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Abstract  
 

 

This review paper summarises the key aspects of Proton Exchange Membrane Fuel Cell (PEMFC) 

degradation that are associated with water formation, retention, accumulation, and transport 

mechanisms within the cell. Issues related to loss of active surface area of the catalyst, ionomer 

dissolution, membrane swelling, ice formation, corrosion, and contamination are also addressed and 

discussed. The impact of each of these water mechanisms on cell performance and durability was 

found to be different and to vary according to the design of the cell and its operating conditions. For 

example, the presence of liquid water within Membrane Electrode Assembly (MEA), as a result of 

water accumulation, can be detrimental if the operating temperature of the cell drops to sub-freezing. 

The volume expansion of liquid water due to ice formation can damage the morphology of different 

parts of the cell and may shorten its life-time. This can be more serious, for example, during the water 

transport mechanism where migration of Pt particles from the catalyst may take place after 

detachment from the carbon support. Furthermore, the effect of transport mechanism could be 

augmented if humid reactant gases containing impurities poison the membrane, leading to the same 

outcome as water retention or accumulation.  

 

Overall, the impact of water mechanisms can be classified as aging or catastrophic. Aging has a long-

term impact over the duration of the PEMFC life-time whereas in the catastrophic mechanism the 

impact is immediate. The conversion of cell residual water into ice at sub-freezing temperatures by 

the water retention/ accumulation mechanism and the access of poisoning contaminants through the 

water transport mechanism are considered to fall into the catastrophic category. The effect of water 

mechanisms on PEMFC degradation can be reduced or even eliminated by (a) using advanced 

materials for improving the electrical, chemical and mechanical stability of the cell components 

against deterioration, and (b) implementing effective strategies for water management in the cell.   

 

 

Keywords: PEMFC; water management; degradation; water formation and transport; flooding; ice 

formation 
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1. Introduction  
 
Fuel cells have the potential to resolve the current energy crisis of the 21

st
 century. These 

electrochemical energy devices convert the chemical energy of hydrogen fuel into electrical energy 

efficiently [1]. They offer great flexibility in their design which allows them to be in various 

configurations and to operate with a wide range of hydrocarbon fuels, features that broaden the scope 

of their applications. Furthermore, the fact that hydrogen is an abundant source gives fuel cells the 

advantage to be one of the most sustainable solutions for future energy needs.  

The commercialisation of fuel cells is mainly affected by their high cost and the lack of a hydrogen 

infrastructure. Attempts to reduce the cost of fuel cells and to develop a global hydrogen network for 

their use are still ongoing. The primary focus is to minimise the loading of Platinum (Pt) in the 

catalyst of the Membrane Electrode Assembly (MEA) which is considered to be the main contributor 

to the high cost [2]. Some studies have suggested the use of more effective techniques for Pt 

deposition onto the catalyst to reduce its loading [3-7], others concentrated on enhancing the 

polarisation performance of the cell to compensate for further Pt reduction [8-10]. Although some 

studies [11] claimed that reduction of up to 50% (e.g. 0.15 mg-Pt cm
-2

) is achievable with marginal 

compromise to the fuel cell stack efficiency (<1%), further reduction is still needed [12]. The 

manufacturing cost of fuel cell components, particularly the MEA and the Gas Diffusion Layer 

(GDL), is another significant contributor to the overall cost [2]. An approach which can make them 

more affordable is to increase the manufacturing volume of fuel cell stacks and to reduce the 

complexity of the manufacturing processes of some of their components [2]. It is expected that, as 

fuel cell stacks become commercially viable, hydrogen fuelling infrastructure will be established that 

is easily accessible for supporting the penetration of fuel cells into the market place [13-14]. This 

remains a major concern particularly for the transport sector where issues associated with hydrogen 

production [15-16], safety [17-19], on-board and off-board storage [20-22] have surfaced. 

The durability of fuel cells is another obstacle affecting their commercialisation [23]. Currently, 

PEMFCs can operate for some 2500hrs in transportation [24]. Although this timescale has doubled in 

recent years, it is still inadequate and may need further doubling (~5000hrs) in order to meet the target 

for year 2015 aimed by the US Department of Energy (DOE), the Japan’s New Energy and Industrial 

Technology Development Organisation (NEDO), and the European Hydrogen and Fuel Cell 

Technology Platform (HFP). For stationary applications, the life-time requirement for fuel cells 

extends to 40,000hrs [25]. The reason for the longer life period in this case is attributed to the fact that 

the fuel cell load is more stable than under transport conditions. The rapid change in fuel cell load, 

usually referred to as dynamic load cycling, affects significantly the degradation rate [26] and the life-

time expectancy of the cell [27]. Potential load cycling can severely affect the mechanical and 

chemical properties of the catalyst and its carbon support leading to an early cell failure [28].   
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Various durability tests were implemented by fuel cell developers in order to predict their life-time 

under practical operating conditions. Emphasis on developing accelerated life-time tests, also called 

accelerated stress tests (ASTs), has increased in recent years to prevent the prolonged test periods and 

high costs associated with real time tests. The results obtained from those accelerated tests were found 

not to be consistent and to differ considerably from the real lifetime or steady state measurements [28-

34]. This is probably expected as measurements were carried out under different operating conditions 

and for different fuel cell component designs. Furthermore, some durability measurements [35-42] 

were made of individual components rather than of the complete cell unit. Thus, the effect of 

degradation on the neighbouring components which consequently affects the life-time of the entire 

cell will not be represented. This stresses the need for standardised durability protocols which would 

ensure uniformity between these measurements.    

Degradation of PEMFC can be caused by a number of factors associated with the design of the cell 

and its operation. These factors can be classified into two types: catastrophic and aging. Catastrophic 

factors are the ones that can cause immediate or early failure in cell performance due to severe 

mechanical or chemical damage to the cell during operation. The Pinhole formation on the surface of 

the membrane, for instance, can be very damaging to the cell since it allows reactant gases to cross-

over from the anode or the cathode side leading to catalytic combustion and a sudden drop in the 

cell’s power output [43, 44]. Membrane perforations or cracks in the cell components may be the 

result of impaired design/ fabrication during preparation process, improper cell assembly, or operation 

of the cell at extremely high pressures and temperatures. Membrane poisoning is another detrimental 

factor to the lifetime of PEMFC. High concentration levels of impurities such as carbon monoxide 

(CO) in the reactant gases results in CO adsorption to the platinum surface of the catalyst which 

blocks the active hydrogen sites [45, 46].  

Aging factors represent the natural cause of degradation due to cell electrochemical reaction. Unlike 

catastrophic, their effects on depleting cell’s performance occur gradually. Three phases of voltage 

drop were identified in the aging process representing stable operation, slow decrease in cell voltage 

and rapid fall in voltage [47]. The degradation rate is a function of the operational time of the cell and 

is usually expressed as the drop in microvolt scale per hour of operation (e.g. µV/hr). This rate is 

strongly dependant on the deterioration rate of the cell’s materials such as the change in the 

mechanical and chemical properties of the catalyst including the loss in electro-catalyst surface area 

due to growth in the platinum particle size [48, 49], corrosion of platinum-based catalysts [50, 51], 

and corrosion of carbon support catalyst [52].  A comprehensive review of PEMFC components 

degradation can be found in [53].   

Although deterioration of the material is inevitable, due to the electrochemical nature of the fuel cell 

reaction, its rate can be minimised. Many attempts were made in the past few years to develop more 

robust components and operational regimes capable of withstanding harsh fuel cell conditions against 

degradation. In [54] the design of membranes was suggested to be made thicker to reduce hydrogen 
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crossover to the cathode. According to [55], sulfonated polymidie membranes exhibit better stability 

than Nafion under electric load cycling. [56] and [57] found Pt stability in the catalyst to be improved 

against dissolution by using multiwalled carbon nanotubes (CNTs) and by modifying Pt 

nanoparticlues with gold (Au) clusters. Others [58], [59] have pointed to the effect of carbon film 

coating on improving the mechanical and electrical properties of gas diffusion layers. In [60] the role 

of homogeneous coating in controlling the diffusion overvoltage from the gas diffusion layers was 

revealed. Several other studies [61-66] stressed the importance of coating for bipolar plates to prevent 

surface corrosion. [67] and [68] suggested to operate PEMFC under low relative humidity (RH) to 

minimise the loss of Pt active surface area contrary to [48] and [69] which concluded that low RH 

increases carbon corrosion in the catalyst. Others like [70] suggested reducing RH, temperature and 

hydrogen pressure during PEMFC operation to suppress the hydrogen cross-over mechanism. The 

influence of fuel and oxidant starvation [71], open circuit operation [72], excessive air bleeding [73], 

humidity cycling [74, 75], load-on/off cycling [76], and freeze/thaw cycling [77] on structural 

changes of the membrane was also demonstrated. A more detailed analysis of the effect of the 

operating conditions on the PEMFC durability can be found in [78].    

Despite all these investigations, very few studies have highlighted the role of water on the degradation 

of PEMFC. This review paper attempts to focus on the impact of (a) water production during the 

electrochemical reaction of the cell, (b) water accumulation in the channels and reaction sites and (c) 

water transport mechanisms on the electrical, mechanical, thermal and chemical/electrochemical 

deterioration of the PEMFC components. 

 

 

2. Water distribution and transport 
 
Good water distribution in PEMFC is a recipe for achieving effective water management and 

enhanced performance of the cell. The ionic conductivity of Nafion is strongly dependant upon the 

amount of water available in the membrane [79]. The water which is absorbed by the sulphonic acid 

groups (HSO3) of the membrane due to its hydrophilic characteristic enables H
+
 ions to move freely 

on weakening the attraction force between H
+
 and SO3‾ ions [80]. The more water molecules are 

present in each SO3‾ chain, the better the conductivity of H
+
 becomes. Nevertheless, too much water 

can block the reaction sites of the neighbouring electrodes preventing the access of reactant gases to 

the cell. Therefore, the amount of water in these two regions must be kept in optimum balance for cell 

performance.  

New materials and designs were developed to maintain this delicate balance. Appropriate loading of 

oxygen permeable and hydrophobic dimethyl silicone oil (DSO) [81], hygroscopic γ-alumina particles 

[82], silicon dioxide particles [83, 84] and silica-based composites [85, 86] on the catalyst layer 

showed improvement in the wettability of the membrane under low humidification conditions. Chao 
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et al [82] revealed that the addition of only 10% of γ-alumina to the anode catalyst layer is sufficient 

to increase the wettabilitty and achieve high cell performance. Although with addition of 40% of γ-

alumina the wettability increased, which was evident from the decrease in the droplets contact angle 

with the catalyst surface (109° at 10% and 0° at 40% loading), the polarisation performance of the cell 

dropped due to flooding. Similar drop in performance, because of flooding, was reported in Jung et al 

[84] et al when SiO2 was loaded to the cathode catalyst layer; they found that loading the anode with 

40 wt.% of SiO2 gives the best performance even under 0% relative humidity of the anode. 

The use of a micro porous layer (MPL) between the gas diffusion and catalyst layers proved to offer 

advantages towards flooding in PEMFC. Generally, the water saturates at the interface of the catalyst 

with GDL [87] due to a sudden change in the pore size of these mated layers [88]. As a result, a water 

film is formed at the interface region where more space is available to accommodate the accumulated 

water. To some extent, MPL acts as a barrier limiting the access of water flow to the GDL [89] while 

facilitating an effective water drainage mechanism [90]. When Yau et al [89] inserted MPL into the 

MEA design, the back diffusion of water to the anode was enhanced. Eventually, the water cross-over 

flux from the cathode to the anode was increased (e.g. 33.7% with MPL versus 27.4% without MPL at 

RHc=26% and RHa=75% respectively) indicating less passage of water to the GDL micro-channels. 

Coating MPL with hydrophobic substances such as fluorinated ethylene propylene (FEP) [91], 

polytetrafluoroethylene (PTFE) [92, 93], or with copolymer containing hydrophilic functional groups 

[94] and composite carbon black [95], has been suggested as an effective strategy for managing water 

transport within the cell. The improvement in cell polarisation [91] was clearly due to the change in 

FEP loading (e.g. 30% FEP loading by screen-printed technique) which served to expel excessive 

product water. The increase in PTFE and carbon loading tends to reduce water diffusion into the GDL 

channels [92, 96]. When the PTFE loading on MPL increased from 0 to 40wt%, the water flux across 

the GDL was reduced by almost 30% under an air flow rate of 4SLPM (0.75g/min to 0.55g/min) [92]. 

Furthermore, increasing the amount of PTFE in the MPLs makes the in-plane permeability within the 

GDL higher [93]. Different carbon materials for MPL were examined including acetylene black, 

composite carbon black (80 wt.% acetylene black + 20 wt.% black pearls 2000) and black pearls 2000 

[95]. The cell with the composite carbon material exhibited the best performance. Their polarisation 

measurements were supported by Scanning Electron Microscopy (SEM) observation of MPL 

structure. The images showed formation of bi-functional pores on the surface which facilitated the 

transport of both reactants and liquid water.  

Similarly, the change of MPL morphology with respect to the pore size diameter, layer thickness [97] 

and surface roughness [98] has an effect on water mass transfer and local transport. In [98] the 

importance of MPL surface roughness towards water transport at the interfacial region of 

MPL/catalyst (CL) was highlighted. The role of surface roughness becomes more pronounced under 

compressive conditions where interfacial gabs and macro-cracks can be formed. Their optical 

profilometry measurements revealed that cracks on the MPL surface occur at random locations and in 
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various magnitudes to the extent that they can be as deep as the entire thickness of the MPL. Figure 1 

shows a cross-sectional SEM image of a cracked MPL where a large-size channel was created across 

the layer enabling easy passage for the water flow. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 (a) Cross-sectional SEM image of MPL of SGL 10BB type h (Reproduced from [98] with permission) 

 

Under low humidification conditions when maintaining full hydration of the membrane is arduous, 

the size of MPL pores is kept minimal in order to restrict the flow of by-product water to GDL and 

avoid drying up the membrane [99]. Kitahara et al [99] were able to improve cell performance under 

0% RH of reactant air when they reduced the mean pore diameter of MPL from 10 to 1μm. At a cell 

voltage of 0.4V, the current density was almost doubled. On the contrary, to get rid of the liquid water 

under high humidity conditions, MPL’s porosity need to be increased and its thickness reduced [100]. 

The simulations presented in [100] showed that by increasing the MPL porosity from 0.2 to 0.5, the 

liquid water flux through the GDL can increase by around 9 times (e.g. at a porosity of 0.5, the flux 

was 4.505×10
−3

 kg s
−1

 m
−2

).   

More advanced designs were developed such as graded-porosity type MPL (GMPL) where porosity 

decreases from the inner layer MPL/membrane to the outer layer MPL/GDL to facilitate the transport 

of liquid water through larger pores and gas diffusion via small pores [101]. Another design was a 

GDL modified hydrophobic/hydrophilic double micro porous layer (GDBL) that contains a 

hydrophobic MPL on the surface of the GDL and a hydrophilic MPL in the middle acting as an 

internal humidifier due to its water adsorption ability [102].   

Despite all these modifications in the design of MEA, the effect of the cell operating conditions on 

water distribution and transport remains most pronounced. Operating PEMFC with high relative 
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humidity gases increases the risk of flooding in the cell [103, 104]. They showed that cathode 

channels become more flooded with liquid water as RH of reactant air increases from 26% to 66% for 

the same current density (e.g. 0.8A. cm
-2

) [103]. When they operated the cell with dry air of 26% RH, 

liquid water was visible in the channels only when the stoichiometric air flow was set to 2.5 and 

below. Meanwhile with 66% RH of air, water was still present even at higher stoichiometric values. 

Generally, flooding can be prevented by running the cell with high stoichiometric flow rates [105] or 

elevated temperatures [106, 107, 108]. Ous and Arcoumanis [107] found that flooding in the cathode 

channels can be overcome by raising the temperature from 30˚C to 60˚C under the testing conditions 

shown in Figure 2. The benefit of using heat as a mechanism for water extraction from the cell can be 

extended to the polarisation performance of the cell. Increasing the operating temperature of the cell 

enhances the rates of electrochemical kinetics of the catalyst [109-111]. In [109] an explanation was 

given of how high temperatures affect the electrode reversible potential (thermodynamic open circuit 

voltage), Tafel slope, and exchange current density. At temperatures above 100˚C, the reduction in the 

electrode reversible potential is less due to the change in the reaction entropy (e.g. gaseous reactants 

are converted to gaseous product instead of liquid). To be noted is the improvement with temperature 

in the exchange current density and Tafel slope for both hydrogen oxidation reaction (HOR) and 

oxygen reduction reaction (ORR).    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Images of water accumulation in the cathode flow channels for different fuel cell operating 

temperatures [107] 

 

 

Currently, major research activities are focusing on the development of next generation membranes 

that can operate efficiently at high operating temperatures (≥100˚C) [112-120]. If successful, issues 

related to water management, cooling, CO tolerance of the cell etc will be much simplified [109, 121]. 
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Further development of these high temperature membranes is required to extend their limited life-time 

and durability beyond 1000hrs [122-124]. The phosphoric acid-doped polybenzimidazole electrolyte 

high-temperature membranes presented in [122] was able to operate only for 1220hrs despite the low 

current density (0.2Acm
-2

). When they tested the cell under 190˚C, the cell voltage started to drop 

significantly after 1000hrs of operation and by 1220hrs the voltage was zero. The same type of 

membranes was examined in [123]; considerable hydrogen cross-over was reported after 510hrs of 

continuous testing at 714mAcm
-2

 followed by 90hrs of intermittent testing at 0.3Acm
-2

 which was due 

to the physical degradation of these membranes including agglomeration of the electro-catalysts and 

membrane thinning.     

 

A number of visualisation techniques were applied to monitor the water distribution and transport in 

different parts of PEMFC including fluorescence microscopy [125], Environmental Scanning Electron 

Microscope (ESEM) [88, 126], X-Ray radiography [127-133], X-Ray tomography [134], neutron 

radiography [135-137], magnetic resonance [138], and video cameras [139-143]. An overview of 

these experimental techniques can be found in [144, 145]. Similarly, several two-dimensional and 

three-dimensional based models were developed to simulate the multiphase flow of gas and/or liquid 

water in the membrane [146-148], GDL [149-154], CL/MPL/GDL structure [155, 156], and cathode 

gas flow channels [157-160]. These studies have provided detailed understanding of in-plane and 

through-plane water accumulation and transport within these micro porous layers.  

The water produced by the cell appears first at the catalyst layer of the cathode where oxygen 

reduction reaction (ORR) takes place. Depending on the hydration state of the membrane, water can 

either travel to the electrolyte to support the back diffusion stream or in the opposite direction towards 

MPL. Due to the hydrophobic nature of MPL, the formation of water films at the catalyst will be 

prevented and the access of product water to GDL will be limited [131]. The X-ray visualisation of 

[131] showed high-resolution cross-sectional images (with spatial resolution of 0.8 μm) of water in-

situ distribution for two types of GDLs, with and without MPL. From these images, it can be seen that 

water saturation in the GDL without MPL (Figure 3a) was significantly higher than the one with 

added MPL (Figure 3b). In the later case, water droplets appeared on the surface of the GDL because 

of the highly hydrophobic MPL. 

 

The water in the GDL is subject to viscous, capillary and gravitational forces. The fact that the 

capillary number (the ratio of viscous forces to interfacial tension forces) is relatively small, implies 

that water transport in GDL is dominated by capillary diffusion. The simulations of [154] using mean 

value model (MVM) confirmed that the capillary force is the main mechanism to drive the water flux 

within the GDL.  
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Figure 3 Cross-sectional images of water accumulation under channel and rib area at current density of 0.8 Acm
-

2
 for (a) SIGRACET

®
 24BA; and (b) SIGRACET

®
 24BC h (Reproduced from [131] with permission) 

 

The distribution of the liquid water is strongly affected by the geometry of the GDL structure [150] 

and weakly by the cross leakage gas flow streams [136]. Water tends to accumulate initially more 

under ribs or lands than under channels [130, 131, 149, 153] which is probably expected since air will 

have less access and longer diffusion length to reach those regions and remove liquid water. The 

images captured by [131] and presented in Figures 4a and 4b show clearly higher concentration of 

liquid water under the rib area for the two types of GDLs, with and without MPL, at a current density 

of 0.4 Acm
-2

. Water starts to build up close to the channel walls forming liquid films as a result of the 

hydrophilic capillary force of the walls and the drag force of the gas flow in the flow channels [143]. 

As water continues to penetrate the GDL, particularly at high current densities, the water accumulated 

under the channel regions travels first towards the air flow channels [156] developing on the surface 

as droplets [131, 142]. Figures 3a and 3b illustrate how by increasing the current density to 0.8 Acm
-2

 

the GDL without MPL (24BA type) becomes flooded with liquid water whereas the addition of MPL 

(24BC type) leads to droplets appearing on the surface of the cathode channels. 
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Figure 4 Cross-sectional images of water accumulation under channel and rib area at current density of 0.4 Acm
-

2
 for (a) SIGRACET

®
 24BA; and (b) SIGRACET

®
 24BC h (Reproduced from [131] with permission) 

 

 

The detachment of droplets from the surface of GDL occurs when droplets become larger in size as 

illustrated in Figure 5 [140]. Ous and Arcoumanis [140] showed that droplets with size larger than 

0.4mm can detach from the surface of GDL (Toray TGP-H-060) by an air velocity below 60m/s 

whereas smaller droplets maintain their direct contact with the surface. The reason for this is that 

bigger droplets have larger contact surface area with the flowing air. When the aerodynamic force of 

the air flow gradually increases, droplets lean to the opposite direction of the airflow until they reach 

their critical contact angle and detach completely from the surface [140]. In [160] values for the 

critical receding contact angle are reported to be in the range of 50-80˚C for carbon papers and around 

90˚C for carbon cloth. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 (a) Image of droplet detachment from the GDL surface by the airflow (b) Air velocity detachment for 

different droplet sizes [140]  
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The structural properties of GDL such as porosity and surface roughness [158, 160, 161] were found 

to have an effect on the contact angle and pinning phenomena. In [160] the static and dynamic contact 

angle of water droplets on different GDL designs including carbon cloth and carbon papers were 

measured and found to be different. For example, static angle of droplet with size of 1.2 mm on a 

carbon paper type 1 was ~120˚C. For a similar droplet size, the static angle on carbon paper type 2 

and carbon cloth was 136˚C and 140˚C, respectively. Also the design aspects of flow channel plates 

including channel height [158], channel-land ratio [162] and flow patterns [163] play a significant role 

on droplet deformation and detachment. When the height of the channel increased from 250 to 500 

μm in the simulations, a change in the evolution of water droplet shape in the flow channels was 

observed [158]. With higher channels, droplets tend to grow bigger in size keeping the flow field in 

the channel more uniform. Thus shearing stress and pressure difference on the interface of the water 

droplet become relatively weaker.   

 

Based on these design considerations, it is clear that unless the stoichiometric air flow is high water 

slugs will develop leading to flooding in the cathode channels [107]. It was shown by Ous and 

Arcoumanis [107] (Figure 6) that water disappeared completely from the channels only when air 

stoichiometry (λair) reached the value of 36. Below that stoichiometric point, water films start to 

evolve from the channel walls and gradually grow in size until they merge and block the access of the 

air flow in the channels. 

 

Direct visualisation techniques can reveal the location of water flooding in the flow channels of an 

operating cell. If optical accessibility to the channels is not feasible, current density distribution or 

temperature distribution measurements of the cell, also called mapping, can assist in predicting the 

water concentration profiles across the membrane. The correlation between water, current and 

temperature was investigated in many studies [164-172]. In general, water tends to accumulate near 

the outlet of the cathode flow channels despite the appearance first of reactant air at the inlets. The 

fact that the air velocity reduces gradually along the flow channels enables more formation of water 

droplets on the GDL surface towards the channel exit. In [173] and [174] there is agreement that 

water accumulation takes place at the exit of the flow channels based on their optical observations. 

The higher the air velocity at the inlet (e.g. 16ms
-1

 vs. 7.4ms
-1

 at the outlet [174]) the more sufficient it 

is to remove any liquid water from those regions. The calculations carried out by [175] have 

suggested different trends. The velocity of the airflow was lowest in the middle channels maybe 

because of the effect of cell back-pressure that kept the air velocity high at the exit of the channels.    
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Figure 6 Images of water accumulation in the cathode flow channels within a range of operating air 

stoichiometry [107] 

 

 

3. Water production  
 

It is likely that the best way to assess the effect of water formation on the PEMFC durability is to 

understand the electrochemical reaction of the cell in more depth. The formation of by-product water 

takes place on the surface of Pt particles within the cathode catalyst layer by two gas-phase reaction 

pathways: O2-dissociation and OOH-formation [176]. In the O2-dissociation pathway, dioxygen 

adsorbs on the Pt surface [177] and dissociates. Each oxygen atom then reacts with chemisorbed 

hydrogen atoms to form water. Similar outcome exist from the OOH-formation pathway as a 

hydrogen atom on the surface first reacts with adsorbed O2 to form OOH. This then dissociates to 

form chemisorbed OH and O which react with other chemisorbed hydrogen to form water. According 

to [176], the OOH-formation is more favourable for the cathode reaction due to its higher energy 

barrier of the dissociation step (i.e.17 Kcal/mol). However, the fact that water is generated at the 

catalyst makes the catalyst structure more exposed to deterioration through the water formation 

process than other parts of the cell.  
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The design of the catalyst structure consists of three main components: an electronically conducting 

material (Pt/C), an ionically conducting material (perflurosulfonete ionomer (PFSI)), and an 

electronically and ionically insulating material (PTFE). These components are randomly distributed in 

the form of clusters bridging the Nafion membrane with current collection sites, as illustrated in 

Figure 7. Gaseous reactants and liquid products are able to penetrate through the void regions of these 

clusters; the distribution of clusters and the ratio of particles loading (e.g. % Pt/C vs. PFSI vs. PTFE) 

determines the catalyst utilization [178].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7 (a) Cross-sectional view of a typical Membrane Electrode Assembly (MEA) of PEMFC (b) TEM 

Image of Pt catalyst particles on carbon support surrounded by recast ionomer h (4.b is reproduced from [362] 

with permission) 
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3.1 Catalyst deterioration   
 

3.1.1 Pt and Ionomer dissolution  
 

In Pt/C clusters within the catalyst layer, Pt particles are deposited on a relatively larger carbon 

support as shown in Figure 7. During the electrochemical reaction of the catalyst, these 

nanocomposites undergo structural changes in terms of Pt concentration and distribution. These 

changes, also known as the loss in the active surface area of the catalyst, were associated in previous 

studies [179-181] with four main mechanisms: (a) Ostwald ripening (b) Pt crystal migration and 

coalescence (c) detachment and agglomeration of Pt nanoparticles, and (d) dissolution and 

reprecipitation of Pt single crystals in the ionomer and membrane.  

 

Figures 8 and 9 show TEM images presented in [363] of Pt
3
Cr and Pt particles agglomeration at the 

cathode and anode catalyst layers, respectively, after cell operation. At the catalyst cathode, Figure 8, 

Pt
3
Cr particles were enlarged to almost twice their original size after 500 hrs of testing. The size has 

changed from ~3-10 nm in the fresh cathode layer to ~6-20 nm. Coarsening of Pt particles was more 

severe at the catalyst anode as shown in Figure 9. After 1000 hrs of testing, Pt particles at the anode-

membrane interface not only increased in size (e.g. from 1-12 nm to 20-40 nm) but also changed in 

shape to cuboidal with faceted sides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 TEM Images of Pt
3
Cr catalyst particles in (a) fresh cathode catalyst layer and (b) cathode catalyst layer 

in MEA electrochemically aged for 500 hrs (Reproduced from [363] with permission) 
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Figure 9 TEM images of Pt catalyst Particles in (a) fresh anode Pt catalyst layer and (b) anode catalyst layer at 

anode-membrane interface in MEA electrochemically aged for 1000 hrs (Reproduced from [363] with 

permission) 

 

 

Potential cycling is considered to be the main cause of coarsening and coalescence of Pt particles in 

the catalyst. The effect of cycling becomes more noticeable with an increased number of applied 

cycles [186-190] as well as with changing the profile and frequency of these cycles [182-185]. In 

[183] it has been reported a 75% loss of Pt surface area after varying the cell voltage between 0.65 

and 1.05V for 10,000 potential cycles. The Pt loss above 1 volt of cell voltage was also found high in 

[182] and its cause associated with Pt grain growth. The voltage level in [185] was slightly lower (e.g. 

0.95V) but for more testing cycles (15000 cycles). They also examined two cycling profiles (square 

and triangle) and found that the loss of Pt mass activity per hour is almost doubled when the cycle 

period is halved. The loss was higher for the square wave than the triangular cycle profiles (e.g. 4 vs. 

1.8 µA mg
-1

 cycle
-1

). The catalyst surface area was reduced dramatically by more than 50% from 70-

30 m
2
g

-1 
after 15000 testing cycles. This was in agreement with the results of [184] where it was 

found that when alternating voltage cycling (0.5-1.3 VRHE) is applied with square waves of 30 s time 

period, the active surface area is reduced by 40% (50-30 m
2
 g

-1
) just after 200 min of operation.  

The results data obtained in [184, 185] were at much higher level than the measurements of [186]. 

After 3000 of H2/air cycles, Pt reduction from the cathode and anode by 15.6 and 6.3% of their initial 

ECAs of 55.4 and 54.2 m
2 

g
-1

, respectively was observed [186]. Different results were obtained by 

other researchers: 70% reduction after 83,000 cycles (80-27 m
2
 g

-1
) [189], 25% after 400 cycles [187], 

and ~50% after 2400 cycles [190]. Logically, the higher the number of test cycles, the higher the Pt 

loss from the surface area of the catalyst. However, direct comparison is difficult because of the many 

influencing factors that can not be quantified accurately like the case of the technique used for Pt 

deposition on carbon support, the type of surfactant for Pt nano-particles [191] as well as other design 

and operational factors concerning the cell.  
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It is not clear yet whether water formation plays a role in the coarsening and coalescence of Pt 

particles. Only few reports have highlighted the effect of water on the growth of Pt particles [192, 

218], Pt adsorption [177], and Pt migration [193]. In [192] it was agreed that the hydration level of the 

catalyst influences the crystallite migration particle growth mechanism. The particle size of the 

cathode and anode electrodes was found, therefore, to be different. This was based on their Pt 

distribution curve measurements and on the expectation that the presence of liquid water lowers the 

activation energy for the particle’s growth. The review of [218] pointed to the fact that by increasing 

RH the Pt-particle size would also increase. Again, it is not easy to identify the cause since the 

increase in Pt size could simply be due to water flooding at the catalyst layer rather than enhancement 

of ORR and thus water formation. Also the loss in the active surface area of the catalyst by Pt 

migration could also be caused by water transport in PEMFC since once Pt particles are detached 

from their carbon support, they become vulnerable to further displacement; this is discussed in more 

detail in section 5. 

As Pt particles dissipate from the catalyst layer during the cell reaction, so does the catalyst ionomer 

[36]. Previous studies associated the dissolution of ionomer from MEAs to a number of factors such 

as hydrogen crossover [199], Nafion loading [198], and cell operation under OCV [44, 200] and 

extreme relative humidity conditions [30, 201]. However, none of these studies associated the 

segregation of ionomer to the water production process in PEMFCs. Probably the best way to detect 

this is to monitor the change in the concentration level of fluoride (F


) and sulphate (SO
2

4 ) anions of 

the cell. According to a number of studies, the change in F


and SO
2

4 concentration is attributed to 

the variation of the relative humidity of the reactant gases. The effect of the relative humidity on the 

fluoride emission rate from the cell is discussed in section 5.1. 

 

 

3.1.2 Carbon corrosion   
 

Carbon corrosion was detected in many occasions following the operation of the cell under potential 

cycling [182, 184, 188, 194], start-up and shutdown [176], localised fuel starvation [195, 196], and 

extended OCV [197]. Wilson et al [194] presented TEM images showing how potential cycling 

causes considerable dissipation of Pt particles from their carbon support in the catalyst. After 2 and 4 

hrs of cycling between 0.4-1.4V, the amount of Pt decreased to about 71% and 47%, respectively.  

The stability of Pt particles is strongly affected by the corrosion of their carbon support during the 

electrochemical reaction of the cell. Ball et al [188] attributed the poor stability of Pt particles in their 

tested catalyst to the dissolution/ sintering of carbon. They calculated the cumulative carbon corrosion 

for a range of commercially available and heat treated carbon blacks, e.g. expressed as maximum 

weight loss in wt%, and found that high area carbons are 25 times more corrosive than low area or 

heat-treated carbons. The increase in specific surface area of the carbon substrate in Pt/C catalyst 

tends to influence the carbon corrosion process. When Okada et al [311] examined different surface 
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areas of carbon substrates the ones with the largest area caused more Pt dissolution from the catalyst 

and higher CO2 generation rate from the cell. This result is probably expected since larger carbon 

particles will normally support more Pt particles on their surface and hence the damage would be 

more pronounced.    

 

3.2 Mitigation strategies  
 

New alloys were developed to enhance the performance and durability of Pt-based catalysts. The aim 

was to (1) improve the catalytic ORR activity (2) minimise the loss of Pt particles from the active 

surface area of the catalyst, and (3) make carbon-support more resistant to corrosion. One way to 

achieve this is to reinforce the design of the catalyst by impregnating Pt particles with substances that 

increase their stability on the carbon support. Platinum-Titanium (Pt-Ti) and Platinum-

Ruthenium/Carbon (Pt-Ru), for example, were suggested by [202] as suitable alloys with high Pt 

stability under severe acidic conditions. When these alloys were utilised in the design of MEA, the 

cell was more CO-tolerant than pure Pt catalyst as deduced from the negative shift measurements of 

the cell potential. Their results also showed that these alloys have better ORR activity than pure Pt 

catalysts, hence higher kinetic current densities of the cell.  

 

Cobalt (Co) is another metal that can potentially improve the stability of the catalysts. The fact that 

their bond dissociation energy with Pt particles is relatively high (~ 1072 kJ/mol), makes them 

suitable candidates for Pt-based catalysts; Pt-Co based alloys have been tested in previous 

experimental investigations [188, 189, 203-205] and showed improved cell polarisation performance 

compared to conventional Pt/C catalysts. Based on [189], the mass and specific activity of the Pt-Co 

cathode catalyst is 2X and 4X higher than Pt/C catalyst, respectively. The loss in the surface area of 

Pt-Co catalysts tends to be quite slow reaching a maximum of 43% after 83,000 potential cycles (35-

20 m
2
 g

-1
). However, the measurements of Ball et al [188] did not show any sign of loss in the surface 

area of Pt-Co catalysts after cycling. This was the case except for when the catalyst was immersed in 

1M H2SO4 solution. 

 

The effect of Co on Pt stability of the catalyst was demonstrated in [203] by capturing transmission 

electron microscopy (TEM) images of the catalyst structure in the presence and absence of Co after 

10,000 operating cycles. In Pt/C-based catalysts, Pt particles migrate towards the membrane layer 

whereas this was not the case with the PtCo/C design. To enhance the stability of Pt-Co even further, 

Tada et al [204] suggested replacing the conventional carbon black with new carbon support that has 

optimal combination of carbon surface area and PtCo particle size (~800 m
2
 g

-1
, PtCo ~ 4-5 nm). This 

proposed design exhibited high ORR activity of the catalyst as evident from the polarisation results of 

the cell.     
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An alternative method to minimise the loss of Pt from the active surface area is to change the actual 

design of the catalyst. Instead of bonding Pt particles chemically to the surface of the carbon support, 

Pt atoms can be encapsulated inside a fullerene cage. This new type of catalyst, known as 

metallofullerenes, is considered to be one of the most promising designs to extend the life time of 

PEMFC [206]. Fullerenes can be in different shapes, such as spherical (buckyballs), cylindrical 

(carbon nanotubes or buckytubes), or an aggregate of cylindrical in the form of thin sheet 

(buckypapers). Relevant research focuses mainly on buckypapers amongst other types of 

metallofullerenes based catalysts. The design of these newly developed catalysts consists of single-

walled nanotubes (SWNT), double-walled nanotubes (DWNT), multi-walled nanotubes (MWNT), or 

carbon nanofibers (CNF). Various techniques were used for the preparation of these catalysts such as 

ion exchange [207], borohydride [207], ethylene glycol reduction [208], direct sputter deposition 

[209], and electro-deposition method [210].   

                                                                                                                                                                                                  

Wang et al [207] examined the ion exchange preparation method against the borohydride method on 

MWNT for the same Pt loading. They found the ion exchange technique to be more effective in terms 

of ORR and Pt utilization; the later can be further improved by using nanotube-based catalysts. This 

claim was supported by the measurements of [209-212] which showed high polarization performance 

of the cell. The good accessibility to reactant gases and the uniform distribution of Pt on the carbon 

structure are not the only advantages of these catalysts, but good durability as well. Chen et al [208] 

measured the degradation rate of MWNT, DWNT, and SWNT-based catalysts against commercial 

Pt/carbon black under an accelerated durability test (ADT). The ratio of Pt loss from the active surface 

area was reduced after 1000 cycles by around 1.5 times when using Pt/MWNT or Pt/DWNT and by 

1.2 times for SWNT compared to a typical Pt/C catalyst. All of these catalyst designs had the same 

initial Pt concentration, which was in the range between 63-65 m
2
 g

-1
, for accurate comparison. The 

loss in Pt/C was 48%, while in Pt/MWNT/ Pt/DWNT and Pt/SWNT it was 32% and 38%, 

respectively. This reported value of Pt loss in SWNT (e.g. 1.2 times) was much lower than that 

detected in [211] (e.g. 3.8 times). After 400hrs of ADT, the loss of Pt from the active surface area 

using buckypaper support was 18% while the Pt loss was 69% in Pt/C. The difference between these 

two results could be attributed to the design aspects of the tested cells as well as to some of the 

operating conditions such as the level of voltage cycling [211].  

The use of different substances other than carbon for Pt-based catalysts was previously investigated 

with materials like aluminium oxide (Al2O3) [213], titanium dioxide (TiO2) [214], zirconium dioxide 

(S-ZrO2) [215], and tin dioxide (SnO2) [216]. The advantage of using Al2O3 or alumina as catalyst 

support is due to its insulating characteristic. Since electron transport through the carbon support 

contributes to the growth of Pt particles, insulating-type support could prevent the passage of 

electrical paths, thus suppressing degradation.  
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On the other hand, when Pt-alumina catalyst was examined [213], Pt particles have remained almost 

the same size (~8 nm) after immersing it in deionised water at 80°C for one week. Suzuki et al [215] 

used different catalyst design, e.g. Pt-S-ZrO2, and kept its electronic conductivity to a level where the 

ohmic loss of the cell is minimal. The performance of this catalyst was better than Pt/C when Nafion 

ionomer was not added to the design. The open circuit voltage of the cell (OCV) using a Pt- S-ZrO2 

cathode was slightly higher than the Pt/C type (0.883 vs. 0.868 V) and, at a current density of 2 A cm
-

2
, the cell voltage was 0.36 V compared to 0.31 V for Pt/C. Probably the best result was achieved in 

[214] when Pt/TONT catalyst was used. The active surface area of the catalyst was reduced by only 

20.3% after 10,000 of accelerated potential cycles. This relatively small loss of Pt was purely due to 

the strong and stabilised physical interaction between Pt-Pt particles and Pt-TONT in the catalyst. 

Again this synergistic effect between Pt and TONT was the main reason for the improved ORR 

activities of the catalyst. The mass and area-normalised kinetic current densities at 0.8 V using a 

Pt/TONT catalyst was ~ 5.3X and 2.2X greater than the Pt catalyst, respectively.     

 

Chen et al [217] even suggested removing the carbon support of Pt particles completely from the 

design of the catalyst and use Pt/alloy nanotubes (PtNTs) instead. The idea was to alleviate most of 

the degradation pathways initiated by the carbon. This design was examined against Pt/C and Pt/ 

carbon black catalysts and exhibited minimal reduction of the electrochemical active surface area. The 

Pt loss of PtNT, Pt/carbon black, and Pt/C catalysts was found 20%, 50%, and 90%, respectively after 

1000 operating cycles. These values are significantly higher than those previously reported in [208] 

and [211].        

 

 

 

 

 

 

4. Water retention and accumulation    
 

4.1 Water retention   
 

The presence of liquid water in PEMFC has a detrimental effect on the mechanical, electrical and 

chemical properties of the cell components. The deterioration of these properties can be attributed to 

three main mechanisms known as membrane swelling, corrosion, and ice formation.  

 
 

4.1.1 Membrane Swelling 
 

Swelling occurs as a result of water absorption by the membrane which expands its polymeric matrix. 

When liquid water is absorbed, the ionic constituents within the membrane become surrounded by 

those water molecules while the polymeric matrix resists the uptake of more water. The water inside 

the membrane increases its pressure relative to the external water surrounding the membrane due to 
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the effect of the elastic forces of the polymeric matrix. The pressure difference between the internal 

and external water, known as swelling pressure, determines the increase in the partial molar volume of 

the solvent as a function of the operating temperature, water activity, compression load, and relative 

humidity [220-222]. The neutron-based images presented in [221] showed the changes in the physical 

dimensions of the PFSA type membranes under wet conditions; e.g. the thickness of these membranes 

was increased by 0.1 mm. Parrondo et al [220] explained that such change in the membrane matrix 

structure is strongly dependant on the water activities of the ionic solution. For example, when they 

treated the membrane with KCl solution, the membrane thickness remained the same whereas with 

HC1 and NaC1 solutions the thickness changed by 10% and 5.5%, respectively. 

 

In general, swelling develops in an anisotropic fashion since membranes creep more in one direction 

than in others. Membranes have a different creep response depending upon their water content and the 

surrounding temperature. Majsztrik et al [224] elucidate the effect of both temperature and water on 

the mechanical properties of Nafion by arguing that hydrophilic domains within the Nafion structure 

become stable when water interacts with the sulfonic acid groups whereas these domains break apart 

with increasing temperature. This combined and complex effect causes major changes in the number, 

strength and flexibility of the cross-links between the hydrophilic domains. In order to investigate this 

phenomenon, Majsztrik et al monitored the viscoelastic response of Nafion under a range of 

temperature and hydration conditions. They found that the tensile creep strain of Nafion increases 

with increasing water activity, e.g. increase in RH, for the whole temperature range tested (25-60˚C). 

The measurements also showed that strain values become higher under wetter conditions at lower 

temperatures (25-50˚C) but reduce at higher temperatures (60˚C).  

 

The increase in the membrane thickness, known as the membrane thickening phenomenon, introduces 

non-uniform local stresses that can contribute to the mechanical failure of membrane particularly in 

areas that are more exposed to compression by the assembly of the cell. The simulations carried out 

by Kusoglu et al [225] showed how hygro-thermal loading affects the stress distribution profile in the 

membrane. The in-plane stresses were mostly driven by the swelling strain, particularly on both ends 

of the membrane where stress is higher due to cell clamping.  

 

The change in the mechanical characteristics of the membranes is correlated to the level and number 

of RH operating cycles applied to PEMFC. This was examined in the experimental work of [235] 

where an increase of both parameters resulted in a significant reduction of the MEA ductility. The 

average strain-to-failure was reduced by around 40% (from 1.32 to 0.58) after 100 cycles in the 30-

80% RH range. Also, the elastic modulus of the membrane was reduced from ~ 480 to 280 MPa when 

RH increased from 25 to 75%. These results which were validated using a finite element model, 

revealed the formation and growth of mechanical defects such as crack and crazing in the membrane 

and MEAs. Kusoglu et al [238] were also able to simulate the trend of the in-plane stresses across the 
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membrane during five humidity loading cycles (95-30% RH). It was clear from their results that the 

value of in-plane stresses differ depending on the local contact area of the membrane (e.g. either 

facing the flow channel or in direct contact with the channel land). Calculations made by Kusoglu et 

al [237] revealed that residual stresses can be up to 10MPa which may lead to delamination of the 

membrane and the gas diffusion layer and similarly the high in-plane stresses were associated to 

crazing and its growth.  The simulations of [296] suggest that in-plane stresses are much higher under 

the land regions than under the flow channels at any level of relative humidity of the reactant gases. 

For instance, at 0.05 swelling strain of the MEA under 100% RH, the in-plane stresses under the 

middle area of the flow channels were nullified.  

 

The damage escalates further with additional tensile stresses when the membranes enter the 

dehydration phase in low relative humidity cycles. This can result in membrane thinning [231, 232], 

delamination [233], or pinhole formation under extensive RH cycling [229, 230, 234]. Chen and 

Fuller [233] presented SEM images showing pinhole formation and signs of delamination on the 

surface of the membrane when operating the cell under low RH operation of 36%. The observed 

degradation was validated using a numerical model based on the main chain unzipping process of 

membranes. The simulations revealed that low humidity conditions enhance the side chain scission 

process creating many weak end-groups in the membrane’s chemical structure, thus accelerating the 

degradation process. Similarly, the SEM observations of [232] revealed images of membrane thinning 

under relatively low humidity conditions of 65.8% at both the anode and cathode. As a result, the 

hydrogen crossover rate has increased gradually reducing the amount of hydrogen reactant; the 

degradation rate of the cell voltage was calculated to be around 0.0537mVh
-1

.  

 

4.1.2 Corrosion  
 

The formation of hydrogen peroxide (H2O2) often occurs during the electrochemical reaction of 

PEMFC. This introduces dangerous radicals such as hydroxyl (OH) and hydroperoxyl (OOH) radicals 

that can potentially attack the membrane and accelerate the chemical degradation process of the cell. 

Based on [241, 242], these radicals tend to alleviate the interface between the catalyst and ionomer 

and as a result, the active surface area of the catalyst is significantly reduced. The relative humidity of 

the reactant gases was linked in some way to the formation rate of H2O2. Sethuraman et al [239] found 

noticeable differences in the amount of H2O2 generated at the cathode between dry and full humidity 

conditions. At a testing temperature of 95°C, the rate was reduced 7X as RH increases from 0 to 

100% (0.7 to 0.1 mol cm
-2

 s
-1

 ×10
6
).  

Despite the majority of studies blaming voltage cycling of the cell for the carbon corrosion in PEMFC 

[184, 185, 187-189, 218, 243], some studies have associated its cause to the presence of liquid water 

in the catalyst [248-252]. Maass et al [249] found that the corrosion rate of carbon is linearly 

dependant on the molar water concentration. For each H2O molecule present one molecule of CO2 is 
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formed. When they raised the molar water concentration by a factor of three (0.1-0.3) under anodic 

potential limit testing, the corrosion rate of carbon increased by an equal proportion (e.g. from ~2.4 to 

7.2 g h
-1

 cm
-2

). This finding implies that the corrosion rate would be highest at the maximum current 

density. 

 

The increase in the relative humidity of the reactant gases increases the risk of carbon corrosion at the 

catalyst. The measurements carried out by Stevens et al [244] showed significant increase in the 

carbon combustion rate for XC72 and BP2000 type carbon support when the cell operation changed 

from dry to wet conditions. The carbon corrosion of the cathode catalyst layer in [343] was enhanced 

noticeably when the cathode inlet RH increased from 0 to 100%. The gradual decrease in the catalyst 

thickness (~70% reduction, e.g. 10.5 – 6.6 µm) and the increase in the carbon dioxide production at 

the catalyst (350 – 1,300k ppm s
-1

) confirmed the corrosion of carbon. Interestingly, RH was found to 

have negligible effect on the degradation rate of the anode catalyst as revealed from their back 

scattered Electron Microscopy (BSEM) images.      

 

Corrosion can also affect the bipolar plates of the cell if no surface treatment is made to metallic-type 

plates to withstand harsh acidic and humid conditions [253-255]. Passive films can be formed at the 

interfacial regions between the cell components raising the overall ohmic resistance of the cell. This 

happens mainly at the interface with the gas diffusion layer creating additional interfacial contact 

resistance (ICR) with the bipolar plates; the thickness of this passive film determines the value of 

ICR. Antunes et al [253] evaluated a range of materials from previous experimental investigations to 

find the best material for bipolar plates with minimum corrosion resistance.    

 

Typically, the value of ICR reaches a maximum when the film reaches maximum thickness or 

stabilises in thickness. This was observed in [257] when ICR continued to increase from 200 to 320 

mΩ cm
2
 until the passive film reached maturity thickness after 30min of cell operation. Stability of 

the passive film thickness was also detected in [258] where it took 50 min for the film to develop to a 

maximum thickness of 3nm at 0.6 V in a simulated cathode environment against 20 min for 2.6 nm 

film at -0.1 V in an anode environment. It is worth noting that the thickness of passive films and the 

corresponding contact resistance will vary based on the compaction force applied to the cell assembly; 

the contact resistance gradient tends to be much smaller at large compaction forces.  

 

Another effect of the corrosion of metallic bipolar plates is the release of metallic-based cations like 

Fe
3+

, Ni
2+

, Cu
2+

, Cr
3+

. The origin of these cations could be the dissolution of the alloys used as coating 

material for the plates. Using mass spectroscopy techniques, traces of chromium, nickel, iron, sulphur 

and aluminium from the by-product water were detected after operating the cell with aluminium 

plates coated with carbide-based alloy [260]. Their energy dispersive X-ray (EDX) analysis revealed 

more changes in Ni at the cathode than the anode which was attributed to the higher relative humidity 

as well as the electrochemical activity of the cathode. A list of major contaminants and their origins 
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affecting the performance of PEMFC was identified by Cheng et al [318]. Independent of the source 

of these impurity cations, they can potentially attack the membrane and deteriorate the mechanical 

and chemical stability of Nafion. [254] et al highlighted a number of cooling materials and techniques 

so that deterioration mechanisms like catalyst poisoning, reduction of membrane conductivity, passive 

film formation, reactant crossover, and bin-hole formation on bipolar plates can be prevented.  

The change of the ionic conductivity of polymer membranes could be strongly affected by the amount 

of impurities in the cell. Indeed, this was addressed in [262] when immersed membrane samples in 

sulphate salt solutions were used to understand the effect of inorganic cations. They found that the 

reduction in the membrane’s conductivity is negligible at low impurity levels (e.g. 0.1, 1, 10 ppm) but 

becomes significant at high levels (100ppm). They also demonstrated that the effect of each type of 

impurity can be different. For example, Ni
2+

, Cu
2+

 contaminated membranes displayed lower 

conductivity than Na
+
 ones whereas Fe

3+
 exhibited the lowest conductivity amongst all. 

 

4.1.3 Ice Formation  
 

The damage originated from the lingering water in the cell becomes more severe when liquid water 

turns into ice under subfreezing temperatures which can block the access of gases into the reaction 

sites of the catalyst causing gradual drop in cell’s performance. This was confirmed by the 

experimental measurements of [296] where the current density of the cell was reduced linearly as 

water continued to freeze. The phase transformation, caused by freeze-thaw cycles, also results in 

volume expansion of the retained water. This introduces local isotropic stresses that can damage the 

structure of the membrane and other porous layers of the cell including the catalyst, GDL, and MPL. 

The SEM images presented in [267] and reproduced in Figure 10 show detrimental changes to the 

catalyst surface of a fully hydrated MEA under 10 freeze-thaw cycles at temperatures reaching −30˚C.  

 

 

 

 

 

 

 

 

 

Figure 10 SEM images of MEA without purging after 10 freeze-thaw cycles between 20 and −30 ˚C (a) anode 

(b) cathode (Reproduced from [267] with permission)  
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Furthermore to the structural damage, the electrochemical active surface area of both the anode and 

cathode catalysts was reduced considerably, e.g. the cathode by 23% and the anode by 15% after 20 

freeze-thaw cycles. 

 

An early impact of ice formation on the MEA structure could be on affecting its porosity. The 

environmental scanning electron microscopy (ESEM) observations made by Alink et al [277] 

revealed a significant increase in the porosity of a damaged MEA when wet stack underwent 

freeze/thaw cycling. This led to the exposure of the catalyst layer and further decrease in its surface 

area by Pt particles detachment. As it can be seen from Figure 7, the damage in the cathode was more 

substantial than the anode probably due to its higher water concentration. Li et al [268] revealed, 

based on their cryogenic FESEM analysis, that the porosity change across the catalyst layer due to ice 

formation is uneven. Eventually, the biggest change was at the interface region with the membrane 

layer (~25%). This finding is not in agreement with the CRYO SEM observations of [296].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Cross-section of MEA catalyst layers after 71 of freeze/thaw wet cycles (Reproduced from [277] with 

permission) 

 

 

Although, both studies identified two distinct ice density regions in the catalyst layer, Kusoglu et al 

[296] believe that the majority of ice is formed closer to the GDL side rather than the membrane. 

They based their theory on the fact that existing ice prior to subzero operation will melt by the 

reaction heat of the catalysts. Liquid water will therefore migrate away from the hot membrane to the 

cooler GDL and continue to freeze.  
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In addition to the change in porosity, ice formation can damage the structure of other parts of the cell. 

This occurs more noticeably in regions of high water concentration within the cell. The damage 

detected by Lee et al [270] under freeze/thaw cycles was more severe when MPL was added to the 

design of the cell. At a high current density of 1 A cm
-2

, the degradation gradient in the cell voltage 

for the same number of test cycles was 4.3 with MPL against 3.2 without MPL. This is likely because 

MPLs capture most of the liquid water for sustaining the membrane and catalyst layers at desirable 

hydration state. The damage might equally be the same when the cell generates more by-product 

water at high current densities. The results of [270] showed that despite the above role of MPL, the 

formation of ice-sheet between the catalyst layer and GDL can be prevented which hastens the 

degradation of mass transport as well as increases the total polarization resistance of the cell 

significantly.  

 

Morphological damages of the PEMFC components due to ice formation can have serious 

consequences on the performance and durability of the cell. This includes scenarios like fuel 

crossover [273, 274], catalytic combustion as a result of pinhole formation [272, 273], fuel/oxidant 

starvation caused by water flooding in cracked regions [132, 275], accelerated catalyst erosion due to 

further exposure of the electrochemical surface area [276, 277], and increase in the ohmic resistance 

of the cell reflecting the increase in bulk resistivity (interfacial contact resistance) of the damaged 

layers [76, 278, 279]. Visual evidence of pinhole formation and micro-cracking on the surface of the 

membrane is provided in Figure 12a [273] following operation at sub-zero temperatures (e.g. cathode 

temperature below −5 ˚C). The cell voltage has decreased and suddenly collapsed to zero after four 

cycles even at the low current density of 350 mA.cm
−2

. 

 

 

 

 

 

 

 

 

 

 

Figure 12 Effect of sub-zero temperature on MEA after operation at −30 ˚C (a) pinhole formation on membrane 

from cathode outlet regions (b) catalyst delamination from GDL (Reproduced from [273] with permission)  

 

Ice formation can also lead to the delamination of catalyst layers. Water tends to accumulate and 

freeze forming ice lenses at interfacial regions adjacent to the catalyst layer, e.g. either between 

catalyst and diffusion layer or catalyst and polymer membrane. This phenomenon was highlighted in 
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the simulations of [282] where formation of ice lens in the interfacial regions was predicted. Other 

experimental studies used in-situ optical techniques have also observed this phenomenon [273, 281]. 

Figure 8b shows an image captured in [273] of catalyst layer delamination from both the membrane 

and the gas diffusion layer (GDL) sides. According to their measurements, this delamination resulted 

in hydrogen crossover and consequent drop in cell performance. Similarly, in [44] the danger of 

delamination in oxygen crossover was pointed out which enhances the formation of hydrogen 

peroxide causing catalytic combustion at the anode. 

 

The effect of catalyst delamination tends to be significant on the ohmic loss of the cell. Kim et al 

[280] compared the change in cell resistance caused by the delamination at membrane/catalyst 

(M/CL), catalyst/gas diffusion layer (CL/GDL), and gas diffusion layer/bipolar plate (GDL/BPP) 

interfaces. The increase in the interfacial resistance of M/CL and CL/GDL was much higher than that 

of the GDL/BPP. Their measurements showed that with a delamination area of 50 µm, the cell 

resistance was increased by around 30% for M/CL and CL/ GDL but only 10% for GDL/BPP.   

    

Delamination of the catalyst layer can also lead to higher loss of Pt particles from the active surface 

area of the catalyst. Yang et al [281] were able to capture TEM images showing a gap at the interface 

between the cathode catalyst layer and the membrane. Consequently, Pt particles were increased in 

size (3 to 5-8 nm) followed by significant reduction in the specific surface area of the catalyst (~ 

50%). Meanwhile, Ge and Wang [284] justified the 35% reduction in Pt surface area of their tested 

cell at – 30˚C through the formation of an ice sheet between Pt particles and ionomers in the cathode 

catalyst layer.  

 

Not all the residual water in the membrane freezes when the temperature reaches 0˚C. Three types of 

water molecules known as non-freezing water, bond freezing water, and free water were distinguished 

by researchers during subfreezing temperatures. Each of these types has different freezing points 

depending on the nature of their molecular chemical bonds. For instant, Lu et al [286] detected three 

distinctive water states in subfreezing temperatures using a dielectric relaxation spectroscopy 

technique. They found in the kHz frequency region that water molecules are hydrogen-bonded to the 

sulfonates whereas in the GHz domain water molecules are either in liquid bulk-like or loose bond 

forms.     

   

As temperature drops to 0˚C, only the unbounded free water (bulk water) molecules transform into 

ice. The images presented in [287] showed that even at temperatures of – 3˚C, liquid water is still 

present in the form of droplets on the surface of the catalyst. However, these droplets were not 

observed when the cold start was at –5 ˚C. This suggests that the freezing-point depression of water in 

the catalyst is no more than 2˚C. The generation of liquid water below 0˚C was again witnessed in 

[289, 290] but the temperature of water freezing was even lower (e.g. –10˚C in [298]). Ishikawa et al 
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[289] attributed the reason for this low temperature to the freezing phenomenon of the super-cooled 

generated water where heat of solidification is emitted and the temperature rises to 0˚C. 

Apparently, water becomes completely frozen at much lower temperatures than –10˚C. The study 

carried out by Saito et al [291] suggest that even at temperatures below –20˚C the non-freezing water 

molecules remain unfrozen and move within the membrane. Their analysis was based on the 

estimation of the water self-diffusion coefficient, and on the differential scanning calorimetry (DSC) 

measurements that enabled the observation of the anomalous behaviour of non-freezing water. 

Interestingly, Mukundan et al [292] detected at the extremely low temperature of –80˚C interfacial 

failure in the cell suggesting possible freezing point of water in the cell. 

The reduction of the water content due to ice formation clearly reduces the mobility of hydrogen ions 

across the membrane; a reduction in the ionic conductivity of the membrane is therefore expected. 

The experimental work of [294] showed how by decreasing the cell temperature to –25˚C, the water 

content of PFSA and BPSH membranes can be significantly reduced and the proton transport 

coefficients to become much less. Based on the measurements represented in [292] and [295], the 

membranes conductivity reduces substantially at subfreezing temperatures. The conductivity in [292] 

was reduced from 87 to 6 mS.cm
-1

 as temperature drops from +30 to –30˚C. Similar results were 

obtained by Koiwai  et al [295] as conductivity reduced from 100 to ~1 mS.cm
-1

 with temperature 

dropping from 40˚C to – 40˚C. According to Alink et al [277], the decrease in membrane conductivity 

under sub-zero temperatures is attributed to membrane dehydration as a result of changes in the 

capillary pressure at the membrane/catalyst interface. They explained that during the heating process, 

the phase transition from ice to liquid water results in an increase of the capillary pressure leading to 

expansion of the membrane channels and increase of conductivity. 

 

4.2 Water flooding  
 

Flooding in PEMFC often occurs at high current densities when the generation rate of by-product 

water exceeds the removal rate of residual water from the cell. Flooding can be detected in-situ by 

either direct visualisation of the cell sub-layers or by monitoring the membrane’s ohmic resistance. 

For example, as reported in [328], the change in the standard deviation of impedance measurements 

was an indication of flooding in PEMFC. Generally, measurements of membrane’s impedance are 

carried out when optical accessibility to the cell is quite limited.  

 

The sudden drop in the voltage level of the cell is another sign of flooding in PEMFC. The blockage 

by residual water of the access of reactant gases to the catalyst sites means the electrochemical 

reaction of the cell will stop. The sharp voltage decline takes place immediately after reaching the 

limiting current density of the cell better known as the cut-off current density. Many experimental 

studies have demonstrated this behaviour and attempted to extend this cut-off value which can be 

achieved by introducing advanced water management schemes to the cell.  
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Although many techniques have been used to detect flooding in PEMFC, optical visualisation 

techniques remain the most effective. Not only they help to identify key parameters that cause 

flooding, but also enable the anticipation of water flooding before happening. For example, the 

photographic images captured in [107] have allowed monitoring of the water build-up in the cathode 

flow channels. From those images, they were able to estimate how long it takes for a single PEMFC 

to be flooded with liquid water. As predicted after 30 min of operation, the channels were completely 

flooded followed by a significant drop in the cell current (e.g. 4.5 to 0.5 A). It is worth noting that 

almost all in-situ visualisation of water droplets on the surface of the membrane are made from the top 

view of the air flow channels which doesn’t allow parameters such as droplets contact angles, droplets 

height, and droplets interfacial area with the surface to be estimated. However, it is possible to view 

droplet formation on the surface of the membrane from both the top and side view of the channels 

simultaneously as shown by Ous and Arcoumanis [141]. Figure 13 illustrates the optical set-up used 

in [141] which consists of two synchronised cameras positioned orthogonally while Figure 14 shows 

images of droplet formation on the surface of GDL at various locations in the air channels.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Visualisation set-up [141] 
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Figure 14 Droplet formation on the surface of GDL at various locations in the cathode flow channels [141] 

 

 

Water flooding does not only affect PEMFC performance but its durability too. This is due to  the 

presence of excessive water that leaves the cell fuel starved and thus induces local potential on the 

electrodes. Reiser et al [246] demonstrated both experimentally and numerically how local starvation 

of hydrogen can raise the cathode interfacial potential to as high as 1.44 V. At this high potential 

carbon corrosion of the catalyst can take place in just a few hours. The effect of this reverse-current 

mechanism was detected later by electron microprobe analysis (EMPA) images which showed 

significant decrease in the catalyst active surface area and thinning of the cathode electrode. Similarly 

when Patterson and Darling [195] restricted the access of hydrogen fuel to the cell by impregnating 

the anode GDL with kynar film, the cathode catalyst layer was severely corroded. Their EMPA 

images showed significant thinning of the cathode catalyst layer. Similar thinning of the cathode 

electrodes was observed by Liu et al [196]. The thickness was reduced by as much as 60% in the H2 
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starved region in comparison to the 10% reduction of the surrounding areas. Based on the limiting 

current density distribution map of their measured MEA, this H2 starved region has also the lowest 

value of current density. Finally, the role of water flooding on carbon corrosion of the catalyst was 

further entrenched by Li et al [330] who discovered after observing the MEA structure that carbon 

corrosion was more severe underneath the flow-plate lands where most water is expected to 

accumulate. Membrane thinning was in fact present in those under-land regions where thicknesses of 

4 mm compared to 10 mm under the channels were observed.   

 

4.3 Mitigation Strategies    
 

4.3.1 Membrane swelling  
 

Since swelling of polymer membranes is strongly dependant on their water content, it is plausible to 

operate the cell under less wet conditions. However, this will be at the expense of the ionic 

conductivity of the membrane which may cause greater decline in cell performance than what 

swelling would initiate. Controlling the access of external water to the cell through relative humidity 

can minimise the effect of swelling. The simulation of [296] showed how swelling stresses in the 

MEA become much higher with increasing RH. For example, the in-plane stresses in the membrane at 

a swelling strain of 0.05 were increased from 0 to 4 MPa as RH increases by only 10% (e.g. from 90 

to 100% RH). Another model developed by Parrondo et al [220] suggests that the compressive force 

applied during cell assembly affects membrane swelling. Since compromising with the operating 

conditions is unwise for the sake of cell performance, it could be more sensible to modify instead the 

design of MEA and its assembly at an early stage to account for swelling.   

Improving the mechanical and chemical properties of polymer membranes is probably the best 

approach to prevent swelling. A number of composite designs were developed in order to achieve 

minimal change in the membrane structure while keeping its conductivity at the highest level possible. 

Statterfield et al [223] suggested the addition of Ttitanium oxide (titania) for improving the elastic and 

plastic deformation behaviour of Nafion under changes in temperature and water concentration. These 

composite membranes (e.g. Nafion-titania) exhibited less strain hardening than Nafion and resulted in 

40% reduction in the membrane’s creep compared to Nafion. Similarly, the focus in [223] was to 

improve the elastic modulus of Nafion 115 membranes by adding titania particles. This composite 

membrane showed after 3000 min of operation ~40% more reduction of creeping compared to 

extruded and recast Nafion types under the same stress conditions. The water uptake of these 

composite membranes was examined by means of resistivity measurements of the membrane which 

was reduced noticeably during the early stages of testing due to water absorption. Although the 

resistivity of Nafion/titania composites decreased slightly faster than the extruded Nafion with water 

absorption, these composite membranes still have lower resistance than Nafion.   
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The design developed by Ballengee and Pintauro [298] performed well against swelling. They used a 

composite of 70 vol% 660 equivalent weight perfluorosulfonic acid and 30 vol% polyphenylsulfone 

with the aim of conserving the dimensional stability of the member after water uptake. The in-plane 

swelling was increased by only 5% from the original size of the membrane at room temperature. 

Another sulfonated poly design was examined in [299] which contains sulfonic acid groups on 

aliphatic side chains. Although this design exhibited good protonic conductivity of around 0.11 S.cm
-

1
, the swelling ratio was slightly higher than what was achieved in [298] (~12.9% at 100°C). The 

difference between these two swelling ratios maybe attributed to the degree of sulfonation applied 

during membrane preparation as pointed out by Reyna-Valencia et al [236].  

Various materials and preparation techniques were used in order to develop novel membrane designs 

that are capable of overcoming the effects of swelling. Parrondo et al [220] suggested treating the 

polymeric matrix of membranes with acids and heat to improve the mechanical properties of polymer 

against changes in water activity. The intention was to decrease the elastic forces of the matrix and the 

swelling pressure so that the water content in the membrane remains relatively high. This design 

actually improves the water-uptake of polymer remarkably. A different approach was suggested in 

[297] for blending sulfonated polyethersulfone (SPES) based membranes with polyacrylonitrile 

(PAN) and
 
polysulfone (PSU) composites. Their design was based on creating sulfone cross-linking 

groups between the polymer chains to bridge the arylsulfonic acid groups of SPES with the aryl 

groups in PSU. Their idea was to control the sulfonation level of SPES in order to improve the 

solubility of the material as well as to reinforce its structure. This design gave good results as the 

swelling ratio decreased by more than 70% while the drop in the membrane’s conductivity was just 

25%.   

A new class of polymers, known as microblock ionomer, was developed by Zhu et al [300] as a 

potential swelling-resistant membrane. The new design is based on sequence-distribution of sulphonic 

acid in ionomer backbone forming ionic and non-ionic spacer segments. This unique structure of 

phase-separation between hydrophilic and hydrophobic domains performed seemingly well against 

swelling. At a temperature of 120˚C, the ion exchange capability of the membrane was more than 

2meq g
-1

. 

Another approach to overcome swelling is to use gel-based membranes. These newly developed 

membranes are expected to be less susceptible to physical changes in aqueous solutions than 

traditional polymer membranes. Since their acidic structure (e.g. loosely bonded rather than formed 

within the polymer matrix) promotes protonic transport, their conductivity is not critically influenced 

by the hydration state or humidity of the reactant gases. The advantage of using this type of 

membrane becomes more pronounced at high operating temperatures where the majority of the water 

content in the membrane evaporates. Previous experimental studies [301-303] haven’t reported any 

evidence of swelling of these gel membranes. Their focus was instead on the ionic conductivity and 

stability of these membranes under high temperature conditions. The measurements of [302] 
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suggested that the conductivity of these membranes was around 0.01 S cm
-1

 at 100°C. Similar results 

were obtained by [303] but at the slightly higher temperature of 115°C. The highest conductivity was 

reported in [301] where it reached a value of 0.1 S.cm
-1

 at room temperature and remained the same 

up to 85˚C.  

 

 

4.3.2 Corrosion 
 

New materials were developed to prevent carbon corrosion in the catalyst layer of PEMFC. The prime 

intention was either to improve the electrochemical stability of the carbon particles or to replace the 

carbon support with novel materials completely. It is worth noting that the type of carbon substrate 

used for the catalyst layer plays a key role in the carbon corrosion of PEMFC. Okada et al [311] 

highlighted the advantages of using small surface area of carbon to support Pt particles in the 

catalysts. Graphitized carbon was the preferred option which showed improvements in catalyst 

durability and the overall performance of the cell. With this type of carbon, the amounts of Pt 

dissolution and CO2 generated by the cell were quite small.      

Carbon black is commonly used as a support for Pt catalysts in PEMFC. They offer a number of 

advantages that make them more attractive than other materials; this includes high porosity, high 

electrical conductivity, electrochemical stability, and nano size particles for the large active surface 

area of the catalyst.   

Carbon black-supported Pt catalysts were previously examined in [211] and [304] against new designs 

of single and mutli-walled carbon nanotubes (MWNT). The comparison was based on the change in 

Pt agglomeration and distribution at the catalyst surface after cell operation. Wang et al [304] found 

only nominal reduction in Pt loss by around 37% under constant potential when MWNT was utilized 

as catalyst support compared to 80% of carbon black Vulcan CX-72. The reason for this large 

difference in the results was due to Pt migration and ripening/aggregation which were enhanced by 

the carbon corrosion of the catalyst. Similarly, the Pt loss in [211] was reduced by almost half under 

accelerated degradation testing, e.g. 43% with single-walled buckpaper compared to 80% loss with 

Pt/carbon. According to [211] the slow formation of surface oxides in the buckpaper design was the 

main reason for such a significant difference in the corrosion resistance.    

The addition of Titania (TiO2) to carbon-supported platinum catalyst (Pt/C-TiO2 or Pt-TiO2/C) was 

suggested by Selvaganesh et al [307] and Sambandam et al [308]. Both studies have agreed about the 

role of Titania in improving the performance and durability of PEMFC. The measurements in [307] 

showed lower degradation in cell performance of the Pt-TiO2/C than the typical Pt/C catalyst. After 

5000 test cycles, the degradation of Pt-TiO2/C was 10% compared to 28% for Pt/C. The effect of TiO2 

was evident from the FESEM (Field Emission Scanning Electron Microscopy) images which showed 

higher deformation of the MEA structure with Pt/C catalyst in comparison to the Pt/ TiO2/C design. 

Similar results from their galvanostatic measurements were shown in [308] indicating superior 
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stability of Pt/C-TiO2. By inserting the data from the electrochemical impedance spectroscopy spectra 

to a Randles equivalent circuit, Warburg element, and transmission line models, they were able to 

simulate O2 transport and estimate the electrical resistivity of the catalyst. They found that Pt/C 

catalysts limit the flow of O2 through the micro-porous structure of the electrode. This is mainly due 

to the increase in the catalyst layer thickness originating from the lower loading of Pt on the carbon 

support. Alternatively, Huang et al [305] suggested replacing the carbon with Titania. Their analysis 

suggests that Pt/C catalyst suffered severe carbon corrosion, Pt dissolution, and catalyst particle 

sintering after 2000 potential cycles. Meanwhile, Pt/TiO2 experienced only a small drop in voltage (~ 

0.09V
 
at 0.8 Acm

-2
) despite doubling the number of test cycles.  

 

Metallic bipolar plates are the other components in PEMFC that are susceptible to corrosion. Various 

materials and coating techniques were utilized to avert corrosion of these plates including ferritic 

stainless steel (AISI446) [258]; metallic amorphous alloys (Fe50Cr18Mo8AL2C14B6) [312]; sulfuric 

acids (H2SO4) [256]; TiN coating by multi-arc ion plating [313]; stainless steel alloys (Fe-20Cr-4V) 

by thermal nitridation [314]; Polymer Polypyrrole and Polyaniline coating by cyclic voltammetry and 

painting [315]; and YZU001 like-diamond film by physical vapor deposition (PVD) [316]. The main 

focus has been on the polarisation characteristics of the cell but more specifically on the magnitude of 

ICR between the plates and the neighbouring carbon diffusion layers.  

 

Lee et al [316] were able to compare the contact resistance of coated aluminium, stainless steel 

(SS316L), and graphite plates as a function of the compaction force. The contact resistance of coated 

aluminium was smaller than that of the uncoated stainless steel resulting in better cell performance. At 

a constant cell voltage of 0.6V, the current density of SS316L was 158 mA.cm
-2

 whereas for coated 

aluminium was 232 mA.cm
-2

. Graphite plates exhibited the best characteristics with the lowest contact 

resistance and slowest corrosion rate. Under 30kg of applied compaction force, the contact resistance 

of SS316L, coated aluminium, and graphite plates after 4hrs testing were 27, 25, and 15 mΩ, 

respectively. Jayaraj et al [312] suggested using metallic amorphous bulk alloy 

(Fe50Cr18Mo8AL2C14B6) as a potential replacement of stainless steel for bipolar plates. They found this 

new alloy to be more resistant to corrosion than the stainless steel SS316L when tested in 1 M H2SO4
 

+2
 ppm F¯ solution at 75˚C; the passive film formed on the surface was also found to be very stable. 

In [314] and [315] concentration was focused more on reducing the interfacial contact resistance 

between the plates and the neighbouring GDL for maintaining optimum performance of the cell. 

Brady et al [314] applied a new coating alloy (Fe-20Cr-4V) on stainless steel plates using nitridation 

and pre-oxidation treatments whereas in [315] aluminium plates were painted with Polyaniline. The 

coating method proposed in [315] proved to be effective since the increase in ICR value was still at an 

acceptable level, e.g. ~ 0.3Ω cm
2
 above 200 N cm

-2
 compressive force.   
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 The increase in ICR due to the formation of a passive film at the interface between the corroded 

plates and the neighbouring GDL is directly proportional to the thickness of the film. Once the film 

stops developing, the value of ICR stabilises. Yang et al [256] have suggested that a way to reduce the 

thickness of this n-type semiconductor film is to increase the concentration level of the sulphuric acid 

in the cell. This was their conclusion after they monitored the corrosion behaviour of SS316L bipolar 

plates in a simulated PEMFC cathode environment and at different sulphuric acid concentrations.   

Another advantage of coating is to prevent the disassociation and dissolution of metallic cations such 

as Fe
3+

, Ni
2+

, Cu
2+

, Cr
3+

 that can potentially contaminate other parts of the cell and poison the polymer 

membrane and catalyst layers. The review conducted by Cheng et al [318] highlighted the danger of 

small quantities of these impurities in damaging the anode, membrane, and cathode chemical 

properties and causing a drop in cell performance.    

 

4.3.3 Ice formation  
  

Numerous techniques can be applied to prevent ice formation from deteriorating the performance and 

lifetime of PEMFC. One way to achieve this is to introduce heat to the cell in order to maintain its 

thermal state above freezing. Sun et al [319], for example, suggested generating heat by mixing 

hydrogen and oxygen gases in the cathode channels to enable for catalytic hydrogen reaction. This 

method did not cause drop in cell performance and it was also safer to operate having the 

concentration of hydrogen not exceeding 40% of the total gas mix (H2/O2). Apparently, this method 

has enabled the temperature of the cell to be raised from cold start condition of − 20˚C to 0˚C in 6 

minutes with only a 20% hydrogen concentration.  

 

Ge and Wang [284] were also able to increase the cell temperature to as high as 70˚C and at the same 

time avoid significant Pt reduction from the active surface area of the catalyst. The trapped liquid 

water between Pt particles and ionomers in the cathode catalyst layer under – 30˚C cold-start caused 

the surface area to decrease by around 35% (e.g. ~73 to 47 m
2
 g

-1
). According to the current and 

temperature distribution measurements of [320], the highest current density during failed cold start is 

occurring initially towards the reactant inlet regions of the cell; around 40-50% of the total cell 

current is produced in these regions. This finding suggests that it is more effective to apply external 

heat to the inlet rather than to other regions of the cell.     

 

Purging the cell with dry gases is another method to overcome the effect of ice formation. The 

concept is to remove liquid water from the cell before it is transformed into ice at subfreezing 

temperatures. However, this process has to be repeated every time the cell is out of operation, i.e. it 

shuts down. Experimentalists tend to disagree about the duration needed for purging to achieve 

successful cold start operation of the cell. For example in [288], a duration of 120 s is suggested to be 

sufficient whereas in [320] much longer period of 2 hrs is recommended. Obviously the purging 

duration will be dependant on the design of the cell and its operating condition. Ge and Wang [288] 
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showed the effect of purging time on the amount of water extraction from the membrane and how it 

improves the performance of the cell. This was again confirmed in [263] when they compared the 

performance of the cell with and without purging under a temperature of – 10˚C. Despite the fact that 

the measurements were carried out at a low current density (~0.15 A.cm
-2

), the current density 

dropped significantly without purging after just 15 s of operation. In contrast, the duration until failure 

was extended to 268 s when purging was used.  

One of the main advantages of purging is to protect the PEMFC components from structural damages 

by subfreezing temperatures. The purging used in [267] was sufficient to maintain the catalyst 

structure unchanged under temperature cycles of − 30˚C in comparison to the damage with the non-

purging condition as illustrated in Figure 10. The impact of purging is not only on the durability of 

PEMFC but on its performance as well. In [273], the cell failed to operate even at − 5˚C and at a low 

current density of no more than 200 mA.cm
-2

 when purging was not employed. The free water, which 

is expected to be trapped at the catalyst layer, can freeze hindering the access of reactants to the 

reaction sites of the catalyst and causing a performance drop.   

 

It is important to set the relative humidity of the purging gases to a medium level, neither too dry nor 

too wet. Otherwise the cell can suffer from poor ionic conductivity of the reduced water amount in the 

membrane or from water flooding at the early stages of subsequent operating cycles. When Hou et al 

[321] increased the relative humidity of the purging gas from 16.6% to 64.9%, although no 

performance loss was detected after 20 freeze/thaw cycles, the flow channels were completely flooded 

with liquid water in the first cycle at high current density (1 A.cm
-2

). Consequently, the MEA was 

more damaged at − 30˚C with an increase from the initial porosity by 10% compared to 2% of the 

drier purge gas.    

 

Other parameters such as purging time, gas flow rate, cell current and temperature also determine how 

effective the purging process is. One may expect that if purging is happening quite frequently or for 

long duration, the cell membrane would dehydrate more easily. In fact, in [322] was shown that, for 

purging the cell, high flow rates and temperatures are the most influential factors. They examined 

different purging scenarios and found that raising the flow rate of the purging gas extracts more water 

than extending the purging duration for the same amount of purge gas. Furthermore, purging at 

ambient temperatures is inefficient.   

 

Four gases have been mainly used for purging in PEMFC including air, H2, O2, and N2; each of these 

gases performs differently. When Gavello et al [323] tried purging the cell with N2, air and H2 gases, 

they found that the best combination is to use dry air and dry H2 at the cathode and anode, 

respectively. With this purging strategy, MEAs exhibit the smallest loss in power density and minimal 

damage of their structure (e.g. loss of 7.6% after 20 Freeze/Thaw cycles and 19.3% after 30 cycles). 

The only disadvantage was that it encourages strong migration of Pt particles from the catalytic layer 
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towards the membrane. Alternatively, Cho et al [325] tried purging the anode with dry N2 and the 

cathode with O2. The performance degradation rate of the cell was significantly reduced from 2.3% to 

0.06%, and the reduction in Pt utilisation of the catalyst was also very small (~ 3% during 7 testing 

cycles). Song and Kim [324] suggested purging only the cathode with dry air but not the anode since 

the damage of freezing on the anode is quite small; they tested various purging schemes and operating 

conditions to assess their effects in terms of Pt loss from the catalyst surface area and the mass 

transfer limitation. Purging the cell with antifreeze solutions is another alternative to the dry gas 

approach. Cho et al [325] used 30% methanol and 35% ethylene glycol solutions for purging and by 

doing so the performance degradation rate of the cell was reduced to – 0.16% and 0.47%, 

respectively.    

 

Other researchers relied instead on improving the design of MEA against freeze/thaw degradation 

cycles. For example, Saito et al [291] suggested using membranes with low equivalent weight (EW) 

values and high amount of freezing water  (e.g. weakly interacting water with ionic groups) in order to 

enhance the H
+
 conductivity. Wang et al [326] employed multi-walled

 
carbon nanotubes (MWCNTs) 

to reinforce Nafion resin for enhancing the mechanical stability and tensile strength of the membrane. 

The increase in the H2 oxidation current density of MWCNT-reinforced Nafion membrane was 

eventually lower compared to Nafion-112 (71% vs 109%). Song et al [327] added isopropyl alcohol 

and isopropyl butyl acetate to the catalytic ink of catalyst-coated membrane. These two designs not 

only improved the ionic resistance of the membrane but also exhibited less degradation in terms of the 

electrochemical active surface area and polarisation curves of the cell.   

 

4.3.4 Flooding 
 

The best way to avoid water flooding in PEMFC is probably to operate the cell under conditions 

which allow effective water extraction from the cell. Obviously operating the cell under low current 

densities minimises the risk of flooding, as a result of the proportional relationship between cell 

current and by-product water; thus water management becomes less of an issue. Nevertheless, 

increasing the temperature of the cell has two main advantages. First, it allows rapid evaporation of 

the residual water in the cell, thus preventing further water accumulation, and also it enhances the 

kinetics of the catalyst.    

 

 Ous and Arcoumanis [107] estimated the amount of water that can be removed from a single PEM 

cell for each 1deg temperature rise (~34nl/˚C). Their in-situ visualisation of the cathode and anode 

flow channels showed that water disappears completely from the channels as the temperature reaches 

60˚C. The same happened when they increased the air flow rate to the high stoichiometry of 36 where 

water droplets on the surface of the channels were all blown away. Their measurements also suggest 

that, on average, temperature has a higher extraction rate of liquid water from the flow channels of the 
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cell than stoichiometric air (~34 nanoliter /˚C vs. 26 nanoliter/˚C). However, both of these operating 

parameters should not be excessive otherwise the membrane could become fully dehydrated.  

 

An alternative method to prevent flooding in PEMFC is to use materials that can improve the 

transport of liquid water in the cell. For instance, loading the catalyst or GDL with hydrophobic 

substances such as poly tetrafluoroethylene (PTFE) helps to expel excess water from the void regions 

of these layers. Oh et al [331] have suggested moderate addition of copolymer P (VdF-Co-HFp) to the 

catalyst layers in order to improve the hydrophobic characteristics of catalysts and suppress water 

flooding. The improvement in the hydrophobicity of the catalyst was evident from the contact angle 

measurements of water droplets on the surface. These measurements showed a noticeable angle 

increase with added copolymer, e.g. contact angles were 36˚, 86˚ and 105˚ with copolymer loading of 

0, 2-5 and 10 wt%, respectively. The performance of the cell was enhanced both in terms of current 

density and ohmic resistance of the catalyst. However, excessive loading proved detrimental to the 

polarisation performance. When copolymer loading was increased from 5 to 10wt%, the current 

density of the cell dropped from 530 to 484 mA.cm
-2

. The addition of oxygen permeable and 

hydrophobic dimethyl silicone oil (DSO) to the catalyst layer was also suggested by Li et al [332] in 

order to improve the water balance and oxygen accessibility to the catalyst cathode. Again, the 

hydrophobicity of the catalyst was increased remarkably with the addition of only 0.5 mg.cm
-2

 of 

DSO, as evidence by the improvement in the limiting current density of the cell which was extended 

from 1.2 to 2 A.cm
-2

.   

 

Lin and Nguyen [333] stated that the cell can still operate with maximum gas and water transport 

mechanisms during flooding with a moderate addition of PTFE to GDL. When they compared the 

performance of the cell with different PTFE loading of Toray carbon paper (10, 20, and 30% PTFE), 

the paper with the medium PTFE content (e.g. 20%) showed the best performance. They argued that 

combination of hydrophobic
 
pores for gas transport and hydrophilic pores for liquid water

 
transport 

can give GDLs the ultimate design configuration against water flooding.  

 

 

5. Water transport in PEMFC   
 
Water in PEMFC originates from two main sources. It is either produced by ORR at the catalyst 

cathode or fed externally into the cell through the humidification or cooling gases. The amount of by-

product water can be calculated directly from the current density of the cell. The amount of external 

water is, however, more difficult to estimate since it varies depending on the temperature, pressure 

and flow rate of the humid/ coolant gas used.   

In general, water transport in PEMFC involves a complex interplay of processes. In the membrane, 

for example, there are three water fluxes during the operation of the cell known as electro-osmotic 
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drag, back diffusion and water generation. The effect of electro-osmotic drag on the water distribution 

is considered to be the dominant as many hydrogen ions drag water molecules when travelling from 

the anode to cathode. Meanwhile, the high concentration of the water generated at the cathode forces 

the water stream to diffuse back into the anode. The balance between these two fluxes is critical for 

maintaining a uniform water distribution across the membrane and hence an optimum ionic 

conductivity of the membrane. The effect of back diffusion becomes more significant at high current 

densities and particularly when the extraction rate of water from the cathode region is extremely low.  

 

5.1 MEA and GDL structure  
 

Various models [334-338] have been developed to simulate water transport mechanisms across 

polymer type membranes. The aim is to estimate the water diffusion rate during the operation of 

PEMFC including parameters like water transport and electro-osmotic drag coefficients (e.g. the 

water transport coefficient is defined as the ratio of net water flux across the membrane to water 

production, whereas the drag coefficient is the number of water molecules transported per proton). 

Interestingly enough, one of these models e.g. [335] is suggesting that aging has no influence on the 

water transport coefficient despite other studies [220-224, 228-230] where a significant change in the 

physical properties of aged membranes was detected. However, none of these studies have addressed 

the effect of water transport mechanism on membrane durability. This effect was rather related by 

other experimental and modelling investigations to the relative humidity condition of the cell.  

 

Since increasing the RH of the reactant gases increases the rate of water flux across the membrane 

layer [335, 339] and results in higher release of fluoride ions from those membranes [30, 75, 340, 

341], water transport in the membrane is expected to play a part in the fluoride emission of PEMFC. 

Water transport may also affect some of the mechanical, electrical, and chemical properties of the 

MEA like the porosity of GDL, polymer chains, and Pt distribution in the catalyst. The simulations 

carried out by Lin and Nguyen [233] showed how, by increasing the relative humidity of the reactant 

gases, the polymer chains in the membranes become more susceptible to unzipping.   

 

The results presented in [30] showed an increase in the concentration level of fluoride ions by more 

than 3X (~450 ppb) after 800 hrs under highly water saturated operation (e.g. air humidity is 100% 

and hydrogen >100% RH). They suggested that the main cause for this was the water generated and 

the inlet water flow which could wash away the recast ionomer from the cathode catalyst 

continuously. Under the same humidity but slightly higher Nafion membrane loading (e.g. 100% RH 

at 33 wt % Nafion), Young et al [198] detected fluoride loss of around 25% after 440 hrs of AST (60 

µmole cm
-2

 from total MEA content of 230 µmole cm
-2

). Uchida et al [340] also found that, increasing 

the relative humidity of mixed gases (H2 + 10% air, air +2% H2), increases the fluoride emission rate 

(FER) almost linearly. Raising RH from 0 to 90%, the FER using H2 + 10% air mixture increases 

from 3.5-10 nmolh
-1

 whereas for air +2% H2 mixture the range of increase was from 1.25-7 nmolh
-1

.   
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Apparently, fluoride emission rate does not only increase at the high RH operation but under low 

humidity conditions too. Kundu et al [201] detected significant loss of fluoride, by around 45%, when 

RH was reduced from 100% to 20% (e.g. from ~29 to 52 μmol cm
-2

). Again, the comparison made in 

[233] between different humidity conditions (e.g. 82%, 55%, and 36% RH) revealed much higher 

FER values at humidity levels lower than 50%.     

 

The dissolution of Pt particles from the active surface area of the catalyst layer due to the increase in 

the RH of the reactant gases was reported previously in [245, 343]. Uchimura et al [245] found that 

the active surface area of the catalyst reduces dramatically by around 50% when RH increases from 

30 to 100%. Furthermore, they claimed that if the membrane can survive low RH conditions, the 

dissolution of Pt particles would be significantly diminished. The reason for Pt dissolution at high RH 

conditions could be attributed to the enhanced ORR activity of the catalyst at the high hydration state 

of the membrane. It may also be due to water flooding which can cause fuel starvation in the cell and 

induction of a local potential on the electrodes [195, 196, 246, 247].  

 

Migration of Pt3Cr alloy particles from the catalyst layers under fully humidified conditions was 

observed in [30] and [193]. Xie et al [30] presented images showing chromium particles accumulated 

in the anode catalyst layer. One possible explanation for this is that the high current density they 

operated at (> 1 A cm
-2

) has generated excessive water facilitating chromium particles to be carried 

away by the back diffusion stream to the anode. Similarly, the Pt migration detected in [343] was 

found to be more severe at the cathode layer than the anode. When the cell was operated with three 

different levels of cathode inlet RH (e.g. 0, 50, and 100%) for 1500 cycles, the highest Pt loss from 

the catalyst cathode was at 100% RH [343]. According to their analysis, this was attributed to the 

corrosion of the carbon support which intensifies at higher RH. 

 

The partial pressure of H2 and O2 tends to influence the distribution of Pt particles according to the 

simulations of [197]. Their model showed how relative local flux of H2 and O2 determines the location 

of Pt repositioning. This was validated by SEM images which revealed the formation of a Pt band 

closer to the anode or cathode catalyst layers depending on the operation pressure ratio of the reactant 

gases. For example, when the H2/O2 pressure was reduced to 20%, the Pt band appeared near to the 

anode catalyst layer (e.g. away by 4.3 µm) rather than near to the cathode/ membrane interface when 

the pressure ratio is equal. In [193] the migration of Pt3Cr particles was from both electrodes towards 

the membrane and in addition, they found that pure Pt particles are more susceptible to migration than 

Pt3Cr alloy due to their electrochemical instability. This was concluded after observing that stronger 

migration is taking place at the pure-Pt anode catalyst.  

 

The mechanical properties of GDL should also be affected by the water transport mechanism in 

PEMFC. Numerical simulations of the water transport through different types of GDL were carried 

out in numerous investigations [344-358]. The majority of these two- and three-dimensional models 
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suggest that the transport of liquid water through GDL is mainly dominated by the hydrophobic and 

morphological properties of the GDL including porosity, tortuosity, cross sectional area, thickness, 

and PTFE loading. Other design and operating factors such as the compaction force used for the cell 

assembly [125], operating temperature [346], stoichiometric ratio of reactant gases [347], and GDL 

wettability [348, 353] were also found to affect water diffusion in the GDL. It is expected that the 

more the water diffuses through the layer, the more the damage on the GDL structure can be. 

However, still more research work needs to be done in this area to understand this effect in depth.  

 

5.2 Contamination 
 

The effect of relative humidity on the degradation of PEMFC was previously associated to a number 

of factors such as membrane swelling [221, 230], membrane thinning [231, 232], creep formation and 

cracking [74, 233], fluoride concentration change [30, 75, 201, 341], catalyst particles migration [67, 

68], carbon corrosion [48, 69, 244, 245], pin-hole formation [228-230, 234], hydrogen crossover [36, 

70, 75] and local fuel starvation [195, 196, 246, 247].  

Equally damaging as these factors is the kind of water used for the humidification of the reactant 

gases. Drinking water contains harmful contaminants such as Fe, Cu, Cr, Si, and Al that can 

potentially poison the MEA and cause performance decay of the cell. The concentration level of the 

contaminants determines the deterioration rate of the MEA. In [359], Fe concentration was initially 

less than 1ppm in their tested GORE-SELECT membrane. The level of Fe increased dramatically 

when external water was added to the cell under humid-air operation as evident from their MEA 

durability measurements which revealed higher fluoride release rate (FRR) than in the case of the 

cathode running with dry air (e.g. 1.6E-08 vs. 1.5E-07 g cm
-2 

h
-1

). 

The corrosion of fuel cell stack components like metal bipolar plates, end plates or humidifier 

reservoir is another source of impurities. Liquid water may carry traces of metal ions such as Fe
+2

 and 

Cu
2+

 to the MEA causing permanent defects to its electrical, mechanical, and chemical properties. The 

review of [318] highlighted the effects of these impurities on cell performance which were found to 

be detrimental particularly in terms of the cell electrode kinetics, conductivity, and mass transfer. 

Probably the best example to demonstrate the role of water in transporting these harmful contaminants 

is from the experimental work of Pozio et al [360]. When they used two different end plates in the 

cell, e.g. stainless steel SS316L and aluminium Al, they discovered significant difference in fluoride 

release under the same testing conditions (14ppm for SS316L vs. 1.2ppm for Al). The pH level of 

water collected at the anode and cathode for SS316L was around 30% lower than in the case of the Al 

plate. Clearly the water was the primary agent for revealing such differences and transporting traces 

of contaminants. 

 

 

5.3 Mitigation strategies 
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The effect of water transport on the degradation of PEMFC can be minimised if the amount of water 

moisture in the cell is kept small. However, as explained before in section 4.4.1, this has a dramatic 

impact on membrane conductivity and cell performance. The best solution could be to maintain the 

hydration level in the cell but reinforce the design of MEA to withstand levels of deterioration 

originating from the water transport mechanisms.  

A number of composite membranes were developed in order to improve the electrochemical stability 

of MEA. Trogadas et al [361] added CeO2 nanoparticles into Nafion membranes to reduce the fluoride 

emission rate from both electrodes. Without compromising in terms of proton conductivities and 

hydrogen crossover of the cell, the rate was lowered by more than one order of magnitude compared 

to a typical Nafion membrane (e.g. from 0.1 to 0.01 µmol h
-1

 cm
-2

). Inaba et al [44] also suggested 

introducing an anti-gas crossover layer, a peroxide decomposition layer and Fe
2+

 ion-trap layer into 

the MEA design in order to prevent oxygen crossover and consequent formation of hydrogen peroxide 

and catalytic combustion at the anode. In addition, as mentioned in section 3.2, the MEA stability can 

be enhanced by impregnating the catalyst layer with alloys such as titanium [202], cobalt [188, 203], 

aluminium oxide [213], titanium dioxide [214], zirconium dioxide [215] and tin dioxide [216].  

Some other composites were designed specifically to operate under low RH conditions [86, 34]. Su et 

al [86] used Pt/SiO2/C for the anode catalyst aiming to achieve acceptable polarisation performance 

of the cell at low RH values. Indeed, the voltage and current density of their design cell (0.6V, 

0.65Acm
-2

) remained almost unchanged despite the significant drop in RH level at both the anode and 

cathode (e.g. RH reduced from 100% to 28%). Similarly, the Nafion-Teflon-phosphotungstic acid 

(NTPA) design of [34] had a marginal drop in cell voltage (~90mV) at the low RH values of 25%. It 

is worth noting that operating the cell at low RH using these types of self-humidifying membranes 

offers two advantages in terms of PEMFC durability. First, it reduces the number of hydration/ 

dehydration cycles during the life span of the cell which often lead to mechanical failures of the 

MEA. The second advantage is minimising the risk for foreign particles to access the cell with 

humidified gases and cause damage to the MEA.  

 

Finally, PEMFC membranes are chemically fragile. The quality of the water used in the 

humidification process of the reactant gases is another important requirement for achieving durable 

cells. Deionised water is preferable since no ionic impurities are present. However, in case impurities 

are introduced from other external sources, such as a humidifier reservoir or other cell components, 

installing a filtration system at the inlet of the cell would probably be the most effective way to reduce 

or even eliminate the effect of these impurities.            

 
 

6.  Concluding Remarks  
 

The water management system does not only affect PEMFC performance but also its durability. A 

number of degradation factors such as the loss of active surface area of the catalyst, ionomer 
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dissolution, corrosion, contamination, and morphological damages of MEA and GDL were identified 

which are influenced by water formation, retention, accumulation and transport mechanisms within 

the cell.  

It is difficult to determine accurately the impact of each of these water mechanisms on the 

deterioration rate of the cell as it varies depending on the design and the operating conditions of the 

cell. For example, the effect of water retention and accumulation becomes more severe when the cell 

operates at subfreezing temperatures. The volume expansion of liquid water due to the ice formation 

causes morphological damages to different parts of the cell which can accelerate the degradation 

process. Furthermore, the effect of these water mechanisms on cell durability can be classified into 

two main categories: aging and catastrophic. With aging, durability and performance behaviour of the 

cell tend to decline steadily over time whereas in the case of catastrophic ones the cell fails instantly.  

The role of water formation has been considered to fall into the ‘aging’ category as the loss of Pt 

active surface area and ionomer dissolution of the MEA happen interchangeably. A similar 

classification applies to the effect of water retention, accumulation and transport where changes in 

MEA and GDL properties including membrane swelling, porosity, corrosion of carbon catalyst 

support and metallic bipolar plates occur during the life-time of PEMFC. Only two factors, such as 

the formation of cell residual water into ice at subfreezing temperatures and the access of foreign 

contaminants by external humidification, are classified as catastrophic. These factors can lead to 

serious consequences such as membrane poisoning and catalytic combustion which cause an 

immediate termination of the PEMFC operation.    

   

In conclusion, the effect of water mechanisms on PEMFC degradation can be minimised or even 

eliminated by (a) using advanced materials particularly for MEA and GDL to improve their stability 

(b) implementing effective strategies for extracting residual water from the cell, and (c) ensuring 

contamination-free operation of the cell to prevent poisoning of the membrane.    
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Nomenclature  
 
ADT            accelerated durability test 

AST             accelerated stress test 

BPP              bipolar plate 

BSEM          back scattered Electron Microscopy 

CL                catalyst layer  

CNF             carbon nanofibers 

CNT             carbon nanotubes 

DOE             department of energy  

DSC             differential scanning calorimetry 

DSO             dimethyl silicone oil 

DWNT         double-walled nanotubes 

EDX             energy dispersive X-ray 

EMPA          electron microprobe analysis 

ESEM          environmental scanning electron microscopy 

EW               equivalent weight  

GDBL          double micro porous layer  

GDL             gas diffusion layer  

GMPL          graded micro porous layer  

HFP              european hydrogen and fuel cell technology platform 

HOR             hydrogen oxidation reaction 

ICR               interfacial contact resistance 

FEP              ethylene propylene 

FER             fluoride emission rate 

FESEM        field emission scanning electron microscopy 

FRR             fluoride release rate  
M                 membrane  

MEA            membrane electrode assembly  

MPL             micro porous layer  

MVM           mean value model 

MWNT        mutli-walled carbon nanotubes  

NEDO          new energy and industrial technology development organisation  

NTPA          nafion-teflon-phosphotungstic acid  

ORR            oxygen reduction reaction  

PAN             polyacrylonitrile 

PEMFC        proton exchange membrane fuel cell  

PFSI            perflurosulfonete ionomer  

PSU             polysulfone 

PTFE           polytetrafluoroethylene 

PVD            physical vapor deposition  

RH               relative humidity 

SEM            scanning electron microscopy  

SPES           sulfonated polyethersulfone  

SWNT         single-walled nanotubes 

TEM            transmission electron microscopy 

 

 

λair               air stoichiometry  
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