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“Waiting for Carnot”: Information and complexity

David Bawden and Lyn Robinson
Centre for Information Science
City University London

Consequently: he who wants to have right without wrong,
Order without disorder,

Does not understand the principles

Of heaven and earth.

He does not know how

Things hang together

Chuang Tzu, Great and small.

Thomas Merton (ed). The way of Chuang Tzu. New York NY: New Directions,
1965, p. 133.

Water is bland; ice crystals are beautiful
Frank Close, The Void, Oxford: Oxford University Press, 2007, p. 128.

Abstract

The relationship between information and complexity is analysed, by way of a
detailed literature analysis. Complexity is a multi-faceted concept, with no single
agreed definition. There are numerous approaches to defining and measuring
complexity and organisation, all involving the idea of information. Conceptions of
complexity, order, organization and ‘interesting order’ are inextricably intertwined
with those of information. Shannon’s formalism captures information’s
unpredictable creative contributions to organized complexity; a full understanding of
information’s relation to structure and order is still lacking. Conceptual
investigations of this topic should enrich the theoretical basis of the information
science discipline, and create fruitful links with other disciplines which study the
concepts of information and complexity.

Introduction

Complexity is a seemingly intuitively obvious concept, which is very difficult to define
and understand. Batty, Morphet, Masucci, and Stanilov (2014, p. 364) roundly
declare that “complexity, by its very nature is an impossible term to define ...
complex systems defy definition”. Yet, although the concept of complexity nay be
difficult to define with precision, it is nonetheless clear that it is closely related to —
indeed, intertwined with —the concept of information. The purpose of this paper is
to examine this relationship by means of a detailed analysis of the pertinent
literature. In doing so, we shall make extensive use of quotations from the original
texts in order to ensure that the - often somewhat subtle - points made by their



authors are not misinterpreted through the diluting medium of paraphrase; for a
justification of this approach, see Bawden and Robinson (2015).

Analysis of the information-complexity relationship has often invoked the concept of
entropy. In an earlier paper (Bawden and Robinson, 2015), we examined the
information-entropy relation, noting in particular the different ways in which
information had been related to structure and disorder, since the early days of
information theory. For Claude Shannon, information was equivalent to entropy, and
so was associated with randomness, uncertainty, and disorder (Shannon and
Weaver, 1949). For Norbert Wiener (1948) it was the opposite, or negative, of
entropy, and so was associated with order and structure. This polarity in views on
the nature of information, first clearly identified and discussed in an information
science context by Qvortrup (1993), is relevant to the complexity issue, but
insufficient to resolve it. Information is associated with both pattern and
randomness, Shannon’s perspective capturing unpredictable and creative aspects,
Wiener’s concept capturing aspects of structured organization (Bawden and
Robinson, 2015). Both perspectives are needed as a basis for analysis of the links
between information and complexity, although all the information-based
approaches to complexity discussed below have taken the Shannon perspective by
default; this may be seen as one reason for their limitations.

The idea that systems rich in entropy, and in information, may experience self-
organisation, and the growth of interesting complexity, is generally considered to
have been first clearly stated by Prigogine and Stengers (1984), and later developed
by writers such as Hayles (1990) and Goonatilake (1991). Most studies of the
detailed nature of complexity has been carried out within the physical sciences,
where links between complexity, entropy and information have been recognized for
over two decades (see, for example, Zurek, 1990). But the relevance of the link
between these concepts is by no means restricted to the physics domain. For
example, Luciano Floridi makes use of them in his formulation of information ethics
(Floridi, 2013). He argues, as a fundamental ethical basis, that entropy should be
minimized in the infosphere, using entropy here to mean the destruction or
corruption of entities understood as complex informational objects. When we reflect
how different this usage of the concepts is from that of the study of objective,
physical, information, and that scholars such as Brier (2010, 2013) have seen them
relevant to the study of information in all its manifestations, we may feel justified in
proposing that these issues are relevant to information science across the whole
scope of the discipline.

Although we believe that analyses of this kind will ultimately have a practical value in
contributing to the design of better information systems, this paper is an
unapologetically theoretical and conceptual offering. We believe that the
information sciences, no less than any other academic discipline, should seek to
understand their foundational concepts as fully as possible, and how these interact
with similar concepts in other disciplines.

Order, complexity, information



Shannon’s equation yields a measure of information associated with uncertainty,
unpredictability, randomness and disorder; Wiener’s conception of information,
calculated in essentially the same way, is associated with the opposite; with
predictability and order. Neither of these can adequately capture the ideas of
complexity and structure (Bawden and Robinson, 2015). This is a reflection of a
fundamental difference between the ideas of simple ‘order’, on the one hand, and
‘organisation’ or ‘complexity’ on the other (Davies, 1987; Wicken, 1987A; Schneider
and Sagan, 2005; Bawden. 2007). “Order and complexity”, wrote Wicken (1987A, p.
43), “are cognates — carved from the same conceptual space, yet opposite in
meaning”. Order implies a simple, predictable structure; complexity an intricate
arrangement of interacting entities. Entropy, or Shannon information, is a measure
of the information needed to give a complete, ordered, description of any system;
complexity is a measure of the information needed to specify the relationships
between the elements of organized systems.

Both order and organization are associated with information, but in a rather
different way: order, and entropy, may be viewed as a measure of the quantity of
information, and organisation as a measure of its quality. The latter becomes
important when we deal with complex systems, involving many interactions among
their constituent elements, where, informally stated, the whole becomes more than
the sum of the parts, and emergent properties become significant. However, as
West (2013, p. 14) puts it “The trouble is, we don't have a unified, conceptual
framework for addressing questions of complexity. We don't know what kind of data
we need, nor how much, or what critical questions we should be asking.”; for
technical examination of this point, see Badii and Politi (1997), Feldman and
Crutchfield (1998), Ellis (2004), Mitchell (2009), Zuchowski (2012), Gershenson and
Fernandez (2012), Gao, Liu, Zhang, Hu and Cao (2013), and Theurer (2014), and for a
gentler introduction see Holland (2014).

(Ruelle 1991, pp. 136-137) sums it up like this: “An entity is complex if it embodies
information that is hard to get. We have not said what ‘hard to get’ means, and
therefore our definition of complexity has no sharp meaning. ... . As a consequence,
there will be not one but several definitions of complexity, depending on the
background in which we place ourselves.” Theurer (2014, p. 283) comments that
“complexity can be measured in many ways ... . A system that is less complex on one
measure may turn out to be more so on another.” Theurer suggests that the
complexity of any system may be assessed in a number of general ways: by number
of parts of the system; by degree of interactivity between parts; by the difficulty of
predicting the system’s behaviour from a knowledge of the properties of its parts; by
computational complexity; by the extent to which to which it demonstrates
emergent properties; and by the degree of non-linear behaviour exhibited.

In order to examine the relation between information and the slippery and multi-
faceted concept of complexity, we can begin by noting that there is one aspect in
which complexity, in whatever way it may be defined, is similar to entropy, and one
in which it is very different.



The similarity is that there is a subjective element to complexity, as there is to
entropy; its value changes as our knowledge of a system changes. As Simon (1962, p.
481) writes, “how complex or simple a structure is depends critically upon the way
we describe it. Most of the complex structures found in the world are enormously
redundant, and we can use this redundancy to simplify their description. But to use
it, to achieve the simplification, we must find the right representation.” And, as
Simon points out, if structures in the world are not complex in a way that we find
natural, e.g. in the form of a hierarchy, then we may not be able to understand and
describe them, nor even necessarily recognize them as complex. Nor can there be a
simple relation between the information available about a system and its perceived
complexity; as we gain more information about a system, we may perceive it to be
more organized and complex, or less so.

The difference is essentially the same as the distinction between entropy and
organization (Bawden and Robinson, 2015). Complexity, like organization but unlike
entropy, is not an extensive additive property. If we measure the physical entropy of
a system, say a container of mixed gases, then if we add another identical container
then the entropy doubles. If we have a complex object —a watch, a Siamese cat —
then it will have a certain complexity; if we have five watches or cats, it certainly
does not seem sensible to say we have five times the complexity. With some
measures of complexity, such as logical depth, which we will introduce later, the
amount of complexity in five items is not five times that of the original, but the
original plus an amount to allow for the complexity of the production of the copies
(Lloyd and Pagels 1988, p. 208; Crutchfield and Shalizi, 1999). In general, however,
there is no clear relation between complexity and number of complex items.

Shannon’s formalism is generally accepted as the appropriate metric for the ‘order’
sense of information, or entropy, a measure of the amount of information in a
message or physical system, abstracted from any context and meaning-free, and
reaching its maximum in a random set of symbols (Bawden and Robinson, 2015). A
variety of approaches to defining organization and complexity, taking these concepts
as essentially similar, if not synonymous, in a quantitative and objective way has
been proposed; see Gell-Mann (1995A) for a brief introduction, Sporns (2007) and
Mitchell (2009) for overviews, and McShea and Brandon (2010) for a distinction, in
the biological realm, between what they term “colloquial complexity” and “pure
complexity”, the latter based on counts of the number and diversity of the elements
of a system. Some complexity measures are formally defined, others are not, and it
remains a challenge to find the most useful. Indeed there is still debate as to
whether complexity is a concept more closely associated, in logical terms, with
objects or processes; some analogy can be seen with the debates as to whether
information is best regarded as a thing or as a process (Buckland, 1991; Case, 2012).

And indeed, conceptions of complexity are very often associated with information,
particularly mutual information, the amount of information shared between random
variables, correlating their variability and measuring the amount which knowing one
tells us about the other (Furner, 2014, pp. 154-155). Those who study complex
systems often use the concept of information to characterize and measure order and



disorder, complexity and simplicity (Mitchell 2009). Cohen (2006, p. 1218) expresses
it straightforwardly: “complex systems sense, store, and deploy more information
than do simple systems”. The economist Eric Beinhocker (2006, p. 12) writes that
“evolution can perform its tricks not just in the ‘substrate’ of DNA but in any system
that has the right information processing and information storage characteristics.”
The physicist Murray Gell-Mann (1995B, p. 21) said of complex adaptive systems that
“although they differ widely in their physical attributes, they resemble one another
in the way they handle information. That common feature is perhaps the best
starting point for exploring how they operate”. Gell-Mann and Lloyd (1996) similarly
regard entropy, Shannon information and various measures of complexity as all
being ‘information measures’. Tegmark (2014, p. 292) gives a nuanced account of
their inter-relations:

“Whereas the complexity of an object measures how complicated it is to
describe, its information content [mutual information between the object
and the rest of the world] measures the extent to which it describes the rest
of the world. In other words, information is a measure of how much meaning
complexity has. If you fill your hard drive with random numbers, then it
contains no information about the outside world, but if you fill it with history
books or with movie clips of your family, then it does.”

It is worth remembering that those who have studied this topic are generally not
interested in all complexity, but in organized complexity which is interesting and
meaningful, in the usual sense of being comprehended by, and conveying meaning
to, a human recipient. Here, there is a necessary extension of the scope of the
concept of quantitative objective information, regarded as free of meaning in
Shannon’s original conception. As long ago as 1948, Warren Weaver distinguished
between unorganized and organized complexity. The former is seen in situations
with many variables, and where each of the variables has an individual erratic and
unpredicable behaviour, but where the system as a whole has orderly statistical
properties; these are precisely the situations analysed by statistical mechanics, using
concepts of entropy and Shannon information. The latter is seen in situations
intermediate between disorganized complexity and the simplicity of a small number
of deterministic variables, and where there is regularity, meaningful interaction
between components and “a sizable number of factors which are interrelated into
an organic whole” (Weaver, 1948, p. 539).

In 2001, Seth Lloyd produced what he described as a “non-exhaustive” list of
complexity measures then extant, arranged by three dimensions along which
complexity can be measured: how hard is a system to describe?; how hard is it to
create?; and what is its degree of organization? The list includes over 40 measures;
many are based on information theoretic considerations, although there are others,
for example simple — the size of the system, i.e. the number of components that it
encompasses — or complicated — e.g. its fractal nature, based on concepts from
dynamic systems theory.



So, how can we understand and measure complexity, focusing on measures
involving information? We consider below some examples of these measures,
though by no means all of those which have been suggested.

Algorithmic information content

We could simply use Shannon entropy, or its negative, as a measure of complexity;
Batty, Morphet, Masucci, and Stanilov (2014), for example, use this measure for the
complexity of spatial geographic systems, such as cities. Or we could, as Gatlin
(1972) and Layzer (1977) did, use the difference between maximum possible entropy
and observed entropy, denoting this difference as ‘information’ or ‘organisation’.

But to apply Shannon’s formalism in this way, we first have to express whatever
system we are examining in the form of a message, which may be a forced analogy.
Even then, we will find that these measure equate greatest complexity with greatest
randomness. This does not seem to make sense, since one of the things that makes
at least some interesting things complex is precisely that they are not random, but
have evolved or been created to be useful or beautiful (Bawden and Robinson,
2015). This view has been expressed clearly by several authors, for example:

“The most complex entities are not the most ordered or random ones but
somewhere in between. Simple Shannon entropy doesn’t capture our
intuitive concept of complexity.” (Mitchell, 2009, p. 98)

“Dynamical systems range in a continuum from completely ordered, regular
systems like the arrangement of carbon atoms in a diamond crystal to
completely disordered, chaotic systems like molecules in a gas. The intuitive
notion of complexity ... is that complex systems lies somewhere in the
continuum between order and chaos. Polymers, cells, brains and chickens are
all structurally complex — they are neither wholly ordered or wholly
disordered. Any reasonable measure of complexity should therefore vanish
for the extremes of complete order or disorder and not vanish for the
structurally intricate systems between these extremes” (Lloyd and Pagels,
1988, p. 187).

One interesting and relevant extension of Shannon’s formalism is algorithmic
information content (AIC), devised independently by Gregory Chaitin and by Andrei
Kolmogorov (Gleick, 2011). This assesses a message, or other set of information,
according to the length of the shortest algorithm which can reproduce it (formally,
to ensure consistency, this is taken to mean a program for a universal Turing
machine in binary code). When the algorithm is short, i.e. AIC is low, the message is
simple and ordered and contains little information (in the Shannon sense); when it is
long, the message is complex and random, and information-rich. This measure
formalises the ideas that a simple situation is easy to describe, needing only a little
information for a complete description, while a complex situation is hard to
describe, needing a lot of information to achieve a complete account, and that the
amount of information in a system can be quantified by the length of its most
concise description (Gell-Mann and Lloyd, 1996). This idea had been clearly stated by



Simon (1962, p. 478) decades earlier: “If a complex structure is completely
unredundant — if no aspect of its structure can be inferred from any other — then it is
its own simplest description. We can exhibit it, but we cannot describe it by a
simpler structure." A wide survey of the applications of algorithmic complexity is
given by Burgin (2010, pp. 364-372).

Unlike Shannon’s information, AIC does not deal with probabilities over an ensemble
of messages, but is a property of individual messages. If the message is part of an
ensemble, however, the average AIC of the messages is closely related to the
Shannon measure (Gell-Mann and Lloyd, 1996).

Wicken (1987B) commends AIC on the grounds that what Shannon’s formula
measures is the complexity of structural relations, that ‘complexity’ is a better term
than ‘entropy’, and that Chaitin’s formalism makes clear that Shannon information is
related to this kind of complexity. However, “like entropy, algorithmic information
content assigns higher information content to random objects than ones we would
intuitively consider to be complex” (Mitchell, 2009, p. 98). Any random sequence of
letters of the Latin alphabet will have a higher algorithmic content than will any of
Shakespeare’s plays. The algorithmic definition of complexity is at root a definition of
randomness (Lloyd and Pagels, 1988). As Deacon and Koutroufinis (2014, pp. 407-
408) put it, “This understanding of complexity therefore produces a paradoxical
problem in that it effectively treats a maximally disordered system and the random
string of characters that describes it as more complex than ones that exhibit
interesting and/or unprecedented properties, such as being alive or being conscious.
Intuition suggests instead that a thoroughly random and maximally unpredictable,
i.e. maximally incomprehensible, sequence is simple in its organization”.

This may be illustrated by an architectural example, given by Smolin (2013) and
extended by Bawden and Robinson (2015). We may compare Frank Gehry’s
Guggenheim Museum in Bilbao, a building whose outer surface is composed of
individual elements, each unique, so that each element must go into a specific place,
with Battersea Power Station in London, the largest brick building in Europe, with
over 60 million bricks, whose structure is unaffected if any sets of particular bricks
are inter-changed. According to Shannon's information theory, the brick building
would possess a higher information content, whereas in Wiener's interpretation it
would have a lower information content (Bawden and Robinson, 2015). Extending
this further, we can say that the Gehry building has greater AIC than Battersea
Power Station, because the instructions given to its builders must necessarily be
more detailed and hence extensive. Greater AIC is generally understood as more
randomness, but the Gehry building is anything but random, in the usual sense of
the word. Rather it looks complicated, irregular, and unstructured, while the power
station looks simple, uniform, and structured; this is the aspect measured by their
respective AIC.

AIC gives a measure of complexity associated with the amount of Shannon
information. It is however a rather limited one, which Gell-Mann characterizes as
“crude complexity ... [which] does not correspond to what is meant by complexity in



most situations ... to define effective complexity, one needs something quite
different from a quantity that achieves its maximum in random strings” (Gell-Mann,
19958, p. 50). This, and similar measures, differs from entropy, in that any
conception of entropy, as we have seen deals with sets of states, while AIC can be
measured for a single state.

Before considering what these might be, we should note one particularly relevant
application of AIC. Zurek (1989A, 1989B) represented the physical entropy of a
system as the sum of the missing information, calculated by Shannon’s formula, and
the AIC of a bit string representing the available data about the system. By virtue of
this insight, which was further developed by others (Gell-Mann and Lloyd, 1996),
Zurek is believed by many commentators to have finally solved the problem of
Maxwell’s Demon, and hence the problem of subjectivity of entropy (Leff and Rex,
1990; Leff and Rex, 2002; Bawden and Robinson, 2015). However, there is continuing
dissent as to whether information theoretic arguments have indeed solved the
problem of the Demon; see, for example, Norton (2013). The contribution of AIC to
entropy is tiny in comparison to that of the Shannon information (of course, if there
were total knowledge of every microscopic aspect of the system, the entropy due to
missing information would be nil), but this would seem to finally confirm the status
of information as a constituent of the physical universe (Bawden and Robinson,
2013). In general, the contribution of what we might call ‘intellectual information’ is
very small, compared with physical entropy: compressing a mole [a standard
measure of chemical quantity] of gas to half its original volume decreases our
ignorance by 107 bits, a far larger change in entropy than that produced by
memorizing all the books ever written (Sethna, 2006, p. 85). This illustrates clearly
the meaning-free (again in the usual sense of failing to convey meaning to a human
recipient) nature of information entropy, and its inability to characterize interesting
information.

So what measure might characterize ‘interesting’ information? Shannon’s
information entropy and AIC both distinguish clearly the opposite poles of order,
repetition, and certainty, and of disorder, randomness, and uncertainty, whether in
the context of a message, a physical system, or the whole universe. But both, these
opposite poles, as we have seen, embody simplicity; complex interesting things
happen in the intermediate regions, in what Baranger (2001) characterizes as an
interplay between chaos and non-chaos. The idea that interesting things, organized
complexity, happen at the interface between order and chaos is seen in many
contexts, from art to science. This was Erwin Schrodinger’s insight when he
suggested an aperiodic crystal as the carrier of information in living systems
(Schrodinger, 1944).

Ruelle (2007, p. 127) expresses this dual nature of interesting information
particularly clearly, in the context of mathematics:

“I'think that the beauty of mathematics lies in uncovering the hidden
simplicity and complexity that coexist in the rigid logical framework that the
subject imposes. Of course, the interplay and tension between simplicity and



complexity are an element of art and beauty also outside of mathematics.
Indeed, the beauty that we find in mathematics must be related to the
beauty that our human nature sees elsewhere. And the fact that we are
attracted by both simplicity and complexity, two contradictory concepts,
befits our illogical human nature. But the remarkable thing here is that the
shock of simplicity and complexity is intrinsic to mathematics; it is not a
human construction. One may say that this is why mathematics is beautiful: it
naturally embodies the simple and the complex that we are yearning for.”

Mathematicians, says Ruelle, look not merely for correct statements, logically
derived from axioms, but for interesting results: “These interesting results, or
theorems, organize themselves into meaningful and natural structures, and one may
say that the object of mathematics is to find and study these structures.” (Ruelle
2007, p. 8). As examples of such structures, he names groups, algebraic varieties,
categories and functors. Similarly, Byers (2007, p. 316) argues that interesting
results in mathematics, and indeed much more generally, are to be found in regions
that are neither completely ordered nor completely random, but where there is
complexity that is to say, ordered randomness. Without the existence of the
phenomenon we are calling randomness, life would be boring: there would be no
evolution, no innovation, no creativity. On the other hand, a world that consisted
only of the random would be terrifying, unpredictable, chaotic with no regularities
and therefore no life.

One promising idea is to use AIC to capture the random element of complexity,
complementing it by some measure of the difficulty of creating the system at hand;
such a measure will be probabilistic, and will therefore naturally use Shannon’s
conception of information (Lloyd and Pagels, 1988). We consider this idea in the next
section.

Effective and statistical complexity

How are we to define and quantify information structures which are interesting, and
which reflect internal regularities and orders which are not merely repetitive? There
are a variety of suggestions, but as yet no agreement, on finding measures which
reach a maximum when the AIC is neither very large nor very small (Gell-Mann,
1995B; Devine, 2009; Gleick, 2011).

One such is Gell-Mann’s ‘effective complexity’, a measure related to AIC, but which
accords better than AIC with our intuitive ideas about complexity (Gell-Mann,
1995A; Gell-Mann, 1995B; Gell-Mann and Lloyd, 1996). This assumes that any given
entity is composed of a combination of regularity and randomness. The randomness
is uninteresting, so we apply the AIC formalism to the non-random parts of the
system. “The amount of information needed to describe the set of identified
regularities of an entity is that entity’s effective complexity. An information or
entropy term describing the random component can be added to the effective
complexity to yield what we call the total information” (Gell-Mann and Lloyd, 1996,
p. 45). ‘Total information’ is also referred to as ‘augmented entropy’, emphasizing
the link between the two. “Effective complexity measures knowledge, in the sense



that it quantifies the extent to which an entity is taken to be regular, non-random
and hence predicatable. The remaining features of the entity are taken to be
irregular and probabilistic.” (Gell-Mann and Lloyd, 1996, p. 49).

“To calculate the effective complexity, first one figures out the best description of
the regularities of the entity: the effective complexity is defined as the amount of
information contained in that description, or equivalently, the algorithmic
information content of the set of regularities ... The best set of regularities is the
smallest one that describes the entity in question, and that at the same time
minimizes the remaining random component of the entity” (Mitchell, 2009, p. 99).
This is an appealing idea, and Fuentes (2014), pointing out that it is a way of
measuring one of the relations between information and complexity, has applied it
to define emergent properties of complex systems.

“Effective complexity is a compelling idea, though like most of the proposed
measures of complexity, it is hard to actually measure. Critics have also pointed out
that the subjectivity of its definition remains a problem” (Mitchell, 2009, p. 99). How
do we decide what the regularities are, and what if we disagree? They will depend
on which regularities we can detect, in which of them we are interested, and how
we describe them; McAllister (2003) gives examples. Gell-Mann and Lloyd (1996)
argue that a formally ‘best’ set of regularities may be identified as that which
mimimises the effective complexity for the least value of total information. This is
certainly an objective measure for choosing between alternative regularities, but
offers no way of identifying them, or deciding which are interesting.

A different approach to assessing complexity, though still based on Shannon, is
‘statistical complexity’ (Crutchfield and Young, 1989) and the very similar ‘effective
measure complexity’ (Grassberger, 1986), both of which assess the minimum
amount of information about the past behaviour of a system which is needed to
predict its behaviour in the future, in statistical terms. These are closely related to
Shannon entropy, in that the system is regarded as a source of messages, and its
behaviour as a series of such messages. A model of the system is created so that the
set of ‘messages’ it produces is the same over time, as a statistical distribution, as
that of the actual system. The statistical complexity is then the Shannon information
content of the simplest such model which predicts the system’s behaviour. Like
effective complexity, statistical complexity is low for both highly ordered and
random systems and is high for systems in between; those that would normally be
considered as complex.

The problem with this general approach is that it is not always obvious how a system
may be represented as a message source. An alternative, or, better, complementary,
approach to defining complexity examines how difficult an object is to make;
essentially identifying its complexity with the amount of information (measured in
Shannon terms) processed in its creation. This relies on the seemingly reasonable
idea that complex things been created with some difficulty or have evolved over a
long period of trial and error. This is considered in the next section.



Logical and thermodynamic depth

One way of considering complexity in terms of creation or evolution is Bennett’s
‘logical depth’, which formally defines the complexity of an entity in terms of the
simplest Turing machine (that with the least number of states and rules) that could
produce it, when the entity is encoded in binary form (Bennett, 1990; Lloyd, 1990).
By this definition, both random numbers and ordered regular numbers are logically
shallow, the desired property. However, this approach has severe practical problems
with regard to application: “Logical depth has very nice theoretical properties that
match our intuitions, but it does not give any practical way of measuring the
complexity of any natural object of interest, since there is typically no practical way
of finding the smallest Turing machine that could have generated a given object, not
to mention determining how long that machine would take to generate it. And this
doesn’t even take into account the difficulty, in general, of describing a given object
[in binary form]” (Mitchell, 2009 p. 101).

An extension of this idea, which does not require the encoding of physical systems as
numbers, is Lloyd and Pagels’ (1988) ‘thermodynamic depth’. Based on a similar
conception to logical depth, namely that complex objects are harder to construct, it
measures the total amount of thermodynamic and informational resources required
by the physical construction process, information again understood in Shannon’s
terms (Lloyd and Pagels 1988; Lloyd 1990). This is appealing, but requires us to
know, in some detail, the process of creation. It also shares a property of entropy,
namely that its value clearly varies according to our knowledge of the situation;
something which appears simple at first glance may be revealed as complex on
closer inspection (Bawden and Robinson, 2015). In fact, this measure of complexity is
equal to the difference between coarse-grained, macroscopic, entropy, and fine-
grained entropy (Lloyd and Pagels, 1988, p. 191). It is proportional to the amount of
information, by Shannon’s measure, needed to characterise the way in which a
system came to its current state — “the amount of information shunted between the
various parts of the system in the process of constructing a particular state” (Lloyd
and Pagels 1988, p. 208) - and is therefore closely related to logical depth, and
indeed to AIC (Crutchfield and Shalizi, 1999). Other somewhat similar measures
which focus on the diversity of the physical components of a system, though still
with information as a fundamental component, include physical complexity,
predictive information, and dynamical depth (Deacon and Koutroufinis, 2014).

There are, however, other measures of complexity, starting from quite different
premises, though still related in various ways to information, which address aspects
not included by the Shannon or AIC formalisms. These are considered in the next
section.

Structural and hierarchical complexity

One such alternative measure of complexity is termed ‘incomparability’, a measure
of the degree of similarity in a set of individuals, which may be used to measure the
way in which the similarity of parts of a system change over time, and which was
initially suggested by Seitz and Kirwan (2014). They give a very simple example of
this as follows: consider a group of people throughout their lives, from birth to a



great age. As babies, and as very elderly people, they will have many aspects of life
in common; in middle age, following different careers and roles, they will be at their
most different, and hence their group will be in its most complex state.

Yet other measures of complexity consider a different expression of information, the
degree of hierarchy in the organization of a system. The idea that complexity is
associated with repeated division into sub-systems was introduced by Herbert
Simon’s famous paper of 1962, ‘The architecture of complexity’. Ellis (2004) and
Mitchell (2009) note, with examples, that many others have explored the idea of
hierarchy as a way of quantifying complexity. Hierarchy is, of course, a central
concept in several areas of LIS, such a classification, resource description and
information architecture; as examples, see Jinfang (2013), Hall, Fernando, Clough,
Soroa, Agirre and Stevenson (2014), Neelameghan (2002), and Wright, Nardini,
Aronson and Rindflesch (1999). That such a vital tool, and well-nigh universally used,
principle for organizing and representing meaningful recorded information is also an
objective measure of complexity is a further indication that complexity and
information are closely linked.

Simon introduced the idea that “that complexity frequently takes the form of
hierarchy, and that hierarchic systems have some common properties that are
independent of their specific content” (Simon 1962, p. 468). Essentially, this
amounts to the idea that complex systems have many sub-units, hierarchically
arranged, and that interactions and information exchange happen mainly within,
rather than between, sub-units. However Simon presented no quantitative formula
for measuring complexity in this way, suggesting rather that the study of complex
systems needs a ‘theory of hierarchy’.

“There are many measures of complexity ... Each of these measures captures
something about our notion of complexity but all have both theoretical and practical
limitations, and have so far rarely been useful for characterizing any real-world
systems. The diversity of measures that have been proposed indicates that the
notions of complexity that we’re trying to get at have many different interacting
dimensions and probably can’t be captured by a single measurement scale.”
(Mitchell 2009, pp. 110-111)

Universal laws of complexity may be too ambitious or too vague. Defining
complexity may be the wrong approach. Maybe complexity is the wrong word. There
is concern that “the field of complex systems will share the fate of cybernetics ... -
that is, it will pinpoint intriguing analogies among different systems without
producing a coherent and rigorous mathematical theory that explains and predicts
their behaviour” (Mitchell, 2009, p. 299). “An in-joke in [complexity science] is that
we're ‘waiting for Carnot’. Sadi Carnot was a physicist of the early nineteenth
century who originated some of the key concepts of thermodynamics. Similarly, we
are waiting for the right concepts and mathematics to be formulated to describe the
many forms of complexity we see in nature” (Mitchell, 2009, p. 302). We now go on
to consider what forms these might take, with the proviso that such ideas are still
speculative.



Beyond entropy and order

Power laws are ubiquitous in the information sciences, and in many other contexts
in the physical, biological and social sciences (Egghe, 2005; Mitzenmacher, 2004).
The physical and informational mechanisms by which they arise are still open
problems, and may have significant relations to the understanding of complexity
(Mitchell, 2009, p. 272). They are found to occur in many self-organised complex
systems.

Stuart Kauffman put forward the idea that the evolution of complex organisms is due
in part to self-organization, which may predominate over natural selection
(Kauffmann, 1993, 2000). He has argued for a “fourth law of thermodynamics”: life
has an innate tendency to become more complex, which is independent of any
tendency of natural selection. Others argue that there is no need for any ‘fourth
law’; only the extension of the second law to open systems, away from equilibrium,
in which complexity may spontaneously arise (see, for example, Schneider and
Sagan, 2005).

Such measures go beyond the entropy/information/order/disorder issue, and reflect
the realization that although such considerations are the basis for complexity and
creativity, they are not sufficient to capture it. As Kaufmann (2000, pp. 4-5) puts it,
the conception of organization which they embrace is “not covered by matter alone,
energy alone, entropy alone, or information alone”; in particular “our concepts of
entropy and its negative, Shannon’s information ... entirely miss the central issues”.
This may be seen in physics, as summarized by Ford (2103, p. 3):

“The attributes of the universe are being mixed up in a manner that is hard to
follow and our failure to grasp and retain the detail of all this is what is meant
by the growth of uncertainty.... The second law is a reflection of an
underlying imperative to mix, share and explore [and to evolve complexity,
feeding off energy flows] and the growth of entropy is our rationalization of
this complexity.”

and by Smolin (2013):
“The universe is a process for breeding novel phenomena and states of
organization, which will forever renew itself as it evolves to states of ever
higher complexity and organization” (Smolin, 2013, p. 194) ... “A universe in
equilibrium cannot be complex, because the random processes that bring it
to equilibrium destroy organization. But this does not mean that complexity
itself can be measured by the absence of entropy. To fully characterize
complexity we need notions beyond the thermodynamics of systems in
equilibrium” (Smolin, 2013, p. 202) .... “Highly complex systems cannot be in
equilibrium, because order is not random, so high entropy and high
complexity cannot coexist. Describing a system as complex does not just
mean that it has low entropy. A row of atoms sitting in a line has low
entropy, but is hardly complex. A better characterization of complexity,
invented by Julian Barbour and myself, is what we call variety: a system has



high variety if every pair of its subsystems can be distinguished from each
other by giving a minimal amount of information about how they are
connected or related to the whole. A city has high variety because you can
easily tell from looking around which corner you are on. Such conditions arise
in nature in systems far from equilibrium as a result of processes of self-
organisation” (Smolin, 2013, p.219).

The emphasis on the conflict between complexity and equilibrium is worth noting.
Complexity cannot arise, or continue, in a static state, where all elements are
balanced; it needs continual change and activity to exist. For more detail on variety
as a measure of complexity, see Barbour and Smolin (1992).

Something analogous in the limitations of the measure of order and disorder as a
useful dimension for describing a system is also observed in the realm of subjective
meaningful information, where ordered and disordered surroundings — the classic,
and often quoted examples being tidy and messy desks - both promote different,
and equally positive, behaviours (Vohs, Redden and Rahinel, 2013; Bawden and
Robinson, 2015). Tidy and messy environments exhibit complexity in different ways.

That this limitation of the order-disorder dimension is observed whether information
is regarded as subjective of objective is an important issue for those interested in
looking at links between information in the physical and social worlds. Here is an
area where the information sciences may contribute to physical sciences and vice
versa, as advocated by Furner (2014) and Robinson and Bawden (2014). What makes
‘interesting complexity’ is the relevant question, not how information relates to
entropy, order and disorder, and this may be linked with the concept of emergent
properties.

An emergent property is a property which becomes manifest only at a certain scale
or level of complexity. A well-known example in the physical world is temperature.
This can be understood informally as the measure of the amount of heat in some
physical material, or defined formally as a function of the way the atoms of the
material are distributed among available energy levels. It is meaningless to speak of
the temperature of a single atom, or a few isolated atoms. This is not to say that the
temperature of an isolated atom is impossible to measure, or has an indeterminate
value; rather that the idea is has no meaning. The property of temperature only
emerges when a sufficient number of atoms are gathered together.

Information similarly has emergent properties, when we consider the elements of
information formally, as bits as defined by Shannon, or informally, as isolated facts
or figures. A simple example is the consistency or reliability of a collection of
information, a property which cannot be possessed by an isolated item of
information, however defined. It may be objected that we might form a view of a
single fact or figure, because we are aware of the source from which it comes, and
the meaning which it is intended to impart; but then it is no longer isolated, but part
of a larger system of information and knowledge.



It may be that all interestingly complex information structures may amount to
emergent information properties and may go some way to answering one of the ‘Big
Questions’ posed by physicist John Wheeler: “what makes meaning?” (Bawden,
2008; Clayton, 2004). However, we must here add the caveat, expressed clearly by
Theurer (2014, p. 277) that “there is a broad consensus that emergence is somehow
linked with complexity. But the precise nature of that relationship is less than clear.
Some argue that emergence is a fundamental feature of complex systems. Others
argue that emergence is itself complex”. Perhaps future analyses of emergent
properties in information-rich systems may shed light on this fundamental issue.

Conclusions

Information is inextricably associated with pattern, but also with randomness
(Bawden and Robinson, 2015). We can now see clearly that there are two aspects to
the role of information in creating complexity. For the unpredictable, and arguably
creative, aspects, Shannon information, particularly as expressed in AIC, is
appropriate. For the aspects of structure and organisation, Wiener’s negative
entropy concept is too simplistic to be appropriate. We need a better way of
understanding and formalising this face of information to capture the structural
aspects of the relation between information and complexity.

Kauffman (1993, p. 173) suggests that eighteenth century science dealt with
organized simplicity through the Newtonian paradigm, nineteenth century science
dealt with disorganized complexity through statistical mechanics, while twentieth
century science began to deal with organized complexity. We might say that the first
ignored complexity through reductionism and a focus on the most simple cases, the
second introduced the idea of entropy, while the third is still looking for some
equivalent concept for organized complexity. It seems inevitable that this will be
associated with information.

We still do not understand complexity, nor how best to measure and compare it in
any particular system or context. In that sense, we are indeed still waiting for Carnot.
But we do know that conceptions of complexity, order, organization and ‘interesting
order’ are inextricably intertwined with those of information. Ellis (2004, p. 607) puts
it strongly: “True complexity involves vast quantities of stored information and
hierarchically organized structures that process information in a purposeful
manner”. It is not possible to discuss complexity without information concepts, nor
is it possible to discuss information, except as the simplest meaning-free Shannon
measure of communication capacity, without invoking ideas of complexity. Meaning
is inherently complex, and arguably best understood as an emergent property within
complex information-rich systems.

This relation is not a simple one. Information concepts have been powerful aids in
understanding and quantifying entropy, but that does not mean that information
and entropy are the same; nor are they opposites (Bawden and Robinson, 2015). The
same is true for the informational bases of complexity. There are profound and
subtle relations between entropy and information, objective and subjective, order
and chaos, simplicity and complexity. These may point to the possibility that there



may be underlying, and wide-reaching, information laws, applicable across many
domains of enquiry, and levels of reality, as suggested by authors such as Bawden
and Robinson (2013), Robinson and Bawden (2014), Brier (2010, 2013), and Duncan
and Semura (2007). This is surely a worthwhile focus for study over the coming
decades, in information science as much as in any other area. Such studies will
achieve the aims expressed at the outset, of strengthening the theoretical base of
the information science discipline, with the consequent prospect of advances in
practice.
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