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Appendix A: Main symbols 

 

b Base of logarithm when Michelson contrast, 

c, is expressed as log contrast, x 

c Michelson contrast 

1 2c  Naka-Rushton function parameter: semi-

saturation contrast 

1 3c  The Michelson contrast for which the output 

of the Naka-Rushton function exceeds 0r  by 

max 3r  

H A function (used with subscripts) that ap-

pears in the approximations of the Fisher in-

formation (see Appendix E) 

J Fisher information 

j Integer index of the neurons in a population 

K The number of neurons being monitored by 

the observer 

N Random variable representing the number 

of spikes produced by a neuron 

n The value of N on a particular stimulus 

presentation 

N Vector of random variables representing the 

number of spikes produced by each neuron 

in the population 

n The value of N on a particular stimulus 

presentation 

P Probability 

q Naka-Rushton function parameter: expo-

nent, which determines tuning sharpness 

R Random variable representing the mean re-

sponse of a neuron 

( )r x  The neuron’s tuning function, which gives 

the value of R on a particular stimulus pres-

entation 

0r  Naka-Rushton function parameter: sponta-

neous firing rate 

maxr  Naka-Rushton function parameter: maxi-

mum increment from 0r  

T Number of trials 

nu  Parameter of the “approximate” probability 

distribution used in Appendix E 

v Parameter that appears in the expressions 

for the “approximate” probability distribu-

tion (Appendix E) and ( )xτ%  

X Random variable representing the stimulus 

log Michelson contrast 

x The value of X on a particular stimulus 

presentation 

X̂  Random variable representing the estimated 

stimulus level after decoding the spike 

counts 

x̂  The value of X̂  for a particular stimulus 

presentation 

z Naka-Rushton function parameter: log 

semi-saturation contrast 

α Weibull “threshold” parameter 

β Weibull “slope” or “shape” parameter 

λ Weibull “lapse rate” parameter 
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Gσ  Standard deviation of the gain signal in Go-

ris et al.’s neuronal spiking model 

( )xτ%  General estimate of the precision for decod-

ing stimulus x, which can be parameterized 

to apply to the Poisson, Goris, Tolhurst, or 

Consul-Jain spiking processes 

Tolhurst ( )xτ  Analytical estimate of the decoding preci-

sion for the Tolhurst spiking process, which 

can be substantially more accurate than 

( )xτ%  when the mean spike count of the 

most informative neurons is very low 

C-J ( )xτ  Analytical estimate of the decoding preci-

sion for the Consul-Jain spiking process, 

which can be substantially more accurate 

than ( )xτ%  when the mean spike count of the 

most informative neurons is very low 

Ω Recursive function used in the closed-form 

expression for the Tolhurst likelihood func-

tion 

Appendix B: Finite series 
expansion of the Tolhurst 
likelihood function 

 

The finite series expansion of the Tolhurst likelihood 

function is derived in Theorem 1, below.  As a prelude to 

this theorem, we will find it useful to define a function, 

( )n ξΩ , given by 

0

1
( )

!

n

n
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µ

µ
ξ ξ
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∞

=

Ω = ∑ . (B.1) 

First, consider the case of 0n = .  In this case, we have 

0
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∞

=

Ω = ∑ . (B.2) 

The summation in Equation (B.2) is the series expansion 

of eξ , and so we have 

0 ( ) 1ξΩ = . (B.3) 

Lemma 1 derives a recursive expression for ( )n ξΩ  for 

any integer 0n > . 

 

Lemma 1.     For all integers 0n > , 
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 is the kth 

coefficient of the binomial expansion of degree 1n − . 

 

Proof.  For 0n > , the first term of the infinite series 

expansion of ( )n ξΩ  given by Equation (B.1) is 0, because 

this term includes multiplication by nµ , which is 0 for the 

first term (since 0µ = ).  Thus, we can start the series at 

1µ = : 
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Now, since 0µ ≠  in Equation (B.4), we can divide the top 

and bottom of each term in the series by µ to give 
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Let us define ν as 

1ν µ= − . (B.6) 

Then, 
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Since 0n > , we can expand 1( 1)nν −+  in Equation (B.8) 

using the binomial expansion: 
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Applying the distributive rule [i.e. ( )a b c ab ac+ = + ] to 

Equation (B.9), we get 
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Rearranging the order of summation gives 
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Applying the distributive rule again gives 
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The finite series expansion of each ( )n ξΩ  is a poly-

nomial of degree n.  As examples, Equations (B.14) to 

(B.19) give full, non-recursive expressions for ( )n ξΩ  for 

n = 0 to 5. 

0 ( ) 1ξΩ =  (B.14) 

1( )ξ ξΩ =  (B.15) 

2
2 ( )ξ ξ ξΩ = +  (B.16) 

3 2
3( ) 3ξ ξ ξ ξΩ = + +  (B.17) 

4 3 2
4 ( ) 6 7ξ ξ ξ ξ ξΩ = + + +  (B.18) 

5 4 3 2
5 ( ) 10 25 15ξ ξ ξ ξ ξ ξΩ = + + + + . (B.19) 

The polynomial coefficients for any ( )n ξΩ  can be calcu-

lated using the MATLAB program, 

OmegaCoefficients, given in Appendix C. 

Lemma 1 shows how to express the infinite series ex-

pansion in Equation (B.1) as a finite series, given in Equa-

tion (B.13).  We now prove Theorem 1, which uses 

Lemma 1 to express the Tolhurst likelihood function as a 

finite series.  To reduce notational clutter, we will use the 

single letter r, instead of ( )r x , to represent the mean spike 

rate. 

 

Theorem 1. 
(1 1)

Tolhurst ( | ) ( )
!

r e
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e
P N n R r r e
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= = = Ω . 

 

Proof.  Using Equation (4) of the main paper to ex-

pand the expression for the Poisson distribution in Equa-

tion (5), we have 

Tolhurst ( | )P N n R r= =  
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(1 1)

( )
!

r e

n

e
r e

n

−

= Ω . □ (B.23) 

Equation (B.23) can be evaluated for any r and n us-

ing the MATLAB program, PTolhurst, given in Appen-

dix D. 

Appendix C: Software for calcu-

lating the coefficients of ΩΩΩΩn 

 

In this appendix, we give two MATLAB programs for 

calculating the coefficients of the Ω function, ( )n ξΩ .  

The programs both implement the recursive definition of 

( )n ξΩ , given in Equation (B.13). 

The first program, OmegaCoefficientsRecur-

sive, uses a recursive algorithm that outputs the coeffi-

cients of ( )n ξΩ .  The program is easy to follow because 

it is exactly analogous to the recursive definition of the Ω 
function.  However, for large n, it is epically inefficient, as 

it keeps recalculating the coefficients of Ω functions of 
lower degree. 

The second program, OmegaCoefficients, uses a 

non-recursive algorithm that calculates each set of coeffi-

cients once, and then stores them for future use.  This pro-

gram is less easy to follow, as it contains an outer loop, 

and is not exactly analogous to the recursive definition of 

the Ω function, but it is much more efficient.  Because the 
program stores the coefficients of each Ω function from 

0 ( )ξΩ  to ( )n ξΩ , it outputs the coefficients of all of these 

Omega functions, rather than just the coefficients of 

( )n ξΩ . 
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function C = OmegaCoefficientsRecursive(n) 

% Returns C, the vector of coefficients of the Omega function of degree n. 

% C has n+1 terms, as the Omega function is a polynomial of degree n. 

% n must be a scalar integer. 

 

if n == 0 

    % Omega(0, x) = 1 for all x, i.e. a polynomial of degree 0 with coefficient 1 

    C = 1; 

else    

    % set up one coefficient for every term in the n-degree polynomial 

    C = zeros(1,n+1); 

     

    for k = 0:(n-1) 

         

        % For each k in the summation in Equation (33), find the 

        % coefficients of the Omega function of degree k. 

        Ck = OmegaCoefficientsRecursive(k); 

         

        % Then shift the coefficients along one position in the polynomial 

        % (i.e. one power of x, because the omega function is multiplied by 

        % x in Equation (33), so the coefficient of the mth term from the  

        % right in in the old Omega function becomes the coefficient of the  

        % (m+1)th term from the right in the new Omega function. 

        % Also, pad out slots to the left to make n+1 coefficients. 

        % Then multiply by the binomial coefficient, as in Equation (33), 

        % and add to the total value of each coefficient.         

        C = C + (factorial(n-1) / (factorial(k) * factorial(n-1-k))) * ... 

                                                  [zeros([1,n-1-k]), Ck, 0];  

         

    end 

end 
 

 

function C = OmegaCoefficients(n) 

% Returns C, the matrix of coefficients of Omega functions of degree 0 to n. 

% Row m+1 of C gives the coefficients for the Omega function of degree m  

% C has n+1 columns, as the highest-degree Omega function is a polynomial of 

% degree n. 

% n must be a scalar integer. 

  

C = zeros(n+1,n+1); % n+1 Omega functions (rows) and n+1 coefficients (columns) 

  

% Omega(0, x) = 1 for all x, i.e. a polynomial of degree 0, with coefficient 1 

C(1,n+1) = 1; 

  

% calculate coefficients of each omega function of degree 1 to n 

for m = 1:n 

    for k = 0:(m-1) 

         

        % For each k in the summation in Equation (33), find the 

        % coefficients of the Omega function of degree k 

        Ck = C(k+1,:); 

  

        % Then shift the coefficients along one position in the polynomial 

        % (i.e. one power of x, because the omega function is multiplied by 

        % x in Equation (33), so the coefficient of the mth term from the  

        % right in in the old Omega function becomes the coefficient of the  

        % (m+1)th term from the right in the new Omega function. 

        % Then multiply by the binomial coefficient, as in Equation (33), 

        % and add to the total value of each coefficient. 

        C(m+1,:) = C(m+1,:) + ... 

            (factorial(m-1) / (factorial(k) * factorial(m-1-k))) * ... 

                                                       [Ck(2:end), 0]; 

         

    end 

end 
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Appendix D: Software for calcu-
lating the Tolhurst likelihood 
function 

 

In this appendix, we give two MATLAB programs for 

calculating the Tolhurst likelihood function, 

Tolhurst ( | )P N n R r= = .  Each program calls a program 

that calculates the relevant Ω function and then calculates 
the Tolhurst likelihood function from this as in Equation 

(B.23) (strictly speaking these “programs” are MATLAB 

functions, but we use the term “program” here to avoid 

confusion with the mathematical functions that are being 

calculated).  As with the programs for calculating the co-

efficients of the Ω function, we present recursive and non-
recursive versions.  Again, the recursive version is easier 

to follow, but too inefficient to be of practical use other 

than for small values of n.  The recursive version, 

PTolhurstRecursive(n,r), gives 

Tolhurst ( | )P N n R r= =  for a scalar integer n, and any size 

matrix of r values.  The non-recursive version, PTol-

hurst(n,r), calculates Tolhurst ( | )P N m R r= =  for all 

integers, m, between 0 and n, inclusive.  n must be a scalar 

integer.  r must be a real scalar or row vector.  Row m+1 

of the output gives Tolhurst ( | )P N m R r= =  for each ele-

ment of the input argument, r. 

 

 
function P = PTolhurstRecursive(n,r) 

% Returns probability of n for the Tolhurst process, given a mean of r. 

% n must be a scalar integer. 

% r can be a real scalar or matrix of any size or number of dimensions. 

% The output, P, has the same size and number of dimensions as r. 

e = exp(1); 

P = (exp(r*(1/e - 1))/factorial(n)) .* OmegaRecursive(n, r/e); 

function y = OmegaRecursive(n,x) 

if n == 0 

    y = 1; 

else 

    y = 0; 

    for k = 0:(n-1) 

        y = y + (factorial(n-1) / (factorial(k) * factorial(n-1-k))) * OmegaRecursive(k,x); 

    end 

    y = x .* y; 

end 
 

 

function P = PTolhurst(n,r) 

% Returns probability of 0 to n for the Tolhurst process, given a mean r. 

% n must be a scalar integer. 

% r can be a real scalar or row vector. 

% The (m+1)th row of P gives P(N = m | R = r) for each element in the input argument, r. 

e = exp(1); 

P = exp(repmat(r,[n+1,1])*(1/e - 1)) ./ ... 

             repmat(factorial([0:n]'),[1,length(r)]) .* Omega(n,r/e); 

function y = Omega(n,x) 

% Note, Omega(m,x) is stored in row m+1 or Omegas 

Omegas = zeros(n+1,length(x));  

Omegas(1,:) = ones(1,length(x)); 

% calculate Omega(m,:) for each m = 1:n 

for m = 1:n 

    k = [0:(m-1)]'; 

    % Calculate binomial coefficients 

    C = (factorial(m-1) ./ (factorial(k) .* factorial(m-1-k))); 

    C = repmat(C, [1,length(x)]); 

    Omegas(m+1,:) = x .* sum(C .* Omegas([0:(m-1)]+1,:),1); 

end 

y = Omegas; 
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Appendix E: Approximations of 
the Fisher information for non-
Poisson-spiking neurons 

 

A derivation of an exact formula for the Fisher infor-

mation of a neuron with a Tolhurst or Consul-Jain spiking 

process turned out to be intractable, so we closely ap-

proximated both of these distributions using a different 

expression, for which an analytical expression for the 

Fisher information could be derived.  We use the term 

“approximate distribution” to refer to the expression that 

we used to approximate the Tolhurst and Consul-Jain dis-

tributions.  The approximate distribution is given by 

Approx ( | ( ))P N n R r x= =  

( )Poisson | ( )nu P N n v R r x v= = = . (E.1) 

[ ]( )
( )

exp( ( ) )
( 1)

n v

n

r x v
u r x v

n v
= −

Γ +
. (E.2) 

In Equation (E.2), we have to express the Poisson distribu-

tion using the continuous gamma function, ( 1)n vΓ + , 

instead of the factorial, ( )!n v , so that it can be evaluated 

for non-integer values of n v .  This approximate distribu-

tion has a parameter v, and an infinite set of parameters, 

nu , one for each possible value of n (the integers 0 to ∞ ).  

However, it turns out that the values of the nu  parameters 

have no effect on the Fisher information (this comes about 

because the Fisher information is the average negative 2nd 

derivative of the log-likelihood function – the log function 

converts multiplicative constants, nu , into additive con-

stants, which have no effect on the derivative).  Thus, we 

can proceed as if ApproxP  was parameterized only by v.  

The only purpose of fitting the nu  parameters is to verify 

that ApproxP  is good approximation.  Note that, for many 

values of v, it may be impossible to find a set of parame-

ters, nu , for which Approx0
( | ( ))

n
P N n R r x

∞
=

= =∑  is ex-

actly equal to 1 for all ( )r x , and so ApproxP  is not techni-

cally a probability distribution.  However, it can provide a 

sufficiently close fit to the true Tolhurst and Consul-Jain 

distributions for it to generate a good approximation of the 

Fisher information. 

Appendix F shows that, assuming ApproxP  is a prob-

ability distribution generating a neuron’s spikes, the Fisher 

information, J, is given by 

21 ( )

( )

r x
J

v r x

′
= × . (E.3) 

Fisher information for the Tolhurst process 

 

Using Equation (B.14) of Appendix B to substitute for 

( )nΩ ⋅  in Equation (B.23) when 0n = , we obtain 

Tolhurst ( 0 | ( ))P N R r x= =  

(1 1) ( )e r xe −=  (E.4) 

Poisson ( 0 | (1 1 ) ( ))P N R e r x= = = − , (E.5) 

which has the form of ApproxP  with 1 (1 1 )v e= − .  For 

0n > , we cannot express the Tolhurst distribution exactly 

in the form of ApproxP , but we can closely approximate it 

for all n except 1n = .  For 1n > , we have found that  

 

Tolhurst ( | ( ))P N n R r x= = ≈  

( )Poisson 2 | ( ) 2nu P N n R r x= = , (E.6) 

 

 

 

n 
nu  

2 0.5007 

3 0.5024 

4 0.5018 

5 0.5015 

6 0.5014 

7 0.5012 

8 0.5011 

9 0.5010 

10 0.5009 

11 0.5008 
 

Table E.1.  Parameters that minimize the error in the approxima-

tion of the Tolhurst distribution given by Relation (E.6).  These 

parameters were fitted by using Equation (E.2) to evaluate the 

right hand side of Relation (E.6) over a range of ( )r x  from 0 to 

100 in steps of 0.01, and comparing with the true Tolhurst distri-

bution (the left hand side of Relation (E.6), given by Equation 

(B.23)) for the same values of ( )r x .  We found the nu  parame-

ters that minimized the sum of squared differences between the 

left and right sides of Relation (E.6).  All decimal expansions are 

shown to an accuracy of 4 significant figures. 
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Figure E.1.  The Tolhurst likelihood functions (thin, coloured curves), plotted against the best-fitting approximations (thick, black 

curves).  ( )r x  is the mean number of spikes elicited by stimulus x.  For 1n = , the approximation is described by Relation (E.7).  For 

1n > , the approximation is described by Relation (E.6) with parameter values, nu , given in Table E.1. 

 

with best-fitting nu  values given in Table E.1 for 2n =  to 

11.  This has the form of ApproxP  with 2v = .  For 1n = , 

there is no really good approximation of the Tolhurst 

process that has the form of ApproxP ; the best (least-

squares) approximation is 

Tolhurst ( 1| ( ))P N R r x= = ≈  

( )Poisson0.4106 1 2.306 | ( ) 2.306P N R r x× = = ,(E.7) 

which has the form of ApproxP  with 2.306v = .  Figure E.1 

plots the true Tolhurst likelihood functions against the 

approximations given by Relations (E.6) and (E.7). 

So, for a proportion ( 0)P N =  of trials, the Tolhurst 

distribution is ApproxP  with 1 (1 1 )v e= − , for which the 

Fisher information (given by Equation (E.3)) is 
2(1 1 ) ( ) ( )e r x r x′− ; for a proportion ( 1)P N =  of trials, 

the Tolhurst distribution is reasonably well approximated 

by ApproxP  with 2.306v = , for which the Fisher informa-

tion is [ ]2( ) 2.306 ( )r x r x′ ; for the remaining proportion of 

trials, [ ]1 ( 0) ( 1)P N P N− = − = , the Tolhurst distribution 

is well approximated by ApproxP  with 2v = , for which the 

Fisher information is [ ]2( ) 2 ( )r x r x′ .  Since the Fisher 

information is a trial-averaged quantity (the average nega-

tive 2nd derivative of the log-likelihood function), we can 

calculate it separately for these three different scenarios 

( 0n = , 1n =  and 1n > ), and then average them, weighted 

according to their probabilities, to give a close approxima-

tion of the Fisher information for a single Tolhurst-spiking 

neuron: 

( 1)
(1 1 ) ( 0)

2.306

P N
J e P N

=≈ − = + +


 

21 ( 0) ( 1) ( )

2 ( )

P N P N r x

r x

′− = − = 



. (E.8) 
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Equation (E.4) gives an expression for ( 0)P N =  for the 

Tolhurst distribution.  Using Equation (B.15) of Appendix 

B to substitute for ( )nΩ ⋅  in Equation (B.23) when 1n = , 

we get an expression for ( 1)P N = : 

(1 1) ( ) 1
Tolhurst ( 1| ( )) ( ) e r xP N R r x r x e − −= = = . (E.9) 

Using Equations (E.4) and (E.9) to substitute for 

( 0)P N =  and ( 1)P N =  in Relation (E.8), we obtain 

2

Tolhurst

( )
( )

( )

r x
J H x

r x

′
≈ × , (E.10) 

where 

Tolhurst

1 1 0.06630 ( )
( )

2

r x
H x

e

+ × = − × 
 

 

1
exp[ ( )(1 1)]

2
r x e − + . (E.11) 

For a population of statistically independent neurons, 

the Fisher information is the sum of the Fisher information 

of the individual neurons.  This gives us an accurate ap-

proximation of the decoding precision for a population of 

independent Tolhurst-spiking neurons: 

2

Tolhurst Tolhurst

1

( )
( ) ( )

( )

K

j

j

j

r x
x H x

r x
τ

=

′
= ×∑  . (E.12) 

Tolhurst ( )H x  is plotted in Figure 4 of the main paper.  For 

( )r x  of around 5 spikes or more, Tolhurst ( ) 0.5H x ≈ , and 

so Tolhurst ( )xτ  is close to ( )xτ%  (defined in Equation (11) 

of the main paper) with 2v = .  Figure 8 of the main paper 

demonstrates that Tolhurst ( )xτ  is substantially more accu-

rate than ( )xτ%  for very low spike rates. 

 

Fisher information for the Consul-Jain proc-
ess 

 

In this subsection, we derive an approximation of the 

Fisher information for a Consul-Jain-spiking neuron using 

analogous methods to the previous subsection. 

Letting 0n =  in Equation (6) of the main paper, we 

obtain 

C-J ( 0 | ( ))P N R r x= =  

( )exp ( )r x F= −  (E.13) 

( )Poisson 0 | ( )P N F R r x F= = = , (E.14) 

which has the form of ApproxP  with v F= .  For 0n > , 

we have found that, for Fano factors not too far above 1, 

C-J ( | ( ))P N n R r x= = ≈  

( )Poisson | ( )nu P N n F R r x F= = , (E.15) 

which has the form of ApproxP  with v F= .  Table E.2 

gives the best-fitting nu values for 1n =  to 11 when 

1.5F = ; Figure E.2 plots the true Consul-Jain likelihood 

functions for 1n =  to 11, and their approximations given 

by Relation (E.15). 

 

 

n 
nu  

1 0.6948 

2 0.6804 

3 0.6757 

4 0.6734 

5 0.6720 

6 0.6711 

7 0.6704 

8 0.6699 

9 0.6696 

10 0.6693 

11 0.6690 

 

Table E.2. Parameters that minimize the error in the approxima-

tion of the Consul-Jain likelihood function given by Relation 

(E.15) for 1.5F = .  These parameters were fitted by using 

Equation (E.2) to evaluate the right hand side of Relation (E.15) 

over a range of ( )r x  from 0 to 100 in steps of 0.01, and 

comparing with the true Consul-Jain likelihood function (the left 

hand side of Relation (E.15), given by Equation (6) of the main 

paper) for the same values of ( )r x .  We found the nu  

parameters that minimized the sum of squared differences be-

tween the left and right sides of Relation (E.15) when 1.5F = .  

All decimal expansions are shown to an accuracy of 4 significant 

figures. 
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Figure E.2.  Consul-Jain likelihood functions with 1.5F = , plotted against best-fitting approximations from Relation (E.15).  ( )r x  is the 

mean number of spikes elicited by stimulus x. The thin, coloured curves plot the true Consul-Jain likelihood functions (Equation (6)) with 

1.5F = ; the thick, black curves show the approximations given by the right hand side of Relation (E.15), with the nu  parameter values 

in Table E.2. 

 

So, for a proportion ( 0)P N =  of trials, the Consul-

Jain distribution is ApproxP  with v F= , for which the 

Fisher information (given by Equation (E.3)) is 
2( ) ( )r x Fr x ′   ; for the remaining proportion of trials, 

[ ]1 ( 0)P N− = , the Consul-Jain distribution is well ap-

proximated by ApproxP  with v F= , for which the Fisher 

information is [ ]2( ) ( )r x Fr x′ .  Since the Fisher informa-

tion is a trial-averaged quantity, we can calculate it sepa-

rately for these two different scenarios ( 0N =  and 

0N > ), and then average them, weighted according to 

their probabilities, to give a close approximation of the 

Fisher information for a single, Consul-Jain-spiking neu-

ron: 

2( 0) 1 ( 0) ( )

( )

P N P N r x
J

F r xF

′= − = 
≈ + 

 
. (E.16) 

Equation (E.13) shows that, for the Consul-Jain process, 

( )( 0) exp ( )P N r x F= = − . (E.17) 

Using Equation (E.17) to substitute for ( 0)P N =  in Rela-

tion (E.16), we obtain 

2

C-J

( )
( )

( )

r x
J H x

r x

′
≈ ×  (E.18) 

where 

( ) ( )
C-J

exp ( ) 1 exp ( )
( )

r x F r x F
H x

FF

− − −
= +  

C-J

( ) 1 1 1
exp( )

r x

F FF
H x

F

  
= − − +  

  
. (E.19) 
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For a population of statistically independent neurons, 

the Fisher information is the sum of the Fisher information 

of the individual neurons.  This gives us an accurate ap-

proximation of the decoding precision for a population of 

independent Consul-Jain-spiking neurons: 

2

C-J C-J

1

( )
( ) ( )

( )

K

j

j

j

r x
x H x

r x
τ

=

′
= ×∑  . (E.20) 

C-J ( )H x  is plotted in Figure E.3 for several different Fano 

factors, F.  For sufficiently high ( )r x , C-J ( ) 1H x F≈ , and 

so C-J ( )xτ  is close to ( )xτ%  (defined in Equation (11) of 

the main paper) with v F= .   For Fano factors around the 

top of the physiologically plausible range (around 3), the 

mean spike count only needs to be about 7 spikes for ( )xτ%  

with v F=  to be within 1% of C-J ( )xτ . 

Figure E.4 plots the true Fisher information (thin, col-

oured lines) as a function of contrast for a single Consul-

Jain-spiking neuron with 1.5F =  (a typical value for cor-

tical neurons), and compares this against ( )xτ%  with v F=  

(thick, black lines).  ( )xτ%  provides an excellent approxi-

mation of the true Fisher information for moderate or high 

spike rates, but starts to get inaccurate when the spike rate 

gets very low.  Figure E.5 plots the true Fisher information 

against C-J ( )xτ  with the same Fano factor, 1.5F = .  

C-J ( )xτ  provides an excellent match to the Fisher infor-

mation at all spike rates. 

 

 

 

Figure E.3.  Each different coloured line plots C-J ( )H x  as a 

function of ( )r x  for a particular Fano factor, F, according to 

Equation (E.19).  This function approaches 1 F  as 

( ) 0r x → , and approaches 1 F  as ( )r x → ∞ . 

 

 

 

 

 

 

 



Supplementary Appendices May & Solomon 11 

 

 
 

Figure E.4.  True Fisher information of a Consul-Jain-spiking neuron with 1.5F = , and the closed-form approximation given by ( )xτ% .  

The thin, coloured curves plot a single neuron’s true Fisher information for decoding contrast, calculated numerically (see Supplemen-

tary Appendix H for methods).  The neuron had a Consul-Jain spiking process and a Naka-Rushton tuning function with 1z = − , 

3q = , and 0 0r = .  The corresponding thick, black curves plot the approximations given by ( )xτ%  with 1.5v =  (Equation (11) of the 

main paper). 
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Figure E.5.  The same as Figure E.4, except that the thick, black curves plot the approximations given by C-J ( )xτ  (Equation (E.20)). 
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Appendix F: Fisher information 
for the approximate spiking 
distribution 

 

The Fisher information, J, for a single neuron decod-

ing a stimulus of value x is given by the average negative 

2nd derivative of the log-likelihood function: 

2

2

ln ( | )d P N n X x
J

dx

= =
= − , (F.1) 

where y  is the trial-averaged value of y.  Since the 

mean spike rate, ( )r x , is a deterministic function of x, we 

have 

( | ) ( | ( ))P N n X x P N n R r x= = = = = . (F.2) 

Substituting Equation (F.2) into (F.1), we obtain 

2

2

ln ( | ( ))d P N n R r x
J

dx

= =
= − . (F.3) 

Suppose the neuron’s true likelihood function was 

given by Approx ( | ( ))P N n R r x= = , defined in Equation 

(E.2).  Then  

Approxln ( | ( ))P N n R r x= =  

( ) ln( ( )) ( )n v r x r x v= − +  

( ) ln(1 )  ln
(( ) 1)

nun v v
n v

 
+  Γ + 

 (F.4) 

[ ]1
ln( ( )) ( ) terms independent of n r x r x x

v
= − + .

 (F.5) 

Note that the value of nu  is irrelevant to the Fisher infor-

mation, because it gets absorbed into the “terms independ-

ent of x”, which disappear when we differentiate. 

Differentiating twice with respect to x, we get 

2
Approx

2

ln ( | ( ))d P N n R r x

dx

= =
− =  

2

1 ( ) ( )
( )

( ) ( )

r x r x
r x n

v r x r x

   ′′ ′  ′′  − −        

. (F.6) 

The trial-averaged value of this gives us the Fisher infor-

mation for this distribution: 

2
1 ( ) ( )

( )
( ) ( )

r x r x
J r x n

v r x r x

 ′′ ′  ′′= − −     
 (F.7) 

2

1 ( ) ( )
( )

( ) ( )

r x r x
r x n

v r x r x
J

   ′′ ′  ′′  = − −        

. (F.8) 

The step from Equation (F.7) to (F.8) follows from the 

fact that an b a n b+ = +  for constant a and b (note 

that, for a given x, the only term on the right hand side of 

Equation (F.7) that varies across trials is n).  Since ( )r x  is 

the mean spike count, we have 

( )n r x= . (F.9) 

Using Equation (F.9) to substitute for n  in Equation 

(F.8), we obtain 

21 ( )

( )

r x
J

v r x

′
= × . (F.10) 

Note that, for 1v =  and 1nu =  for all n, the “approximate” 

probability distribution is exactly the Poisson, so an exact 

expression for the Fisher information of the Poisson dis-

tribution is given by 

2( )

( )

r x
J

r x

′
=  (F.11) 

(see also Dayan & Abbott, 2001, Chapter 3). 

 

Appendix G: Estimating decoding 
precision 

 

Our estimates of decoding precision were obtained us-

ing methods essentially the same as those of Clatworthy et 

al. (2003) and Chirimuuta et al. (2003).  For each neuron, 

j, in the population, we precalculated ( | )j jP N n X x= =  

for a large range of stimulus values, x, and spike counts, 

jn .  For each jn , x was varied in discrete steps of 0.01 

from −3 to 0.1 (to be compatible with Clatworthy et al.).  
For each x, jn  took all integer values from 0 to a number 

beyond which the maximum of ( | )j jP N n X x= =  over 

all x was negligible.  The precalculated likelihood func-
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tions were used both to generate the spikes and to decode 

them. 

In each simulation, the precalculated values of 

( | )j jP N n X x= =  for each neuron, j, were given by 

Tolhurst( | ) ( | ( ))j j j jP N n X x P N n R r x= = = = = .

 (G.1) 

We used these values to precalculate the cumulative prob-

ability distributions as well.  On each trial with stimulus 

level x, each possible value of jn  had a probability of oc-

currence given by Equation (G.1).  This was achieved by 

generating a random number sampled from a flat distribu-

tion between 0 and 1, and then finding the lowest jn  for 

which the cumulative probability distribution of jn  was 

greater than or equal to the random number. 

After generating the spike counts, we used the precal-

culated likelihood functions to decode them.  On each 

trial, we needed to find the stimulus level, x, that maxi-

mized the stimulus likelihood, ( | )P X x= =N n , where N 

is a random variable representing the population response, 

and n is its value.  For statistically independent neurons, 

( | )P X x= =N n  is the product of ( | )j jP N n X x= =  

over the population (see Equation (8) of the main paper).  

For large populations, this product can be too small to 

represent using floating point values on a standard 

computer, so instead we maximized ln ( | )P X x= =N n  

(which increases monotonically with ( | )P X x= =N n , 

and therefore peaks at the same value of x).  

ln ( | )P X x= =N n  is given by ln ( | )j jj
P N n X x= =∑ .  

The stimulus estimate, x̂ , was the value of x that 

maximized the likelihood.  we repeated this process 

10,000 times for each stimulus value, x, and the precision 

was calculated using Equation (10) of the main paper. 

 

Appendix H: Numerical calcula-
tion of true Fisher information 

 

For a single neuron, the general expression for the 

Fisher information, J, can be written as 

2
ln ( | )d P N n X x

J
dx

= = 
=  

 
 (H.1) 

where y  is the trial-averaged value of y (see Dayan & 

Abbott (2001), p. 109).  Since the mean spike rate is a de-

terministic function of x, we have ( | )P N n X x= =  

( | ( ))P N n R r x= = = .  The expression for 

( | ( ))P N n R r x= =  depends on the spiking process and 

the tuning function, ( )r x .  To numerically calculate the 

Fisher information for a single neuron, we first calculated 

ln ( | ( ))P N n R r x= =  for all x from −3 to 0.1 in steps of 
0.001xδ = , and for all integers, n, from 0 to M, where M 

was high enough for the value of ln ( | ( ))P N n R r x= =  to 

be negligible.  For each n, we then numerically differenti-

ated ln ( | ( ))P N n R r x= =  with respect to x, to give, for 

each x and n, a close approximation of the derivative, 

ln ( | ( ))d P N n R r x dx= = .  This approximation is given 

by 

ln ( | ( )) ln ( | ( ))

2

P N n R r x x P N n R r x x

x

δ δ
δ

= = + − = = −
.

 (H.2) 

The numerical value, numerical ( )J x , of the Fisher informa-

tion was then calculated from this numerical derivative 

using a discrete approximation of Equation (H.1): 

numerical

0

( ) ( | ( ))

M

n

J x P N n R r x

=

= = = ×∑  

2
ln ( | ( )) ln ( | ( ))

.
2

P N n R r x x P N n R r x x

x

δ δ
δ

= = + − = = − 
 
 
 (H.3) 

The weighted sum in Equation (H.3) approximates the 

mean value of the squared derivative across trials. 

 

Appendix I: Generating semi-
saturation contrasts for cat and 
monkey populations of neurons 

 

Our distributions of cat and monkey z values (i.e. 

10 1 2log ( )c  values) were based on the histograms in Clat-

worthy et al.’s (2003) Figure 6, which show the distribu-

tions of semi-saturation contrasts obtained from fitting 

Naka-Rushton functions to the contrast-response functions 

of V1 neurons in many different physiological experi-

ments.  These histograms show the number of neurons 

falling into each bin of width 0.2zδ =  10log  contrast 

units.  Clatworthy et al.’s Figure 6 plots the number of 

neurons in each bin as a function of the z-value corre-

sponding to the centre of the bin, for cat and monkey 

populations, and these distributions are re-plotted as filled 
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circles in our Figure I.1.  We fitted smooth probability 

density functions (PDFs) to these distributions, using a 

maximum-likelihood fit. 

For the cat data, the fitted PDF, cat ( )f z  was a single 

Gaussian, with two parameters, the mean, µ, and the stan-
dard deviation, σ: 

2

cat 2

1 ( )
( ) exp

2 2

z
f z

µ
σ π σ

 −
= −  

 
. (I.1) 

Assuming cat ( )f z  is the true PDF, and the histogram bin 

width, zδ , is small, the probability, ( )P z , of a neuron 

falling in a bin centred on z is closely approximated by 

cat( ) ( )P z f z zδ= .  The log likelihood of the parameters 

( , )µ σ  is the log probability of the data given the parame-

ters, i.e. ( ) ln ( )
z
m z P z∑ , where summation is over the 

bin centres, z, and ( )m z  is the number of neurons in the 

bin centred on z.  We found the parameters of the PDF 

with the highest log likelihood, and these were given by 

0.9928µ = − , and 0.3833σ = .  This PDF is plotted as the 

smooth curve in our Figure I.1A, scaled for the number of 

neurons in the population. 

The Monkey data in Clatworthy et al.’s Figure 6 

showed two peaks, and so the distribution was fitted with 

a PDF, monkey ( )f z , formed from the sum of two Gaus-

sians: 

1 2
monkey

1 2

( ) ( )
( )

( ) ( )

f z f z
f z

f z f z dz

∞

−∞

+
=

+∫
, (I.2) 

where 

2
1

1 2
1

( )
( ) exp

2

z
f z A

µ

σ

 −
= −  

 
, (I.3) 

2
2

2 2
2

( )
( ) exp

2

z
f z

µ

σ

 −
= −  

 
, (I.4) 

and 

1 2 1 2

1 2

1 2

( ) ( ) ( ) ( )

2 2

( ) 2 .

f z f z dz f z dz f z dz

A

A

σ π σ π

σ σ π

∞ ∞ ∞

−∞ −∞ −∞

+ = +

= +

= +

∫ ∫ ∫

 (I.5) 

The monkey PDF was fitted to Clatworthy et al.’s data 

using the same maximum-likelihood method as for the cat 

data, except that the monkey PDF had five parameters, 

rather than two.  The fitted values were 3.643A = , 

1 0.7247µ = − , 1 0.3985σ = , 2=0.6747µ , and 

2 0.1927σ = .  The scaled PDF is plotted as the smooth 

curve in our Figure I.1B. 

 

 

 

Figure I.1.  Distributions of semi-saturation contrasts in V1.  (A) 

Cat data.  (B) Monkey data.  Filled circles show frequency data 

from Clatworthy et al.’s (2003) Figure 6.  Smooth curves show 

the PDFs that we fitted to these data, vertically scaled for the 

size of the population.  The vertical scaling was performed by 

taking the PDF, and then multiplying its height by M zδ× , 

where zδ  is the width of each histogram bin (0.2), and M is the 

number of neurons in Clatworthy et al.’s histogram (cats: 

M = 138 neurons; monkey: M = 219 neurons).  This scaling 

meant that the function gave the expected number of neurons in 

each bin.  Magenta vertical lines indicate the 18 semi-saturation 

contrasts used for each animal in Figure 7 of the main paper. 



Supplementary Appendices May & Solomon 16 

 

The smooth curves were truncated at 0z =  at the top 

end, to be compatible with Clatworthy et al, who excluded 

all neurons with 1 2 1c >  (i.e. 0z > ).  At the bottom end, 

the monkey curve was truncated at 2z = − , and the cat 

curve was truncated at 1.6z = − .  The lower limit for the 

monkey data corresponded to the centre of the leftmost 

nonzero histogram bin in Clatworthy et al.’s Figure 6B.  

The lower limit for the cat data corresponded to the centre 

of the second-to-left nonzero histogram bin in Clatworthy 

et al.’s cat data; the reason for this choice for the cat data 

was that it gave a better fit to Clatworthy et al.’s accuracy 

scores than setting it to the centre of the leftmost bin, al-

though both gave a good fit.  The amplitudes of these 

truncated PDFs were rescaled so that they integrated to 1 

(making them true PDFs), and then we generated corre-

sponding cumulative distribution functions that varied 

between 0 and 1.  K z-values were then obtained by read-

ing off the z-values corresponding to cumulative 

probabilities evenly spaced from 0 to 1, in steps of 

1 ( 1)K − .  These z-values are shown as vertical lines in 

Figure I.1 for the example of 18K = , as used in Figure 7 

of the main paper. 

 

Appendix J: Simulation methods 
for 2AFC contrast detection tasks 

 

The model was set up the same as for estimating de-

coding precision (Appendix G) except that the set of con-

trasts over which the likelihood functions were precalcu-

lated included zero Michelson contrast (i.e., x = −∞ ).  For 

Naka-Rushton exponent 1q = , the likelihood functions 

were precalculated over values of x = −∞  and x = −7 to 0 
in steps of 0.01, and the target log contrast ranged from −7 
to 0 in steps of 0.05.  For q = 2 to 5, the likelihood func-

tions were precalculated over values of x = −∞  and x = −5 
to 0 in steps of 0.01, and the target log contrast ranged 

from −5 to 0 in steps of 0.05. 
q took values of 1, 2, 3, 4, or 5; maxr  took values of 1, 

2, 4, 8, or 16; the number of neurons, K, took values of 1, 

2, 4, 8, 16, 32, 64, 128, 256, or 512.  We simulated a 

2AFC detection task with each combination of these pa-

rameters.  For each combination, all the neurons had iden-

tical contrast-response functions, with 1 2 0.025c = . 

On each 2AFC trial, we generated spikes for the given 

target contrast as described in Appendix G.  The zero-

contrast stimulus always gave zero spikes, because 0 0r =  

in these stimulations.  The model responded correctly on 

2AFC trials on which the target elicited at least one spike; 

for each contrast level, we counted up these 2AFC trials, 

and then added half the remaining 2AFC trials, on which 

the model would have had to guess (with 0.5 probability 

of guessing correctly).  This gave the model’s total num-

ber of “correct” responses, which we divided by the total 

number of 2AFC trials (10,000) to give the proportion 

correct.  For each parameterization of the model, a 3-

parameter Weibull function (Equation (32) of the main 

paper) was fitted to the proportion of correct responses as 

a function of target Michelson contrast. 

 

Appendix K: The additive noise 
distribution that gives a Weibull 
psychometric function 

 

Here, we prove that, assuming that the response of 

each detector, j, is a linear function of contrast plus a sam-

ple of additive, statistically independent noise, and the 

observer detects the stimulus if at least one detector re-

sponds above its sensory threshold, jθ , then the ob-

server’s psychometric function will be a Weibull function 

with slope β when the noise on each detector has a cumu-
lative distribution function (CDF), F, given by 

1

( ) ( )
exp ( )j

j

E j
j j

F P E β

ε θ
ε ε

θ ε ε θ

>
= ≤ =   − − ≤  

.

 (K.1) 

The term jE  in Equation (K.1) is a random variable 

representing the noise added to detector j.  ε is a specific 
instance of jE .  By assumption, the response, jη , of each 

detector, j, is given by 

j j jc Eη α= +  (K.2) 

where jα  is the reciprocal of that detector’s sensitivity to 

the stimulus.  Also, by assumption, the probability that the 

observer detects the stimulus is the probability that not all 

the responses fall below threshold: 

( )(detection) 1  j jP P j η θ= − ∀ ≤  (K.3) 

( )(detection) 1  j j jP j c EP α θ= − ∀ + ≤  (K.4) 

( )(detection) 1  j j jP jP E cθ α= − ∀ ≤ −  (K.5) 

( )
1

(detection) 1
K

j j j

j

P EP cθ α
=

= − ≤ −∏  (K.6) 
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( )
1

1(detection)
j

K

E j j

j

P F cθ α
=

= − −∏ , (K.7) 

where K is the number of detectors. 

Now, let us assume that the CDF of the noise, 
jE

F , in 

Equation (K.7) is given by Equation (K.1).  Since both 

contrast, c, and sensitivity, 1 jα , are nonnegative values, 

we have 0jc α ≥ , and therefore j j jcθ α θ− ≤ .  

Substituting j jcθ α−  for ε in Equation (K.1), we obtain 

( ) ( )exp
jE j j jF c c

β
θ α α − = −  

. (K.8) 

Using Equation (K.8) to substitute for ( )jE j jF cθ α−  in 

Equation (K.7) gives 

( )
1

(detection) 1 exp
K

j

j

P c
β

α
=

 = − −  
∏  (K.9) 

( )(detection) 1 expP c
βα = − −  

 (K.10) 

where 

1

1

K

j

j

β

βα α

−

−

=

 
 =
 
 
∑ . (K.11) 

Thus, the psychometric function is a Weibull function 

with threshold, α, determined from the sensitivities of the 
individual detectors using exactly the same equation as 

that of Quick.  For application to 2AFC experiments, 

Equation (K.10) must be corrected for guessing, which 

yields Equation (22) of the main paper. □ 

Note that, since sensitivity is nonnegative, the contrast 

threshold given by Equation (K.11) is always above zero, 

and so Tyler and Chen’s (2000) argument that “high-

threshold probability summation fails for additive noise” 

does not apply when the psychometric function has the 

form of a Weibull function. 

The noise probability density function (PDF) corre-

sponding to the CDF in Equation (K.1) can be found by 

differentiating Equation (K.1) with respect to ε: 

1( ) ( ) exp ( )
jE j jf β βε β θ ε θ ε−  = − − −  . (K.12) 

This function is plotted in Figure K.1 for β = 1.3, 2, 4, and 
8, with ε expressed in units such that 1jθ = .  These are 

the same functions as plotted in Figure 2b of Tyler and 

Chen. 

 

 

Figure K.1.  The Weibull noise PDF, as defined in Equation 

(K.12) for four values of β.  ε is the noise on detector j, which is 
expressed in units such that the detector’s sensory threshold, 

jθ , is equal to 1. 

 


