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Abstract 

Two new methodologies are introduced to improve inference in the evaluation of mutual fund 

performance against benchmarks. First, the benchmark models are estimated using panel 

methods with both fund and time effects. Second, the non-normality of individual mutual 

fund returns is accounted for by using panel bootstrap methods. We also augment the 

standard benchmark factors with fund-specific characteristics, such as fund size.  Using a 

dataset of UK equity mutual fund returns, we find that fund size has a negative effect on the 

average fund manager’s benchmark-adjusted performance. Further, when we allow for time 

effects and the non-normality of fund returns, we find that there is no evidence that even the 

best performing fund managers can significantly out-perform the augmented benchmarks 

after fund management charges are taken into account.  
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1. Introduction 

Evidence collected over an extended period on the performance of (open-ended) mutual 

funds in the US (Jensen, 1968; Malkiel, 1995; Barras, Scaillet and Wermers, 2010) and unit 

trusts and open-ended investment companies (OEICs)  in the UK (Blake and Timmermann, 

1998; Cuthbertson, Nitzsche and O'Sullivan, 2008) has found that, on average, a fund 

manager cannot outperform the market benchmark and that any outperformance is more 

likely to be due to “luck” rather than “skill”. The standard approach for evaluating fund 

manager performance is to test it against an appropriate factor benchmark model and assess 

the significance of the abnormal returns from this model (Carhart, 1997). Recent evidence in 

Chen, Hong, Huang and Kubik (2004) (hereafter CHHK) finds that fund size has a negative 

effect on performance due to diseconomies of scale at the fund level (in line with Berk and 

Green, 2004). CHHK’s analysis applies the Fama and MacBeth (1973) method of estimating 

a series of cross-sectional regressions (one for each time period), averaging the estimated 

coefficients and testing for significance using the time-series variation in these estimates. 

However, Petersen (2009) has shown that this methodology yields downward biased standard 

errors in the presence of fund effects. He explains how to estimate standard errors in the 

presence of both fund and time effects: either parametrically by including a time dummy for 

each period, and then clustering standard errors by fund; or non-parametrically by clustering 

on fund and time simultaneously.
1
  Kosowski, Timmermann, Wermers and White (2006, 

hereafter KTWW) have argued that it is necessary to assess the statistical significance of fund 

manager performance using bootstrap methods, since the returns of individual mutual funds 

typically exhibit non-normal distributions (see also Fama and French, 2010, hereafter FF).  

 

In this paper, we will assess the performance of a panel of mutual funds, allowing for the role 

of fund-specific characteristics, such as fund size, fund charges, and fund family membership. 

We estimate a panel model using fixed effects and time dummies with standard errors 

clustered by fund. In addition, acknowledging that fund returns are not normally distributed, 

we generate a series of (non-parametric and parametric) bootstrap returns from the 

benchmark models to allow for appropriate statistical inference in the presence of non-normal 

fund returns. 

 

                                                           
1
 Standard errors have been correctly computed in the econometrics literature for decades under different 

assumptions on stochastic properties of the errors (e.g., Hsiao, 1986, Bhargava, 1987). 
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The structure of the paper is as follows. Section 2 reviews the existing approaches to 

measuring mutual fund performance and shows how these approaches can be improved using 

bootstrap methods in a panel framework. Section 3 discusses the dataset we will be using. 

The results are presented in Section 4, while Section 5 concludes. 

 

2.  Measuring mutual fund performance  

2.1 Measuring performance using alternative benchmark models  

Building on Jensen (1968), the standard framework for assessing the performance of the 

manager of mutual fund i is to compare the excess returns ( )it tR rf  (where trf  is the risk-free 

rate) obtained in period t with a four-factor benchmark model (Carhart, 1997): 

 

   +                           it t i i mt t i t i t i t itR rf R rf SMB HML MOM                              (2.1) 

 

where the four common risk factors are the excess return on the market index ( )mt tR rf , the 

returns on a size factor, tSMB , a book-to-market factor, tHML  (Fama and French, 1993), and 

a momentum factor, tMOM  (Carhart, 1997). The idea behind (2.1) is that there are certain 

common factors that are known to influence returns and that the effect of these should be 

excluded from any measure of a fund manager’s performance. The genuine “skill” of the 

fund manager, controlling for these common factors, is measured by alpha (αi) which is also 

known as the “selectivity skill”.
2
 Under the null hypothesis of no abnormal performance (i.e., 

no selectivity skill), the estimated ˆ
i  coefficient should be equal to zero. For each fund, we 

could test the significance of each ˆ
i  as a measure of that fund’s abnormal performance 

relative to its standard error; and we could also test the significance of the average value of 

the alpha across the N funds in the sample (Malkiel, 1995). 

 

However, there are a number of problems with the standard framework. First, it is potentially 

incomplete since it excludes fund-specific variables which might influence performance. 

                                                           
2
 Ferson and Schadt (1996) suggest a conditional version of this four-factor benchmark model that controls for 

time-varying factor loadings. However, KTWW report that the results from estimating the conditional and 

unconditional models are very similar, and in the remainder of this paper we follow them and only consider the 

unconditional version of (2.1). It is also possible to allow for market timing when fund managers take an 

aggressive position in a bull market (by holding high-beta stocks) and a defensive position in a bear market (by 

holding low-beta stocks) (Treynor and Mazuy, 1966; Henriksson and Merton, 1981), although we do not allow 

for market timing here. 
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Second, it is based on single equation estimation and ignores the panel nature of the dataset 

which comprises a group of competing fund managers. The final problem is that it fails to 

take adequate account of the distributional properties of the error term, it , which are 

unknown, but unlikely to be normal. 

 

With respect to the first problem, a number of other variables have also been shown to affect 

mutual fund performance. CCHK and Yan (2008) establish an inverse relationship between 

mutual fund size and performance: small funds outperform large funds, and this provides 

support for the Berk and Green (2004) hypothesis that fund inflows degrade the performance 

of the fund management team, conditional on the chosen benchmark. In respect of the  

characteristics of the individual managers, Chevalier and Ellison (1999a) report that the 

education level of the fund manager, as measured by the quality of the university that the 

fund manager attended, affects cross-sectional differences in performance.  They also show 

that other individual fund manager characteristics affect the fund’s asset allocation strategies 

which, in turn, determine performance. Khorana (1996) and Chevalier and Ellison (1999b) 

document an inverse relationship between fund performance and manager changes. Star fund 

managers can extract a larger share of the higher fee income by either moving to a larger fund 

within the same organization or to another fund family (Chen, Hong, Jiang and Kubik, 2013). 

Network and spillover effects have been shown to be important determinants of mutual fund 

returns (Nanda, Wang and Zheng, 2004; Hong, Kubik and Stein, 2005; Cohen, Frazzini and 

Malloy, 2008). Extreme examples of such networks are fund families, where a group of 

mutual funds are all owned by the same management firm. Massa (2003) shows that 

alternative investment strategies of mutual funds within the same family are a form of 

product differentiation, and that the degree of product differentiation negatively affects 

performance. 

Our dataset contains a number of fund-specific variables. Based on the arguments above, we 

are able to test whether the performance of a fund is, in addition to the standard common 

factors, influenced by certain fund-specific factors, namely the natural logarithm of the 

relative size of assets under management (lnAUM),
3
 the bid-ask spread (Spread),

4
 the natural 

logarithm of the relative size of assets under management of the corresponding fund family 

                                                           
3
 The relative size is defined as the ratio of the fund’s assets under management to the average value of assets 

under management across all funds in the same month.  
4
 The difference between the buy-price and the sell-price for the fund which is a measure of liquidity (Sirri and 

Tufano, 1998). 
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(lnFAUM),
5
 and by the average management charge of the fund family (FMC).

6
 We augment 

the regression equation (2.1) to include these fund-specific variables.  

 

With respect to the second problem, the standard approach estimates equation (2.1) over time 

for each fund separately, resulting in no allowance being made for any common time effects 

across funds, on the grounds that the four-factor model adequately captures the systematic 

components of fund returns. However, if the four-factor model is mis-specified or 

incomplete, there may be common time effects across funds in the sample, which could be 

captured using time dummies. One way to allow for any common dependence across time of 

the funds in the sample is to follow Blake and Timmermann (1998) (and also Fama and 

French, 2010, Table II) and regress an equal-weighted (or a value-weighted) portfolio p of the 

excess returns ( )pt tR rf on the N funds on the four factors in (2.1) and test the significance 

of the estimated ˆ
p  in this regression. But such a portfolio approach does not fully exploit 

the panel nature of the dataset. An improved approach is therefore to estimate equation (2.1) 

(or its augmented form with additional fund-specific characteristics) in a fixed-effects panel 

regression with time dummies and standard errors clustered by fund.  

 

Our augmented model in vector notation is: 

 

/ /

it t i t t it itR rf x w                                                                                           (2.2) 

 

where i i     is the average “skill” level across all funds and time (  ) plus the 

additional fund-specific “skill” level ( i ), t is a time effect,
7
  and 

 

                                                           
5
 The relative size is defined as the ratio of the fund family’s assets under management to the average value of 

assets under management across all fund families in the same month. 
6
 These fund family variables will indirectly pick up network effects and also whether better qualified managers 

are employed by large fund families. 
7
 The time effects are measured by time dummies defined to sum to zero across all time periods. The dummies 

are also bi-monthly rather than monthly on account of a very high degree of multicollinearity we encountered 

when using monthly time dummies.  The fund-specific i  terms also sum to zero across all funds.  
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CCHK do not report estimates based on the specification (2.2). Instead, they use a two-stage 

estimation process. At the first stage, (2.1) is estimated for each fund separately and abnormal 

returns are defined as: 

/ ˆ ˆ itit it t t iFUNDRET R rf x                                                                                      (2.3) 

At the second stage, the following model is estimated (where we have added time effects to 

the CCHK specification): 

/

it i t it itFUNDRET w                                                                                           (2.4) 

We also report results from this two-stage process. 

 

The final problem with the standard approach that needs to be addressed is the non-normality 

of returns. KTWW (p.2559) put this down to the possibilities that (1) the residuals of fund 

returns are not drawn from a multivariate normal distribution, (2) correlations in these 

residuals are non-zero, (3) funds have different risk levels, and (4) parameter estimation error 

results in the standard critical values of the normal distribution being inappropriate in the 

cross section. The solution is to use bootstrap methods to derive more accurate confidence 

intervals and hence improve inference. 

  

2.2 Measuring performance using bootstrap methods  

 

The non-parametric bootstrap 

On account of non-normalities in fund returns, bootstrap methods can be applied to the 

standard benchmark model (2.1) and the augmented model (2.2) or (2.4) to assess 

performance. The non-parametric bootstrap of FF is a single equation bootstrap, but it does 
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preserve the cross-correlation of returns across both funds and common risk factors.
8
 We will 

modify the FF bootstrap to a panel framework. 

 

It turns out that our panel has a fairly standard structure. It is static so does not face the 

problems of a dynamic panel with lagged dependent variables.
9
 It also has a large number of 

funds (N = 561) and a large number of time series observations (T = 129 months), so does not 

suffer from the fixed effects estimator being asymptotically biased which would result in the 

computed confidence intervals being unreliable because the coverage rate is below the 

nominal level (Neyman and Scott, 1948; Nickell, 1981; Beran, 1987, 1990; Martin, 1990; 

Hahn and Kuersteiner, 2002).   

 

We will illustrate the FF bootstrap using the augmented benchmark model (2.2). The FF 

approach is to calculate the alpha for each fund using the time series regression (2.2). It then 

re-samples with replacement over the full cross section of returns, thereby producing a 

common time ordering across all funds in each bootstrap. In our study, we re-sample from all 

monthly observations in the dataset and we impose the null hypothesis as in FF by 

subtracting the estimate of alpha from each re-sampled month’s returns.
10

 For each fund i and 

each bootstrap b, we regress the pseudo abnormal returns on the factors: 

 

/ /ˆ( )  
b

it t i i t t it itR rf x w             
                                                                                           (2.5) 

 

and save the estimated 10,000 bootstrapped alphas { , 1,. . . , ; 1,...,10,000}b

i i N b    and t-

statistics { ( ), 1,. . . , ; 1,...,10,000}b

it i N b   .  

 

                                                           
8
 This contrasts with the KTWW bootstrap which assumes independence between the residuals across different 

funds and that the influence of the common risk factors is fixed historically. In other words, the KTWW 

bootstrap assesses fund  manager skill controlling only for the effect of non-systematic risk. 
9
 Using a test proposed by Bhargava, Franzini and Narendranathan (1982), we found no evidence suggesting the 

presence of autocorrelation in the estimated model. Berk and Green (2004) argue that fund flows ensure there is 

no persistence in mutual fund returns (as distinct from  the underlying asset returns). 
10

 To illustrate, for bootstrap b = 1, suppose that the first time-series drawing is month 37t  ; then the first set 

of pseudo abnormal returns incorporating zero abnormal performance for this bootstrap is found by deducting 

i  from 
,37 37( )iR rf  for every fund i that is in the sample for month 37.t   Suppose that the second time-

series drawing is month 92t  , then the second set of pseudo abnormal returns is found by deducting i  from 

,92 92( )iR rf  for every fund i that is in the sample for month 92t  . After T drawings with replacement, the first 

bootstrap is completed.   
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We now have the cross-sectional distribution of alphas from all the bootstrap simulations that 

result from the sampling variation under the null that the true alpha is zero. The bootstrapped 

alphas can be ranked from smallest to largest to produce the “luck” (i.e., pure chance or 

“zero-skill”
11

) cumulative distribution function (CDF) of the alphas. We have a similar cross-

sectional distribution of bootstrapped t-statistics which can be compared with the distribution 

of actual t-statistics ˆ{ ( ), 1,. . . , }it i N   once both sets of t-statistics have been re-ordered 

from smallest to largest. We follow KTWW who prefer to work with the t-statistics rather 

than the alphas, since the use of the t-statistic “controls for differences in risk-taking across 

funds” (p. 2555).
12

  Our efforts are therefore centred on the distribution of the pivotal test 

statistic associated with
i i

     under the null hypothesis 0,
i

i    . In the context of 

our specification which uses both fund fixed effects and time effects, testing this hypothesis 

requires the computation of the test statistic using the appropriate elements of the coefficient 

variance-covariance matrix. 

 

The parametric bootstrap 

A key problem with the non-parametric bootstrap outlined above is that it draws the 

observations of interest (fund returns) from a uniform distribution. This will give excessive 

weight to observations in the tail of the true but unknown distribution and will, 

correspondingly, underestimate the probability of appearing in the centre of the distribution. 

It also ignores the skewness and kurtosis in the underlying fund returns data. These 

shortcomings can be alleviated by the use of a parametric bootstrap which assumes that the 

returns from each fund are drawn from a stable distribution that reflects the distributional 

properties of the realised returns over the sample period.
13

 A potential weakness of this 

approach, however, is that any cross-sectional dependence is lost (Kapetanios, 2008). 

Again using the augmented benchmark model to illustrate, we estimate (2.2) and retrieve the 

estimated residuals, ît , for each fund i.  We then estimate the parameters of a stable 

distribution for these residuals following Zolotarev (1986) and, in particular, the approach 

suggested by Nolan (1997).  

                                                           
11

 The term “zero skill” is used in the finance literature to mean “zero alpha”. 
12

 KTWW (p. 2559) note that the t-statistic also provides a correction for spurious outliers by dividing the 

estimated alpha by a high estimated standard error when the fund has a short life or undertakes risky strategies.  
13

 Bhargava (1987, p. 802) highlights the importance of having the correct distributional assumptions when 

making statistical inference in multivariate models. 
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A stable distribution is determined by the values of four parameters: an index of stability 
1

( )

, a skewness parameter (
2
 ), a scale parameter (

3
  ), and a location parameter (

4
 ), and the 

ranges of these parameters are given by 
1 2 3 4

0 2, 1 1,  0, and R          . A 

stable distribution 
1 2 3 4

ˆ ( , , , )
it

S      is generally specified in terms of its Fourier 

transform or characteristic function (Zolotarev, 1986, p.11): 

11
1

1

2 12

2

2 1

exp{ [1 (sign )(tan )( 1)]}       1

ˆexp( )

exp{ [1 (sign ) ln ]}                          =1

it

i

E i

i





    



    


    


 
  

             (2.6) 

where  is the frequency parameter of the Fourier transform. The computations of the density 

1 2
( ; , )f     and cumulative distribution 

1 2
ˆ ˆ( ; , ) Pr( )

it it
F        functions, for any fixed 

 , can be derived from Zolotarev’s integral formulas. Based on the characteristic function 

above, Nolan derives (in a set of three theorems) the analytical solutions for the density and 

cumulative distribution functions for different values of 
1
  and 

2
  . He then proceeds to 

numerically evaluate these functions using the program STABLE which employs the 

“adaptive quadrature routine DQDAG” (IMSL, 1985).  The use of this routine allows us to 

derive the maximum likelihood estimates of the stable distribution parameters from the 

estimated residuals. To shorten the time required for such an extensive calculation, it is 

recommended to pre-compute the stable densities based on grid values for  ,
1
  and 

2
 .  

For each fund i and each bootstrap b, we draw samples, 
b

it
 , from the estimated stable 

distribution, using the technique proposed by Chambers, Mallows and Stuck (1976). We then 

construct the pseudo abnormal returns under the null hypothesis ˆ( ) b

it t i it
R rf        and 

regress these on the right-hand side variables of eqn (2.5) and save the estimated 10,000 

bootstrapped alphas { , 1,. . . , ; 1,...,10,000}b

i i N b    and t-statistics  

{ ( ), 1,. . . , ; 1,...,10,000}b

it i N b   . As in the case of the non-parametric bootstrap, we are 

interested in the distribution of the pivotal test statistic associated with
i i

     under the 

null hypothesis 0,
i

i    . 
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3. Data   

The data used in this study combines information from data providers Lipper, Morningstar 

and Defaqto
14

 and consists of the monthly returns on 561 UK domestic equity (open-ended) 

mutual funds (unit trusts and OIECS) over the period January 1998–September 2008, a total 

of 129 months. The dataset also includes information on annual management fees, fund size, 

fund family and relevant Investment Management Association (IMA) sectors. We include in 

our sample the primary sector classes for UK domestic equity funds with the IMA 

definitions: UK All Companies, UK Equity Growth, UK Equity Income, UK Equity & 

Growth, and UK Smaller Companies.
15

 The sample is free from survivor bias (Elton, Gruber 

and Blake, 1996; Carpenter and Lynch, 1999) and includes funds that both were created 

during the sample period and exited due to liquidation or merger.  

 

Gross returns are calculated from bid-to-bid prices and include reinvested dividends. These 

are reported net of ongoing operating and trading costs, but before the fund management 

charge has been deducted.
 16

 We also compute “net” returns for each fund by deducting the 

monthly equivalent of the annual fund management charge. We have complete information 

on these fees for 451 funds. For each of the remaining 65 funds, each month we subtract the 

median monthly fund management charge for the relevant sector class and size quintile from 

the fund’s gross monthly return. Following convention, we exclude initial and exit fees from 

our definition of returns.  

 

Table 3.1 provides some descriptive statistics on the returns to and the size of the mutual 

funds in our dataset. The average monthly gross return across all funds (equally weighted) 

and months in the data set is 0.45% (45 basis points), compared with an average monthly 

return over the same sample period of 0.36% for the FT-All Share Index (not reported).
17

 The 

overall standard deviation of these returns is 4.82%, and the reported percentiles of the 

distribution of returns also emphasise that there is some variability in these returns. In the 

subsequent regression analysis, we require a minimum number of observations to undertake a 

                                                           
14

 These data providers required a confidentiality clause which prohibits us from publishing their data. The 

names of the 516 funds used in the main analysis of our study and the dates over which the monthly returns 

were available are contained in a spreadsheet on the Pensions Institute website (pensions-institute.org).  
15

 We analyse all the funds together in this study; we do not report the separate analysis for each sector due to 

space constraints. 
16

 Operating costs include administration, record-keeping, research, custody, accounting, auditing, valuation, 

legal costs, regulatory costs, distribution, marketing and advertising. Trading costs include commissions, 

spreads and taxes. 
17

 Note that the FT-All Share Index return  is gross of any costs and fees. 
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meaningful statistical analysis and we impose the requirement that time series fund 

parameters are only estimated when there were 20 or more monthly gross returns reported for 

that mutual fund. We also report key percentiles of the distribution of gross returns for the 

sub-sample of 516 mutual funds with a minimum of 20 time-series observations, and this can 

be compared with the distribution of returns across the whole sample to confirm that the sub-

sample is indeed representative.
18

 Overall, these results indicate that survivorship bias is 

negligible in this dataset. The mean monthly net return is 0.35%, implying that the mean 

monthly fund management fee is 0.11%. The mean return is now very close to the mean 

return of 0.36% for the FT-All Share Index.  This provides initial confirmation that the 

average mutual fund manager cannot “beat the market” (i.e., cannot beat a buy-and-hold 

strategy invested in the market index), once all costs and fees have been taken into account. 

The final column shows that the distribution of scheme size is skewed: with the median fund 

value in September 2008 being £64 million and the mean value £240 million. It can be seen 

that 10% of the funds have values above £527 million. 

 

4. Results 

We now turn to assessing the performance of UK equity mutual funds over the period 1998-

2008. The results are divided into three sections. The first section looks at the performance of 

equal- and value-weighted portfolios of all funds in the sample against the standard four-

factor benchmark model. The second section assesses the performance of the funds against 

the standard and augmented benchmark models applying panel estimation methods. The third 

section accounts for the non-normality of the errors in the benchmark models and undertakes 

inference using panel bootstrap simulations. 

 

4.1 Performance assessed by factor benchmark models: pooled single equation estimates 

Following Blake and Timmermann (1998) and Fama and French (2010), Table 4.1 reports the 

results from estimating the standard benchmark model (2.1) across all T = 129 time-series 

observations, where the dependent variable is, first, the excess return on an equal-weighted 

portfolio p of all funds in existence at time t, and, second, the excess return on a value-

weighted portfolio p of all funds in existence at time t, using starting market values as 

                                                           
18

 Panel A confirms that the distribution of net returns with 20 or more observations is very similar to the 

distribution with the full sample of funds. 
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weights.
19

 For each portfolio, the first two columns report the estimated loadings on each of 

the factors when the dependent variable is based on gross returns, while the second two 

columns report the corresponding results using net returns. The loadings on the market 

portfolio and on the tSMB factor are positive and significant, while on the tHML
 
factor, the 

loadings are negative but insignificant. The loadings are positive but insignificant on the 

tMOM factor.
20

 The insignificance of the loading on the tHML
 
factor – which measures the 

difference in performance between growth and value stocks – indicates that there has been no 

outperformance by either growth or value managers over the period. Similarly, fund 

managers have not benefitted from momentum effects over the sample period. 

 

In all cases in Table 4.1, the measure of fund manager performance alpha (
p ) is not 

significant in the four-factor model.  This result holds whether the portfolio is equal-weighted 

or value-weighted, or whether we use gross returns or net returns.  The implication of these 

results is that the average equity mutual fund manager in the UK is unable to deliver 

outperformance (i.e., unable to add value from the key active investment strategy of stock 

selection), once allowance is made for fund manager charges and for a set of common risk 

factors that are known to influence returns, thereby reinforcing our findings from our 

examination of raw returns in Table 3.1. This is a common finding when using the standard 

benchmark model (2.1), and is comparable with both previous UK  (Blake and Timmermann, 

1998) and the US results (Fama and French, 2010). 

 

4.2 Performance assessed by factor and augmented benchmark models: panel regression 

estimates 

We now re-estimate these models using fixed-effects panel regressions with clustered 

standard errors at the fund level. The results of these panel estimations are presented in Panel 

A of Table 4.2 for gross returns and in Panel B for net returns.   

 

                                                           
19

 We use the monthly FTSE All-Share Index as the market benchmark for all UK equities. We take the excess 

return of this index over the UK Treasury bill rate. , ,t tSMB HML  and tMOM  are UK versions of the other 

common risk factors as defined in Gregory, Tharyan and Christidis (2013). 
20

 Note that the estimated factor loadings for the models where the dependent variable is based on gross returns 

are very similar to those in the corresponding models where the dependent variable is based on net returns. This 

is because the fund management fee is fairly constant over time. While this will lead to different estimates of the 

intercept (
p ) in a regression equation, it will not lead to significant changes in the estimates of the other 

coefficients. 
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Model 1 is the standard four-factor benchmark model (2.1), except that the model is estimated 

as a panel, so we drop the i subscript from (2.1). The results are given in the first column of 

Panels A and B. We can see that for gross returns the average alpha is a significant 0.0002, 

while for net returns the average alpha is a highly significant but negative  –0.0010.  Model 2 

is the augmented specification (2.2) which includes the fund characteristics as in CHHK but 

now estimated as a panel. The second column of Panels A and B shows that the coefficient on 

fund size is negative and highly significant, indicating that increasing fund size has a material 

effect in lowering a fund’s performance. Once we control for fund size and the other fund-

specific factors – in particular, family fund size – the average fund manager’s alpha for both 

gross and net returns is insignificantly different from zero. This implies that if better qualified 

managers do manage the largest funds in the largest fund families – which is entirely 

plausible – they do not appear to deliver outperformance: in other words, the size of the fund 

overwhelms any superior skills they might have, as predicted by Berk and Green (2004). 

 

Model 3 is the second stage of the CHHK modelling approach, but estimated as a panel. In 

the first stage, we estimate a time series model for each fund to obtain estimates of the 

loadings on the four factors, and we compute the abnormal returns from this estimated four-

factor model for each fund in each month (see (2.3) above). In the second stage, we estimate 

these abnormal returns on the fund-specific characteristics in a panel using fixed effects with 

clustered standard errors (see (2.4) above). As with Model 2, in the third column of Panels A 

and B, we can see that the coefficient on fund size is again negative and significant. 

Similarly, alpha is insignificant.  

 

Model 4 is Model 3 with time dummies. The effect of including time dummies is to render the 

average fund manager’s alpha significantly negative for both gross and net returns. The 

intuition for this is that there are common shocks across all mutual funds in particular 

months, which are not captured by the standard common factors or the additional fund-

specific variables, but which, on average, enhance the fund’s performance. These common 

shocks are unrelated to individual fund manager selectivity skills, but are being picked up in 

the alpha estimates in Models 1-3, and are being wrongly attributed to manager skill.
21

  We 

needed the time dummies to separate these different effects. 

                                                           
21

 The inclusion of the time dummies has the effect of making the coefficient on the average management 

charge of the fund family (FMC) statistically insignificant. Without the time dummies, the coefficient is 
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4.3 Performance assessed by simulations: non-parametric and parametric bootstraps 

The panel estimation framework in Model 4, although dealing with the cross correlations in 

the error terms and time effects, does not account for any non-normalities in excess returns. 

We now allow for these non-normalities using non-parametric and parametric panel bootstrap 

simulations. 

We first summarise the properties of the stable distributions underlying the panel bootstraps. 

Table 4.3 presents some descriptive statistics of the estimated parameters of the stable 

distributions of the residuals, ît , from the both the standard model (2.1) and the augmented 

model (2.2). For 
1

2   and 
2

0  , the stable distribution reduces to the normal 

distribution. As the index of stability, 
1
 , decreases, the distribution becomes progressively 

more leptokurtic, since the tails contain increasing proportions of the probability mass.  For 

1
1  , the scale  and location parameters, 

3
  and 

4
 , can be viewed as the generalised forms 

of the standard deviation and the mean of the distribution, respectively.
22

  

There is strong evidence of deviations from normality in Table 4.3 as the majority of the 

estimated stability index parameters (
1
 ) is below 2, indicating the prevalence of leptokurtic 

distributions.
23

 This departure from normality informs our parametric bootstrap, since we 

draw samples from the estimated stable distributions which by and large exhibit “fat tails”. 

Although the moments of stable distributions such as skewness and kurtosis are not always 

defined (depending upon the value of the index of stability), our bootstrap methodology takes 

fully into account the existence of fat tails and skewness.  

We report the bootstrap results for the augmented model (2.2). Panel A of Table 4.4 

summarises the distribution of the t-statistics of the alphas based on gross returns. The first 

column reports selected percentiles from the CDF of the actual t-statistics, 

ˆ{ ( ), 1,. . . ,516}it i  , ranked from lowest to highest. The next two columns report the CDFs 

                                                                                                                                                                                     
significantly negative. The reason for this is not clear. The size and significance of the other parameters are 

robust to the inclusion of the time dummies. 
22

 It is worth mentioning here that the sum of stable distributions with the same index of stability follows a 

stable distribution. Stable distribution sharing the same stability index can be first-order stochastically ordered 

according to their scale parameter (Rachev and Mittnik, 2000). 

23
 Only 150 out of 516 funds had a  

1
  parameter close to 2 and a 

2
  parameter close to zero, indicating a 

distribution close to normality. 
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of the “luck” distributions, { ( ), 1,. . . ,516; 1,...,10,000}b

it i b   , generated by the non-

parametric and parametric bootstrap simulations, respectively, and again ranked from lowest 

to highest. Panel B of Table 4.3 reports the same information for net returns. Figures 4.1 and 

4.2 show the information in Panel B graphically. In both figures, the CDF of the actual t-

statistics lies entirely to the left of those generated by the luck distributions, implying that all 

the fund managers perform worse than pure chance, once we control for the common risk 

factors and key fund-specific variables, especially fund size.
24

 The two figures also show the 

5-95% confidence intervals for the two bootstraps. In both figures, only around 1% of fund 

managers generate statistically significant positive alphas, although we cannot rule out the 

possibility that these alphas are generated by pure luck. 

5. Conclusions 

Our paper introduces two new methodologies for improving inference in the evaluation of 

mutual fund performance. The first recognises the panel nature of the dataset and the 

possibility that there are both fund and time effects in mutual fund returns. To account for 

these, we estimate a panel regression with standard errors clustered by fund and with time 

dummies to allow for time effects. The second recognises the distributional properties of the 

individual mutual fund returns and the possibility that these might not be normal: a number of 

recent studies have dealt with this issue using a non-parametric bootstrap. However, the non-

parametric bootstrap draws the observations of interest from a uniform distribution. This 

method of sampling gives excessive weight by assigning equal probability of appearance to 

observations that may lie in the tail of the true but unknown distribution. This can lead to 

biased estimates of the confidence intervals with a coverage rate below the nominal level. To 

correct for this, we use a parametric bootstrap for each fund generated by a stable distribution 

calibrated to reflect the actual distribution of that fund’s returns over the sample period.    

On the basis of a dataset of equity mutual funds in the UK over the period 1998-2008, we 

draw the following conclusions. The standard four-factor benchmark model, estimated as a 

panel regression with standard errors clustered by fund, suggests that the average UK equity 

mutual fund manager does not add value relative to the benchmark once the fund 

management charges are taken into account. However, the standard model excludes fund-

specific characteristics which might influence performance and ignores potential time effects 

                                                           
24

 The same general pattern holds for gross returns.  
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in returns. In addition, most studies using the standard model fail to take adequate account of 

the non-normal distribution of the fund manager’s returns.  

If we include fund size as an additional variable, then the average fund manager’s alpha over 

the whole of sample period is, depending on the model, zero or significantly negative for both 

gross and net returns. This confirms the earlier finding of Chen et al. (2004) and suggests that 

a larger fund size helps to reduce fund performance. Since the most likely explanation for the 

negative relationship between fund size and performance is the negative market impact effect 

from large funds attempting to trade in size (Keim and Madhavan, 1995), this suggests that 

funds should split themselves up when they get to a certain size in order to improve the return 

to investors.
25

  

 

The inclusion of time effects in the benchmark models further reinforces the statistical 

insignificance of the average fund manager’s alpha.  Our explanation for this is that there are 

time effects which are not captured by the standard common factors and which, in aggregate, 

enhance the average fund’s performance. But these time effects are unrelated to individual 

fund manager selectivity skills, yet will have the effect of increasing the estimates of the 

average fund manager’s alpha unless explicit allowance is made for them using time 

dummies.   

 

The augmented model produces even stronger evidence of the absence of fund manager skills 

than the four-factor model because it conditions on a larger number of variables, so the hurdle 

is higher and what is left unexplained – namely, the noise, the uncertainty, the residual 

randomness – is reduced. Contained within the residual randomness of the benchmark model 

is the skill of the fund manager which we capture via our estimate of alpha. The combination 

of a higher hurdle and reduced noise means that fewer managers will be able to outperform.  

 

Finally, if we allow for the non-normality of fund returns using a series of (both non-

parametric and parametric) bootstrap simulations, we find that for the augmented model, 

there is no evidence that even the best performing fund managers can beat this benchmark 

when allowance is made for the costs of fund management.  

 

                                                           
25

 Blake, Rossi, Timmermann, Tonks  and Wermers (2013) made a similar recommendation in the context of the 

pension fund industry. 



  

 17 

Table 3.1: Descriptive statistics for UK equity mutual funds 1998-2008 

 Gross 

returns  

Gross 

returns  

≥20 months 

Net returns 

≥ 20 months 

Fund 

management 

charge 

≥ 20 months 

Fund size at 

30 Sep 2008  

(£ millions) 

Mean 0.0045 0.0047 0.0035 0.0011 240.86 

Std. dev. 0.0482 0.0480 0.0480 0.0002 656.56 

Between std. 

dev. 

0.0113 0.0060 0.0060 0.0002  

Within std. dev. 0.0480 0.0479 0.0479 0.0000  

10% -0.0587 -0.0582 -0.0593 0.0008 8.45 

25% -0.0186 -0.0184 -0.0195 0.0010 26.6 

50% 0.0128 0.0130 0.0118 0.0012 64.27 

75% 0.0330 0.0330 0.0319 0.0012 202.25 

90% 0.0525 0.0526 0.0514 0.0012 527.1 

Obs. 48,061 47,492 47,492 47,492  

No. of funds 561 516 516 516 287 

The table reports key properties of the distribution of UK domestic equity (open-ended) mutual fund returns and 

fund size. The first two columns report this information for gross monthly returns from January 1998 to 

September 2008 (129 months) expressed as proportions for (1) all 561 funds (equally weighted) in the dataset 

for some time during the sample period and (2) for the 516 funds (equally weighted) in the dataset for at least 20 

months.  The third column shows this information for net returns which equal gross returns minus the monthly 

fund management charge for the 516 funds (equally weighted) in the dataset for at least 20 months. The fourth 

column shows the monthly fund management charge for the 516 funds (equally weighted) in the dataset for at 

least 20 months. The last column reports fund size (in £millions of assets under management) of the 287 funds 

in the dataset in the last month of the sample period, which reports this information. The results were produced 

in STATA. 
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Table 4.1: Estimates of the standard benchmark model for an equal-weighted and a 

value-weighted portfolio of UK equity mutual funds 1998-2008 

 Equal-weighted Value-weighted 

 Gross 

returns 

Net 

returns 

Gross 

returns 

Net 

returns 

p  0.0002 -0.0010 -0.0000 -0.0011 

 (0.0008)  (0.0008)  (0.0008) (0.0008)  

 mt tR rf  0.9486** 0.9486** 0.9416** 0.9416** 

 (0.0228)  (0.0229) (0.0219)  (0.0220)  

tSMB  0.2526** 0.2528** 0.1757** 0.1758** 

 (0.0254)  (0.0254)  (0.0241)  (0.0240)  

tHML  -0.0298 -0.0298 -0.0061 -0.0060 

 (0.0236)  (0.0236)  (0.0217)  (0.0217)  

tMOM  0.0178 0.0178 0.0044 0.0044 

 (0.0181)  (0.0181)  (0.0173)  (0.0173)  

     

R
2
 0.96 0.96 0.96 0.96 

Obs. 129 129 129 129 

The results are based on the standard four-factor model (2.1), where the dependent variable, ( )pt tR rf , is 

either the excess return on an equal-weighted portfolio or on a value-weighted portfolio p of all funds in 

existence at time t. The dependent variables in these regressions are based on the monthly returns on the 

516 mutual funds that were in the dataset for at least 20 months for some time between January 1998 and 

September 2008 (129 months). They are measured both gross and net of fund management charges. White 

(1980)’s robust standard errors are reported in brackets underneath each parameter estimate: ***, ** and * 

denotes significance at the 1%, 5% and 10% levels. The results were produced in STATA. 
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Table 4.2: Panel estimates of the standard and augmented benchmark models of UK 

equity mutual funds 1998-2008 

 

Panel A: Gross returns 

 Model 1 Model 2 Model 3 Model 4 

  0.0002** -0.0000 0.0011 -0.0049* 

 (0.0001)  (0.0022)  (0.0017) (0.0020) 

 mt tR rf  0.9484** 0.9487**   

 (0.0050)  (0.0050)    

tSMB  0.2525** 0.2519**   

 (0.0150)  (0.0150)    

tHML  -0.0331** -0.0328**   

 (0.0073)  (0.0072)    

tMOM  0.0189** 0.0192**   

 (0.0041)  (0.0041)   

ln tAUM   -0.0018** -0.0013** -0.0014** 

  (0.0003) (0.0002) (0.0002) 

tSpread   2.3297 1.5265 1.9443 

  (1.2060) (1.0422) (1.1009) 

ln ftFAUM   -0.0005 -0.0004 -0.0003 

  (0.0004) (0.0003) (0.0003) 

ftFMC   -3.5034* -3.4693** 1.6711 

  (1.7425) (1.3180) (1.5983) 

Time effects NO NO NO YES 

Fixed effects YES YES YES YES 

R
2
 0.73 0.73 0.00 0.16 

Obs. 45,166 45,166 45,166 45,166 
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Panel B: Net returns 

 Model 1 Model 2 Model 3 Model 4 

  -0.0010** -0.0003 0.0008 -0.0053** 

 (0.0001) (0.0022) (0.0017) (0.0020) 

 mt tR rf  0.9484** 0.9487**   

 (0.0050) (0.0050)   

tSMB  0.2525** 0.2519**   

 (0.0150) (0.0150)   

tHML  -0.0331** -0.0328**   

 (0.0073) (0.0072)   

tMOM  0.0189** 0.0192**   

 (0.0041) (0.0041)   

ln tAUM   -0.0018** -0.0013** -0.0014** 

  (0.0003) (0.0002) (0.0002) 

tSpread   2.2560 1.4561 1.8747 

  (1.2113) (1.0452) (1.1042) 

ln ftFAUM   -0.0005 -0.0004 -0.0003 

  (0.0004) (0.0003) (0.0003) 

ftFMC   -4.1689* -4.1141** 1.0778 

  (1.7551) (1.3338) (1.6083) 

Time effects NO NO NO YES 

Fixed effects YES YES YES YES 

R
2
 0.73 0.73 0.00 0.16 

Obs. 45,166 45,166 45,166 45,166 

In Panel A, Model 1 is the standard four-factor benchmark model (2.1) for excess gross returns as the 

dependent variable. Model 2 is the augmented benchmark model (2.2) for excess gross returns, including 

fund-specific variables, but without any time effects. Model 3 follows Chen et al. (2004) and involves a 

two-stage estimation procedure: in stage 1, equation (2.1) is estimated for each fund separately, and 

abnormal gross returns are defined by equation (2.3); in stage 2, the estimated model is equation (2.4) but 

without time effects. Model 4 is Model 3 with bi-monthly time effects. In Panel B, the estimated models are 

the same as in Panel A, but with excess net returns as the dependent variable. The dependent variables in 

these panel regressions are based on the monthly returns on the 516 mutual funds that were in the dataset 

for at least 20 months for some time between January 1998 and September 2008 (129 months). The 

estimates of the parameters  , , ,    in the standard model and  , , ,    , , , ,     in the 

augmented model are the same for all funds. Estimates of the additional fund-specific “skill” levels, i , 

and the time effects , t , are not reported. The standard errors are clustered in the fund dimension: ***, ** 

and * denotes significance at the 1%, 5% and 10% levels. The results were produced in STATA. 
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Table 4.3:  Means and standard deviations of the parameters of the stable distributions 

fitted to the estimated residuals of the standard and augmented benchmark models 

Model Index of stability      

(
1
 ) 

Skewness 

parameter (
2
 ) 

Scale parameter      

(
3
 ) 

Location parameter 

(
4
 ) 

Standard model 

(2.1); gross returns 
1.7833 

(0.2070) 
 

0.04026 

(0.3787) 
 

0.01260  

(0.0056)  
 

3.55E-05 

(0.0032) 
 

Standard model 

(2.1); net returns 
1.7836 

(0.2067) 
 

0.0328 

(0.3927) 
 

0.01259  

(0.0056)  
 

1.24E-05 

(0.0032) 
 

Augmented model 

(2.2); gross returns 
1.78242 

   (0.2064) 
 

    0.05728 

 (0.4053) 
 

     0.0126 

(0.0056) 
 

   0.0001 

(0.0032) 
 

Augmented model 

(2.2); net returns 
1.7837 

(0.2071) 
 

  0.03900 

   (0.3883) 
0.01258 

 (0.0057) 

 
 

9.25E-05 

(0.0032) 
 

The residuals from four benchmark models  –  the standard model (2.1) where the dependent variable is excess  

gross returns, the standard model (2.1) where the dependent variable is excess net returns, the augmented model 

(2.2) where the dependent variable is excess  gross returns, and the augmented model (2.2) where the dependent 

variable is excess net returns – for each of the 516 mutual funds that were in the dataset for at least 20 months 

for some time between January 1998 and September 2008 (129 months) were fitted to a stable distribution.  For 

each fund, the four parameters of the stable distribution  –  the index of stability 
1

( ) ,  the skewness parameter 

(
2
 ), the scale parameter (

3
  ), and the location parameter (

4
 ) – were estimated.  The above table reports the 

means and standard deviations of these four estimated parameters across the 516 funds. The results were 

produced using the program STABLE.  
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Table 4.4: Percentiles of the actual and average non-parametric and parametric 

bootstrap cumulative distribution functions of the t-statistics on alpha in the augmented 

benchmark model for the gross and net returns on UK equity mutual funds 1998-2008 

 
Panel A: Gross Returns Panel B: Net Returns 

       

Pct Actual 

Non-

parametric 

bootstrap 

Parametric 

Bootstrap Actual 

Non-

Parametric 

Bootstrap 

Parametric 

Bootstrap 

1 -4.44 -4.11 -2.56 -4.56 -4.08 -2.54 

2 -3.37 -3.09 -1.91 -3.45 -3.06 -1.90 

3 -3.06 -2.60 -1.63 -3.16 -2.56 -1.61 

4 -2.59 -2.30 -1.45 -2.65 -2.26 -1.44 

5 -2.48 -2.09 -1.32 -2.52 -2.05 -1.32 

10 -1.94 -1.51 -0.95 -2.02 -1.47 -0.96 

20 -1.46 -0.94 -0.59 -1.54 -0.91 -0.59 

30 -1.12 -0.59 -0.37 -1.19 -0.56 -0.37 

40 -0.97 -0.30 -0.20 -1.03 -0.27 -0.20 

50 -0.77 -0.04 -0.04 -0.83 -0.01 -0.04 

60 -0.55 0.16 0.11 -0.63 0.18 0.11 

70 -0.36 0.44 0.28 -0.41 0.46 0.27 

80 -0.10 0.78 0.50 -0.16 0.80 0.49 

90 0.26 1.30 0.84 0.20 1.32 0.83 

95 0.60 1.79 1.17 0.55 1.80 1.15 

96 0.68 1.95 1.28 0.60 1.96 1.26 

97 0.87 2.16 1.42 0.78 2.17 1.39 

98 1.00 2.48 1.62 0.92 2.47 1.60 

99 1.59 3.10 2.03 1.52 3.07 2.02 

The results are based on the augmented benchmark model (2.2), including fund-specific variables and time 

effects, where the dependent variable is based on the monthly returns on the 516 mutual funds that were in 

the dataset for at least 20 months for some time between January 1998 and September 2008 (129 months). 

Panel A reports the results for excess gross returns, while Panel B reports the results for excess net returns. 

Each panel shows, for selected percentiles (Pct) of the cumulative distribution function, the value of the 

actual t-statistic of the estimated alpha, ˆ{ ( ), 1,. . . ,516}it i  , after the 516 t-statistics have been ranked 

from smallest to largest (Actual). It also shows, for the same percentiles of the cumulative distribution 

function, the averaged value of { ( ), 1,. . . ,516; 1,...,10,000}b

it i b   from 10,000 simulations of the 

non-parametric and parametric bootstraps, respectively, again ranked from smallest to largest. The values 

of the 5
th

 and 95
th

 percentiles of the cumulative distribution function of the non-parametric (parametric) 

bootstrap are -2.058 and 1.797 (-1.316 and 1.151), respectively. 



  

 23 

Figure 4.1: The actual and average non-parametric bootstrap cumulative distribution 

functions of the t-statistics on alpha in the augmented benchmark model for the net 

returns on UK equity mutual funds 1998-2008 

 

The results are based on the augmented benchmark model (2.2), including fund-specific variables and time 

effects, where the dependent variable is the monthly excess net returns on the 516 mutual funds that were in 

the dataset for at least 20 months for some time between January 1998 and September 2008 (129 months). 

The solid curve (labelled “Actual”) is the cumulative distribution function of the values of the actual t-

statistics of the estimated alphas, ˆ{ ( ), 1,. . . ,516}it i  , after the 516 t-statistics have been ranked from 

smallest to largest. The dashed curve (labelled “Bootstrap”) is the cumulative distribution function of the 

averaged values of { ( ), 1,. . . ,516; 1,...,10,000}b

it i b   from 10,000 simulations of the non-

parametric bootstrap. The vertical dashed lines indicate the 5
th

 and 95
th

 percentiles of the cumulative 

distribution function of the bootstrapped t-statistics:   their values are -2.058 and 1.797. 
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Figure 4.2: The actual and average parametric bootstrap cumulative distribution 

functions of the t-statistics on alpha in the augmented benchmark model for the net 

returns on UK equity mutual funds 1998-2008 

 
 
The results are based on the augmented benchmark model (2.2), including fund-specific variables and time 

effects, where the dependent variable is the monthly excess net returns on the 516 mutual funds that were in 

the dataset for at least 20 months for some time between January 1998 and September 2008 (129 months). 

The solid curve (labelled “Actual”) is the cumulative distribution function of the values of the actual t-

statistics of the estimated alphas, ˆ{ ( ), 1,. . . ,516}it i  , after the 516 t-statistics have been ranked from 

smallest to largest. The dashed curve (labelled “Bootstrap”) is the cumulative distribution function of the 

averaged values of { ( ), 1,. . . ,516; 1,...,10,000}b

it i b   from 10,000 simulations of the parametric 

bootstrap. The vertical dashed lines indicate the 5
th

 and 95
th

 percentiles of the cumulative distribution 

function of the bootstrapped t-statistics:   their values are -1.316 and 1.151. 
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