 300), the bootstrap tests
still perform quite well for skewed and/or leptokurtic errors. Additional simulations for T = 150

ceteris paribus produce qualitatively similar results.
[Table 2 around here]

For T' = 60, the bootstrap tests deteriorate slightly because the sieve approximation is less accu-
rate, but they still clearly outperform the asymptotic test I'. For instance, for ; = 0.9 using D,
(Student’s ¢ with 5 d.f.) errors the rejection rate of the LSDV t-test is 36.3% (I') and 3.6% (I';)
when the errors are 1(0), and 76.3% (I') and 6.7% (T';,) when the errors are I(1). For D3 (normal
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mixture) errors, the corresponding figures are 34.5% (I'), 3.5% (I';) and 78.1% (T'), 6.6% ( I';,),

respectively. The results for I(0)-error panels are quite similar (see Appendix Table A4).

Mizxed 1(0), 1(1) errors

Table 3 pertains to panels where a fraction A of equations is cointegrating (p, = 0) and the
remainder are non-cointegrating (p, = 1). As noted earlier, heterogeneous slopes induce I(1) errors
in all equations irrespective of p,, so 8, = 1 is adopted for these simulations. We consider A\ =

{0.05,0.20,0.50,0.80,0.95} alongside the AR and MA parameters 6; = {0,0.5,0.9} and ¥, = 0.5.
[Table 3 around here]

One remarkable result in the éid-error panel case (f; = 0) is the size distortion of the conventional
t-test (T') at around 70% for all X\. Of particular interest is its large size distortion that appears for
A = 0.95, when virtually all the equations (14 out of 15) are cointegrating. This contrasts sharply
with the correct size of I at 5.7% (POLS) and 4.6% (LSDV) in the counterpart case (Table 1)
where all equations are cointegrating, A = 1. As Table 3 illustrates, correct inferences can still be

made through a sieve-bootstrap when the panel errors are a mix of I(1) and I(0) processes.

Negatively correlated MA errors

We now consider the problematic case where the noise in (5) has a negatively correlated MA1
component 1, = {—0.5,—0.8}. To conserve space we focus on the LSDV estimator and compare
the T and I';, tests. We consider as fraction of I(1) errors A = {0.00,0.20,0.50,0.80,0.95} and
explore the effects that the choice of the sieve order p; has on the I'; test. On one hand, we fix the
latter at p; = {1,3,5,8, pr} with pr = |4log,,T]. On the other, we select p; among {0,1,2, ..., pr}
using either either the AIC, SBC or a sequential 0.05-level testing down approach.

The true sampling variability of B is underestimated by the HAC formulae when the noise (of
at least one equation) is I(1), irrespective of the MA dependence and so the asymptotic test T" is
severely oversized at around 68%. For A = 0.5 and 1; = —0.5, the empirical size of I';, with sieve
order choice as indicated in parenthesis is 4.2%(1), 5.4%(8), 6.1%(pr), 6.3%(AIC), 5.5%(SBC), and
5.7%(t-test); for ¥; = —0.8, the results are 2.0%(1), 4.6%(8), 5.4%(pr), 5.3%(AIC), 3.7%(SBC)
and 4.7%(t-test). Unsurprisingly, for ¢, = —0.8 the PSB test appears rather conservative for small

p;. However, it improves as the sieve order increases in the allowed range {1,2,...,pr}. Sieve
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orders 8 < p; < pr = 10 suffice to ensure correctly sized tests. The other specifications give similar
results as detailed in Appendix Table A5. By contrast, the DSB test tends to overreject for small
p;. But again the distortions vanish as p; increases, although larger sieve orders (10 < p; < 15)

are generally needed for the DSB scheme to attain the correct level.

Choice of sieve order and sample size effects

The foregoing analysis does not reveal systematic differences between the AIC and SBC for the
choice of sieve order with one exception, the former criterion seems to be preferred over the latter in
the context of large negative MA roots. This is in agreement with Kilian (1998) who examines these
criteria in the context of bootstrapping (V)AR models and finds that the adverse consequences
of over-parameterizing an AR model for bootstrapping purposes may be less severe than those of
under-parameterizing it. The testing-down approach performs similarly to the AIC.

We analyse panels with N fixed at 15 and T = {60, 80, 100, ..., 350}, and T fixed at 150 with
N = {10,12,15,...,45}. The focus is on the challenging mixed I(1)-, I(0)-error panels (A = 0.5)
with heterogeneous dependence of AR1 type, 6; ~ iidU(0.2,0.9), or negative MA1 type, 1, ~
19dU(—0.9, —0.2); all other specifications are as in Table 3. The results in Appendix Figure A2
suggest that the error in null rejection probability of the bootstrap test is essentially insignificant

for all these (N, T) combinations. For the test T', the size distortions worsen with T" as expected.

Near unit roots and threshold unit root effects

So far we have used p; = 0 or p, = 1. The null rejection probability of the tests is now examined
for various degrees of autocorrelation (0 < p, < 1) in the regression errors. For near unit roots,
the error w;; is observationally equivalent to an I(1) process in finite samples but, since p; < 1, the
first-order differencing of u;; will result in a non-invertible MA term that will make it hard for the

sieve bootstrap to work. The plots in Figure 2 are for N =15, "= 300, ; =0, ¢, = 0 and 3, = 1.
[Figure 2 around here]

The performance of the test I' worsens dramatically as p, increases. In stark contrast, the bootstrap
(PSB) test I'; does a reasonably good job, especially for the exact I(1) case and when p; < 0.9.

However, the plots show that for 0.9 < p; <1 the test I'; is too conservative. This is because the
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order of integration d; is estimated using the ADF test whose power falls dramatically as the AR
root approaches unity. The over-differencing of u;; makes it hard for the sieve bootstrap to work.

This pitfall of the PSB scheme can be mitigated by using, instead of the ADF test, a more
powerful unit root test for which there are a number of good candidates (see Maddala and Kim,
1998). It turns out that applying the sieve approximation directly (DSB scheme) to the individual
residual sequences {i;;} without differencing works quite well. Figure 2 shows that the DSB
approach (1:‘;2) does a reasonably good job in correcting the size distortions of conventional t-tests
for near I(1)-error panels. Interestingly, the bootstrap test based on the LSDV estimator (that
exploits the within variation in the data) appears superior to that based on the POLS estimator
(that gives equal weight to the within and between variation) for p; > 0.97. The foregoing analysis
thus suggests that the DSB approach is more reliable than the PSB approach.

We now revisit the notion that (behavioral) threshold effects can make regression errors appear
nonstationary in finite samples. Figure 3 reports results for homogeneous cointegrating regressions
(8; = 1) with threshold dynamics in the error term according to the equation (10) so that p,
switches between 0.4 and 1 over time. The reported results pertain to the DSB approach. For
the POLS estimator, we also deploy a slightly modified bootstrap (denoted f‘z2M Y) where the sieve

approximation is based on the median-unbiased correction of Andrews and Chen (1994).
[Figure 3 around here]

As the width of the band-of-inaction increases with ¢, the asymptotic test I' becomes dramatically
oversized. The bootstrap test f‘z2 eliminates the size distortions. For large ¢ > 7, when the
threshold AR1 series u;; becomes observationally equivalent to a linear AR1 series with p; > 0.98,

finite-sample bias corrections notably improve the performance of the POLS-based bootstrap test.

Cross-section dependence

The Monte Carlo design includes now panels with cross-correlated errors. Two distinct setups are
considered. One is an unobserved-factor residual model (DGP1) which has been widely used in
recent years (see inter alios Pesaran, 2005; Coakley et al., 2004a, 2005). The regression distur-

bances contain an I(1) common effect, f; = fi—1 +¢€y,, €7, ~ 4dN(0, 1), and an individual-specific
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(idiosyncratic) error v;; with stationary AR (or MA) dependence as in (9). In particular, we adopt

U = Yoft + Vi, (11)

vie® = 0ivi + €y, (12)

and the innovations e;; follow a multivariate normal distribution with mean zero and covariance
matrix F(ee}) = Iny where Iy is the identity matrix. We set v, = 1 and v, ~ #dU(0.5,1.5)
to allow, respectively, for homogeneous and heterogeneous factor loadings. The latter amounts to
heterogeneous cross-section correlations. In the second setup (DGP2), the errors are generated

according to u; = w;¢+—1 + v with v = 0,154 + €;; and a non-diagonal covariance matrix

1 w w

, w 1 w
E(giey) = Qe = ,

W w 1

as in O’Connell (1998), Coakley et al. (2004a) and Chang (2004). Two levels of homogeneous
cross-correlation are used, w = {0.6,0.9}. For v;; we consider 8; = 0,6; ~ iidU(0.2,0.5), and 6; ~
19dU(0.7,0.9). All other specifications are as in the experiments of Table 1. The simulations are for
N, T = {(15,300), (20,40)} which typify monthly and annual macroeconomic panels, respectively.

In order to control for the cross-section dependence, one can apply LSDV (or POLS) to an aug-
mented regression where the cross-sectional averages ¢; and Z; are included as additional regressors
to proxy the unobserved common effect — this is the factor-augmented approach, also known as
the common correlated effects (CCE) estimator, proposed by Pesaran (2005) and further analysed
by Kapetanios et al.(2006). The rationale is as follows. Let y;; = B'% +wig, wip = ¢;ft +v;; where
the idiosyncratic innovations v;; are I(0) but possibly autocorrelated, and the unobserved common
factors f; are I(d), d € {0,1}. Averaging over units gives 4, — 3'%; = ;ﬁ;ft + 4, and the observables
g and X; together are shown to form a sufficient basis for the consistent (large N) estimation of
f;. Accordingly, we construct two t-statistics, one is based on the baseline regression (1) and the
other on the factor-augmented counterpart. For each of these two statistics, we conduct inferences
based on the standard normal quantiles (I" and I'p, respectively) and the DSB distribution (f‘zlc
and f‘gz’ 7). The bootstrap approach fZQ,C is as explained in Section 3.1, with a slight modifica-
tion so that the cross-correlation structure is preserved. We now resample rows from the centered

and scaled T' x N residual matrix &;;, namely, each draw is a 1 x N vector ¢ = (€3;,...,e8¢)
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as in Chang (2004) and Cerrato and Sarantis (2007). The factor-augmented bootstrap approach
(]."227 ) does not require the latter because it deals with the cross-section dependence by estimat-
ing B through the factor-augmented regression. So it only departs from the approach described in
Section 3.1 in that the bootstrap samples are now obtained through the ‘augmented’ resampling
scheme yf, = fi; + Boxl, + 0177 + 022t + vf, (instead of y, = fi; + Bozi + ul,), where fi;, 01,05
are the constrained LSDV parameter estimates obtained from the observed data and z}, = z,
¥ = yir and T} = x;; are fixed across replications. In both cases, f‘zz‘ ¢ and fz% , the direct sieve
bootstrap approximation (DSB) is based on the median-unbiased approach of Andrews and Chen
(1994) which is particularly important for the small-T" panel case.

Table 4 reports the rejection frequencies of the different ¢-tests, all of them based on the LSDV

estimator B and HAC Newey-West covariance matrix.
[Table 4 around here]

The test I" is seriously oversized both in DGP1 and DGP2, as expected. The test I'r works quite
well in DGP1 (albeit with some small-sample size distortions) with two exceptions. One is when
the idiosyncratic component v;; is strongly autocorrelated. The other is when the factor loadings
are heterogeneous in which case the LSDV residuals measure (y—+;) f;+v; which is I(1) and so the
robust HAC standard errors underestimate the true residual autocorrelation. The latter problem
can be easily avoided by utilizing the modified factor-augmented LSDV estimator proposed by
Pesaran (2005) which allows for heterogeneity in the slope coefficients of g; and Z; so that the
residuals measure the idiosyncratic error v;; as in the homogeneous loadings case. But the test I'p
does not work well in DGP2 where the cross-section dependence does not stem from a common

factor. Reassuringly, the two bootstrap tests essentially attain the correct nominal size.

Power analysis

So far the hypothesized 3, has been chosen to match the true long run average effect 5 = E(8;) in
the Monte Carlo DGP. To construct power curves, the discrepancy 3, — 3 is allowed to vary in a
range which is set relative to the noise-to-signal ratio in the DGP, namely, 8, — 8 = +d02 /0, with
0 varying between —0.3 and 0.3 at intervals of 0.02. For the test I', which suffers from large size
distortions, we construct an unadjusted power curve (rejection frequency at the nominal 0.05 level)

and an adjusted power curve (rejection rate at the ‘true’ 0.05 level). The ‘true’ 0.05 levels used
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are the empirical critical values taken from the corresponding size experiment. The power of the
bootstrap tests has not been size-adjusted because the previous analysis suggests that there is no
need to do so and it would have doubled the already high computational costs of these experiments.

We focus on panels with a mixture of I(1) and I(0) errors (A = 0.5), and further AR1 dependence
0; = 0.5; all other specifications are as in the size experiments reported in Table 3. Cross-section
dependence is introduced as in DGP2 above with w = 0.6. The power curves are virtually symmetric

around 3, — B = 0 so Figure 4 plots the rejection frequencies for 5, — 5 > 0 only.
[Figure 4 around here]

The DSB test (f‘z2) has essentially the same power as the size-adjusted asymptotic I' test which
is in line with theoretical results on the power of the bootstrap (see Horowitz, 2000). The curve
labelled fzz,mo corresponds to a computationally cheaper test based on B = 200 (instead of 500)
replications. The results indicate that there is a price to pay in terms of power by reducing the
number of bootstrap samples. Unsurprisingly also, the unit root pretesting required in the PSB

scheme (I';)) effects some power loss.

5 Concluding remarks

Recent theoretical studies have shown that panel estimators can provide consistent measures of a
long run average effect in the presence of unit root disturbances. This is quite relevant in empirical
applications because strongly autocorrelated disequilibrium errors can be observationally unit root
persistent in finite samples. Regression residuals with nonstationary properties can stem from
periodically collapsing price bubbles or other behavioural effects, transaction costs, lumpy costs of
adjustment or changes in government policy inter alios

This paper aims to fill two gaps in the literature. First, a bootstrap framework is provided
to facilitate inference in nonstationary panel regressions under weak assumptions about the dis-
turbances. This is important since, for instance, macroeconomic panel regressions with a mix of
observationally I(1) and I(0) errors are very common in practice and the non-standard statistical
theory depends on a nuisance parameter, the fraction of I(1) error processes. It is shown that
asymptotic t-tests for the long run average parameter in homogeneous I(0)-error panels yield re-

jection rates of about 75% at a nominal level of 5% when just one individual error term is I(1) and
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the remaining errors are white noise. To circumvent these problems, we propose a sieve bootstrap
method and consider two residual resampling schemes. One is a unit-root pretesting approach that
constructs pseudo-innovations with the I(1) property by construction. The other approach applies
the sieve approximation directly to the residuals.

Secondly, an extensive Monte Carlo analysis is provided. Panel data generating processes
with I(0) errors, I(1) errors or a mix of both are used. In the context of gaussian errors, it
is shown that the finite sample distribution of the LSDV estimator is essentially normal in the
former two cases but not in the latter. To accommodate realistic settings in our experiments, we
also include asymmetric and highly leptokurtic error distributions, near-I(1) innovations generated
from both a linear AR mechanism and a threshold AR process, I(1) innovations with a negative MA
component, and cross-section dependence. Our findings suggest that the sieve bootstrap method
yields correctly sized t-tests under a wide range of scenarios. It turns out that bootstrapping
an improperly studentized t-statistic gives more robust results than bootstrapping the long run
coefficient of interest. The pretesting-based bootstrap shows some size distortions in the near-I(1)
error case due to overdifferencing of the residuals and generally is inferior in terms of power.

The direct sieve bootstrap (together with median-unbiased corrections for the sieve approxi-
mation in small T" panels) provides correctly sized t-tests for long run average effects in a variety
of settings where the asymptotic tests are oversized. The power of the bootstrap test is reasonably
good and comparable to that of the level-adjusted asymptotic test. Alternative bootstrap methods

and refinements of the proposed approach warrant further research.
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Table 1

Empirical size: homogeneous-slope panel, LSDV estimator

I(0) errors: p, =0

I(1) errors: p, =1

(AR) (MA) T I} I;, T T; ]
0, 0, AIC SBC AIC SBC AIC SBC AIC SBC
0.0 — 16 46 49 49 46 663 6.1 51 56 54
56 55 54 59 50 7.0 55 6.9
0.5 — 89 56 64 57 59 68.6 58 50 62 50
50 51 4.8 5.1 54 52 54 4.9
0.9 — 349 42 47 41 52 705 62 51 64 59
3.2 32 85 30 50 53 44 5.6
— 0.5 58 51 64 52 69 69.1 47 53 54 54
51 59 46 6.2 48 4.8 52 44
— 0.9 57 49 70 54 7.0 69.9 48 54 49 54
59 41 55 4.2 49 58 52 58
U(0.3,0.5) — 75 46 63 41 58 65.6 55 50 51 48
47 51 38 57 47 56 56 6.1
U(0.2,0.9) — 164 66 90 65 8.7 67.9 46 43 46 5.0
47 51 49 5.0 5.8 45 57 4.8
— U(0.3,0.5) 59 53 60 56 5.7 69.9 41 60 45 5.7
6.1 66 59 6.3 61 58 64 6.2
— U(0.2,0.9) 62 49 64 53 6.6 701 38 48 38 45
56 62 57 6.2 59 42 60 4.9

5% level tests. I is based on N(0,1) quantiles. I'; (T';)) is the gaussian (nonparametric) bootstrap

test. d; is estimated from ;¢ using the ADF test. The first and second row entries pertain to the

sampling schemes where eq. (4) is estimated for 0,y = Adi ;¢ by pooled OLS and individual OLS,
resp. The sieve order is selected using AIC or SBC with pr = [4logyo T']. N =15, T =300.



Table 2

Empirical size: non Gaussian I(1)-error panel

POLS LSDV
(AR)  (MA) Tpdf T T, : T, :
0; Y, AIC SBC AIC SBC AIC SBC AIC SBC
0.5 — D1 69.8 6.4 5.3 6.6 5.3 68.5 5.6 5.5 5.5 5.1
D2 70.1 5.2 6.1 5.3 6.2 68.2 6.1 4.6 5.8 4.6
D3 68.9 6.0 5.1 5.6 5.6 68.6 6.1 5.2 6.1 5.2
0.9 — D1 70.7 6.8 5.9 7.4 5.6 69.1 6.3 5.9 6.3 6.0
D2 67.1 5.4 6.8 5.8 6.5 67.3 6.1 4.3 5.9 4.0
D3 71.3 5.3 4.2 5.5 4.6 70.8 6.1 6.1 6.4 6.3
— 0.5 D1 69.9 5.3 6.1 6.1 6.7 66.8 5.1 5.6 5.3 6.1
D2 67.9 7.5 4.3 7.3 4.4 649 5.3 4.8 5.8 4.7
D3 69.6 5.9 7.3 6.1 7.3 66.1 6.8 6.3 6.8 6.2
— 0.9 D1 72.8 5.9 5.4 6.2 5.4 70.7 5.3 4.6 4.9 4.7
D2 69.4 5.8 6.6 5.2 6.7 66.3 5.6 5.1 4.8 5.1
D3 69.6 6.1 5.5 6.4 5.7 68.6 5.4 4.7 5.4 4.6
U(0.3,0.5) — D1 71.6 5.7 5.0 5.9 5.7 70.0 6.1 5.4 6.1 5.0
D2 69.9 5.6 6.2 5.7 6.0 68.3 4.2 4.9 4.7 4.4
D3 71.8 5.8 4.8 6.6 4.5 71.2 4.9 6.1 4.7 6.0
U(0.2,0.9) — D1 74.8 5.5 6.7 5.4 6.5 69.7 5.0 5.4 5.3 5.1
D2 75.1 4.6 5.5 4.8 5.1 71.5 5.3 4.6 5.1 5.4
D3 74.3 5.4 6.1 5.8 6.3 71.1 4.6 4.6 5.1 4.4
— U(0.3,0.5) DI 70.8 4.3 5.2 4.8 5.2 68.1 5.2 5.8 5.4 6.1
D2 70.1 5.5 4.7 6.0 5.4 69.7 3.0 5.7 3.2 5.9
D3 69.8 4.7 5.2 4.1 5.6 68.2 6.4 6.3 5.9 5.8
— U(0.2,0.9) DI 69.6 4.7 4.7 4.3 4.8 67.9 5.2 6.1 6.0 6.0
D2 70.2 5.1 4.2 5.7 4.3 68.8 6.5 5.3 6.9 5.0
D3 717 5.5 6.0 5.5 5.9 67.3 5.3 4.6 5.8 5.0

For I'y "and I'; eq. (4) is fitted by single-equation OLS. D1, D2 and D3 are a t5, a shifted X2 and a
normal mixture 0.8N(0,1)&N(0,16), respectively. 8, = 1 for all 4. N =15 and T" =300.



Table 3

Empirical size: mixed I(1)-, I(0)-error panel

POLS LSDV
(AR) (MA) T n T T, :
Aoy 0 W AIC SBC AIC SBC AIC SBC AIC SBC
0.05 00  — 634 72 58 67 59 667 48 42 45 47

0.5 — 726 54 58 52 6.0 700 47 55 50 58
0.9 707 52 67 60 6.5 68.6 54 51 52 5.9
— 05 69.9 50 64 47 63 682 6.1 55 64 52
020 00  — 729 71 62 69 6.1 69.1 47 54 58 58
05— 718 60 50 61 48 69.0 61 52 63 5.0
0.9 752 61 62 61 65 712 62 54 56 6.1
— 05 735 49 50 43 5.2 706 57 62 59 63
0.50 00  — 721 57 67 58 7.0 69.3 53 42 56 45
05— 763 62 47 59 47 727 48 57 48 58
0.9  — 737 63 63 65 59 710 68 7.0 67 7.0
— 05 69.1 62 62 65 65 662 49 61 46 62
0.80 0.0  — 786 73 75 68 82 716 48 65 52 58
05— 735 74 61 70 64 69.9 54 55 53 58
0.9 734 85 71 82 74 712 64 60 59 60
— 05 767 63 66 66 6.9 721 56 49 56 5.0
0.95 00  — 754 77 80 85 86 69.0 61 53 62 62
05— 737 93 76 98 7.0 672 69 65 68 7.1
0.9 8.1 55 62 55 6.1 752 51 55 51 53
— 05 788 40 71 41 74 715 76 50 75 52

A1(0) is the fraction of I(0)-error equations, p; = 0 for izl,...,LN)\I(O)J and p; = 1 elsewhere.
|-] denotes the closest integer. For I'; ~and I'j eq. (4) is estimated individually by OLS for

each i=1,2,...,N. The sieve order is chosen using AIC or SBC with pr = [41og,, T'|.



Table 4
Empirical size: non-stationary error panel with cross-section dependence

A. Unobserved factor structure (DGP1)

factor

loads (AR) N =15,T =300 N =20,T =40
oadings
" 0, I Tr T,o Thp, T Tp T3 Tp,
1 0 57.6 6.0 4.6 5.2 22.7 8.6 6.1 5.4
U(0.3,0.5) 58.2 94 4.8 4.5 23.4 10.6 4.6 5.0
U(0.7,0.9) 54.2  23.6 4.5 5.0 23.8 21.2 4.0 4.9
U(0.5,1.5) 0 54.9 56.9 4.0 4.2 23.3 21.7 6.4 4.4
U(0.3,0.5) 94.3 53.9 5.0 6.1 21.7 18.7 5.1 5.3
U(0.7,0.9) 55.2  50.2 6.5 4.8 247 251 4.7 6.2

B. Non-spherical idiosyncratic disturbances (DGP2)

pairwise

. (AR) N =15,T =300 N =20,T =40
correlation
w 0; r 'y TI'p,c TIpr r 'y TIp,c TIpr
0.6 0 59.2 664 54 6.1 26.7 327 6.7 5.4
U(0.3,0.5) 58.2 673 64 5.0 28.6 344 5.3 6.9
U(0.7,0.9) 60.2 66.2 4.9 4.8 329 362 6.2 5.0
0.9 0 64.8 649 6.3 5.7 31.8 325 4.2 4.9
U(0.3,0.5) 64.1 66.8 5.1 6.2 314 338 39 5.9
U(0.7,0.9) 65.6 65.7 6.2 4.5 33.0 372 438 5.6
Results based on LSDV estimation of (1) or its factor-augmented version, denoted F. The test
fz%c controls for cross-section dependence by resampling N X 1 vectors (£1;,&5;, ..., Ene)’

from the centered and scaled residual matrix €. FZQ p is the factor-augmented bootstrap test.



