

City, University of London Institutional Repository

Citation: Perotti, A., Boella, G. & Garcez, A. (2014). Runtime Verification Through Forward

Chaining. Electronic Proceedings in Theoretical Computer Science, 169, pp. 68-81. doi:
10.4204/eptcs.169.8

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/6538/

Link to published version: https://doi.org/10.4204/eptcs.169.8

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko,
Valerio Senni (Eds.): First Workshop on
Horn Clauses for Verification and Synthesis (HCVS 2014)
EPTCS 169, 2014, pp. 68–81, doi:10.4204/EPTCS.169.8

c© A. Perotti, G. Boella & A. d’Avila Garcez
This work is licensed under the
Creative Commons Attribution License.

Runtime Verification Through Forward Chaining

Alan Perotti
University of Turin

perotti@di.unito.it

Guido Boella
University of Turin

boella@di.unito.it

Artur d’Avila Garcez
City University London

a.garcez@city.ac.uk

In this paper we present a novel rule-based approach for Runtime Verification of FLTL properties
over finite but expanding traces. Our system exploits Horn clauses in implication form and relies on
a forward chaining-based monitoring algorithm. This approach avoids the branching structure and
exponential complexity typical of tableaux-based formulations, creating monitors with a single state
and a fixed number of rules. This allows for a fast and scalable tool for Runtime Verification: we
present the technical details together with a working implementation.

1 Introduction

We are designing a framework for combining runtime verification and learning in connectionist models
to improve the verification of compliance of systems based on business processes. By adapting formal
specifications of such systems to include tolerable soft-violations occurring in real-practice to optimise
the systems, we want to obtain a more realistic representation of compliance. Adaptation is the recent
trend in Process Mining [1]: the goal is to discover, monitor and improve real processes (i.e., not assumed
processes) by extracting knowledge from event logs readily available in todays (information) systems.
Within this wider framework, this paper focuses on the introduction of a novel monitoring system,
RuleRunner, built as a set of Horn clauses in implication form and exploiting forward chaining to perform
runtime verification tasks. A RuleRunner system can be encoded in a recurrent neural network exploiting
results from the Neural-Symbolic Integration [8] area, but this is outside the scope of this paper.
This paper is structured as follows: Section 2 introduces background and related work, while Section 3
provides a technical introduction of our rule system. Section 4 provides experimental results and Section
5 ends the paper with final considerations and directions for future work.

2 Background and Related Work

2.1 Horn Clauses and Chaining

A Horn clause [10] is a clause which contains at most one positive literal. The general format of such a
clause is thus as follows:

¬α1∨ ..∨¬αn∨β

This may be rewritten as an implication:

(α1∧ ..∧αn)→ β

where β is called head and (α1∧ ..∧αn) is called body. The two formulations are equivalent, and usually
the former is called disjunctive form and the latter implication form. Horn clauses are used for knowledge

http://dx.doi.org/10.4204/EPTCS.169.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Perotti, G. Boella & A. d’Avila Garcez 69

representation and automatic reasoning; in particular, inference with Horn clauses can be done through
backward or forward chaining. Backward chaining algorithms are goal-driven approaches that work
their way from a given goal or query; it is implemented in logic programming (e.g. in Prolog) by SLD
resolution [17]. Forward chaining is a data-driven approach that starts with the available data and uses
inference rules to extract more data until a goal is reached; it is a popular implementation strategy for
production rule systems [12].

2.2 Runtime Verification

Runtime Verification (RV) relates an observed system with a formal property φ specifying some desired
behaviour. An RV module, or monitor, is defined as a device that reads a trace and yields a certain
verdict [13]. A trace is a sequence of cells, which in turn are lists of observations occurring in a given
discrete span of time. Runtime verification may work on finite (terminated), finite but continuously
expanding, or on prefixes of infinite traces. While LTL is a standard semantic for infinite traces [16], there
are many semantics for finite traces: FLTL [14], RVLTL [3], LTL3 [4], LTL± [7] just to name some.
Since LTL semantics is based on infinite behaviours, the issue is to close the gap between properties
specifying infinite behaviours and finite traces. In particular, FLTL differs from LTL as it offers two next
operators (X , X̄ in [3], X ,W in this paper), called respectively strong and weak next. Intuitively, the strong
(and standard) X operator is used to express with Xφ that a next state must exist and that this next state
has to satisfy property φ . In contrast, the weak W operator in Wφ says that if there is a next state, then this
next state has to satisfy the property φ . More formally, let u = a0..an−1 denote a finite trace of length n.
The truth value of an FLTL formula ψ (either Xφ or Wφ) w.r.t. u at position i < n, denoted by [u, i � ψ],
is an element of B and is defined as follows:

[u, i � Xφ] =

{
[u, i+1 � φ], if i+1 < n
⊥, otherwise

[u, i �Wφ] =

{
[u, i+1 � φ], if i+1 < n
>, otherwise

While RVLTL and LTL3 have been proven to hold interesting properties w.r.t. FLTL (see [3]), we
selected FLTL as we think it captures a more intuitive semantics when dealing with finite traces. Suppose
to monitor φ =�a over a trace t, where a is observed in all cells: we have that [t � φ] equals, respectively,
> in FLTL, ? in LTL3, and T p in RVLTL. If t is seen as a prefix of a longer trace tσ , then LTL3 and
RVLTL provide valuable information about how φ could be evaluated over σ . But if t is a conclusive,
self-contained trace (e.g. a daily set of transactions), then the FLTL semantics captures the intuitive
positive answer to the query does a always hold in this trace?
Several RV systems have been developed, and they can be clustered in three main approaches, based
respectively on rewriting, automata and rules [13]. Within rule based approaches, RuleR [2] uses an
original approach. It copes with the temporal dimension by introducing rules which may reactivate
themselves in later stages of the reasoning, and RuleRunner is inspired by this powerful idea. However,
RuleR rules may contain disjunctions in the head and therefore do not correspond to Horn clauses.
Furthermore, RuleR creates alternative observations expectations, and therefore the application of
forward-chaining inference mechanisms on a RuleR system creates a branching, Kripke-like possible
world structure [11]. We focus on FLTL and encode each formula in a system of rules that correspond to
Horn clauses and therefore allow to apply forward-chaining inference algorithms. The next section will
describe the difference in the two approaches in more detail.

70 Runtime Verification Through Forward Chaining

3 The RuleRunner Rule System

RuleRunner is a rule-based online monitor observing finite but expanding traces and returning an FLTL
verdict. RuleRunner accepts formulae φ generated by the grammar:

φ ::= true | a | !a | φ ∨φ | φ ∧φ | φUφ | Xφ |Wφ | ♦φ |�φ | END

a is treated as an atom and corresponds to a single observation in the trace. We assume, without loss of
generality, that temporal formulae are in negation normal form (NNF), e.g., negation operators pushed
inwards to propositional literals and cancellations applied. W is the weak next operator. END is a special
character that is added to the last cell of a trace to mark the end of the input stream.

Algorithm 1 RuleRunner monitoring (abstract)
1: function RR-MONITORING(φ ,trace t)
2: Build a monitor RRφ encoding φ

3: while new cells exist in t do
4: Observe the current cell
5: Compute truth values of φ in the current cell of t . Evaluation rules
6: if φ is verified or falsified then
7: return SUCCESS or FAILURE respectively
8: end if
9: Set up the monitor for the next cell in t . Reactivation rules

10: end while
11: end function

Given an FLTL formula φ and a trace t, Algorithm 1 provides an abstract description of the creation
and runtime behaviour of a RuleRunner system monitoring φ over t. At first, a monitor encoding φ is
computed. Second, the monitor enters the verification loop, composed by observing a new cell of the trace
and computing the truth value of the property in the given cell. If the property is irrevocably satisfied or
falsified in the current cell, RuleRunner outputs a binary verdict. If this is not the case (because the φ

refers to cells ahead in the trace), the system shifts to the following cell and enters another monitoring
iteration. The FLTL semantics guarantees that, if the trace ends, the verdict in the last cell of the trace is
binary. RuleRunner is a runtime monitor, as it analyses one cell at a time and never needs to store past
cells in memory nor peek into future ones.

3.1 Building the rule system

Definition 1 A RuleRunner system is a tuple 〈RE ,RR,S〉, where RE (evaluation rules) and RR (reactivation
rules) are rule sets, and S (for state) is a set of active rules, observations and truth evaluations.

Throughout this paper we mostly use the terms State and rule, as they are used in the Runtime Verification
area. However, our rules correspond to Horn clauses in implication form, and what we call State
corresponds to a knowledge base.

Given a finite set of observations O and an FLTL formula φ over (a subset of) O, a state S is a set of
observations (o ∈ O), rule names (R[ψ]) and truth evaluations ([ψ]V); V ∈ {T,F,?} is a truth value. A
rule name R[ψ] in S means that the logical formula ψ is under scrutiny, while a truth evaluation [ψ]V
means that the logical formula ψ currently has the truth value V . The third truth value, ? (undecided),
means that it is impossible to give a binary verdict in the current cell.

A. Perotti, G. Boella & A. d’Avila Garcez 71

Evaluation rules follow the pattern R[φ], [ψ1]V, . . . , [ψn]V,→ [φ]V and their role is to compute the
truth value of a formula φ under verification, given the truth values of its direct subformulae ψ i (line 5 in
Algorithm 1). For instance, R[♦ψ], [ψ]T → [♦ψ]T reads as if ♦ψ is being monitored and ψ holds, then
♦ψ is true.

Reactivation rules follow the pattern [φ]?→ R[φ],R[ψ1], . . . ,R[ψn] and the meaning is that if one
formula is evaluated to undecided, that formula (together with its subformulae) is scheduled to be
monitored again in the next cell of the trace (line 9 in Algorithm 1). For instance, [♦ψ]?→ R[♦ψ],R[ψ]
means that if ♦ψ was not irrevocably verified nor falsified in the current cell of the trace, both ψ and ♦ψ

will be monitored again in the next cell.

Evaluation rules are Horn clauses in implication form. Reactivation rules usually have several positive
conjuncts in the head, and therefore a reactivation rule A→ β1, ..βn (where A = α1, ..,αm) can be rewritten
as n separate Horn clauses A→ β1, ..,A→ βn. Having different rules with the same head is something to
handle with care in case of backward chaining, as many inferential engines implement a depth-first search
and therefore the order of these rules impacts on the result. This is not the case when applying forward
chaining, as for all rules, if all the premises of the implication are known, then its conclusion is added to
the set of known facts.

A RuleRunner feature is that rules never involve disjunctions. In RuleR, for instance, the simple
formula ♦a is mapped to the rule R♦a : −→ a | R♦a and its meaning, intuitively, is that, if ♦a has to be
verified, either a is observed (thus satisfying the property) or the whole formula will be checked again (in
the next cell of the trace). The same formula corresponds to the following set of rules in RuleRunner:

R[♦a], [a]T → [♦a]T

R[♦a], [a]?→ [♦a]?

R[♦a], [a]F → [♦a]?

R[♦a], [a]?,END→ [♦a]F

[♦a]?→ R[a],R[♦a]

The disjunction in the head of the RuleR rule corresponds to the additional constraints in the body
of the RuleRunner rules. Therefore, where RuleR generates a set of alternative hypotheses and later
matches them with actual observations, RuleRunner maintains a detailed state of exact information. This
is achieved by means of evaluation tables: three-valued truth tables (as introduced by Lukasiewitz [15])
annotated with qualifiers. Each evaluation rule for φ corresponds to a single cell of the evaluation table for
the main operator of φ ; a qualifier is a subscript letter providing additional information to ? truth values.
Table 1 gives the example for disjunction. Qualifiers (B,L,R in this case) are used to store and propagate
detailed information about the verification status of formulae.

For instance, if φ is undecided and ψ is false when monitoring φ ∨ψ (highlighted cell in Table 1), ?L

means that the disjunction is undecided, but that its future verification state will depend on the truth value
of the Left disjunct. Note, in fact, how ∨L is a unary operator. An example for this is monitoring ♦b∨a
against a cell including only c: a is false, ♦b is undecided (as b may be observed in the future), and the
whole disjunction will be verified/falsified in the following cells depending on ♦b only.

72 Runtime Verification Through Forward Chaining

∨
T ? F

T T T T
? T ? ?
F T ? F

∨
B T ? F

T T T T
? T ?B ?L

F T ?R F

∨
L

T T
? ?L

F F

∨
R

T T
? ?R

F F

Table 1: truth table (left) and evaluation tables (right) for ∨

a (observation)

a ∈ state
a ∉ state

!a

a ∈ state
a ∉ state

XW

^B ^L ^R _R_L_B

UA UB UL UR

WM XM

?B

?L

?R

?A

?K

?M?M

T
T

T T T
T

T T

TTTT

T
T

T
T

T T

F

F

F

F

?R

T

F

?L

T

F

?B ?B?L

?A ?AT

FFF

?B

?R

?A

?A

?AT

T

T F

T

F

F
?M

T

F

T

F

?M

T

F

F

F

?L

T

F

?R

T

F

?B ?L

?R

T

T

T

T T

F

?R

T

F

?L

T

F

?B?L

?RT

F F F

F

F

T

FT

F
F

F

F F F

F

F F

FF
FF

F

F F

F F F

?

?

? ? ?

?

? ?

??????
?

?

T

?

?

?

?

?

?

? ?

??

?K

F

?

⇤
END�W END�X

END� U

END�⇤ END� ⌃⌃

Figure 1: Evaluation tables

The complete set of evaluation tables is reported in Fig. 1, while the generation of evaluation and
reactivation rules is summarised in Algorithm 2. The algorithm parses φ in a tree and visits the parsing
tree in post-order. The system is built incrementally, starting from the system(s) returned by the recursive
call(s). If φ is an observation (or its negation), an initial system is created, including two evaluation rules
(as the observation may or may not occur), no reactivation rules and the single R[φ] as initial state. If φ is a
conjunction or disjunction, the two systems of the subformulae are merged, and the conjunction/disjunction
evaluation rules, reactivation rule and initial activation are added. The computations are the same if the
main operator is U , but the reactivation rule will have to reactivate the monitoring of the two subformulae;
in particular, UA denotes the standard until operator, while UB is the particular case where the ψ failed
and the until operator cannot be trivially satisfied anymore. Formulae with X or W as main operator go
through two phases: first, the formula is evaluated to undecided, as the truth value can’t be computed
until the next cell is accessed. Special evaluation rules force the truth value to false (for X) or true (for
W) if no next cell exists. Then, at the next iteration, the reactivation rule triggers the subformula: this
means that if Xφ is monitored in cell i, φ is monitored in cell i+1. φ is then monitored independently,
and the Xφ (or Wφ) rule enters a ’monitoring state’ (suffix M in the table), simply mirroring φ truth value
and self-reactivating. The evaluation of �φ is false (undecided) when φ is false (undecided); it is also
undecided when φ holds (as �φ can never be true before the end of the trace), but the K suffix indicates
when, at the end of the trace, an undecided � can be evaluated to true. Finally, ♦φ constantly reactivates
itself and its subformula φ , unless φ is verified at runtime (causing ♦φ to hold), the trace ends (♦φ fails).

A. Perotti, G. Boella & A. d’Avila Garcez 73

Algorithm 2 Generation of rules
1: function INITIALISE(φ)
2: op← main operator

. Apply recursively to subformula(e)
3: if op ∈ {�,♦,X ,W} then
4: 〈R1

E ,R
1
R,S

1〉 ← Initialise(ψ1)
5: RE ← R1

E ;
6: RR← R1

R;
7: else if op ∈ {∨,∧,U} then
8: 〈R1

E ,R
1
R,S

1〉 ← Initialise(ψ1)
9: 〈R2

E ,R
2
R,S

2〉 ← Initialise(ψ2)
10: RE ← R1

E ∪R2
E ; RR← R1

R ∪R2
R;

11: else
12: RE ← /0; RR← /0;
13: end if

. Compute and add evaluation rules for main operator
14: Cells←op’s-evaluation-tables
15: for all cell ∈ Cells do
16: Convert cell to single rule re, substituting formula names
17: RE ← RE ∪ re
18: end for
19: if φ -is-main-formula then
20: RE ← RE ∪ ([φ]T → SUCCESS)
21: RE ← RE ∪ ([φ]F → FAILURE)
22: RE ← RE ∪ ([φ]?→ REPEAT)
23: end if

. Compute initial state for this subsystem
24: if op = a then S← R[a]
25: else if op =!a then S← R[!a]
26: else if op ∈ {∨,∧} then S← S1 ∪S2 ∪R[φ]B
27: else if op =U then S← S1 ∪S2 ∪R[φ]A
28: else if op ∈ {�,♦} then S← S1 ∪R[φ]
29: else if op ∈ {X ,W} then S← R[φ]
30: end if

. Compute and add reactivation rules for main operator
31: if op ∈ {∨,∧} then RR← RR ∪ ([φ]?Z→ R[φ]?Z), for Z ∈ L,R,B
32: else if op =U then RR← RR ∪ ([φ]?Z→ R[φ]?Z,S1,S2), for Z ∈ A,B,L,R
33: else if op ∈ {�,♦} then RR← RR ∪ ([φ]?→ R[φ],S1)
34: else if op ∈ {X ,W} then RR← RR ∪ ([φ]?→ R[φ]M,S1)∪ ([φ]?M→ R[φ]M)
35: end if

. Return computed system
36: return 〈RE ,RR,S〉
37: end function

RuleRunner generates several rules for each operator, but this number is constant, as it corresponds to
the size of evaluation tables plus special rules (like the SUCCESS one). The number of rules corresponding
to φ ∨ψ , for instance, does not depend in any way on the nature of φ or ψ , as only the final truth evaluation
of the two subformulae is taken into account. The preprocessing phase creates the parse tree of the property
to encode and adds a constant number of rules for each node (subformula), and therefore the size of the
rule set is linear w.r.t. the structure of the encoded formula φ . The obtained rule set does not change at
runtime nor when monitoring new traces.

3.2 Verification through Forward Chaining

A RuleRunner rule system RRφ encodes a FLTL formula φ in a set of rules. RRφ can be used to check
whether a given trace t verifies or falsifies φ . Given a set of Horn clauses in rule form R and a set of atoms

74 Runtime Verification Through Forward Chaining

A, let the FC(·) (Forward Chaining) function be:

FC(R,A) = {β | (Ai→ β) ∈ R ∧ Ai ⊆ A}

Algorithm 3 describes how RuleRunner exploits forward chaining to perform a runtime verification task.

Algorithm 3 Runtime Verification using RRφ

1: function NN-MONITOR(φ ,trace t)
2: Create RRφ = 〈RR,RE ,S〉 encoding φ (Algorithm 2)
3: while new observations exist in t do
4: S′← S∩obs
5: while S 6= S′ do
6: S = S′

7: S′← S∩FC(S,RE)
8: end while
9: if S contains SUCCESS (resp.FAILURE) then

10: return return SUCCESS (resp.FAILURE)
11: end if
12: S← FC(S,RR)
13: end while
14: end function

At the beginning, the rule system RRφ is created. The monitoring loop iterates until SUCCESS or
FAILURE is computed, and the FLTL semantics guarantees this happen in the last cell, if reached. At
the beginning of each iteration (corresponding to the monitoring of a cell), the initial state S contains
a set of rule names corresponding to the subformulae to be checked in that cell. The observations of
that cell are then added to the state of the system, and the state is incrementally expanded by means of
forward chaining using the evaluation rules (line 7). This corresponds to computing the truth values of all
subformulae of φ in a bottom-up way, from simple atoms to φ itself. If the monitoring did not compute a
final verdict (SUCCESS/FAILURE), the state for the next cell is computed with a single application of
FC(·) using the reactivation rules (line 12). Note that in this case the state is not expanded, as only the
output of the forward chaining is stored (S′← S∩FC(S,RE) vs S← FC(S,RR)). This is used to flush all
the previous truth evaluation, which are to be computed from scratch in the new cell.

During the runtime verification, for each cell, the FC(·) function is applied to the initial observations
until the transitive closure of all evaluation rules is computed. The number of applications depends
linearly on the encoded formula φ : at each iteration the truth values of new subformulae are added,
proceeding bottom-up from atoms to φ . For instance, if φ = a∨♦b, the first iteration would compute
the truth values for a and b, the second would add to the state the truth evaluation for ♦b, and finally
the third one would compute the truth value of φ in the current cell. Therefore, for each cell the number
of iterations of FC(·) is linear w.r.t. the structure of φ . Each application of FC(·) depends on the
number of rules and is again linear w.r.t. the structure of φ , as stated in the previous subsection. This
would suggest a quadratic complexity. However, in our implementation, (for each cell of the trace) the
system goes through all rules exactly once. This is obtained by the post-order visit of the parsing tree,
as shown in Algorithm 2, assuring pre-emption for rules evaluating simpler formulae. Therefore, the
complexity of the system is inherently linear. This is not in contrast with known exponential lower
bounds for the temporal logic validity problem, as RuleRunner deals with the satisfiability of a property
on a trace, thus tackling a different problem from the validity one (this distinction is also mentioned in [6]).

A. Perotti, G. Boella & A. d’Avila Garcez 75

As an example, consider the formula φ = a∨♦b and the trace t = [c− a− b,d− b,END] (dashes
separate cells and commas separate observations in the same cell). Intuitively, φ means either a now or b
sometimes in the future. If monitoring φ over t, a fails straight from the beginning, while b is sought until
the third cell, when it is observed. Thus the monitoring yields a success even before the end of the trace.

In RuleRunner, for first, the formula φ is parsed into a tree, with ∨ as root and a,b as leaves. Then,
starting from the leaves, evaluation and reactivation rules for each node are added to the (initially empty)
rule system. In our example, (part of) the rule system obtained from φ , namely RR(a∨♦b), and its behaviour
over t are the following:

EVALUATION RULES

• R[a], a is not observed→ [a]F

• R[b], b is observed→ [b]T

• R[b], b is not observed→ [b]F

• R[♦b], [b]T → [♦b]T

• R[♦b], [b]F → [♦b]?

• R[a∨♦b]B, [a]F , [♦b]?→ [a∨♦b]?R

• R[a∨♦b]R, [♦b]T → [a∨♦b]T

• R[a∨♦b]R, [♦b]?→ [a∨♦b]?R

• [a∨♦b]T → SUCCESS

REACTIVATION RULES

• [♦b]?→ R[b],R[♦b]

• [a∨♦b]?R→ R[a∨♦b]R

INITIAL STATE

• R[a],R[b],R[♦b],R[a∨♦b]B

EVOLUTION OVER [c−a−b,d−b,END]

state R[a],R[b],R[♦b],R[a∨♦b]B
+ obs R[a],R[b],R[♦b],R[a∨♦b]B,c

eval [a]F, [b]F, [♦b]?, [a∨♦b]?R
react R[b],R[♦b],R[a∨♦b]R
state R[b],R[♦b],R[a∨♦b]R

+ obs R[b],R[♦b],R[a∨♦b]R,a
eval [b]F, [♦b]?, [a∨♦b]?R

react R[b],R[♦b],R[a∨♦b]R
state R[b],R[♦b],R[a∨♦b]R

+ obs R[b],R[♦b],R[a∨♦b]R,b,d
eval [b]T, [♦b]T, [a∨♦b]T,SUCCESS

STOP PROPERTY SATISFIED

The behaviour of the runtime monitor is the following:

• At the beginning, the system monitors a,b,♦b and a∨♦b (initial state = R[a],R[b],R[♦b], R[a∨
♦b]B). The −B in R[a∨♦b]B means that both disjuncts are being monitored.

• In the first cell, c is observed and added to the state S. Using the evaluation rules, new truth values
are computed: a is false, b is false, ♦b is undecided. The global formula is undecided, but since the
trace continues the monitoring goes on. The −R in R[a∨♦b]R means that only the right disjunct is
monitored: the system dropped a, since it could only be satisfied in the first cell.

• In the second cell, a is observed but ignored (the rules for its monitoring are not activated); since b
is false again, ♦b and a∨♦b are still undecided.

• In the third cell, d is ignored but observing b satisfies, in cascade, b, ♦b and a∨♦b. The monitoring
stops, signalling a success. The rest of the trace is ignored.

3.3 Semantics

RuleRunner implements the FLTL [14] semantics; however, there are two main differences in the approach.
Firstly, FLTL is based on rewriting judgements, and it has no constraints over the accessed cells, while
RuleRunner is forced to complete the evaluation on a cell before accessing the next one. Secondly,
FLTL proceeds top-down, decomposing the property and then verifying the observations; RuleRunner

76 Runtime Verification Through Forward Chaining

propagates truth values bottom up, from observations to the property. In order to show the correspondence
between the two formalisms, we introduce the map function:

map : Property→ FLTL judgement

The map function translates the state of a RuleRunner system into a FLTL judgement, analysing the state
of the RuleRunner system monitoring φ . Since � and ♦ are derivate operators and they don’t belong to
FLTL specifications, we omit them from the discussion in this section.

function MAP(φ , State,index)
if SUCCESS ∈ State then return >
else if FAILURE ∈ State then return ⊥
else if [φ]T ∈ State then return >
else if [φ]F ∈ State then return ⊥
else if [φ]?S ∈ State then aux← S
else find R[φ]S ∈ State; aux← S
end if
if φ = a then

return [u, index |= a]F
else if φ = !a then

return [u, index |= ¬a]F
else if φ = ψ1..ψ2 and aux = L then

return map(ψ1)
else if φ = ψ1..ψ2 and aux = R then

return map(ψ2)
else if φ = ψ1∨ψ2 and aux = B then

return map(ψ1)tmap(ψ2)
else if φ = ψ1∧ψ2 and aux = B then

return map(ψ1)umap(ψ2)
else if φ = ψ1Uψ2 and aux = A then

return map(ψ2)t (map(ψ1)u (map(X(ψ1Uψ2))))
else if φ = ψ1Uψ2 and aux = B then

return map(ψ2)u (map(X(ψ1Uψ2))) next
else if φ = Xψ and aux 6= M then

return [u, index |= Xψ]F
else if φ =Wψ and aux 6= M then

return [u, index |= X̄ψ]F
else if (φ = Xψ or φ =Wψ) and aux = M then

return map(ψ)
end if

end function
The following table reports a simple example of an evolution of a RuleRunner step and the corresponding
value computed by map. Let the property be a∨Xb and the trace be u = [b−b]. The index is incremented
when the reactivation rules are fired.

Theorem 1 For any well-formed FLTL formula φ over a set of observations, and for every finite trace
u, for every intermediate state si in RuleRunner’s evolution over u there exist a valid rewriting r j of

A. Perotti, G. Boella & A. d’Avila Garcez 77

State map(a∨Xb)
R[a],R[Xb],R[a∨Xb]B [u,0 |= a]F t [u,0 |= Xb]F
R[a],R[Xb],R[a∨Xb]B,b [u,0 |= a]F t [u,0 |= Xb]F
R[a],R[Xb],R[a∨Xb]B,b, [a]F ⊥ t[u,0 |= Xb]F
R[a],R[Xb],R[a∨Xb]B,b, [a]F, [b]?M ⊥ t[u,0 |= Xb]F
R[a],R[Xb],R[a∨Xb]B,b, [a]F, [b]?M, [a∨Xb]?R [u,0 |= Xb]F
R[b],R[Xb]M,R[a∨Xb]R [u,1 |= b]F
R[b],R[Xb]M,R[a∨Xb]R,b [u,1 |= b]F
R[b],R[Xb]M,R[a∨Xb]R,b, [b]T >
R[b],R[Xb]M,R[a∨Xb]R,b, [b]T, [Xb]T >
R[b],R[Xb]M,R[a∨Xb]R,b, [b]T, [Xb]T, [a∨Xb]T >
SUCCESS >

Table 2: The map function

[u,0 |= φ]F such that map(φ) = r j. In other words, RuleRunner’s state can always be mapped onto an
FLTL judgement over φ .

Proof 1 The proof proceeds by induction on φ :

• φ = a
If the formula is a simple observation, then the initial state is R[a], and map(R[a]) = [u,0 |= a]F .
Adding observation to the state does not change the resulting FLTL judgement. If a is observed,
RuleRunner will add [a]T to the state, and this will be mapped to>. If a is not observed, RuleRunner
will add [a]F to the state, and this will be mapped to ⊥. So for this simple case, the evolution of
RuleRunner’s state corresponds either to the rewriting [u,0 |= a]F => (if a is observed) or to the
rewriting [u,0 |= a]F =⊥ (if a is not observed).

• φ =!a
This case is analogous tho the previous one, with opposite verdicts.

• φ = ψ1∨ψ2

By inductive hypothesis, a RuleRunner system monitoring ψ1 always corresponds to a rewriting
of [u, i |= ψ1]. The same holds for ψ2. Let 〈Ri

R,R
i
E ,S

i〉 be RuleRunner system monitoring the
subformula ψ1, with i ∈ {1,2}. A RuleRunner system encoding φ includes R1 and R2 rules and
specific rules for ψ1 ∨ψ2 given the truth values of ψ1 and ψ2. The initial state is therefore
R[ψ1∨ψ2]∪S1∪S2, and this is mapped to map(S1)tmap(S2). By inductive hypothesis, this is a
valid FLTL judgement. In each iteration, as long as the truth value of ψ1∨ψ2 is not computed,
the state is mapped on map(S1)tmap(S2). When the propagation of truth values reaches ψ1∨ψ2,
the assigned truth value mirrors the evaluation table for the disjunction. If either ψ1 or ψ2 is true,
then φ is true, and map(φ) =>. This corresponds to the valid rewriting map(S1)tmap(S2) =>,
given that we are considering the case in which there is a true ψ i: [ψ i]T belongs to the state
and map(ψ1) = >. The false-false case is analogous. In the ?B case, the mapping is preserved,
and this is justified by the fact that both ψ1 and ψ2 are undecided in the current cell, therefore
map(ψ i) 6=>,⊥, therefore map(ψ1)tmap(ψ2) could not be simplified. In the ?L case, we have
that [ψ2]F, therefore map(ψ2) =⊥. The FLTL rewriting is map(ψ1)tmap(ψ2) = map(ψ1), and

78 Runtime Verification Through Forward Chaining

this is a valid rewriting since map(ψ1)tmap(ψ2) = map(ψ1)t ⊥= map(ψ1). The ?R case is
symmetrical.

• φ = ψ1∧ψ2

Same as above, with the evaluation table for conjunction on the RuleRunner side and the u operator
on the FLTL judgement side.

• φ = Xψ

A RuleRunner system encoding Xφ has initial state R[Xφ], which is mapped on [u,0 |= Xψ]F . Then,
if the current cell is the last one, R[Xφ] evaluates to [Xφ]F, and the corresponding FLTL judgement
is⊥. If another cell exists, R[Xφ] evaluates to [Xφ]? (with the same mapping). When the reactivation
rules are triggered, [Xφ]? is substituted by R[Xψ]M,R[ψ]. Over this state, map(Xψ) = map(ψ),
and the index is incremented since reactivation rules were fired. Therefore, the FLTL rewriting is
[u, i |= Xψ] = [u, i+1 |= ψ], and this is a valid rewriting.

• φ =Wψ

This case is like the previous, but if the current cell is the last then R[Wψ] evolves to [Wψ]T ; the
mapping is rewritten from [u, i |=Wψ] to >, and this is a valid rewriting if there is no next cell.

• φ = ψ1Uψ2

The initial RuleRunner system includes rules for ψ1, ψ2 and for the U operator. As long as
R[ψ1Uψ2]A is not evalued, map(ψ1Uψ2) = map(ψ2)t (map(ψ1)u (map(X(ψ1Uψ2)))), that
is, the standard one-step unfolding of the ’until’ operator as defined in FLTL. When a truth
value for the global property is computed, there are several possibilities. The first one is that
ψ2 is true and ψ1Uψ2 is immediately satisfied. RuleRunner adds [ψ1Uψ2]T to the state and
map(φ) = >; this corresponds to the rewriting map(ψ2)t (map(ψ1)u (map(X(ψ1Uψ2)))) =
>t (map(ψ1)u (map(X(ψ1Uψ2)))) = >, which is a valid rewriting. The case for [ψ1]F and
[ψ2]F is analogous. The ?A case means that the evaluation for the until is undecided in the current
trace, and is mapped on the standard one-step unfolding of the until operator in FLTL. The ?B

case implicitly encode the information that ’the until cannot be trivially satisfied anymore’, and
henceforth the FLTL mapping is map(ψ1)u (map(X(ψ1Uψ2))). The cases for ?L and ?R have
the exact meaning they had in the disjunction and conjunction cases. For instance, if [ψ1]F and
[ψ2]?, RuleRunner adds [ψ1Uψ2]?R to the state, and for the obtained state map(φ) = map(ψ2).
The sequence of FLTL rewriting is map(ψ2)t (map(ψ1)u (map(X(ψ1Uψ2)))) = map(ψ2)t (⊥
u(map(X(ψ1Uψ2)))) = map(ψ2)t ⊥= map(ψ2).

Corollary 1 RuleRunner yields a FLTL verdict.

Proof 2 RuleRunner is always in a state that can be mapped on a valid FLTL judgement; therefore, when
a binary truth evaluation for the encoded formula is given, this is mapped on the correct binary evaluation
in FLTL. But since for such trivial case the map function corresponds to an identity, the RuleRunner
evaluation is a valid FLTL judgement. The fact that RuleRunner yields a binary verdict is guaranteed
provided that the analysed trace is finite, thanks to end-of-trace rules.

4 Experiments

In order to test the scalability of our system, we tested our prototype against several properties and traces:
in this paragraph we report a simple set of experiments and results. These tests involve three FLTL
formulae, respectively φ 1 = ♦a, φ 2 =�((a∨b)∨ (c∨d)) and φ 3 = ♦((a∧Xb)∨ (c∧Wd)). We encoded

A. Perotti, G. Boella & A. d’Avila Garcez 79

φ 1,2,3 in three RuleRunner systems and used them to monitor traces randomly generated using the Latin
alphabet as set of observations. Note that each monitoring process can terminate before the end of the
trace (e.g. trivially, if a is observed while monitoring ♦a); we measured the time required to actually
monitor a given number of cells.

�1

�2

�3

Figure 2: Absolute (left) and averaged (right) performance of monitors encoding φ 1,2,3

Figure 2 shows the time required, for the three rule systems, to monitor an increasing number of
cells. In both subfigures, the x-axis represent the number of monitored cells and the y-axis a time
measurement in milliseconds (ms). The three curves, in both subfigures, correspond to the three monitors
for φ 1 = ♦a, φ 2 =�((a∨b)∨ (c∨d)) and φ 3 = ♦((a∧Xb)∨ (c∧Wd)). Figure 2(A) reports total times
and Figure 2(B) reports average monitoring time per cell. The trends show how the monitoring time scales
w.r.t. the number of the traces; the decreasing of average times in the curves of Figure 2(B) is due to the
overhead to compute the rule system becoming less relevant when averaging with a larger number of cells.
These experiment can be replicated with the tool available at www.di.unito.it/∼perotti/RuleRunner.jnlp.

5 Conclusions and Future Work

In this paper we present RuleRunner, a rule-based runtime verification system that exploits Horn clauses in
implication form and forward chaining to perform a monitoring task. RuleRunner is a module in a wider
framework that includes the encoding of the rule system in a neural network, the exploitation of GPUs
to improve monitoring performances (as computation in neural networks boils down to matrix-based
operations) and the adoption of machine learning algorithms to adapt the encoded property to the observed
trace. Our final goal is the development of a system for scalable and parallel monitoring and capable
to provide a description of patterns that falsified the prescribed temporal property. The applications of
this frameworks spans from multi-agent systems (where a system designer may want to use an agent’s
unscripted solution to a problem as a benchmark for all other agents [9]) to security (where a security
manager may want to correct some false positives when monitoring security properties [5]).
Concerning RuleRunner, a future direction of work is to create rule systems for other finite-trace semantics.
For instance, we conjecture that removing all rules with END would be a valid starting point for the
development of a rule system for LTL3; the rule systems for FLTL and LTL3 will then be used to build a
rule system for RVLTL. A second direction of future work will be to modify RuleRunner in such a way to
use external forward chaining tools for the monitoring (as we use our own inference engine), such as the
Constraint Handling Rules extension included in several Prolog implementations.

http://www.di.unito.it/~perotti/RuleRunner.jnlp

80 Runtime Verification Through Forward Chaining

6 Bibliography

References

[1] Wil M. P. van der Aalst et.al.: Process Mining Manifesto. In: Procs of Business Process
Management Workshops 2011, pp. 169–194. Available at http://dx.doi.org/10.1007/
978-3-642-28108-2_19.

[2] Howard Barringer, David E. Rydeheard & Klaus Havelund (2010): Rule Systems for Run-time Monitoring:
from Eagle to RuleR. Journal of Logic and Computation volume 20, pp. pages 675–706. Available at
http://dx.doi.org/10.1093/logcom/exn076.

[3] Andreas Bauer, Martin Leucker & Christian Schallhart: The Good, the Bad, and the Ugly, But How Ugly
Is Ugly? In: Procs. of Runtime Verification 2007, pp. 126–138. Available at http://dx.doi.org/10.
1007/978-3-540-77395-5_11.

[4] Andreas Bauer, Martin Leucker & Christian Schallhart: Monitoring of Real-Time Properties. In: Procs. of
Foundations of Software Technology and Theoretical Computer Science 2006, pp. 260–272. Available at
http://dx.doi.org/10.1007/11944836_25.

[5] David Breitgand, Maayan Goldstein & E. H. Shehory (2011): Efficient Control of False Negative and False
Positive Errors with Separate Adaptive Thresholds. Network and Service Management, IEEE Transactions on
8, pp. 128–140. Available at http://dx.doi.org/10.1109/TNSM.2011.020111.00055.

[6] Doron Drusinsky: The Temporal Rover and the ATG Rover. In: Procs. of the International Workshop on SPIN
Model Checking and Software Verification 2000, pp. 323–330. Available at http://dx.doi.org/10.
1007/10722468_19.

[7] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac & David Van Campenhout:
Reasoning with Temporal Logic on Truncated Paths. In: Procs. of Computer-Aided Verification 2003, pp.
27–39. Available at http://dx.doi.org/10.1007/978-3-540-45069-6_3.

[8] Artur S. d’Avila Garcez & Gerson Zaverucha (1999): The Connectionist Inductive Learning and Logic
Programming System. Applied Intelligence volume 11, pp. pages 59–77. Available at http://dx.doi.
org/10.1023/A:1008328630915.

[9] Christopher D. Hollander & Annie S. Wu (2011): The Current State of Normative Agent-Based Systems. J.
Artificial Societies and Social Simulation 14, pp. 47–62. Available at http://jasss.soc.surrey.ac.
uk/14/2/6.html.

[10] Alfred Horn (1951): On Sentences Which are True of Direct Unions of Algebras. J. Symb. Log. 16, pp. 14–21.
Available at http://dx.doi.org/10.2307/2268661.

[11] Saul A. Kripke (1963): Semantical Considerations on Modal Logic. Acta Philosophica Fennica 16, pp. 83–94.

[12] Jean-Louis Lassez & Michael J. Maher: The Denotational Semantics of Horn Clauses as a Production System.
In: Procs. of the Association for the Advancement of Artificial Intelligence 1983, pp. 229–231. Available at
http://www.aaai.org/Library/AAAI/1983/aaai83-006.php.

[13] Martin Leucker & Christian Schallhart (2009): A brief account of runtime verification. Journal of Logic and
Algebraic Programming volume 78, pp. pages 293–303. Available at http://dx.doi.org/10.1016/
j.jlap.2008.08.004.

[14] Orna Lichtenstein, Amir Pnueli & Lenore D. Zuck: The Glory of the Past. In: in Procs. of Logic of Programs
1985, pp. 196–218. Available at http://dx.doi.org/10.1007/3-540-15648-8_16.

[15] J. Lukasiewicz (1920): O logice trjwartosciowej (On Three-Valued Logic).

http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1093/logcom/exn076
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/11944836_25
http://dx.doi.org/10.1109/TNSM.2011.020111.00055
http://dx.doi.org/10.1007/10722468_19
http://dx.doi.org/10.1007/10722468_19
http://dx.doi.org/10.1007/978-3-540-45069-6_3
http://dx.doi.org/10.1023/A:1008328630915
http://dx.doi.org/10.1023/A:1008328630915
http://jasss.soc.surrey.ac.uk/14/2/6.html
http://jasss.soc.surrey.ac.uk/14/2/6.html
http://dx.doi.org/10.2307/2268661
http://www.aaai.org/Library/AAAI/1983/aaai83-006.php
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/3-540-15648-8_16

A. Perotti, G. Boella & A. d’Avila Garcez 81

[16] Amir Pnueli: The temporal logic of programs. In: Procs. of the Annual Symposium on Foundations of
Computer Science 1977, pp. 46–57. Available at http://doi.ieeecomputersociety.org/10.
1109/SFCS.1977.32.

[17] M. H. Van Emden & R. A. Kowalski (1976): The Semantics of Predicate Logic As a Programming Language.
J. ACM 23, pp. 733–742. Available at http://dx.doi.org/10.1145/321978.321991.

http://doi.ieeecomputersociety.org/10.1109/SFCS.1977.32
http://doi.ieeecomputersociety.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/321978.321991

	1 Introduction
	2 Background and Related Work
	2.1 Horn Clauses and Chaining
	2.2 Runtime Verification

	3 The RuleRunner Rule System
	3.1 Building the rule system
	3.2 Verification through Forward Chaining
	3.3 Semantics

	4 Experiments
	5 Conclusions and Future Work
	6 Bibliography

