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Connecting psychophysical performance to neuronal
response properties ll: Contrast decoding and detection

Keith A. May

Joshua A. Solomon

The purpose of this paper is to provide mathe-
matical insights into the results of some Monte
Carlo simulations published by Tolhurst and col-
leagues. In these simulations, the contrast of a
visual stimulus was encoded by a model spiking
neuron, or a set of such neurons. The mean
spike count of each neuron was given by a sig-
moidal function of contrast, the Naka-Rushton
function. The actual number of spikes generated
on each trial was determined by a doubly sto-
chastic Poisson process. The spike counts were
decoded using a Bayesian decoder to give an
estimate of the stimulus contrast. Tolhurst and
colleagues used the estimated contrast values to
assess the model’s performance in a number of
ways, and they uncovered several relationships
between properties of the neurons and character-
istics of performance. Although this work made
a substantial contribution to our understanding
of the links between physiology and perceptual
performance, the Monte Carlo simulations pro-
vided little insight into why the obtained patterns
of results arose, or how general they are. We
overcame these problems by deriving equations
that predict the model’s performance. We de-
rived an approximation of the model’s decoding
precision using Fisher information. We also ana-
lyzed the model’s contrast detection perform-
ance, and discovered a previously unknown
theoretical connection between the Naka-
Rushton contrast-response function and the
Weibull psychometric function. Our equations
give many insights into the theoretical relation-
ships between physiology and perceptual per-
formance reported by Tolhurst and colleagues,
explaining how they arise, and how they general-
ize across the neuronal parameter space.
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This work was inspired by a series of papers from
Tolhurst and colleagues, which described Monte Carlo
simulations of contrast coding in visual cortex.
(Clatworthy, Chirimuuta, Lauritzen, & Tolhurst, 2003;
Chirimuuta, Clatworthy, & Tolhurst, 2003; Chirimuuta &
Tolhurst, 2005a, 2005b). In these simulations, the contrast
of a visual stimulus was encoded by a model spiking neu-
ron, or a set of such neurons, and the spike counts were
decoded using a Bayesian decoder to give an estimate of
the stimulus contrast. The contrast estimates were then
used to assess the model’s decoding precision or to gener-
ate decisions in simulations of psychophysical tasks.

While these studies made a very useful contribution to
our understanding of the relationship between physiology
and perceptual performance, the Monte Carlo simulations
provided little insight into why the obtained patterns of
results arose, or how general they are: It was not clear
whether the findings applied just to the specific sets of
model parameters that were used in the simulations or to
any parameter values. The goal of the present study was
to derive equations that predict the performance of this
kind of model from its parameters, in order to better un-
derstand the relationships between physiology and percep-
tual performance, and to allow the model’s performance to
be calculated quickly and easily, removing the need for
Monte Carlo simulations, which are difficult to program
and time-consuming to run.

Our paper focuses on two key sets of results from the
work of Tolhurst and colleagues. The first focus is the
relationships between decoding precision and neuronal
properties discovered by Clatworthy et al. (2003); we find
that these relationships can be explained by approximating
the decoding precision using Fisher information. The sec-
ond focus is the model’s psychometric function for detec-
tion, studied by Chirimuuta and Tolhurst (2005a); we de-
rive an expression that approximates this function and
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sheds light onto one of Chirimuuta and Tolhurst’s (2005a)
results.

Some of the derivations and technical details are in-
cluded in appendices in the supplementary information.
Each supplementary appendix is labelled with a letter.
Equations and Figures in an appendix are labelled with the
appendix’s letter, followed by a dot, followed by the equa-
tion or figure number within that appendix. Supplemen-
tary Appendix A provides a list of the main symbols used
in the text, and their meanings.

The contrast coding model

The contrast coding model used by Tolhurst and col-
leagues consisted of an encoding stage, in which the
stimulus was encoded as neuronal spike counts, and a de-
coding stage, which used Bayesian inference to estimate
the stimulus contrast from the spike counts. The encoding
stage was based on standard physiological models of the
neuronal response, while the decoding stage was simply a
Bayesian decoder, with no proposed physiological imple-
mentation.

The model has three elements: (1) the form of the tun-
ing function, which specifies the mean spike count of each
neuron for a given stimulus; (2) the random process that
generates spikes at the given mean rate; (3) the method of
decoding the population response to give an estimate of
the stimulus. We consider these three elements in turn.

We use the same basic terminology as May and Solo-
mon (2014): We represent random variables using upper
case letters, and their values on particular trials' using cor-
responding lower case letters. X and x represent the
stimulus level; R and r(x) represent the mean spike

count; N and n represent the actual spike count; N and n
are vectors holding the spike counts of all the neurons in
the population. These variables are explained in more
detail in our companion paper [the first paragraph of May
and Solomon’s (2014) section headed “The sensory cod-
ing model”].

The tuning function

The tuning function, »(x), specifies the mean spike

count for stimulus x. For visual stimulus contrast, the tun-
ing function is called the contrast-response function. Tol-
hurst and colleagues modelled this function using the
Naka-Rushton function (Naka & Rushton, 1966; Albrecht
& Hamilton, 1982). For contrast, ¢, in linear (e.g. Michel-
son) units, the Naka-Rushton function has the following
form:
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2
q
NRT(O) =By (1)
Cl/2 +c
If we measure contrast in log units, x =log, c, then the
Naka-Rushton is given by
_ rmaqux
N_R}"(X)—m-‘rro, (2)
where
z=log, cys. 3)

See our companion paper (May and Solomon, 2014) for a
description of all the parameters, and plots of the Naka-
Rushton function. On the log contrast scale, the gradient
of the Naka-Rushton function peaks at a log contrast of
x=2z. The term ¢, called the semi-saturation contrast,

is the contrast for which the mean response exceeds 7, by
Fmax /2. Many authors use cs to represent this contrast,
but we use the less common term ¢, 2 (except when quot-

ing other authors) because this form is easier to extend to
other fractions of e.g. ¢y3 (the contrast for which

max °
/3, which we will

show to be the contrast which is coded most accurately by
a model neuron with a Naka-Rushton contrast-response
function with 7, =0).

the mean response exceeds 7, by 7.

In what follows, whenever we use the term “contrast”
without specifying the units, we mean “log Michelson
contrast”. To be compatible with Clatworthy et al. (2003)
and Chirimuuta et al. (2003), we always used log to base
10 in our modelling, i.e. x=log;oc, and z=log;,cy5;

however, our equations are derived for the general case of
any base, b.

Note that the units of the Naka-Rushton function’s
output are often taken to be spikes per second, but we find
it more convenient to use units of spikes, without making
assumptions about the time interval over which the neu-
ron’s output is integrated.

The random process for spike generation

The tuning function gives the mean spike count, and
we now turn to the stochastic process that generates spikes
at the specified mean rate.

The Poisson process is sometimes used as a stochastic
spiking model because of its considerable mathematical
convenience (e.g., see Dayan & Abbott, 2001, Chapter 1).
The Poisson distribution is defined as
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r(x)"

n!

PPoisson (N=n|R=r(x))= exp(—r(x)). 4)
In Equation (4), we use a right subscript on P to indicate
the type of stochastic process being used.

For the Poisson process, the variance in the number of
spikes for repeated trials is equal to the mean, r(x), al-

ways giving a Fano factor (ratio of variance to mean) of 1.
In visual cortex, the Fano factor is usually higher than 1
(Tolhurst, Movshon, & Thompson, 1981; Dean, 1981b;
Tolhurst, Movshon, & Dean, 1983; Bradley, Skottun, Oh-
zawa, Sclar, & Freeman, 1987; Skottun, Bradley, Sclar,
Ohzawa, & Freeman, 1987; Scobey & Gabor, 1989;
Swindale & Mitchell, 1994; Geisler & Albrecht, 1997,
Vogels, Spileers, & Orban, 1989; Snowden, Treue, & An-
dersen, 1992; Britten, Shadlen, Newsome, & Movshon,
1993; Softky & Koch, 1993; Bair & O'Keefe, 1998;
McAdams & Maunsell, 1999; Durant, Clifford, Crowder,
Price, & Ibbotson, 2007; Buracas, Zador, DeWeese, &
Albright, 1998; Oram, Weiner, Lestienne, & Richmond,
1999). To get a Fano factor greater than 1, Tolhurst and
colleagues (Clatworthy et al., 2003; Chirimuuta et al.,
2003; Chirimuuta & Tolhurst, 2005a, 2005b) used a dou-
bly stochastic Poisson process, which we will refer to as
the “Tolhurst process”. This process is a Poisson process
whose mean is itself a random variable sampled from a
Poisson process:

PTolhurst (N=n|R=r(x))=

z PPoisson (N=n | R= IU)PPoisson (N = H | R=r(x)).
#=0
(%)
For this process, the mean spike count is (x), and the
variance is 2r(x), giving a Fano factor of 2. The infinite

series in Equation (5) is difficult to handle, so, in Supple-
mentary Appendix B, we derive a finite series expansion
of the Tolhurst process that is more useful.

Since the aim of this paper is to explain the modelling
results of Tolhurst and colleagues, all the Monte Carlo
simulations in this paper use the Tolhurst process to gen-
erate spikes. However, to make our theoretical results
more general, we consider two other Poisson-based spik-
ing processes.

The first additional spiking process is the Generalized
Poisson Distribution, devised by Consul and Jain (1973).
Sakata and Harris (2009) used this process to model neu-
ronal spiking distributions. This process is more flexible
than the Tolhurst Process, because the Fano factor, F, is
set as a parameter, and can take any value > 1. The Con-
sul-Jain distribution takes the following form:
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RH(N:n|R:r@»:7£91uﬂ4emﬂ—AL (6)

WF
where
A_mm+4¢?-ﬂ 0
N .

Like the Poisson and Tolhurst processes, the Consul-Jain
process generates only non-negative numbers of spikes,
and the spike count variance is proportional to the mean.
When F =1, the Consul-Jain process reduces to the ordi-
nary Poisson process, given in Equation (4). However, the
Consul-Jain process with F' =2 is not identical to the
Tolhurst process, even though they have the same Fano
factor.

The second additional spiking process that we con-
sider is the doubly stochastic Poisson process recently
proposed by Goris, Movshon and Simoncelli (2014). We
will refer to this as the “Goris process”. It is a Poisson
process whose mean is modulated by a multiplicative gain
mechanism. The gain value on each stimulus presentation
is a gamma-distributed random variable. The Goris proc-
ess is described in detail in our companion paper (May &
Solomon, 2014). The gain fluctuations result in a Fano
factor that increases with the firing rate, which is more
physiologically plausible than the fixed Fano factor pro-
duced by the Tolhurst and Consul-Jain processes. For
mathematical simplicity, we assume that each neuron in
the population has the same gain signal, and each neuron’s
Poisson spiking process is independent (see May & Solo-
mon, 2014, for justification of these restrictions). The
shared gain signal causes the neuronal responses to be cor-
related, with a realistic correlation structure. However,
because each neuron’s Poisson spiking process is inde-
pendent, a decoder that knows the gain signal on each
stimulus presentation can express the spiking distributions
as independent Poisson distributions, so the neurons can
be decoded as if they were statistically independent (see
May and Solomon, 2014, for a more detailed explanation
of this).

Bayesian population decoding

All the results that we report from Tolhurst and col-
leagues were obtained using maximum-likelihood decod-
ing. The estimated stimulus level is the one that had the
highest probability of giving rise to the obtained set of
spike counts, i.e. it is the value of x that maximizes the
likelihood, P(N=n| X =x). In Tolhurst and colleagues’

model, the neurons were statistically independent; in addi-
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tion, if we use May and Solomon’s (2014) parameteriza-
tion of the Goris process, the neurons are implicitly decor-
related if the decoder knows the gain signal. For statisti-
cally independent neurons, the population likelihood is
then given by the product of the likelihoods of the indi-
vidual neurons:

K
P(N=n|X =x)=][P(N, =n;| X =x) (8)
j=

K
=[1PWN; =n; IR, =r;(x)). (9
J=1

K is the number of neurons. N; is a random variable rep-
resenting the spike count of neuron j, and »; is its value.

R; is a random variable representing the mean spike

count for neuron j, and r;(x) is its value. The second
equality (Equation (9)) arises because each r;(x) is a de-

terministic function of the stimulus value, x. To evaluate
the probabilities in Equation (9), we use the appropriate
expression, depending on which spiking process we are
using. For the Consul-Jain process, we use Equation (6).
For the Goris process, assuming the decoder knows the
gain value, we use the gain-modulated Poisson distribu-
tion (May & Solomon, 2014, Equation (10)). All the
modelling in this paper used the Tolhurst process, which is
defined in Equation (5). However, the infinite sum in
Equation (5) makes this expression cumbersome to evalu-
ate, and it is usually better to use the finite series expan-
sion that we derived in Supplementary Appendix B (Equa-
tion (B.23)).

Measuring decoding precision

Definition of decoding precision

Decoding precision is usually taken to be the recipro-
cal of the variance of the estimated stimulus value; this is
how it is defined in our companion paper (May & Solo-
mon, 2014). However, Tolhurst and colleagues (Clatwor-
thy et al., 2003; Chirimuuta et al., 2003) used a slightly
different measure of decoding performance in their Monte
Carlo simulations, which they called “accuracy”, defined
as the reciprocal of the mean squared difference between
the individual estimate and the true stimulus value:

T

> G-x)?

accuracy = (10)
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where T is the number of trials (= 10,000), X is the esti-

mated log contrast estimate (note we use an upper case X
to represent the random variable, and lower case x to rep-
resent its value on a particular trial), and the denominator
is the sum over all trials. For the models that we consider
in this study, the log contrast estimate is largely unbiased
(except at very low performance levels), so we have

mean[X ] = x. In this case, the accuracy score in Equation

(10) is essentially the same as the precision. For consis-
tency with Tolhurst and colleagues, we used their measure
of decoding accuracy (Equation (10)) when analyzing our
Monte Carlo simulations. However, we refer to it as “pre-
cision” (except when directly quoting Tolhurst and col-
leagues), because our analytical approximations of it are
formally measures of precision, and the term “accuracy” is
often used to mean the inverse of bias (e.g., Smith, 1999,
Chapter 2). We found that, except in degenerate condi-
tions where the model’s performance level was very low,
it made a negligible difference whether we plotted Tol-
hursts’s accuracy score or true precision. Note, in the
Monte Carlo simulations in our companion paper (May &
Solomon, 2014), we calculated true decoding precision
(reciprocal of the variance of the estimated stimulus
value), not the accuracy score defined in Equation (10).

Approximating decoding precision using
Fisher Information

For an unbiased maximum-likelihood decoder, the
precision cannot exceed a quantity called the Fisher in-
formation. This limit is known as the Cramér-Rao bound
(Cramér, 1946; Rao, 1945; see Dayan & Abbott, 2001, pp.
120-121). For populations that give sufficiently large
numbers of informative spikes, the precision of a maxi-
mum-likelihood decoder is very close to the Fisher infor-
mation; when the tuning function is a sigmoid function
like the Naka-Rushton function, this applies even if the
“population” consists of a single neuron. This means that
we can use the Fisher information as an analytical ap-
proximation of the decoding precision, thereby giving us a
real insight into why Tolhurst and colleagues’ results oc-
curred, and how general they are.

The Fisher information depends on the tuning function
and the spiking process. Unfortunately, for the Tolhurst
and Consul-Jain spiking processes, the derivation of an
exact formula for the Fisher information turned out to be
intractable. In Supplementary Appendix E, we derive ap-
proximations of the Fisher information for each of these
spiking processes: Trgjhurst (X) and 7cj(x). Aslong as
the mean spike count of the most informative neurons is
not too low, both 1.t (X) and 7o j(x) are very close
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to the following general approximation of the decoding
precision, 7(x):

£ 2
)=+ E S (11)
v r;(x)

J=1

where rj’~ (x) is the first derivative of neuron j’s tuning
function with respect to x. To parameterize 7(x) so that it
approximates Tyt (¥) or 7c_j(x), v should be equal to
the Fano factor; the Fano factor is fixed at 2 for the Tol-
hurst process, and can take any value > 1 for the Consul-
Jain process. The tilde (~) above 7is to indicate that this
estimate of decoding precision is based on an approxima-
tion of the Fisher information that is not always accurate.
With a Fano factor of 1, the Consul-Jain process is the
ordinary Poisson, in which case 7(x) with v=1 is exactly

equal to the Fisher information (see Dayan & Abbott,
2001, Chapter 3). For the Tolhurst process and the Con-
sul-Jain process with F #1, 7(x) with v equal to the Fano

factor is an approximation of the Fisher information. For
the Goris process, May and Solomon (2014) showed that
an appropriate estimate of the decoding precision is given
exactly by Equation (11) with v= 1/ (1- aé) , Where 0(2;
is the variance of the gain signal (see May & Solomon,
2014, Equations (26) and (31)). In this case, v is not the
Fano factor — the Fano factor for Goris et al.’s spiking
process is variable, and depends on the mean spike count.
When the gain is known by the decoder, the Fisher infor-
mation of the Goris process varies from trial to trial due to
the fluctuating gain, and 7(x) with v= 1/ (1- 0'(2;) gives
the modal value of the Fisher information exactly.

In summary, Equation (11) gives a general approxi-
mation of the decoding precision for a variety of different
Poisson-based spiking distributions. For two processes
(Poisson and Goris) it is based on an exact expression for
the Fisher information; for the other two processes (Tol-
hurst and Consul-Jain) it is based on an approximation of
the Fisher information that is accurate as long as the mean
spike count of the most informative neurons is not too
low.

If we expand r;(x) and rj’» (x) in Equation (11) using
the Naka-Rushton function (Equation (2)), then we have

K

2 4q(2z+x)
f(x)zl Fnax (¢Inb)" b :
VZ (6% + )

J=1

if 7, =0.(12)

Tolhurst and colleagues always used 7, =0 in their mod-
elling; since we are focusing on their modelling results,
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we will only consider the case of 7, =0 in this paper. In

Equation (12), each neuronal parameter can vary from
neuron to neuron, so, strictly speaking, each parameter
should be indexed by the neuron number, j, but we omit
these indices to reduce notational clutter.

In the next section, many of the “populations” of neu-
rons that we analyze consist of either just a single neuron
or a set of identical neurons. In this case, Equation (12)
reduces to

Krox (q In b)2 pa+%)

e(x) =
- v(b” +qu)3

if 1, =0, (13)

with K =1 in the case of a single neuron.

Explaining Clatworthy et al.’s

contrast decoding results

Clatworthy et al. (2003) applied their Bayesian con-
trast decoding algorithm to single Tolhurst-spiking neu-
rons, or populations of them, and discovered several rela-
tionships between the neuronal parameters and the peak of
decoding precision along the contrast axis:

1. “Increasing R,y increases the contrast identifica-
tion accuracy of single neurons at all contrasts,
most obviously the peak accuracy, without chang-
ing the contrast at which accuracy is a maximum”
(Clatworthy et al., 2003, p. 1991; note, they use
R« Where we use 7, ); this can be summa-
rized by saying that there is an approximately
multiplicative effect of 7,,,, on decoding preci-

max

X
sion;

2. “the position of the accuracy peak along the con-
trast axis is consistently close to but, interestingly,
slightly below the neuron’s cs,” (Clatworthy et

al., 2003, p. 1989);
3. “the peak value of accuracy is independent of
¢s5o” (Clatworthy et al., 2003, p. 1989);

4. “the relationship between the maximum accuracy
and ¢ is a steep straight line on log-log coordi-
nates” (Clatworthy et al., p. 1989);

5. “To change the maximum accuracy ... requires
only a change in the product of R_.. and number

of neurons, i.e. the total number of action poten-
tials generated on average ...; for a given accu-
racy, there is a simple trade-off between the num-
ber of neurons and the response amplitude of in-
dividual neurons.” (Clatworthy et al., 2003, p.
1990).

max
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The numerical nature of Clatworthy et al.’s method
means that it gave little insight into why these relation-
ships arose, or how generally they apply. In this section
we explain Clatworthy et al.’s findings by deriving equa-
tions that explain corresponding findings for the analytical
approximation of decoding precision, 7(x), given in
Equation (13).

First, we examined whether 7(x) was sufficiently
close to the true decoding precision to make this approach
valid. This is important, because the Fisher information
(on which 7(x) is based) is only an upper bound on the

decoding precision, and can far exceed the true decoding
precision for small population sizes (Xie, 2002). In one of
their investigations (shown in their Figure 5A), Clatwor-
thy et al. examined the effect of 7,,, on decoding preci-
sion for a single Tolhurst-spiking neuron with Naka-
Rushton exponent (¢) equal to 2, cyp = 0.1,and ) =0.

Fax ook values of 5, 20, 50, 100, or 180 spikes. We rep-

licated their methods (see Supplementary Appendix G for
details) and obtained essentially identical contrast decod-
ing precision scores (calculated using Equation (10)) to
those that we read off from their Figure 5A, the small dif-
ferences almost certainly being due to the stochastic na-
ture of the simulations and small inaccuracies in our tran-
scription of the data from Clatworthy et al.’s figure. The
symbols in Figure 1 show these precision scores. The
thin, coloured curves show the true Fisher information,
calculated numerically (for methods, see Supplementary
Appendix H). The thick, black curves show 7(x) with

v=2. The two panels in Figure 1 are identical except that
Figure 1A has a linear vertical axis, and Figure 1B has a
logarithmic one. The linear vertical axis facilitates com-
parison with Clatworthy et al.’s Figure 5A, which used
linear vertical axes, and the logarithmic vertical axis gives
a clearer picture of the data for low 7, values, which are

flattened out on the linear axis. The logarithmic vertical
axis tends to exaggerate the deviations of the decoding
precision from Fisher information because the precision
scale is expanded for the worst-matching conditions (those
with low precision) relative to the best-matching condi-
tions.

Firstly, note that 7(x) is very close to the true Fisher

information at the peaks (compare the thick, black lines
with the thin, coloured lines). This is important, because
the five observations that we analyze in this section are
about the peaks, and our justification for using 7(x) to

predict decoding precision is that it is approximately equal
to the Fisher information.

For r,,, of 50 spikes or more, the horizontal and ver-

tical position of the peak of precision coincides closely
with the peak of 7(x). This allows us to explain many of

May & Solomon

Clatworthy et al.’s observations about the precision peak
by deriving equations that explain corresponding findings
for 7(x). For r,,, values substantially lower than 50
spikes, the decoding precision does not match 7(x) at all
well, even at the peak, but Clatworthy et al.’s observations
do not apply here either. In the following five subsec-
tions, we explain each of the five observations above us-
ing the approximation of the decoding precision, 7(x),

given by Equation (13).
350 : :
—r =180
300t =100 A
c —_— T s 50
:g 250 r =20
%]} r =5
[ max
5 200
(=]
£ 150+
T
o}
@ 100}
(a}

50|

Decoding precision

log 10(Miche|son contrast)

Figure 1. Comparison of contrast decoding precision against the
analytical prediction for single Tolhurst-Spiking neurons. (A)
Squares show Clatworthy et al.’s Bayesian decoding precision

scores for a Tolhurst-spiking neuron with g =2, = 0.1 (i.e.

z=-1), 1, =0, and five different 7,,,, values, indicated by

different colours; the data were read off from Clatworthy et al.’s
Figure 5A. Circles show the results of our replication of their
simulations. The thin, coloured curves plot each neuron’s true
Fisher information for decoding contrast, calculated numerically
(see Supplementary Appendix H). The thick, black curves show

the analytical approximation of the decoding precision, 7(x),

calculated using Equation (13) with K =1 and v=2. The ver-
tical black line passing through the peaks of the black curves is

positioned along the log contrast axis at log;o(cy/3). i.e. the log
of the Michelson contrast for which the mean response is

Vax /3 . (B) The same as (A), except that the vertical axis has

a log scale.
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Observation 1: Multiplicative effect of in-
creasing ryax

From Equation (13), we see that 7(x) is proportional

to 7, increases the Fisher informa-

“nax » SO Increasing
tion by the same multiplicative factor for each contrast
level; the position of the peak across contrast is un-
changed, and the largest absolute change is for the peak
precision. This multiplicative change gives rise to the ver-
tical shifts seen for the black curves on the logarithmic

vertical axis in Figure 1B.

rmax

Observation 2: Precision peaks slightly be-
low the semi-saturation contrast

The exact position of the peak of 7(x) along the con-
trast axis can be found by differentiating 7(x) with re-

spect to x, setting the derivative to zero, and solving for x.
From Equation (13), we have

d7(x) _ Krax (qInb)’ 675

(qu —2b‘”). (14)

dx v(b% 4 b )4
Setting this to zero gives
AT _ o e =
dx
:>x=z—10gb(2l/q) (15)
=c=2"¢,. (16)

Using Equation (15) to substitute for x in Equation (2)
gives (for 1, =0)

N-R F(X) = /3 if T(x) is at its peak. (17

So, regardless of the values of v, 7,,,, , ¢, or 2, 7(x) for

a single neuron will always peak at the contrast for which
the mean response is 7,,, /3. We introduce the term cy3

for the Michelson contrast that gives rise to a mean re-
sponse of 7;,,, /3, to be consistent with the term ¢y, for

the semi-saturation contrast. log,(cy/3) is indicated by

the black vertical line in each panel of Figure 1, and it
passes through the peak of each thick, black curve.
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Observation 3: The peak value of precision is
independent of the semi-saturation contrast

The peak value of 7(x) occurs at a log contrast given

by Equation (15). Using this equation to substitute for x in
Equation (13), we find that the peak value of 7(x) is

given by

4Kr o (qInb)

max[f(x)] :—27v , (18)

which is independent of ¢y, .

Observation 4: The relationship between the
maximum precision and ¢ is a steep straight
line on log-log coordinates

From Equation (18), we see that max [f(x)] is propor-

tional to q2 , giving a straight line on log-log coordinates.
Figure 2 plots max [f(x)] as a function of ¢ for a single
Tolhurst-spiking neuron with 7., =50 spikes, and shows
that max [f(x)] is very close to the true peak of precision

for this model neuron obtained using Clatworthy et al.’s
Monte Carlo methods.

100

Maximum precision

10

05 1 2
Exponent, ¢

Figure 2. The relationship between the maximum precision and
the Naka-Rushton exponent for 7;,,. =50 spikes. Squares
show maximum precision as a function of exponent, ¢, when
Tmax = 0 spikes, read off from Clatworthy et al.’s Figure 4C.
Circles show the results of our replication of their methods; the
differences are negligible. The solid line plots max[f(x)] , cal-

culated using Equation (18) with K =1 and v=2.
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Observation 5: Linear trade-off between ry.x
and number of neurons

Clatworthy et al. (2003) and Chirimuuta and Tolhurst
(2005a) both noted that 7,,, and the number of neurons,
K, trade off so that, regardless of the individual values of

max and K, the decoding precision is a function of their

product. In fact, unless r,,,, x K is very low, the decod-
ing accuracy is close to being proportional to 7, x K .
This observation is easily explained by Equation (13),
which shows that 7(x) is proportional to 7,,,, xK .

The crosses in Figure 3 re-plot data from Clatworthy et
al.’s (2003) Figure 5C. These data show the maximum
decoding precision of various populations of neurons, all
with ¢ =2 and ¢}/, =0.1; the near-proportionality be-

x K 1is indicated by the

fact that most of the points lie on a straight line of gradient
1 on these log-log axes. The straight line in our Figure 3

tween decoding accuracy and 7,

is a plot of max[f(x)] , calculated according to Equation

(18). It clearly provides a very good match to the decod-
ing precision data for xK >50.
Note that, although 7(x) gives an exact linear trade-

rmax

off between r,,,, and K, the true Fisher information for

X

the Tolhurst process does not. As r,,,, decreases, 7(x)
tends to underestimate the true Fisher information.

A more accurate estimate of the decoding precision is
given by Ty hurst () » derived in Supplementary Appendix
E:

K

rj ()’
TTolhurst (x) = HTolhurst (x) x s (19)
ry (x)
j=1
where
HTolhurst (x) =

(1_ 1+0.06630 x r(x)j

5 exp[r(x)(1/e-1)]+ % . (20)

Hohuest (X) 18 plotted in Figure 4. As the spike rate of
each individual neuron increases, Hr s (X) for that
neuron approaches 1/2, and S0 7t (X) approaches
7(x) (Equation (11)) with v=2. However, as the spike
rate decreases, Hyjpurst (¥) 1ncreases, and SO Trjpyrst (X)
exceeds 7(x), and better reflects the true decoding preci-
sion.
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Maximum precision
—
o

10°
10°  10°  10® 10° 10°
r xK
max
Figure 3. Maximum precision as a function of 7, x K . The

crosses plot data from Clatworthy et al.’s (2003) Figure 5C,
showing the height of the peak in decoding precision as a func-

tion of 7,,,, X K for a variety of neuronal populations, all with
¢=2 and ¢y, =0.1. The straight line plots max[f(x)], cal-

culated according to Equation (18) with v=2.

0.65

06}

HTolhurst(x)
o
[4)]
(3]

05}

0.45 : : : :
0 2 4 6 8 10
r(x) (spikes)

Figure 4. Hygpurst () , as defined in Equation (20), plotted as
a function of r(x). This function approaches (1—1/¢) as

r(x) — 0, and approaches 0.5 as r(x) — .
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For the Naka-Rushton function with 7, =0, we can
expand Equation (19) in a similar way to Equation (12):

TTolhurst ()C) =
K

2 4q(2z+x)
r.. (glnb)” b4
H Tolhurst (x) X ( ) 3 . (2 1 )
Z (6% + )

J=1

Unlike 7(x), Zomurst (X) 15 specific to the Tolhurst spik-
ing process, rather than being a general approximation of
the decoding precision that applies to several different
spiking processes.

May & Solomon

In each panel of Figure 5, the solid line is the same as
in Figure 3, while the dashed line plots the maximum
value of 77 jhurst (X) . As 7., decreases, Trqjpurst (¥) and
7(x) start to diverge, by a factor that approaches
(1-1/e)/0.5=1.264, i.e. the ratio of the maximum to
minimum values of Hpgjurst (X) -

This inexact trade-off between 7,
the Tolhurst process, but not to the Poisson or Goris proc-
esses: for these, 7(x) is derived from the exact expression

for the Fisher information, so the trade-off that we derived
for 7(x) applies to these processes exactly.

and K applies to

X

c

ie)

R

3

o E

£ E

£

: =

£ ]

=

©

E R " el L |

10°  10' 102 10°10° 10 10%

7 x K r x K
max max

Figure 5. The inexact nature of the trade-off between 7,

3

10°10° 10’ 102 10°10° 10’ 102 10
I3 x K r x K
max max

and K for the true decoding precision of the Tolhurst process. In each

panel, the solid line is the same as that in Figure 3, and shows the maximum value of 7(x) ; for this approximation of the decoding pre-

cision, the trade-off is exact. The dashed curve shows the maximum value of 7.t (X) . calculated numerically from Equation (21).;

here, the trade-off is only approximate, and the peak of Fisher information does depend slightly on the individual values of 7,

rather than being simply a function of their product.

Failure of Clatworthy et al.’s observations for
single neurons at low spike rates
When 7, (or, for populations x K ) is substan-

tially less than 50 spikes, the peak of precision does not
coincide closely with that of 7(x) or even the true Fisher

s rmax

information, so the explanations of Clatworthy et al.’s
findings given above are no longer valid. However, most

of these findings do not apply for these low 7, values

either. The failure of Observations 1 and 2 at low spike
rates is clear from Figure 1, the failure of Observation 5 at
low spike rates is shown in Figure 3, and the failure of
Observation 4 at low spike rates is demonstrated in Figure
6.

The median 7,,,, for a 200 ms stimulus is only around

5.7 spikes for V1 neurons (Geisler & Albrecht, 1997),

and K,

X

suggesting that, with single-neuron models, the spike
count has to be implausibly high for the decoding preci-
sion to be well approximated by the Fisher information.
However, as shown by Clatworthy et al. (2003), Chiri-

muuta and Tolhurst (2005a) and our Figure 3, 7,,,, can be

approximately traded off against the number of neurons,
so that what is important is the average spike count of the
population, rather than of the individual neurons. With a
population code, it is possible to achieve a high total
population spike count while keeping the spike counts for
the individual neurons at a plausible level, and this makes
the Fisher information more relevant to understanding
population coding models than coding schemes based on a
single neuron. So far, we have only considered popula-
tions of identical neurons. We now turn to populations of
differently tuned neurons.
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Figure 6. The effect of 7,,,, on the relationship between the

maximum accuracy and the Naka-Rushton exponent. Results of
an investigation the same as that shown in Figure 2, but with

three different 7, values (indicated by different colours), and a

wider range of exponents, ¢. Thick, solid lines plot max[f(x)] ,

calculated using Equation (18) with K =1 and v =2 ; symbols

(joined by thin lines) plot the height of the peak of decoding pre-
cision from Monte Carlo simulations. At high spike rates, the

relationship between maximum precision and ¢ is a straight line
on log-log coordinates that is well predicted by max [f(x)]; at

low spike rates, the relationship between maximum precision
and g becomes a shallow curve.

Population coding of contrast

Clatworthy et al. (2003) applied maximum-likelihood
decoding to three different populations of 18 model Tol-
hurst-spiking neurons, each with 7, =10, 7, =0, and
q =2 . One population had log;, (C1/2) values uniformly
distributed between -3 and 0.1, and the other two had ¢,

values distributed according to the recorded values in ei-
ther cat or monkey populations, found by arranging the
neurons in ascending order of ¢/, and then sampling the

population at equal percentile intervals. We did not have
access to the exact sets of cat or monkey ¢/, values that

they used, but we estimated them by fitting functions to
the cat or monkey 2 distributions given in Clatworthy et

al.’s Figure 6, and then sampling these distributions in
equal percentile steps (see Supplementary Appendix I for
details). The advantage of our method is that it can easily
be extended to neuronal populations of any size. Having
set up the populations of neurons, we then calculated de-
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coding precision scores using Clatworthy et al.’s Monte
Carlo methods (see Supplementary Appendix G for de-
tails). Figure 7 shows that our decoding precision scores
are very similar to those of Clatworthy et al., confirming
that our method of generating the sets of ¢}/, valuesis a

good approximation to that of Clatworthy et al. The col-
oured curves in Figure 7 show 7(x), calculated using

Equation (12) with v=2. Since 7,,,, =10 in these simu-
lations, Hgpurst (X) = 0.5 for the most informative neu-
TonS, SO Tyohurst (X) ® 7(x) , and there was no advantage in

using the closer, but more complex, approximation.
Figure 7 shows that, even for these small populations of
neurons, with 7. of only 10 spikes, the decoding preci-

sion from the Monte Carlo simulations is very close to
7(x) over a wide range of contrasts.

In Figure 7, the only substantial deviation of decoding
precision from Fisher information occurs at the ends of the
contrast range, where the precision scores shoot up. This
is an artifact, discussed by Clatworthy et al., caused by the
fact that, in the simulations, the likelithood functions were
calculated over a finite range of contrasts. This means
that, on trials where the inferred contrast would have
fallen beyond the ends of the contrast range, the inferred
contrasts instead pile up on the ends of the range, artifi-
cially boosting the number of trials on which the inferred
contrast takes those values; thus, when the stimulus con-
trast really is at or close to one of the ends of the range, it
is likely to be close to the inferred contrast, so the preci-
sion is artificially high. The Fisher information does not
show this effect because it is a purely local measure, de-
rived from the contrast-response functions at each point
along the contrast axis, so it is unaffected by any bounds
on the range of contrasts.

7(x) is a good approximation of the decoding preci-

sion for the Tolhurst process as long as is not too

rm ax

low. For low values of 7. ,

the true Fisher information, and, as noted earlier, this
means that there is not an exact trade-off between r,,,

7(x) tends to underestimate

and the number of neurons, K. For low values of 7, , it

is better to use 7y, (X) to accurately predict decoding

precision. This is demonstrated in Figure 8.

There are at least two reasons why we will sometimes
need an expression for the decoding precision that remains
a close approximation down to very low spike rates.
Firstly, the median spike count for a 200 ms stimulus
presentation is only around 5.7 spikes for a V1 neuron
tuned to the stimulus (Geisler & Albrecht, 1997), and ob-
servers can make complex judgements based on even
shorter exposures than that (Thorpe, Fize, & Marlot,
1996). Secondly, in many situations, the majority of neu-
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rons will not be well tuned to the stimulus, but may still
contribute to task performance due to their abundance;
these neurons would be expected to have a very low aver-
age spike count over the course of a stimulus presentation.

200

—— Cat
—— Monkey
—— Uniform
150 A 1

100 pF 0§ ]

Decoding precision

50 . 1

log 1 o(Michelson contrast)

Figure 7. Population decoding precision for three different popu-
lations of K =18 neurons. Within each population, the

logyg(cyj2) values were uniformly distributed between log con-
trasts of -3 and 0.1 (red), or distributed according to recorded
cat (green) or monkey (blue) populations (see Supplementary
Appendix | for details). For each neuron, =10, r, =0,
and g =2 . Squares show Clatworthy et al.’s (2003) decoding

precision data, read off from their Figure 7; circles show the de-
coding precision data from our replication of their Monte Carlo

methods. The solid curves show 7(x), calculated using Equa-

rmax

tion (12) with v=2. Note that, because our method of selecting
the 2 values differed slightly from that of Clatworthy et al., our

decoding precision scores show a very slight systematic differ-
ence from theirs, which is more noticeable in the cat data. 7(x)

was calculated using our 2 values, and so shows a slightly

better match to our precision scores than to those of Clatworthy
etal.

11
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Figure 8. Results of four simulations the same as those in Figure 7, except with different values of

and K, indicated at the top of

rm ax

each panel. As in Figure 7, circles plot decoding precision from the Monte Carlo simulations, and solid curves plot 7(x), calculated

using Equation (12) with v=2. Dashed curves plot 7, (X) , calculated using Equation (21). For 7, =16, 7(x) and

TTolhurst (X) are very well matched to each other, and to the true decoding precision. For .. =4 and below, only Zr,purst (X) is

well matched to the true decoding precision. This figure also illustrates the breakdown of the linear trade-off between r; and K

when 7.+

is low. Each panel has the same product 7., x K , but the decoding precision falls with increasing

max

This break-

rmax .

down of the linear trade-off applies to the Tolhurst process shown here, but not the ordinary Poisson process or the Goris process.

The psychometric function for

contrast detection

Chirimuuta and Tolhurst (2005a) used their contrast
coding model to simulate a 2-alternative forced-choice
(2AFC) contrast detection task, where the observer is pre-
sented with a zero-contrast nontarget stimulus, and an
above-zero-contrast target stimulus, and has to pick the
target. Chirimuuta and Tolhurst measured the model’s
proportion of correct responses as a function of the target
contrast, and fitted a Weibull psychometric function to the
data.

For 2AFC tasks, the Weibull function can be defined
as

P(correct) =1—0.5exp [—(c/a)[’i ) (22)

ais the threshold, i.e., the target contrast that gives
P(correct) =1-0.5/e=0.816..., and /3 controls the func-

tion’s shape on linear axes, or slope on log axes (see May
& Solomon, 2013, for an in-depth analysis of the Weibull
function). In psychophysical contrast detection experi-
ments with human observers, £ usually takes a value of
about 3 (Foley & Legge, 1981; Nachmias, 1981; Mayer &
Tyler, 1986; Meese, Georgeson, & Baker, 2006; Wallis,
Baker, Meese, & Georgeson, 2013).
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When Chirimuuta and Tolhurst’s model had a stan-
dard Naka-Rushton contrast-response function with 7, =0
and g =2, Weibull g for detection varied from 1.75 to
1.99 as the number of neurons increased from 1 to 23, but
the model’s £ never reached the normal human level of
around 3. Chirimuuta and Tolhurst then introduced a
threshold to the Naka-Rushton function by subtracting a
constant value from the output and setting negative values
to zero. With a threshold on the Naka-Rushton function, S
ranged from 2.25 to 4.20, providing a better match to psy-
chophysically obtained values. Chirimuuta and Tolhurst
assumed that their failure to obtain sufficiently high
Weibull g values with the standard Naka-Rushton func-
tion had been caused by the lack of a threshold, and they
suggested that the standard, unthresholded Naka-Rushton
function “may be crucially inadequate” as a model of the
neuronal contrast-response function (Chirimuuta & Tol-
hurst, 2005a, p. 2956). However, we will now show that,
when 7, =0, the model’s psychometric function is close

to a Weibull function with =g . Thus, the real reason

that Chirimuuta and Tolhurst always obtained a £ of about
2 with the standard Naka-Rushton function is that they
always kept ¢ at 2 in these simulations. We will show that
one can obtain any Weibull £ by setting g close to the re-
quired S value.

Proof that, when r, = 0, the model’s psycho-
metric function for 2AFC contrast detection
is close to a Weibull function with g=g¢

At the low contrasts corresponding to the model’s
contrast detection threshold, the population spike rate is
typically so low that the Fisher information does not pro-
vide a useful approximation of performance, so we need to
use other methods. For contrast detection, the model’s
performance can be derived straightforwardly from basic
probability theory.

Because r, =0, there is zero response to zero con-

trast: The nontarget stimulus can never elicit a single
spike. If the target elicits at least one spike, the model will
respond correctly. If the target fails to elicit any spikes,
the model has to guess, and will be correct half the time
on a 2AFC task. In summary, the model will be correct on
all 2AFC trials except half of those on which the target
failed to elicit any spikes. This statement can be formal-
ized as follows:

P(correct) =1-0.5P(no spikes), (23)

where P(no spikes) is the probability of getting no spikes
in response to the target. We can already see that the
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model’s psychometric function has a similar form to the
Weibull function: P(correct) =1-0.5x something .

From Equation (E.4) of Supplementary Appendix E,
we see that, for a single Tolhurst-spiking neuron,

P(no spikes) = Projhurst (N =0| R =7(c))

=exp[(l/e—Dr(c)]. (24)

Note that, since the Weibull function is defined as a func-
tion of contrast in Michelson (linear) units, we express the
mean response, (), as a function of Michelson contrast

in Equation (24), rather than log contrast. For a popula-
tion of K statistically independent neurons,

K
P(no spikes) = [ Jexp| (1/e=1r;(c) |

J=1

K

= eXp[(l/e -7 (C)j , (25)
Jj=1

where 7;(c) is the contrast-response function of neuron ;.

Using Equation (1) to expand 7;(c), we have

P(no spikes) =exp| (1/e— I)Z(max— (26)

Cl/2 j C

where (7, ); and (¢yj,); are the 7

max and ¢y, parame-

ters of neuron j. Using Equation (26) to substitute for
P(no spikes) in Equation (23), we get an exactly correct

expression for the model’s psychometric function for con-
trast detection:

K

q
K C
P(correct) =1-0.5exp| (I/e—1) Uinax) €7

= (CI/Z)jq +cf
(27)

If all the neurons in the population being monitored by the
observer have the same contrast-response function, then
Equation (27) reduces to

] . (28)

In this case, Equation (28) shows that there is an exact
linear trade-off between r,,, and K in the psychometric

(/e = Drpac K
C1/2 + Cq

P(correct) =1-0.5ex [

ax
function for 2AFC detection, rather than the approximate
trade-off that we get with the Fisher information.
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Equations (27) and (28) are precisely correct, but it is
illuminating to derive an approximation. As long as there

are enough neurons, or 7, is sufficiently high, the con-

trast detection threshold will be somewhat lower than the
lowest ¢y, in the population. Thus, at threshold (i.e.,

around the middle of the psychometric function), the de-
nominators of Equations (26) to (28) will become domi-

nated by the ¢;,? term, and the ¢ term will make little

difference. Dropping ¢? from the denominator of Equa-
tion (27), we get

P(correct) zl—O.Sexp[—(c/a)q} , (29)

where « is a constant, given by

-1/q
a=|(1-1/ )Z (cma’;)f . (30)
1/2

Equation (29) has the form of a Weibull function with
L =¢q. The near-equality in Relation (29) approaches

equality as K or .. increase. []

max

The derivation of Relation (29) is similar to the deri-
vation of the psychometric function for Quick’s (1974)
vector-magnitude model of contrast detection. The per-
formance of the vector-magnitude model is exactly
equivalent to that of a model in which the observer moni-
tors a number of detectors that each has a detection prob-
ability that can be described by a Weibull function, with
the same / for all detectors. Nachmias (1981) called this
assumption of identical £ for each detector the “homoge-
neity assumption”, and it is largely equivalent to the im-
plicit assumption in the above proof that all neurons have
the same ¢. In the Discussion we expand on the links be-
tween our analysis and that of Quick.

Another attribute of the model’s psychomet-
ric function: Lapse rate

Note that Relation (29) is a Weibull function with zero
lapse rate, i.e. it predicts that the model’s performance will
asymptote to perfect performance ( P(correct) =1) with
increasing target contrast. For most instantiations of the
model, this is very close to the truth. However, when
max and K are both very low, the model’s asymptotic
performance is far below 1. This is because, as ¢ in-
creases, the denominator of Equation (26) will become
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more and more dominated by the ¢? term, and the ¢;),?

term will make less and less difference, so

K
lim P(no spikes) = exp{(l/e - l)z (Fpax )j] . (3D

C—>0 j=1

For very low .. and K, this value can be substantially

above zero, so that, even for infinite contrast, the model
has to guess on a significant proportion of 2AFC trials.

This behaviour can be accommodated by including a
“lapse rate” parameter, A, in the definition of the Weibull
function:

max

P(correct) = (1-1)—(0.5-2) exp[—(c/a)ﬁ} . (32)

This equation approaches an asymptote of
P(correct)=(1-1) as ¢ >o. When 1=0, Equation
(32) reduces to Equation (22). We now derive an expres-
sion for the model’s “lapse rate” parameter (strictly speak-
ing, the model never “lapses” — a low asymptotic perform-
ance level arises from a low spike rate, rather than a finger
error or a failure to look at the stimuli on some 2AFC tri-
als).

Using Equation (31) to substitute for P(no spikes) in
Equation (23), we obtain the asymptotic value of
P(correct) given by

K
lim P(correct)=1-0.5 exp{(l/e - l)z (Fpax )j] .(33)

C—>0 j=1

Since this asymptotic value of P(correct) is (1-1), we
have

K
A=0.5 exp{(l/e DD (inax) j] . (34)
j=1

This expression for A quickly approaches zero as 7,,,, or
K increase.

Verifying our equations using Monte Carlo
simulations

We simulated the 2AFC contrast detection experi-
ments for a range of model parameterizations (see Sup-
plementary Appendix J for details of the methods). For
each parameterization, each neuron in the population had
an identical contrast-response function. We fitted the 3-
parameter Weibull function (Equation (32)) to the data for
each model parameterization. The fitted values of o, S
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and A are plotted as symbols in Figures 9, 10, and 11, re- matches the fitted A values extremely well in Figure 11.
spectively. The solid lines plot the corresponding analyti- Our analytical expressions for « and /8 are approximations
cal expressions (& given by Equation (30), £ given by ¢, that become increasingly accurate as K or r,,,, increase.

and A given by Equation (34)).
Equation (34) is the model’s true “lapse rate” parame-
ter (not an approximation), so it is not surprising that it
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Figure 9. Filled circles show Weibull & parameters fitted to the 2AFC contrast detection simulation data. Each column of panels shows

a different 7, ; each row shows a different g. The solid lines plot the approximation of ¢ given by Equation (30).
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Figure 11. Filled circles show Weibull A parameters fitted to the 2AFC contrast detection simulation data. Each column of panels

shows a different 7, each row shows a different g. The solid curves plot A given by Equation (34). As shown in Equation (34) (and

max ’

borne out by our simulations), A depends only on K and Tmax » @nd is independent of ¢.
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Study No. of neurons Mean ¢ Median ¢
Albrecht & Hamilton (1982) — cat 127 2.5 N/A
Albrecht & Hamilton (1982) — monkey 98 3.4 N/A
Geisler & Albrecht (1997) — cat 247 3.0 2.8
Geisler & Albrecht (1997) — monkey 71 2.5 2.0
Sclar et al (1990) — monkey 85 2.65 2.4
Overall mean 2.9

Table 1. Mean and median Naka-Rushton exponent, g, from three different physiological studies of V1. Albrecht and Hamilton (1982)
did not report the median, so these are omitted. Sclar et al. (1990) did not report the mean — the value given in this table was calcu-
lated from the histogram of ¢ values shown in their Figure 6. The centres of the bars of their histogram ranged from 0.875 to 6.375 in
steps of 0.25. The numbers of neurons in the corresponding bins were 8, 5, 2, 12,7,6, 4, 3,9,3,3,5,4,4,0,4,1,1,1,2,0,0, and 1.
Taking the g of each neuron in a histogram bin to be the central value of the bin (a reasonable approximation given the narrowness of
their bins), this gives a mean value of 2.65, calculated from 85 neurons. Sclar et al.’s study included one further V1 neuron, with g > 8,
but, since they were no more specific about its g value than that, we excluded it from our analysis. The overall mean was the average
of the “Mean ¢” values, weighted by the number of neurons in each study (this is equivalent to pooling the neurons across all three

studies, and finding the mean of the pooled sample).

The Consul-Jain spiking process also gener-
ates a Weibull psychometric function for de-
tection

The analytical expressions for the psychometric func-
tion for detection, derived above, apply only to the Tol-
hurst spiking process. We can also derive analogous ex-
pressions for the Consul-Jain process (which includes the
ordinary Poisson, when F =1). Equation (E.17) of Sup-
plementary Appendix E states that, for a single Consul-
Jain-spiking neuron,

P(no spikes) = exp(—r(c)/x/F) , (35)

where F'is the Fano factor. If we follow a series of
mathematical steps analogous to (23) to (29) above, but
using Equation (35), instead of Equation (24), to express
the probability of a single neuron not spiking, we obtain
an approximation of the psychometric function with the
same form as Relation (29), but with

K -1/q
(rmax)j
a= —_ (36)
Z‘ () JF;

where F' ) is the Fano factor or neuronj. Similarly, if we

follow a series of steps analogous to those in Equations
(31) to (34), but using Equation (35), instead of Equation
(24), to express the probability of a single neuron not spik-
ing, we obtain the following expression for the “lapse
rate” parameter:

(r max / j

K
)
A=0.5exp| — =, (37)

The purpose of this study was to explain a number of
empirical modelling results reported by Tolhurst and col-
leagues. Their results were obtained from Monte Carlo
simulations using models of spiking neurons with Naka-
Rushton contrast-response functions and the doubly sto-
chastic Poisson spiking process defined in Equation (5).
The numerical nature of the simulations meant that it was
not clear why the results occurred, or how they general-
ized across parameter space.

We addressed these problems by deriving equations to
explain the model’s performance. This kind of analysis is
essential if we are to understand the brain: If we use real-
istic models to simulate brain processes, but do not under-
stand why the models behave in the way that they do, then
we have not really explained anything — we have just
shifted the problem from understanding the brain to un-
derstanding the model.

We began by deriving a closed-form expression for
the Tolhurst likelihood function that was more tractable
than the infinite series that originally defined this function.
This expression played a role in understanding two facets
of the model’s performance: (1) the relationships between
decoding precision and the neuronal parameters; (2) the
form of the psychometric function for contrast detection.
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Decoding precision

To explain how the neuronal parameters map onto de-
coding precision, we derived an analytical approximation
of the decoding precision, 7(x), which can be adjusted to

apply to a variety of different spiking processes by setting
the value of a single scalar parameter, v. For the Tolhurst
and Consul-Jain processes, v should be set to the Fano
factor. For the Goris process, v should be set to

1/ (I-o é) , Where O'é is the variance of the gain signal.
For the Tolhurst and Consul-Jain processes, 7(x) is an

estimate of the Fisher information. For the Goris process,
the Fisher information varies across trials, and 7(x) is its

modal value.
The expression for 7(x) reveals some surprisingly

simple relationships between decoding precision and the
neuronal parameters, and explained the five observations
of Clatworthy et al. (2003) that we investigated. For ex-
ample, Equation (18) shows that, for a population of iden-
tical, statistically independent neurons, the height of the
peak of decoding precision is approximately proportional

t0 7y X K X ¢*, and independent of cyj2. The expression

for 7(x) also revealed that, to a good approximation, the
contrast most accurately encoded by the neuron is that for

which the mean response is 7, /3 ; we call this contrast

cy3.- Figure 7 shows that 7(x) matches the decoding pre-

cision very closely for a population of only 18 Tolhurst-

spiking neurons with . of only 10 spikes.

7(x) is an exact expression for the modal Fisher in-

formation for the Goris process, and gives the exact ex-
pression for the Fisher information for the Poisson proc-
ess, which is the Consul-Jain process with a Fano factor of
1. However, for the Tolhurst process and the Consul-Jain
process with F'>1, 7(x) is an approximation of the

Fisher information, and is less accurate when the mean
spike rate of the most informative neurons is very low. In
Supplementary Appendix E, we derived expressions,
TTolhurst (¥) and 7_j(x) , which are close approximations

of the Fisher information of the Tolhurst and Consul-Jain
processes across all parameter values. These expressions
reveal more complicated relationships between decoding
precision and the neuronal parameters that hold when the
spike rate is very low. Figure 8 shows the superiority of
TTolhurst (X) over 7(x) at very low spike rates.
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The psychometric function for contrast
detection

To explain Chirimuuta and Tolhurst’s (2005a) finding
regarding the slope of the psychometric function for con-
trast detection, we derived an analytical approximation of
the model’s psychometric function, which we showed ap-
proaches a Weibull function with f=g¢g as or K in-

crease. We thus refuted Chirimuuta and Tolhurst’s con-
clusion that the standard Naka-Rushton function is unable
to give Weibull £ values that are high enough to match
those of human observers. To obtain £ values of around
3, typical of human observers, we just need a Naka-
Rushton exponent of around 3. Such levels are not atypi-
cal, and indeed Table 1 shows that the mean g over 628
cells from three physiological studies of V1 is 2.9.

This example illustrates the power of the analytical
approach taken here, compared with Monte Carlo simula-
tions. Because of the considerable time that it takes to run
the simulations, Chirimuuta and Tolhurst (2005a) could
not feasibly explore every corner of parameter space in
each investigation, so they took the entirely reasonable
step of fixing the Naka-Rushton exponent, g, at a physio-
logically plausible level of 2. However, this turned out to
be a fatal decision, because it prevented them from ever
finding a parameterization of the model that gave a suffi-
ciently high Weibull £ with the standard Naka-Rushton
tuning function. Using the analytical approach, Relation
(29) makes it immediately clear that the Naka-Rushton
exponent, ¢, is the key parameter for controlling £, and
that the model’s psychometric function approximates a
Weibull function with £ actually equal to g.

It should be noted that our derivation of a psychomet-
ric function with the form of a Weibull function applies
only to the case of 7, =0. With nonzero 7, the analytical

form of the psychometric function is different (we have
analyzed this more general case, and will present it in an-
other paper). It is implausible that, in human vision, con-
trast detection is mediated entirely by neurons with zero
spontaneous firing rate. The assumption that there is no
neuronal response to zero contrast is often called the
“high-threshold assumption”?: Under the conventional
assumption of additive, stimulus-independent, noise, the
lack of response to zero contrast implies that there is a
threshold on the output of the sensory units, which lies
enough standard deviations above the mean of the noise
for there to be a negligible probability of a response to
zero contrast. Because Chirimuuta and Tolhurst’s model
has no sensory response to zero contrast, it is formally
equivalent to a high-threshold model, even though (with
the standard Naka-Rushton function) it does not actually
contain a sensory threshold. In high-threshold theory (and

rl’l’l ax
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in Chirimuuta and Tolhurst’s model), detection errors are
always unlucky guesses on 2AFC trials that failed to elicit
a response, whereas there is plenty of psychophysical evi-
dence that incorrect responses are caused at least partly by
“hallucinations” due to noise in the nontarget interval,
rather than entirely by unlucky guesses (Tanner & Swets,
1954; Swets, Tanner, & Birdsall, 1961; Nachmias, 1981;
Solomon, 2007; Laming, 2013).

Despite the implausibility of Chirimuuta and Tol-
hurst’s model with 7, =0 as a model of contrast detection,

we presented our analysis of it for three reasons:

1. It allows us to fully understand why Chirimuuta
and Tolhurst’s (2005a) contrast detection simula-
tions resulted in a fitted Weibull £ that ap-
proached 2 with increasing number of neurons;
this in turn allows us to refute their conclusion
that the Naka-Rushton function requires a thresh-
old to make it a plausible model of the neuronal
contrast-response function;

2. neurons with zero or negligible spontaneous firing
rates do exist (e.g. see Dean’s (1981a) Figure 2)
so it is not inconceivable that there are some or-
ganisms or experimental situations to which our
analysis applies;

3. itallows us to address Tyler and Chen’s (2000)
claim that high-threshold analysis of probability
summation is “fundamentally flawed”; this idea is
explored in the next subsection.

High-threshold probability summation

Our derivation of the model’s psychometric function
for detection is an example of high-threshold probability
summation. When 7, =0, each neuron acts as a “detec-

tor”; the observer detects the target if at least one neuron
responds during the target presentation, and has to guess
the correct answer otherwise. The more neurons the ob-
server is monitoring, the greater the chance that at least
one neuron will respond. The term “probability summa-
tion” refers to this increase in detection probability due to
an increase in the number of detectors. The psychometric
function in this case gives the probability that either at
least one neuron responds during the target presentation
or, if none responds, that the observer guesses correctly.

Quick (1974) showed that, if the detectors are statisti-
cally independent, and each detector has a detection prob-
ability that is a Weibull function with the same f, then the
observer’s psychometric function will be a Weibull func-
tion with that S-value, and with the detection threshold
parameter, ¢, given by
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< B
o= {Zaj‘ﬂJ ) (38)
j=1

where «; is the detection threshold parameter of detector

j. For a very clear derivation of Equation (38), see
Nachmias (1981), but note that his Equation (4) has a ty-
pographical error: It is missing the minus sign on the ex-
ponent, 5. If all the detectors are identical (but statisti-

cally independent) then they all have the same «;, and

Equation (38) reduces to
a=K"a,. (39)

Thus, in Quick’s model, the Weibull # parameter controls
how much of a reduction in detection threshold we
achieve by increasing the number of detectors, K. If fis
low, then the detection threshold, ¢, decreases quickly as
K increases; if fis high, then the detection threshold de-
creases more slowly as K increases.

Equation (38) gives the observer’s detection threshold
according to Quick’s model, while Equation (30) gives the
observer’s approximate detection threshold according to
Chirimuuta and Tolhurst’s (2005a) model. Equation (38)
has the exact form of Equation (30) if f=¢ and

o = (c12), (40)

[(l —1/e)(Fax) ]l/q |

Thus, there is a near-equivalence between Quick’s model
and that of Chirimuuta and Tolhurst. If all the neurons in
Chirimuuta and Tolhurst’s model have the same contrast-
response function, then the model’s detection threshold
approximation given by Equation (30) reduces to

G2
[(1 - l/e)rmax ]l/q

Therefore, since S =~ ¢ in Chirimuuta and Tolhurst’s

model, their model shows approximately the same prob-
ability summation effects as Quick’s model, with detec-

a=K" (41)

tion threshold proportional to K V8 For the modelling
in Figure 9, all the neurons were identical, so Equation
(41) is equivalent to Equation (30) (which was used to
generate the solid lines in Figure 9), and it is clear that this
equation does accurately predict the detection threshold of
Chirimuuta and Tolhurst’s model, particularly for the
higher values of or K.

As noted above, there is psychophysical evidence
against Quick’s “high-threshold” model. Tyler and Chen
(2000) went further, arguing, not just that high-threshold
theory has evidence against it, but that the analysis of

rm ax
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probability summation using high-threshold theory is
“fundamentally flawed”. Their analysis of high-threshold
theory made several basic assumptions about the high-
threshold model, including the following five:

1. the observer monitors a set of channels;

2. within each channel, there is a continuous signal
that increases linearly with the stimulus strength;

3. noise is added to this signal;

4. the noise might be additive (standard deviation
independent of the signal level), or multiplicative
(standard deviation proportional to a power func-
tion of the signal level), or the noise could be the
sum of an additive and a multiplicative compo-
nent;

5. asensory threshold is applied to the noisy internal
signal in each channel, so that a stimulus is de-
tected if and only if the noisy signal falls above
threshold in at least one of the channels.

We should emphasize that Tyler & Chen were not arguing
in support of this model; they argued that it was funda-
mentally flawed.

Tyler and Chen noted that, if the internal noise in this
model were fully multiplicative, then the internal signal-
to-noise ratio would be unchanged by a change in stimulus
strength. Thus, detection performance would remain the
same for any stimulus level, and measurement of detection
thresholds would be impossible! They concluded that,
even if there is a multiplicative component to the noise,
detection performance must be limited by an additive
component.

Tyler and Chen derived the shape of the additive noise
distribution that would give rise to a Weibull psychomet-
ric function for the high-threshold model outlined above”.
They showed that, for most Weibull £ values, the noise
distribution deviated markedly from a Gaussian. They
found this unacceptable because, according to the Central
Limit Theorem, the sum of a large number of non-
Gaussian-distributed random variables is asymptotically
Gaussian-distributed, and so, if there are many different
sources of noise from the stimulus to the neuronal deci-
sion mechanism, the noise is likely to be Gaussian at the
decision mechanism. They then showed that high-
threshold probability summation fails for additive Gaus-
sian noise. They showed that, if the sensory threshold
were low enough to be exceeded by the noisy signal in
one channel 75% of the time, then the noisy signal would
exceed the sensory threshold in at least one of 100 chan-
nels almost all the time, even when the stimulus intensity
was reduced to zero. Thus, if the stimulus area or number
of components increased, so that the observer was moni-
toring many more channels, the observer would almost
always be in a “detect” state, even when the stimulus was
absent. The signal would have to be reduced to a physi-
cally unachievable negative contrast for the observer to be
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in a “detect” state 75% of the time. This problem does not
occur with the noise distribution implied by the Weibull
function, because the Weibull probability density function
falls to zero at the sensory threshold (see Supplementary
Appendix K, especially Figure K.1), and so, when the
stimulus intensity is zero, no detector’s noisy signal will
exceed its sensory threshold; but, as already noted, Tyler
and Chen rejected that distribution because of its “bizarre”
non-Gaussian nature when £ is not close to 4 (Tyler &
Chen, 2000, p. 3127). They therefore concluded that
probability summation with high-threshold theory is fun-
damentally flawed.

Tyler and Chen’s arguments are perfectly valid, but
they apply only to the set of high-threshold models de-
fined by their assumptions, i.e. that each channel contains
a continuous signal to which noise is added. With a detec-
tion model based on spiking neurons, the signal is dis-
crete. When the spontaneous firing rate is zero, as it was
in Chirimuuta and Tolhurst’s model, detection occurs
when a single neuron produces a single spike. In these
circumstances, it is not appropriate to approximate the
neuronal signal as a continuous signal to which noise is
added. It is perfectly legitimate to apply probability sum-
mation to find the probability that at least one neuron
gives at least one spike. When we do this, we find that
the model’s threshold is very close to being proportional

to K°VP , as in standard high-threshold Weibull analysis.
The contrast threshold for detection never reaches zero,
however many neurons the observer is monitoring, but we
do not have do rely on bizarre model characteristics to
achieve this: Aside from the zero spontaneous firing rate,
the neurons in Chirimuuta and Tolhurst’s model have con-
trast-response functions and noise distributions that are
physiologically plausible to a reasonable extent. One
could ask what is the equivalent “continuous signal plus
additive noise” model. Since Chirimuuta and Tolhurst’s
model produces a psychometric function that closely ap-
proximates a Weibull function, the equivalent “continuous
signal plus additive noise” model is closely approximated
by the one derived by Chen and Tyler (and outlined in
Supplementary Appendix K) with the “bizarre” noise dis-
tributions. However, this bizarreness comes from forcing
the model into the Procrustean bed of “continuous signal
plus additive noise”, rather than being an implausible
characteristic of the model itself.

Conclusions

We derived equations that explained the performance
of the contrast coding model described by Tolhurst and
colleagues (Clatworthy et al., 2003; Chirimuuta et al.,
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2003; Chirimuuta & Tolhurst, 2005a, 2005b). These
equations gave a deep insight into the results of their
Monte Carlo simulations.

As long as the stimulus contrast is high enough (and
the neuronal population large enough) to generate a suffi-
ciently high population spike rate, the decoding precision
can be closely approximated by the Fisher information.
We derived an estimate of decoding precision, 7(x),

which approximates the Fisher information for a popula-
tion of neurons with Tolhurst’s spiking process, as long as
the mean spike count of the most informative neurons is
around 5 spikes or more. 7(x) is also an estimate of the

Fisher information for the Consul-Jain spiking process,
and gives the exact Fisher information for the Poisson
process, and the exact modal value of the Fisher informa-
tion for the Goris process when the decoder has access to
the gain signal in Goris et al.’s model of neuronal spiking.
Our expression for 7(x) revealed simple relationships

between the properties of the neurons and the decoding
precision that hold to a good approximation when the
mean spike rate is sufficiently high. We used this expres-
sion to explain five relationships between decoding preci-
sion and the neuronal parameter values that Clatworthy et
al. (2003) observed from their Monte Carlo simulations.
For the case of contrast detection, the spike rate is too
low for the Fisher information to match decoding preci-
sion. To analyze the performance of Chirimuuta and Tol-
hurst’s (2005a) model in a 2AFC contrast detection task,
we used basic probability theory. We derived an expres-
sion for the model’s psychometric function for contrast

detection, and showed that, as K or 7,,,, increases, the

psychometric function asymptotically approaches a
Weibull function with f=¢. Our work therefore reveals

a previously unknown theoretical connection between two
of the most widely used functions in vision science: the
Weibull psychometric function and the Naka-Rushton
contrast-response function. This relationship explained
why Chirimuuta and Tolhurst always obtained a Weibull S
of about 2 in their modelling (they always had ¢ =2 in

their assessments of the model’s Weibull £), and allowed
us to refute their conclusion that it is necessary to have a
threshold on the Naka-Rushton function to achieve
Weibull £ values that match those found with human ob-
servers. Their threshold on the Naka-Rushton function
had a similar effect to increasing g, as it made the spike
rate increase more abruptly with increasing contrast.
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'In this paper, we use the word “trial” in two ways.
Firstly, we use it in the way a physiologist would, to mean
a stimulus presentation. Secondly, we use it to mean a
trial on a 2-alternative forced-choice psychophysical ex-
periment, on which the observer is presented with two
stimuli, and has to make a response. To distinguish these
two meanings, we always refer to the latter type of trial as
a “2AFC trial”.

’In this discussion, we use the word “threshold” in two
ways: (1) to refer to an internal threshold on the sensory
signal; (2) to refer to the stimulus contrast corresponding
to a particular level of detection performance. We have
tried to make the meaning clear in each case, by using the
term “sensory threshold” for the former case, and “detec-
tion threshold” for the latter.

’As pointed out by Mortensen (2002), Tyler and
Chen’s published equation for the probability density
function (PDF) of the noise (Tyler and Chen’s Equation
4b) contains errors. However, Tyler and Chen’s plots of
the noise PDFs (shown in their Figure 2b) are correct, so
we assume that the errors in Tyler and Chen’s Equation 4b
are typographical rather than fundamental problems with
their analysis. To clarify matters, we present in Supple-
mentary Appendix K a derivation of the PDF, based on
Mortensen’s derivation, but somewhat easier to follow
than Mortensen’s derivation or that of Tyler and Chen.
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R Random variable representing the mean re-
sponse of a neuron
. . r(x The neuron’s tuning function, which gives
b Base of logarithm when Michelson contrast, () £ . . £
¢, is expressed as log contrast, x the Vglue of R on a particular stimulus pres-
entation
c Michelson contrast )
. ' T Naka-Rushton function parameter: sponta-
¢y Naka-Rushton function parameter: semi- neous firing rate
saturation contrast . .
Finax Naka-Rushton function parameter: maxi-
The Michel trast for which the output :
a3 e Michelson contrast for which the outpu mum increment from 7,
of the Naka-Rushton function exceeds 7, b .
0 PY T Number of trials
rmax / 3 13 : ’ 1s
. . . u, Parameter of the “approximate” probability
H A futhlon (used W}th sgbscrlpts) the}t ap-. distribution used in Appendix E
pears in the approximations of the Fisher in-
formation (see Appendix E) v Parameter that appears in the expressions
. . . for the “approximate” probability distribu-
J Fisher information tion (Appendix E) and #(x)
i Integer index of the neurons in a population . . .
J & pop X Random variable representing the stimulus
K The number of neurons being monitored by log Michelson contrast
the observer . .
X The value of X on a particular stimulus
N Random variable representing the number presentation
of spikes produced by a neuron . _ _ .
) ) X Random variable representing the estimated
n The value of N on a particular stimulus stimulus level after decoding the spike
presentation counts
N Vector of random variables representing the . 5 . .
. P & X The value of X for a particular stimulus
number of spikes produced by each neuron .
. . presentation
in the population
n The value of N on a particular stimulus z Nakg-Rushtqn function parameter: log
: semi-saturation contrast
presentation
P Probability a Weibull “threshold” parameter
Naka-Rushton function parameter: expo- p Weibull “slope” or “shape” parameter
nent, which determines tuning sharpness y) Weibull “lapse rate” parameter
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oG Standard deviation of the gain signal in Go-
ris et al.”s neuronal spiking model

7(x) General estimate of the precision for decod-
ing stimulus x, which can be parameterized
to apply to the Poisson, Goris, Tolhurst, or
Consul-Jain spiking processes

Analytical estimate of the decoding preci-
sion for the Tolhurst spiking process, which
can be substantially more accurate than
7(x) when the mean spike count of the

TTolhurst (x)

most informative neurons is very low

Analytical estimate of the decoding preci-
sion for the Consul-Jain spiking process,
which can be substantially more accurate
than 7(x) when the mean spike count of the

7oy (%)

most informative neurons is very low

Q Recursive function used in the closed-form
expression for the Tolhurst likelihood func-
tion

Appendix B: Finite series

expansion of the Tolhurst
likelihood function

The finite series expansion of the Tolhurst likelihood
function is derived in Theorem 1, below. As a prelude to
this theorem, we will find it useful to define a function,

Q, (&), given by

Q&)= » Lo (B.1)
e pry H:

First, consider the case of n =0. In this case, we have

Q0 (&) =§Zi:ﬂ . (B.2)
#=0

The summation in Equation (B.2) is the series expansion

of ¢ , and so we have
Qy(&)=1. (B.3)
Lemma 1 derives a recursive expression for Q, (&) for

any integer n>0.

Lemma 1.  For all integers n>0,

May & Solomon 2

Q&)= §Z(nl:1]§2k (&), where (nlzlj is the kth

coefficient of the binomial expansion of degree n—1.

Proof. For n> 0, the first term of the infinite series
expansion of Q, (&) given by Equation (B.1) is 0, because

this term includes multiplication by " , which is 0 for the
first term (since g =0). Thus, we can start the series at

u=1:

1 NO
Q@) =— » £t (B4)
e M
u=l1
Now, since u # 0 in Equation (B.4), we can divide the top
and bottom of each term in the series by z to give

Q,¢&)=— Y e (B.5)

Let us define vas

y=p-1. (B.6)
Then,
N
2,6~ Z; )¢ B.7)
z n—1
:?% WD o (B.8)
e — v!

Since n >0, we can expand (v + 1)"_1 in Equation (B.8)
using the binomial expansion:

o nlip—1 k
£ ;;)( k ]V

Q)= g (B.9)
e V.

v=0

Applying the distributive rule [i.e. a(b+c)=ab+ac]to
Equation (B.9), we get

o0 n—1 [n_l]vk
k
Q,(6)=~ E E e Ba0)
e V.
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Rearranging the order of summation gives

n—1 0 [n_lj x
£ E E k)
Qn(f)ze_é: Tf :
k=0 v=0

(B.11)
Applying the distributive rule again gives
n-1 [ 0
n—1) 1 vE
Q,6)=¢) ( . L—gzﬁé (B.12)
k=0 [ =
n—1
n—1
=§Z . JQk(é). O (B.13)
k=0

The finite series expansion of each €, (&) is a poly-

nomial of degree n. As examples, Equations (B.14) to
(B.19) give full, non-recursive expressions for Q, (&) for
n=0to 5.

Qy(&) =1 (B.14)
Q(8)=¢ (B.15)
0 (&) =67 +¢ (B.16)
(&) =& +387 +¢ (B.17)
Q&) =& +68° +78% + ¢ (B.18)
Qi (&) =& +10&% +258° +15E% + & (B.19)

The polynomial coefficients for any Q, (&) can be calcu-

lated using the MATLAB program,
OmegaCoefficients, given in Appendix C.

Lemma 1 shows how to express the infinite series ex-
pansion in Equation (B.1) as a finite series, given in Equa-
tion (B.13). We now prove Theorem 1, which uses
Lemma 1 to express the Tolhurst likelihood function as a
finite series. To reduce notational clutter, we will use the
single letter , instead of r(x), to represent the mean spike

rate.

Theorem 1.

er(l/e—l)
PTolhurst(N:n|R =r)=

Qn(r/e).
n!

May & Solomon

Proof. Using Equation (4) of the main paper to ex-
pand the expression for the Poisson distribution in Equa-
tion (5), we have

PTolhurst(N:n|R:r)

n U
- E B ognl o (B.20)
n! !
u1=0
=e' E 'u—'(r/e)“ (B.21)
n! u!
©=0
e—rer/e 1 = "
= X E “—(r/e)¥ (B.22)
n! e !
©=0
er(l/e—l)
= ' Q,(rle). O (B.23)
n!

Equation (B.23) can be evaluated for any  and n us-
ing the MATLAB program, PTolhurst, given in Appen-
dix D.

Appendix C: Software for calcu-

lating the coefficients of Q,

In this appendix, we give two MATLAB programs for
calculating the coefficients of the Q function, Q, (&) .

The programs both implement the recursive definition of
Q, (&), given in Equation (B.13).

The first program, OmegaCoefficientsRecur-
sive, uses a recursive algorithm that outputs the coeffi-
cients of Q,(£). The program is easy to follow because

it is exactly analogous to the recursive definition of the Q2
function. However, for large n, it is epically inefficient, as
it keeps recalculating the coefficients of Q2 functions of
lower degree.

The second program, OmegaCoefficients, uses a
non-recursive algorithm that calculates each set of coeffi-
cients once, and then stores them for future use. This pro-
gram is less easy to follow, as it contains an outer loop,
and is not exactly analogous to the recursive definition of
the Q function, but it is much more efficient. Because the
program stores the coefficients of each Q function from
Q&) to ©, (&), it outputs the coefficients of all of these

Omega functions, rather than just the coefficients of

Q,(S)-
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function C = OmegaCoefficientsRecursive (n)

Returns C, the vector of coefficients of the Omega function of degree n.
C has n+l terms, as the Omega function is a polynomial of degree n.

n must be a scalar integer.

oe o

oe

if n ==
% Omega (0, x) = 1 for all x, i.e. a polynomial of degree 0 with coefficient 1
c =1;

else

% set up one coefficient for every term in the n-degree polynomial
C zeros (1,n+1);

for k = 0:(n-1)

oe

For each k in the summation in Equation (33), find the
% coefficients of the Omega function of degree k.
Ck = OmegaCoefficientsRecursive (k) ;

oe

Then shift the coefficients along one position in the polynomial

(i.e. one power of x, because the omega function is multiplied by

x in Equation (33), so the coefficient of the mth term from the

right in in the old Omega function becomes the coefficient of the

(m+1)th term from the right in the new Omega function.

Also, pad out slots to the left to make n+l coefficients.

Then multiply by the binomial coefficient, as in Equation (33),

and add to the total value of each coefficient.

= C + (factorial(n-1) / (factorial(k) * factorial(n-1-k))) * ...
[zeros([1l,n-1-k]), Ck, 0];

A o o° o P od° o

(@]

end
end

function C = OmegaCoefficients (n)

Returns C, the matrix of coefficients of Omega functions of degree 0 to n.
Row m+l of C gives the coefficients for the Omega function of degree m

C has n+l columns, as the highest-degree Omega function is a polynomial of
degree n.

n must be a scalar integer.

o° oo o o

oe

Q

= zeros(n+l,n+l); % n+l Omega functions (rows) and n+l coefficients (columns)

oe

Omega (0, x) =1 for all x, i.e. a polynomial of degree 0, with coefficient 1
C(l,n+l) = 1;

% calculate coefficients of each omega function of degree 1 to n

for m = 1l:n

for k = 0: (m-1)

oe

For each k in the summation in Equation (33), find the
coefficients of the Omega function of degree k
Ck = C(k+1,:);

oe

oe

Then shift the coefficients along one position in the polynomial

(i.e. one power of x, because the omega function is multiplied by

x in Equation (33), so the coefficient of the mth term from the

right in in the old Omega function becomes the coefficient of the

(m+1)th term from the right in the new Omega function.

Then multiply by the binomial coefficient, as in Equation (33),

and add to the total value of each coefficient.

C(m+l,:) = C(m+1,:) +

(factorial (m-1) / (factorial (k) * factorial (m-1-k))) *
[Ck(2:end), 0];

o° o o° o oP

oe

end
end
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calculated). As with the programs for calculating the co-
efficients of the Q function, we present recursive and non-
recursive versions. Again, the recursive version is easier

Iatlng the Tolhurst likelihood to follow, but too inefficient to be of practical use other
function than for small values of n. The recursive version,
PTolhurstRecursive (n, r), gives

Projhurst (N =n| R =r) for a scalar integer n, and any size

Appendix D: Software for calcu-

In this appendix, we give two MATLAB programs for
calculating the Tolhurst likelihood function,
Projhurst (N =n| R =r). Each program calls a program

matrix of » values. The non-recursive version, PTol-
hurst (n, r), calculates Prypu (N =m|R =r) for all
integers, m, between 0 and 7, inclusive. n must be a scalar
integer. 7 must be a real scalar or row vector. Row m+1
of the output gives Pyt (N =m | R =r) for each ele-

that calculates the relevant Q function and then calculates
the Tolhurst likelihood function from this as in Equation
(B.23) (strictly speaking these “programs” are MATLAB )
functions, but we use the term “program” here to avoid ment of the input argument, r.
confusion with the mathematical functions that are being

function P = PTolhurstRecursive(n,r)

Returns probability of n for the Tolhurst process, given a mean of r.
n must be a scalar integer.

r can be a real scalar or matrix of any size or number of dimensions.
The output, P, has the same size and number of dimensions as r.

o° o° oo

oe

e = exp(l);
P = (exp(r*(l/e - 1))/factorial(n)) .* OmegaRecursive(n, r/e);
function y = OmegaRecursive (n, x)
if n==0
y = 1;
else
y = 0;
for k = 0:(n-1)
y = y + (factorial(n-1) / (factorial(k) * factorial(n-1-k))) * OmegaRecursive (k,x);
end
y =x .*y;
end

function P = PTolhurst (n,r)
Returns probability of 0 to n for the Tolhurst process, given a mean r.
n must be a scalar integer.
r can be a real scalar or row vector.
The (m+l)th row of P gives P(N =m | R = r) for each element in the input argument, r.
= exp(l);
= exp(repmat (r, [n+1,1])*(1/e - 1)) ./ .
repmat (factorial ([0:n]"), [1,length(r)]) .* Omega(n,r/e);
function y = Omega (n, x)

o)

% Note, Omega (m,x) is stored in row m+l or Omegas

o° P oo

oe

g O

Omegas = zeros(n+l,length(x));
Omegas(l,:) = ones(l,length(x));
% calculate Omega(m,:) for each m = 1:n
for m = 1:n
k = [0:(m=1)]";
% Calculate binomial coefficients
C = (factorial (m-1) ./ (factorial(k) .* factorial (m-1-k)));
C = repmat(C, [1,length(x)]);
Omegas (m+1l,:) = x .* sum(C .* Omegas ([0: (m-1)]+1,:),1);
end

y = Omegas;
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Appendix E: Approximations of

the Fisher information for non-
Poisson-spiking neurons

A derivation of an exact formula for the Fisher infor-
mation of a neuron with a Tolhurst or Consul-Jain spiking
process turned out to be intractable, so we closely ap-
proximated both of these distributions using a different
expression, for which an analytical expression for the
Fisher information could be derived. We use the term
“approximate distribution” to refer to the expression that
we used to approximate the Tolhurst and Consul-Jain dis-
tributions. The approximate distribution is given by

PApprox (N=n|[R=r(x))
= Uy, Ppoisson (N = n/v |R= r(x)/v) . (ED)

_, [rep]™

" Ty + 1) exp(—r(x)/v).

(E.2)

In Equation (E.2), we have to express the Poisson distribu-
tion using the continuous gamma function, ['(n/v+1),
instead of the factorial, (n/ v)!, so that it can be evaluated
for non-integer values of n/v. This approximate distribu-
tion has a parameter v, and an infinite set of parameters,

u, , one for each possible value of 7 (the integers 0 to ).
However, it turns out that the values of the u, parameters

have no effect on the Fisher information (this comes about
because the Fisher information is the average negative 2nd
derivative of the log-likelihood function — the log function
converts multiplicative constants, u,,, into additive con-
stants, which have no effect on the derivative). Thus, we
can proceed as if Py, Was parameterized only by v.

The only purpose of fitting the u,, parameters is to verify
that Py,0x 18 good approximation. Note that, for many
values of v, it may be impossible to find a set of parame-
ters, u,,, for which z:=0PApprox (N=n|R=r(x)) isex-
actly equal to 1 for all 7(x), and s0 Py,p0x 18 not techni-

cally a probability distribution. However, it can provide a
sufficiently close fit to the true Tolhurst and Consul-Jain
distributions for it to generate a good approximation of the
Fisher information.

Appendix F shows that, assuming Py, is a prob-

ability distribution generating a neuron’s spikes, the Fisher
information, J, is given by

May & Solomon

o2
_lxr (x)

sl (E.3)

Fisher information for the Tolhurst process

Using Equation (B.14) of Appendix B to substitute for
Q, (-) in Equation (B.23) when n =0, we obtain

PTolhurst (N=0 | R=r(x))

_ o(e=Dr(x) (E.4)

= Proigson (N =0| R=(1-1/e)r(x)), (E.5)

which has the form of Py, with v=1/(1-1/e). For

n >0, we cannot express the Tolhurst distribution exactly
in the form of Py, , but we can closely approximate it

for all n except n=1. For n>1, we have found that
PTolhurst (N=n|R=r(x))~

unPPoisson (N = I’l/2 | R= r(x)/2) > (E6)

un

0.5007
0.5024
0.5018
0.5015
0.5014
0.5012
0.5011
0.5010
0.5009
0.5008

— = 0 00 3N LB WS

—_ O

Table E.1. Parameters that minimize the error in the approxima-
tion of the Tolhurst distribution given by Relation (E.6). These
parameters were fitted by using Equation (E.2) to evaluate the
right hand side of Relation (E.6) over a range of r(x) from 0 to
100 in steps of 0.01, and comparing with the true Tolhurst distri-
bution (the left hand side of Relation (E.6), given by Equation
(B.23)) for the same values of r(x). We found the u, parame-
ters that minimized the sum of squared differences between the
left and right sides of Relation (E.6). All decimal expansions are
shown to an accuracy of 4 significant figures.
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Figure E.1. The Tolhurst likelihood functions (thin, coloured curves), plotted against the best-fitting approximations (thick, black
curves). r(x) is the mean number of spikes elicited by stimulus x. For n =1, the approximation is described by Relation (E.7). For
n>1, the approximation is described by Relation (E.6) with parameter values, u, , given in Table E.1.

with best-fitting u,, values given in Table E.1 for n=2 to
11. This has the form of Py, With v=2. For n=1,

there is no really good approximation of the Tolhurst
process that has the form of Py, ; the best (least-

squares) approximation is

PTolhurst (N=1|R=r(x))~

0.4106 % Boyigson (N =1/2.306 | R = r(x)/2.306) ,(E.7)

which has the form of Py, with v=2.306. Figure E.1

plots the true Tolhurst likelihood functions against the
approximations given by Relations (E.6) and (E.7).
So, for a proportion P(N =0) of trials, the Tolhurst

distribution is Pypprox With v=1/(1-1/e), for which the
Fisher information (given by Equation (E.3)) is

(1-1/ e)r’(x)2 / r(x); for a proportion P(N =1) of trials,
the Tolhurst distribution is reasonably well approximated

by Pypprox With v=2.306, for which the Fisher informa-

tion is r'(x)2 / [2.306r(x)] ; for the remaining proportion of
trials, [1 —P(N=0)-P(N = 1)] , the Tolhurst distribution
is well approximated by Pyp,0x With v=2, for which the

Fisher information is r'(x)2 / [2r(x)] . Since the Fisher

information is a trial-averaged quantity (the average nega-
tive 2nd derivative of the log-likelihood function), we can
calculate it separately for these three different scenarios
(n=0, n=1 and n>1), and then average them, weighted
according to their probabilities, to give a close approxima-
tion of the Fisher information for a single Tolhurst-spiking
neuron:

PIN=)

J~ ((1 ~1/e)P(N =0) + T

_ _ ' 2
1—P(N—0)—P(N—1)Jr(x) (ES8)

2 r(x)
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Equation (E.4) gives an expression for P(N =0) for the
Tolhurst distribution. Using Equation (B.15) of Appendix
B to substitute for €, (-) in Equation (B.23) when n=1,

we get an expression for P(N =1):

Promurst (N =1 R = 7(x)) = r(x)eVe ™1 (g9

Using Equations (E.4) and (E.9) to substitute for
P(N =0) and P(N =1) in Relation (E.8), we obtain

' 2
r(x
J = HTolhurst (x) x ( ) >

e (E.10)

where

1 1+0.06630x r(x)}(

HTolhurst (x) = ( B
e

exp[r(x)(1/e—1)] +% . (E.11)

For a population of statistically independent neurons,
the Fisher information is the sum of the Fisher information
of the individual neurons. This gives us an accurate ap-
proximation of the decoding precision for a population of
independent Tolhurst-spiking neurons:

K
rj(x)?
TTolhurst (x) = HTolhurst (x) X . (E 1 2)
ry (x)
J=

Hoojhurst (X) 18 plotted in Figure 4 of the main paper. For
r(x) of around 5 spikes or more, H gt (X) = 0.5, and
SO Trolhurst (X) 18 close to 7(x) (defined in Equation (11)

of the main paper) with v=2. Figure 8 of the main paper
demonstrates that 7.t (X) 1S substantially more accu-

rate than 7(x) for very low spike rates.

Fisher information for the Consul-Jain proc-
ess

In this subsection, we derive an approximation of the
Fisher information for a Consul-Jain-spiking neuron using
analogous methods to the previous subsection.

Letting n =0 in Equation (6) of the main paper, we
obtain

Fo;(N=0|R=r(x))

May & Solomon

-

(E.13)

= Pooisson (N =ONF [R=r(x)/NF), (E.14)

which has the form of Py, With v=+/F . For n>0,

we have found that, for Fano factors not too far above 1,

Foj(N=n|R=r(x))=

”nPPoisson (NZI’Z/F|R=I"(X)/F), (E.15)

which has the form of Py, with v=F . Table E.2

gives the best-fitting u,, values for n =1 to 11 when

F =1.5; Figure E.2 plots the true Consul-Jain likelihood
functions for n=1 to 11, and their approximations given
by Relation (E.15).

ul’l

0.6948
0.6804
0.6757
0.6734
0.6720
0.6711
0.6704
0.6699
0.6696
0.6693
0.6690

— = 0 01N NP W —| I

—_ o

Table E.2. Parameters that minimize the error in the approxima-
tion of the Consul-Jain likelihood function given by Relation
(E.15) for F =1.5. These parameters were fitted by using
Equation (E.2) to evaluate the right hand side of Relation (E.15)
over a range of (x) from 0 to 100 in steps of 0.01, and
comparing with the true Consul-Jain likelihood function (the left
hand side of Relation (E.15), given by Equation (6) of the main
paper) for the same values of 7(x). We found the u,,
parameters that minimized the sum of squared differences be-
tween the left and right sides of Relation (E.15) when F' =1.5.
All decimal expansions are shown to an accuracy of 4 significant
figures.
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Figure E.2. Consul-Jain likelihood functions with F' =1.5, plotted against best-fitting approximations from Relation (E.15). r(x) is the
mean number of spikes elicited by stimulus x. The thin, coloured curves plot the true Consul-Jain likelihood functions (Equation (6)) with
F =1.5; the thick, black curves show the approximations given by the right hand side of Relation (E.15), with the u, parameter values

in Table E.2.

So, for a proportion P(N =0) of trials, the Consul-
Jain distribution is Pypn0x With v= JF , for which the
Fisher information (given by Equation (E.3)) is
r'(x)2 / [\/f r(x)] ; for the remaining proportion of trials,

[1 —P(N = 0)] , the Consul-Jain distribution is well ap-
proximated by Pyp,r0x With v=F", for which the Fisher

information is r'(x)2 / [Fr(x)]. Since the Fisher informa-

tion is a trial-averaged quantity, we can calculate it sepa-
rately for these two different scenarios (N =0 and

N >0), and then average them, weighted according to
their probabilities, to give a close approximation of the
Fisher information for a single, Consul-Jain-spiking neu-
ron:

(P(N=0) 1-P(N=0))r(x)°
J~[ Tr + = Jr(x). (E.16)

Equation (E.13) shows that, for the Consul-Jain process,
P(N =0) = exp(—r(x)/ JF ) : (E.17)

Using Equation (E.17) to substitute for P(N =0) in Rela-
tion (E.16), we obtain

1rN2
J~ Hey(x)x 2 (x) (E.18)
r(x)
where
exp(—r(x)/\/f) l—exp(—r(x)/\/F)
Hey(x) = +

JF F

Cexp| YL 1)1
—exp[ JFJ(\/F F}LF' (E.19)
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For a population of statistically independent neurons,
the Fisher information is the sum of the Fisher information
of the individual neurons. This gives us an accurate ap-
proximation of the decoding precision for a population of
independent Consul-Jain-spiking neurons:

K
' 2
Ty (x)= E HC_J(x)xr: ((xx)) . (E.20)
j
j=1

Hc_5(x) is plotted in Figure E.3 for several different Fano
factors, F. For sufficiently high r(x), Hqj(x)~1/F , and
s0 7¢j(x) is close to 7(x) (defined in Equation (11) of
the main paper) with v=F . For Fano factors around the
top of the physiologically plausible range (around 3), the
mean spike count only needs to be about 7 spikes for 7(x)
with v=F to be within 1% of 7_;(x).

Figure E.4 plots the true Fisher information (thin, col-
oured lines) as a function of contrast for a single Consul-
Jain-spiking neuron with F' =1.5 (a typical value for cor-
tical neurons), and compares this against 7(x) with v=F
(thick, black lines). 7(x) provides an excellent approxi-

mation of the true Fisher information for moderate or high
spike rates, but starts to get inaccurate when the spike rate
gets very low. Figure E.5 plots the true Fisher information
against 7c_j(x) with the same Fano factor, /' =1.5.

7. (x) provides an excellent match to the Fisher infor-
mation at all spike rates.

H o x)

0.2t 1

F=1
F=12
F=2

F=2\2
0.1F =4 -

0 2 4 6 8 10
r(x) (spikes)

Figure E.3. Each different coloured line plots H_;(x) as a
function of r(x) for a particular Fano factor, F, according to
Equation (E.19). This function approaches l/\/F as

r(x) = 0, and approaches 1/F as r(x) —> .
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Figure E.4. True Fisher information of a Consul-Jain-spiking neuron with ' =1.5, and the closed-form approximation given by 7(x) .
The thin, coloured curves plot a single neuron’s true Fisher information for decoding contrast, calculated numerically (see Supplemen-
tary Appendix H for methods). The neuron had a Consul-Jain spiking process and a Naka-Rushton tuning function with z =—1,
q=3,and ry =0. The corresponding thick, black curves plot the approximations given by 7(x) with v=1.5 (Equation (11) of the

main paper).
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Figure E.5. The same as Figure E.4, except that the thick, black curves plot the approximations given by 7 (x) (Equation (E.20)).
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Appendix F: Fisher information

for the approximate spiking
distribution

The Fisher information, J, for a single neuron decod-
ing a stimulus of value x is given by the average negative
2nd derivative of the log-likelihood function:

d*InP(N=n|X =x)
J=(- , F.1
(POl x=0) )

where < y> is the trial-averaged value of y. Since the
mean spike rate, (x), is a deterministic function of x, we
have

P(N=n|X=x)=P(N=n|R=r(x)). (F.2)
Substituting Equation (F.2) into (F.1), we obtain
2 — —
S
X

Suppose the neuron’s true likelihood function was
given by Pypprox (N =n|R=r(x)), defined in Equation

(E.2). Then
1nPApprox (N=n|R=r(x))

= (n/v)In(r(x)) = r(x)/v +

un

= l[n In(r(x)) — r(x)] + terms independent of x .
v
(F.5)

Note that the value of u,, is irrelevant to the Fisher infor-

mation, because it gets absorbed into the “terms independ-
ent of x”, which disappear when we differentiate.
Differentiating twice with respect to x, we get

_d2 1nPApprox(szl/llR =r(x)) _

dx?

2
» g[g} e
r(x) r(x)

= "(x)
v
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The trial-averaged value of this gives us the Fisher infor-
mation for this distribution:

2
Y A €O B (€]
J_v r"(x) n[ ) (r(x)j} (F.7)
1 @) [ F® ’
" r (X r(x
==l (x)—(n) Y —[—r(x)} : (F.8)

The step from Equation (F.7) to (F.8) follows from the
fact that <an + b> =a <n> +b for constant a and b (note

that, for a given x, the only term on the right hand side of
Equation (F.7) that varies across trials is #). Since r(x) is

the mean spike count, we have
(n)=r(x). (F.9)

Using Equation (F.9) to substitute for <n> in Equation
(F.8), we obtain
1 A (x)?

J=—x .
v r(x)

(F.10)

Note that, for v=1 and u, =1 for all n, the “approximate”
probability distribution is exactly the Poisson, so an exact

expression for the Fisher information of the Poisson dis-
tribution is given by
_rw?
r(x)
(see also Dayan & Abbott, 2001, Chapter 3).

(F.11)

Appendix G: Estimating decoding

precision

Our estimates of decoding precision were obtained us-
ing methods essentially the same as those of Clatworthy et
al. (2003) and Chirimuuta et al. (2003). For each neuron,
J» in the population, we precalculated P(N; =n; | X = x)
for a large range of stimulus values, x, and spike counts,
n;. Foreach n;, x was varied in discrete steps of 0.01
from -3 to 0.1 (to be compatible with Clatworthy et al.).
For each x, n; took all integer values from 0 to a number
beyond which the maximum of P(N; =n;|X =x) over

all x was negligible. The precalculated likelihood func-
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tions were used both to generate the spikes and to decode
them.

In each simulation, the precalculated values of
P(N; =n;| X =x) for each neuron, j, were given by

P(Nj =n; |X:x):PTolhurst(Nj =n; |R=r(x))~
(G.1)

We used these values to precalculate the cumulative prob-
ability distributions as well. On each trial with stimulus
level x, each possible value of n; had a probability of oc-

currence given by Equation (G.1). This was achieved by
generating a random number sampled from a flat distribu-
tion between 0 and 1, and then finding the lowest n; for

which the cumulative probability distribution of n; was

greater than or equal to the random number.

After generating the spike counts, we used the precal-
culated likelihood functions to decode them. On each
trial, we needed to find the stimulus level, x, that maxi-
mized the stimulus likelihood, P(N =n| X =x), where N

is a random variable representing the population response,
and n is its value. For statistically independent neurons,
P(N=n|X =x) is the product of P(N; =n;[X =x)
over the population (see Equation (8) of the main paper).
For large populations, this product can be too small to
represent using floating point values on a standard
computer, so instead we maximized In P(N=n| X =x)
(which increases monotonically with P(N=n| X =x),
and therefore peaks at the same value of x).

InP(N=n|X =x) is given by ZjlnP(Nj =n;| X =x).

The stimulus estimate, x, was the value of x that
maximized the likelihood. we repeated this process
10,000 times for each stimulus value, x, and the precision
was calculated using Equation (10) of the main paper.

Appendix H: Numerical calcula-

tion of true Fisher information

For a single neuron, the general expression for the
Fisher information, J, can be written as

2
J:<(dlnP(N=n|X=x)j > (H.1)
dx

where < y) is the trial-averaged value of y (see Dayan &

Abbott (2001), p. 109). Since the mean spike rate is a de-
terministic function of x, we have P(N =n| X =x)
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=P(N =n|R=r(x)). The expression for
P(N =n|R=r(x)) depends on the spiking process and
the tuning function, »(x). To numerically calculate the

Fisher information for a single neuron, we first calculated
In P(N =n|R =r(x)) forall x from -3 to 0.1 in steps of

0x=0.001, and for all integers, n, from 0 to M, where M
was high enough for the value of In P(N =n| R =r(x)) to

be negligible. For each n, we then numerically differenti-
ated In P(N =n| R =r(x)) with respect to x, to give, for
each x and n, a close approximation of the derivative,
dIn P(N =n|R=r(x))/dx. This approximation is given
by
InP(N=n|R=r(x+0x))—InP(N =n|R=r(x—0x))
20x

(H.2)

Jnumerical

The numerical value, (x), of the Fisher informa-

tion was then calculated from this numerical derivative
using a discrete approximation of Equation (H.1):

M
Jhumerical (o — ZP(N =n|R=r(x))x

n=0

(1nP(N=n|R = r(x+5x)~InP(N =n|R =r(x—§x))j2
20x '
(H.3)

The weighted sum in Equation (H.3) approximates the
mean value of the squared derivative across trials.

Appendix I: Generating semi-

saturation contrasts for cat and
monkey populations of neurons

Our distributions of cat and monkey z values (i.e.
logo(cy2) values) were based on the histograms in Clat-

worthy et al.’s (2003) Figure 6, which show the distribu-
tions of semi-saturation contrasts obtained from fitting
Naka-Rushton functions to the contrast-response functions
of V1 neurons in many different physiological experi-
ments. These histograms show the number of neurons
falling into each bin of width 6z=0.2 log;, contrast

units. Clatworthy et al.’s Figure 6 plots the number of
neurons in each bin as a function of the z-value corre-
sponding to the centre of the bin, for cat and monkey
populations, and these distributions are re-plotted as filled
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circles in our Figure I.1. We fitted smooth probability
density functions (PDFs) to these distributions, using a
maximume-likelihood fit.

For the cat data, the fitted PDF, f_, (z) was a single

Gaussian, with two parameters, the mean, x, and the stan-
dard deviation, o:

1 (z-w?
fcat(z)—amexp( o~ J (L1)

Assuming f,(z) is the true PDF, and the histogram bin
width, 6z, is small, the probability, P(z), of a neuron
falling in a bin centred on z is closely approximated by
P(z)= f..(2)0z . The log likelihood of the parameters
(u,0) is the log probability of the data given the parame-

ters, i.e. sz(z)ln P(z), where summation is over the

bin centres, z, and m(z) is the number of neurons in the
bin centred on z. We found the parameters of the PDF
with the highest log likelihood, and these were given by
1 =-0.9928, and o =0.3833. This PDF is plotted as the
smooth curve in our Figure I.1A, scaled for the number of
neurons in the population.

The Monkey data in Clatworthy et al.’s Figure 6
showed two peaks, and so the distribution was fitted with
a PDF, fionkey(2), formed from the sum of two Gaus-

sians:

fmonkey(z) =% fl @)+ f2 @) > (L2)

[ @)+ )iz
where
2
fi(z)= Aexp(—@} (13)
201
(- )’
fr(2)= eXI{——2] , (L4)
202

and

[ 1@+ £G)z= [ f(2)dz+ [ fr(2)dz

=AoN2r + 0,27 (I.5)
=(Ado; + 0y 2r.

The monkey PDF was fitted to Clatworthy et al.’s data
using the same maximum-likelihood method as for the cat
data, except that the monkey PDF had five parameters,
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rather than two. The fitted values were 4=3.643,

wy =—-0.7247 , 6, =0.3985, 1,=0.6747 , and

0, =0.1927. The scaled PDF is plotted as the smooth
curve in our Figure 1.1B.

30 T
A b
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20

15
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40

Number of V1 neurons
o
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0 I Y

-3 -2 -1 0 1
log 1 0(semi-satu ration contrast)

Figure I.1. Distributions of semi-saturation contrasts in V1. (A)
Cat data. (B) Monkey data. Filled circles show frequency data
from Clatworthy et al.’s (2003) Figure 6. Smooth curves show
the PDFs that we fitted to these data, vertically scaled for the
size of the population. The vertical scaling was performed by
taking the PDF, and then multiplying its height by M xJz ,
where Oz is the width of each histogram bin (0.2), and M is the
number of neurons in Clatworthy et al.’s histogram (cats:

M = 138 neurons; monkey: M = 219 neurons). This scaling
meant that the function gave the expected number of neurons in
each bin. Magenta vertical lines indicate the 18 semi-saturation
contrasts used for each animal in Figure 7 of the main paper.
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The smooth curves were truncated at z=0 at the top
end, to be compatible with Clatworthy et al, who excluded
all neurons with ¢, >1 (i.e. z>0). At the bottom end,

the monkey curve was truncated at z =—2, and the cat
curve was truncated at z=—1.6. The lower limit for the
monkey data corresponded to the centre of the leftmost
nonzero histogram bin in Clatworthy et al.’s Figure 6B.
The lower limit for the cat data corresponded to the centre
of the second-to-left nonzero histogram bin in Clatworthy
et al.’s cat data; the reason for this choice for the cat data
was that it gave a better fit to Clatworthy et al.’s accuracy
scores than setting it to the centre of the leftmost bin, al-
though both gave a good fit. The amplitudes of these
truncated PDFs were rescaled so that they integrated to 1
(making them true PDFs), and then we generated corre-
sponding cumulative distribution functions that varied
between 0 and 1. K z-values were then obtained by read-
ing off the z-values corresponding to cumulative
probabilities evenly spaced from 0 to 1, in steps of

1/(K —1). These z-values are shown as vertical lines in

Figure 1.1 for the example of K =18, as used in Figure 7
of the main paper.

Appendix J: Simulation methods

for 2AFC contrast detection tasks

The model was set up the same as for estimating de-
coding precision (Appendix G) except that the set of con-
trasts over which the likelihood functions were precalcu-
lated included zero Michelson contrast (i.e., x =—o). For
Naka-Rushton exponent ¢ =1, the likelihood functions
were precalculated over values of x=—o andx=-7to 0
in steps of 0.01, and the target log contrast ranged from —7
to 0 in steps of 0.05. For g =2 to 5, the likelihood func-
tions were precalculated over values of x =—co and x = -5
to 0 in steps of 0.01, and the target log contrast ranged
from —5 to 0 in steps of 0.05.

g took values of 1, 2, 3, 4, or 5; r,,,, took values of 1,
2, 4, 8, or 16; the number of neurons, K, took values of 1,
2,4,8,16,32, 64, 128, 256, or 512. We simulated a
2AFC detection task with each combination of these pa-
rameters. For each combination, all the neurons had iden-

tical contrast-response functions, with ¢y, =0.025.

On each 2AFC trial, we generated spikes for the given
target contrast as described in Appendix G. The zero-
contrast stimulus always gave zero spikes, because 7, =0
in these stimulations. The model responded correctly on
2AFC trials on which the target elicited at least one spike;
for each contrast level, we counted up these 2AFC trials,
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and then added half the remaining 2AFC trials, on which
the model would have had to guess (with 0.5 probability
of guessing correctly). This gave the model’s total num-
ber of “correct” responses, which we divided by the total
number of 2AFC trials (10,000) to give the proportion
correct. For each parameterization of the model, a 3-
parameter Weibull function (Equation (32) of the main
paper) was fitted to the proportion of correct responses as
a function of target Michelson contrast.

Appendix K: The additive noise

distribution that gives a Weibull
psychometric function

Here, we prove that, assuming that the response of
each detector, j, is a linear function of contrast plus a sam-
ple of additive, statistically independent noise, and the
observer detects the stimulus if at least one detector re-
sponds above its sensory threshold, &, then the ob-

server’s psychometric function will be a Weibull function
with slope f when the noise on each detector has a cumu-
lative distribution function (CDF), F,, given by

1 8>0j
FEJ(E):P(EJ SS)Z exp[_(gj_g)ﬁ} gS@J
(K.1)

The term E; in Equation (K.1) is a random variable
representing the noise added to detector j. ¢is a specific
instance of £;. By assumption, the response, 77; , of each
detector, j, is given by
where «; is the reciprocal of that detector’s sensitivity to
the stimulus. Also, by assumption, the probability that the

observer detects the stimulus is the probability that not all
the responses fall below threshold:

P(detection) =1—P(Vj n; < ej) (K.3)
=1-P(vj c/aj+EjSHj) (K.4)
=1-P(Vj E; <0, -¢/a;) (K.5)
=1—1K_[P(Ej <0,-c/a;) (K.6)

j=

LN
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K
Jj= L
3 B=2
where K is the number of detectors. 2 B=4
Now, let us assume that the CDF of the noise, F, E; > in % ——p=8
Equation (K.7) is given by Equation (K.1). Since both -; 2y
contrast, ¢, and sensitivity, 1/ a; ,are nonnegative values, =
Q
we have c/aj >0, and therefore Hj—c/aj <0;. 8
O 1!t
Substituting 6; — c/ a; for ¢in Equation (K.1), we obtain a L
e, (6 =¢la;)=exo| (/)] ®9) ___—
Ej\Yj d/a;)=exp| =(d/a; ) | . 0 .

Using Equation (K.8) to substitute for FEj (6’]- - c/ o j) in

Equation (K.7) gives
K
P(detection) =1— Hexp [—(c/aj )ﬁ } (K.9)
j=1
:l—exp[—(c/a)ﬂ} (K.10)
where
K -
a:{z%fﬂ} : (K.11)
j=1

Thus, the psychometric function is a Weibull function
with threshold, «, determined from the sensitivities of the
individual detectors using exactly the same equation as
that of Quick. For application to 2AFC experiments,
Equation (K.10) must be corrected for guessing, which
yields Equation (22) of the main paper. [J

Note that, since sensitivity is nonnegative, the contrast
threshold given by Equation (K.11) is always above zero,
and so Tyler and Chen’s (2000) argument that “high-
threshold probability summation fails for additive noise”
does not apply when the psychometric function has the
form of a Weibull function.

The noise probability density function (PDF) corre-
sponding to the CDF in Equation (K.1) can be found by
differentiating Equation (K.1) with respect to &

fr (&)= B0~ ) exp[ (0~ ].

This function is plotted in Figure K.1 for #=1.3, 2, 4, and
8, with ¢ expressed in units such that 6; =1. These are

(K.12)

the same functions as plotted in Figure 2b of Tyler and
Chen.

-2 -1 0 1
Noise value, ¢

Figure K.1. The Weibull noise PDF, as defined in Equation
(K.12) for four values of . ¢is the noise on detector j, which is
expressed in units such that the detector’s sensory threshold,

Hj, is equal to 1.



