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Abstract

Differences in the visual processing of familiar and unfamiliar faces have prompted
considerable interest in face learning, the process by which unfamiliar faces become
familiar. Previous work indicates that face learning is determined in part by exposure
duration; unsurprisingly, viewing faces for longer affords superior performance on
subsequent recognition tests. However, there has been further speculation that exemplar
variation, experience of different exemplars of the same facial identity, contributes to
face learning independently of viewing time. Several leading accounts of face learning,
including the averaging and pictorial coding models, predict an exemplar variation
advantage. Nevertheless, the exemplar variation hypothesis currently lacks empirical
support. The present study therefore sought to test this prediction by comparing the
effects of unique exemplar face learning — a condition rich in exemplar variation — and
repeated exemplar face learning — a condition that equates viewing time, but constrains
exemplar variation. Crucially, observers who received unique exemplar learning
displayed better recognition of novel exemplars of the learned identities at test, than
observers in the repeated exemplar condition. These results have important theoretical
and substantive implications for models of face learning and for approaches to face

training in applied contexts.
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Introduction

Familiar and unfamiliar faces engage different types of visual processing (Burton &
Jenkins, 2011; Hancock, Bruce, & Burton, 2000; Jenkins & Burton, 2011; Megreya &
Burton, 2006). As faces become more familiar, observers are better able to match
targets using their internal features (eyes, nose, mouth), the so-called ‘internal feature
advantage’. In contrast, unfamiliar face matching is frequently based on external
features, such as hairstyle and face shape (Ellis, Shepherd, & Davies, 1979; Osborne &
Stevenage, 2008; Young, Hay, McWeeny, Flude, & Ellis, 1985). Familiar faces may
also place lower demands on visual working memory (Jackson & Raymond, 2008) and
are easier to detect under conditions of reduced attention (Jackson & Raymond, 2006),
compared with unfamiliar faces. However, perhaps the most striking difference between
familiar and unfamiliar face perception is the ease with which we can recognise new
exemplars. In contrast to the effortless recognition of celebrities, colleagues and friends,
matching the faces of strangers across different photographic images can be remarkably
difficult (Bruce et al., 1999; White, Kemp, Jenkins, Matheson, & Burton, 2014). For
example, when asked to sort photographs of two individuals according to the identity of
those depicted, observers perform poorly, frequently attributing the photographs to eight
or more different individuals (Jenkins, White, Van Montfort, & Burton, 2011).

Differences in the visual processing of familiar and unfamiliar faces have prompted
considerable interest in face learning, the process by which unfamiliar faces become
familiar. Previous evidence suggests that face learning is determined, at least in part, by
the time observers spend viewing faces. Unsurprisingly, participants allowed to observe
faces for 45 secs each outperform those who view the same faces for 15 secs (Memon,
Hope, & Bull, 2003). Similarly, simple repetition of single facial images can improve
subsequent recognition of actors in dynamic video stimuli (Roark, O’Toole, Abdi, &
Barrett, 2006) and increase the strength of identity adaptation (Jiang, Blanz, & O’Toole,
2007), thought to be causally related to recognition ability (e.g., Dennett, McKone,
Edwards, & Susilo, 2012). Crucially however, there has been further speculation that
exemplar variation — experience of different exemplars of the same facial identity, such
as that provided by a series of photographs — contributes to face learning, independently

of viewing time.



Several leading accounts of face learning predict an exemplar variation advantage. For
example, according to the pictorial coding model, familiar faces are recognised through
comparison with previously stored instances of that face (e.g. Longmore, Liu, & Young,
2008). Having encountered multiple exemplars of a given face, observers are able to
densely sample the potential instance space. Thereafter, the likelihood of a close match
between a novel target exemplar and a previously stored instance is high, yielding
superior face recognition performance. In contrast, an observer who has previously
encountered only a few exemplars of a facial identity must rely on a sparse sampling of
the instance space, and may therefore struggle to match the target to a previously stored

instance.

A second closely-related model is the averaging hypothesis (Benson & Perrett, 1993;
Burton, Jenkins, Hancock, & White, 2005; Jenkins & Burton, 2011). According to this
view, exemplar variation allows the visual system to form a robust average of that facial
identity. Transient differences including variation in lighting, shadow, hairstyle,
expression are discounted, leaving a stable representation of permanent, reliable
features. Crucially, 1) accurate recognition of the target face upon subsequent encounters
is thought to be directly related to the quality of the average formed (e.g. Jenkins &
Burton, 2008), and ii) average estimates derived from many observations are likely to
better approximate the true parameter value than estimates derived from only a handful

of observations of comparable quality.

Despite its theoretical significance, however, the exemplar variation hypothesis
currently lacks empirical support. Specifically, there is little evidence that exemplar rich
experience supports better face learning, when viewing time is equated. In the absence
of empirical evidence in favour of the exemplar variation hypothesis, it is possible that
the strength of face learning is determined solely by viewing time'. The present study
therefore adopted a two stage training-test procedure to determine whether exposure to
many unique exemplars of a target face (‘unique exemplar learning’) supports superior
recognition, compared with equivalent exposure to a limited number of exemplars
(‘repeated exemplar learning’). Similar recognition performance following both types of
training would indicate that face learning is determined not by exemplar variation, but
by the time spent viewing the trained identities, challenging a key assumption of the

pictorial coding and averaging accounts.



Methods

Participants

Fifty healthy adults (19 males, M,g = 29.5 years, SD,e. = 8.1 years) participated in this
experiment in return for a small honorarium. Participants were randomly allocated to
the different training conditions in equal numbers. Four participants, two in each
condition, were replacements. Two of the replaced observers scored at chance level at
test, one reported prior familiarity with a learned identity, and one was an outlier in
terms of response latencies. All participants had normal or corrected-to-normal vision,
gave informed consent, and were fully debriefed upon task completion. Sample size was
determined a-priori using power analysis assuming a large effect size (Cohen, 1988).
Ethical clearance was granted by the local ethics committee and the study was
conducted in accordance with the ethical standards laid down in the 1964 Declaration of

Helsinki.

Training

Participants completed one of two different face learning procedures, each comprising
16 trials. Each training trial presented 48 facial images simultaneously in a 6 x § array.
Training arrays were presented for 48 seconds, during which observers were free to
inspect the images as they wished. Following array offset, a prompt appeared to judge
the number of identities represented within the array, as accurately as possible.
Unbeknown to observers, the 48 images were in fact always taken from only eight
individuals, training arrays comprising six images of each. The same eight individuals —
the to-be-learned identities — were shown on every training trial. The training faces
sampled a broad range of poses, expressions, hairstyles, lighting conditions, and camera

parameters (Figure 1).

Observers in the unique exemplar condition saw a novel set of 48 images on each
training trial. Across the procedure, they were therefore exposed to 96 photos of each of
the eight to-be-learned identities, six novel exemplars of each identity on each trial.
Observers in this condition viewed different combinations of exemplars, chosen at
random by the program, on each of the sixteen training trials. Observers in the repeated
exemplar condition however, were exposed to the same 48 images on all sixteen

training trials. Consequently, observers saw only six photos of each of the eight to-be-



learned identities. Each observer in this condition was trained on a different set of
exemplars, chosen at random from the 96 images comprising each of the eight identity
sets. That a novel combination of 48 images was selected for each participant guarded
against the possibility of systematic bias. While the same 48 images were repeated, the
position of the exemplars in the 6 x § array was randomized across the 16 learning

trials. In all other respects, the two learning conditions were identical.

Figure-1

Training images were cropped to square aspect ratios subtending 3° vertically when
viewed in the array at a distance of 60 cm. The to-be-learned identity was the only face
visible in each image and was central and prominent. In all other respects the raw
photographic images were left unaltered. Images showing the to-be-learned identities
wearing glasses or sunglasses were intentionally avoided. The next trial commenced
only once a response had been recorded. Four practice trials incorporating cartoon faces
from The Simpsons preceded the learning procedure. All experimental programs were
written in MATLAB using Psychtoolbox (Brainard, 1997; Pelli, 1997), and presented
on a Dell 17 inch LCD display at 60-Hz refresh rate.

Test

Immediately after training, all participants completed the same test procedure to assess
their recognition of the eight learned identities. Unlike the training faces, test faces were
presented in greyscale and were cropped to exclude external features, thereby removing
the cues typically used to recognise unfamiliar faces (Ellis et al., 1979; Osborne &
Stevenage, 2008; Young et al., 1985). Trials briefly (for 1000 ms) presented a single
face centrally, followed by a prompt to judge whether the identity was or was not
encountered during the learning phase (‘old’ or ‘new’). Half of the facial images
presented during test depicted the eight learned identities, however none of the
exemplars were used during the training phase. The remaining test images were
exemplars of eight novel identities not encountered previously. Test faces were
presented in greyscale and subtended 6.5° vertically when viewed at 60 cm. All test
faces were shown in frontal view and had approximately neutral expressions. The ‘old’

and ‘new’ test images were closely matched, both in terms of the identities depicted and



their presentation. In total the test procedure comprised 160 trials: Five novel exemplars
of the eight trained identities and five exemplars of eight novel identities were presented
twice each. The test was preceded by eight practice trials incorporating cartoon faces

from The Simpsons.

Results

The identity estimates from the training phase (Figure 2) were analysed using ANOVA
with trial (1:16) as a within-subjects factor and learning condition (unique exemplar,
repeated exemplar) as a between-subjects factor. The analysis revealed highly
significant linear [F(1,48) = 37.250, p <.001, > = .437] and quadratic trends [F(1,48) =
15.065, p <.001, n* = .239], indicative of learning across trials. Neither the linear
[F(1,48) = .249, p = .620, #* = .005] nor quadratic [F(1,48) = .224, p = .638, * = .005]
trends varied as a function of learning condition, indicating that the change in identity
estimates across the training procedure was broadly comparable for the two groups. The
main effect of learning condition was not significant [F(1,48) = .558, p = .459, nt =
.011], suggestive of similar identity estimates overall. The mean identity estimates did
not differ between the learning conditions on the first [#(48) = .144, p = .886] or last
trials [#(48) = .355, p = .724]. Despite the learning observed, the identity estimates of
both the unique exemplar [#(24) = 16.249, p < .001] and repeated exemplar [#(24) =
13.226, p < .001] groups still exceeded the true number (eight identities) on the final

training trial.

Figure-2

The crucial differences between the groups were seen at test. As predicted by the
exemplar variation hypothesis, the observers who received unique exemplar learning (M
= 80.8%, SD = 10.2%) outperformed those who received repeated exemplar learning (M
72.9%, SD = 8.0%) [#(48) = 3.044, p = .004]. This difference corresponds to a

Cohen’s d of 0.80, indicative of a large effect (Cohen, 1988). The advantage of unique
exemplar learning (M = 77.9%, SD = 14.7%) over repeated exemplar learning (M =
66.0%, SD = 13.6%), was only present for hits; i.e., correct ‘old’ responses in the
presence of an ‘old’ stimulus [#(48) = 2.993, p = .004]. No advantage of unique
exemplar learning (M = 83.7%, SD = 11.1%) over repeated exemplar learning (M =



79.9%, SD = 18.0%) was observed for correct rejections; i.e., ‘new’ responses in the
presence of a ‘new’ stimulus [#(39.841) = .908, p = .369 (corrected for inequality of
variance)]. Of note, simple correlation analyses revealed that the identity estimates from
the final training trial, an index of the performance achieved by each observer on
completion of the training task, correlated significantly with test performance for the
unique exemplar condition (» = -.503, p = .010), but not for the repeated exemplar

condition (» =.013, p =.952).

Discussion

The present study compared the effects of unique exemplar face learning — a condition
rich in exemplar variation — and repeated exemplar face learning — a condition that
equates viewing time, but constrains exemplar variation. During training, observers in
both learning conditions overestimated the number of individuals present, particularly at
the start of the procedure, when the identities were novel. As the faces became more
familiar, both groups found it easier to recognise the commonalities across different
exemplars and their identity estimates became progressively more accurate. Crucially
however, observers who received unique exemplar learning displayed better recognition
of novel exemplars of the learned identities at test, than observers in the repeated
exemplar condition. These results have important theoretical and substantive
implications for models of face learning and for approaches to face training in applied
contexts. Crucially, these results confirm for the first time that face learning is
determined not only by the time spent viewing a face, but also the degree of exemplar

variation experienced by the learner.

The finding that observers over-estimate the number of identities present in arrays
comprising unfamiliar faces is consistent with previous reports (Jenkins et al., 2011),
and further underscores the challenges posed by unfamiliar face matching (Bruce et al.,
1999; White et al.,, 2014). However, in both learning conditions identity estimates
declined sharply across the first 8-10 training trials, revealing that a degree of
familiarity can be acquired rapidly based on relatively little exemplar variation.
Interestingly, the identity estimates from the final training trial, an index of the
performance achieved by each observer on completion of the training task, correlated

significantly with test performance for the unique exemplar condition, but not for the



repeated exemplar condition. This unexpected finding raises the possibility that the
nature of the leaning observed in the two conditions was qualitatively different. In light
of previous findings (e.g., Osborne & Stevenage, 2008), we speculate that observers in
the repeated exemplar condition were disproportionately reliant on the external facial
features during the training procedure, whereas those allocated to the unique exemplar
condition grew more adept at distinguishing faces from their internal features. When
forced to discriminate faces based solely on internal features at test, performance
therefore correlated with individual differences in unique exemplar learning, but not

with the variability seen in repeated exemplar learning.

The present results have interesting implications for the study of moving faces. When
considered as a time-series of different facial poses and expressions, it is clear that even
a short sequence of facial motion contains many unique exemplars. Viewing moving
faces might therefore be expected to convey a face learning advantage relative to the
observation of a few static images (O'Toole, Roark, & Abdi, 2002). Paradoxically
however, many studies have found little or no evidence for such a motion advantage
when learning new faces (e.g., Bonner, Burton, & Bruce, 2003). One possibility is that
the rigid and non-rigid movements present within naturalistic sequences of facial
motion may be relatively constrained, and therefore fail to yield sufficient exemplar

variation to generate a clear learning advantage.

Overall, the present findings show for the first time that face learning is determined not
only by the time spent viewing a face, but also the degree of exemplar variation
experienced by the learner. That unique exemplar learning affords recognition
performance superior to repeated exemplar learning, confirms that exemplar variation
contributes to face learning in human vision. These results suggest that face training

applications should seek to maximise exemplar variation to optimise face learning.



Figures

Figure 1

Learning trial n Learning trial n+1

Unique exemplar

Repeated exemplar

Figure 1: Examples of the training images and illustration of the learning manipulation
(left). Observers in the unique exemplar learning condition were exposed to six new
photos of each learned identity on each training trial. In the repeated exemplar
condition, observers were exposed to the same six photos on every learning trial.
Examples of the test images (right).
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Figure 2
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Figure 2: Results from the training phase (left). Observers in both conditions
overestimated the number of individuals present in the training arrays, particularly at the
start of the procedure. Identity estimates declined steadily thereafter indicative of
learning. Results from the test phase (right). Participants were briefly presented cropped
greyscale facial images, and asked whether or not the identity depicted was encountered
during the learning phase (‘old” or ‘new’). In accordance with the exemplar variation
hypothesis, unique exemplar learning supported better recognition than repeated
exemplar learning. Error bars indicate + one standard error of the mean.
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Footnote:

'For example, having experienced how familiar faces appear in different poses and
lighting situations during the course of development, adults may be able to extrapolate
from, or interpolate between, a handful of exemplars of a novel target face. Should
observers be able to generate variation endogenously, through the application of
previously learned image transformations, the information conveyed by additional

unique exemplars may be redundant.
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