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Abstract: We provide a construction procedure for complex root spaces invariant under

antilinear transformations, which may be applied to any Coxeter group. The procedure is

based on the factorisation of a chosen element of the Coxeter group into two factors. Each

of the factors constitutes an involution and may therefore be deformed in an antilinear

fashion. Having the importance of the E8-Coxeter group in mind, such as underlying a

particular perturbation of the Ising model and the fact that for it no solution could be

found previously, we exemplify the procedure for this particular case. As a concrete appli-

cation of this construction we propose new generalisations of Calogero-Moser-Sutherland

models and affine Toda field theories based on the invariant complex root spaces and

deformed complex simple roots, respectively.

1. Introduction

It is known for more than twenty years that symmetries based on the E8-Lie group or

E8-Coxeter (Weyl) group are known to be important in the context of 1+1 dimensional

integrable models. In a field theoretical context A.B. Zamolodchikov [1] found in 1989 that

the conformal field theory with central charge c = 1/2 perturbed by the primary field φ(1,2)

of conformal weight ∆ = 1/6 gives rise to an affine Toda field theory with an E8-mass

spectrum. On the lattice side this field theory was identified to correspond to the Ising

model in a magnetic field. Remarkably, the first experimental evidence supporting these

theoretical findings were reported only very recently in [2].

Furthermore, it is known that the Ising model may be perturbed by a complex field

[3, 4] and still describe a meaningful physical system, despite of being related to a non-

Hermitian Hamiltonian. This is related to the fact that the non-Hermitian Hamiltonian

possess the property of being PT -symmetric in a wider sense, meaning that it remains

invariant under a simultaneous parity transformation P and time reversal T . Strictly

speaking the Hamiltonian remains invariant under the more general transformation of an

antilinear involutory map of which PT -symmetry is only one example. Then by an ob-

servation of Wigner [5], made already fifty years ago, the eigenvalues of the Hamiltonian,
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or any other operator with that symmetry property, are guaranteed to be real when in

addition also their eigenfunctions possess this symmetry. More recently many new phys-

ically meaningful models have been constructed and properties of older models could be

explained consistently exploiting this feature, for recent reviews see e.g. [6, 7, 8]. While this

type of representation is usually very simple to verify for single particle Hamiltonians it is

less obviously identified in multi-particle systems or field theories. Often the symmetry is

only evident after a suitable change of variables or even a full separation of variables [9, 10].

Since many of such type of models are formulated generically in terms of root systems, as

for instance Calogero-Moser-Sutherland models [11] or Toda field theories [12, 13], with

the dynamical variables or fields lying in the dual space, the possibility to deform directly

these roots was explored recently [10, 14]. This approach allows to deal with a huge class

of models in a very systematic manner as it provides a well defined scheme when based on

the roots rather than on a deformation of the canonical variables or fields.

The general logic followed was to identify first an element w in the Weyl (Coxeter)

group w ∈ W with the involutory property w2 = I, view it as the analogue of the P-

operator and subsequently deform it in an antilinear fashion. The most obvious candidates

to take are simple Weyl reflections. However, it was shown in [14] that root spaces with

the desired properties based on this identification can only be constructed for groups of

rank 2. The explicit solutions for the groups A2, G2 and B2 can be found in [10] and [15],

respectively. In [14] we identified the analogue of the P-operator with either of the two

factors σ+ or σ− of the Coxeter element σ in the form σ = σ−σ+ or the longest element w0

of the Weyl group. In both cases we were able to construct explicitly the invariant complex

root spaces for a large number of groups. However, we could also show that in many cases

an explicit solution does either not exist based on the identifications used or leads only to

trivial solutions.

In particular, no non-trivial deformation of the E8-root system which remain invariant

under antilinear transformations was found. Motivated in addition by the above mentioned

importance the E8-root systems play, the main purpose of this manuscript is to provide

such a deformation. However, our procedure is very general and may in principle be applied

to any element in any group.

In comparison with previous approaches we select here factorisations of an element in

the Coxeter group, say σ̃, of order h̃ less than the Coxeter number h, i.e. σ̃h̃ = I. We

factorise them similarly as the usual Coxeter element based on the bi-colouration of the

Dynkin diagram and by construction each of the two factors are then involutory maps,

since all subfactors are commuting Weyl reflections being involutions themselves. We

identify them as the analogue of the parity transformation and deform them to build up

an antilinear involution. A reduced complex root space is then constructed from the orbits

of these elements containing ℓ = rank W × h̃ roots instead of the ℓ × h roots, which

result when generated from the usual Coxeter element. By construction these root systems

remain invariant under the action of each of the deformed factors of the chosen element

when certain conditions hold.

With the above mentioned motivation in mind, one may then employ the deformed sim-

ple roots to define complex versions of E8-affine Toda field theories or the entire deformed
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root space to formulate new complex versions of Calogero-Moser-Sutherland models. We

report the properties of these models elsewhere [16].

2. From factorised Weyl group elements to invariant complex rootspaces

Let us now briefly recall the main aim of the method of construction proposed so far. We

use the notation of [14] and refer to it and references therein for parts of the definitions

used. The aim is to construct complex extended root systems ∆̃(ε) which remain invariant

under a newly defined antilinear involutary map. The standard real roots αi ∈ ∆ ⊂ R
n are

sought to be represented in a complex space depending on some deformation parameter

ε ∈ R as α̃i(ε) ∈ ∆̃(ε) ⊂ R
n ⊕ ıRn. For this purpose we define a linear deformation map

δ : ∆ → ∆̃(ε), α 7→ α̃ = θεα, (2.1)

relating simple roots α and deformed simple roots α̃ in a linear fashion via the constant

deformation matrix θε. Subsequently we seek an antilinear involutory map ω which leaves

this root space invariant

ω : ∆̃(ε) → ∆̃(ε), α̃ 7→ ωα̃, (2.2)

this means the map satisfies ω : α̃ = µ1α1 + µ2α2 7→ µ∗
1ωα1 + µ∗

2ωα2 for µ1, µ2 ∈ C and

ω2 = I. Clearly there are many possibilities to achieve this.

As already mentioned, what has been investigated this far is to take simple Weyl

reflections as candidates for ω, which works successfully for rank 2 groups, the two factors

σ± of the Coxeter element or the longest element w0 of the Weyl group. What has not

been explored this far is to take different types of elements in W as starting points. Here

we will indicate the general procedure and work out explicitly the concrete E8-example. A

more systematic solution procedure for other cases will be provided elsewhere [16].

We will start with an arbitrary element of the Weyl group σ̃ ∈ W. This means the

element can by definition always be expressed as a product over simple Weyl reflections

σ̃ =
∏

σi. Due to the fact that Weyl reflections do not commute there are various ways

to represent elements in the same similarity class. We will therefore convert this element

always into a factorised form of the following type

σ̃ = σ̃−σ̃+ with σ̃± :=
∏

i∈Ṽ±

σi, (2.3)

in close analogy to the factorisation of the Coxeter element σ = σ−σ+ as explained in [14]

and references therein. The sets V± are defined via the bi-colouration, meaning that the

roots are separated into two sets of disjoint roots on the Dynkin diagram. However, the

products do not extend over all possible elements, i.e. Ṽ± ⊂ V± and therefore we may

think of these elements as

σ̃± := σ±

∏

i∈Ṽ ′
±

σi (2.4)

for some values j, with Ṽ ′
±∪ Ṽ± = V±, by recalling [σi, σj ] = 0 for i, j ∈ V+ or i, j ∈ V− and

σ2
i = I. This ensures that we maintain the crucial property σ̃2

± = I and thus we select σ̃−
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or σ̃+ as a potential candidates for the analogue of the P-operator which we seek to deform

in an antilinear fashion to construct the map ω introduced in (2.2). This is achieved by

defining the antilinear deformations of the factors of the modified Coxeter element as

σ̃ε
± := θεσ̃±θ

−1
ε = τ σ̃± (2.5)

with τ acting as a complex conjugation and θε being the deformation matrix intoduced in

(2.2). By similar reasoning as in [14] we find that the properties to be satisfied by θε are

θ∗εσ̃± = σ̃±θε, [σ̃, θε] = 0, θ∗ε = θ−1
ε , det θε = ±1 and lim

ε→0
θε = I. (2.6)

These equations will be enough to determine the deformed simple roots α̃. Before defining

the entire root space associated to σ̃ε = σ̃ε
−σ̃

ε
+ we introduce the root space ∆̃ associated

to σ̃. We require for this the values ci = ±1 assigned to the vertices of the Coxeter graphs,

in such a way that no two vertices with the same values are linked together. Using then

the quantity γi = ciαi for a representant similarly as in the undeformed case, we define a

”reduced” Coxeter orbit as

Ω̃i :=
{

γi, σ̃γi, σ̃
2γi, . . . , σ̃

h̃−1γi

}

, (2.7)

and the entire reduced root space as

∆̃ :=

ℓ
⋃

i=1

Ω̃i ⊂ ∆W . (2.8)

The length of the orbits Ω̃i will naturally be reduced because the order of the element σ̃

will be smaller than the Coxeter number h

σ̃h̃ = I, with h̃ ≤ h. (2.9)

This means the total number of roots in ∆̃ is ℓh̃ rather than ℓh as in the case of ∆W . Since

[σ̃, θε] = 0, the deformed orbits and root spaces are isomorphic to the undeformed ones

and we may define deformed reduced orbits and a deformed rootspace as

Ω̃ε
i := θεΩ̃i and ∆̃(ε) := θε∆̃, (2.10)

respectively. Crucial to our construction is that the deformed root space ∆̃(ε) remains

invariant under the antilinear involutory transformation σ̃ε
± : ∆̃(ε) → ∆̃(ε). This follows

from the argument

σ̃ε
± : ∆̃(ε) → θεσ̃±θ

−1
ε ∆̃(ε) = θεσ̃±∆̃ = θε∆̃ = ∆̃(ε) (2.11)

if and only if σ̃±∆̃ = ∆̃. As the root space is now reduced this might not be the case as

σ̃± could map a root into the complement of ∆̃. However, we may verify this explicity on

a case-by-case basis.
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3. Invariant complex E8-root spaces

Our conventions for the labelling of the E8-roots are depicted in the Dynkin diagram

below. They differ slightly from the one previously used [14], but have the advantage that

neither two roots labelled by odd or even numbers are connected, which allows for compact

notation.

E8 :
α8α7α6α5α4α3

α1

α2

u

u u u u u uu

Figure 1: Dynkin diagram indicating the conventions of the labelling for the simple E8-roots.

Let us now illustrate the procedure described above by selecting first of all an element

of the Weyl group, for instance

σ̃ = σ1σ−σ+ = σ3σ5σ7σ2σ4σ6σ8. (3.1)

Acting on the vector ~α = {α1, α2, α3, α4, α5, α6, α7, α8} we can represent this element as

σ̃ =





























1 0 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 −1 −1 −1 0 0 0 0

0 1 1 1 1 1 0 0

0 0 0 −1 −1 −1 0 0

0 0 0 1 1 1 1 1

0 0 0 0 0 −1 −1 −1

0 0 0 0 0 1 1 0





























. (3.2)

Simply by matrix multiplication we then find that the order of this element is h̃ = 8. Using

an Ansatz for the deformation matrix similar to the one in [14]

θε = c0I+ (1− c0)σ̃
4 + i

√

c20 − c0(σ̃
2 − σ̃−2), c0 ∈ R, (3.3)

we find that the first four constraints in (2.6) are satisfied. The ususal choice c0 = cosh ε

ensures that we recover the undeformed case in the limit ε → 0, that is the last requirement

in (2.6). Explicitly the deformation matrix resulting from (3.2) and (3.3) reads

θε =





























1 λ0 2λ0 − iκ0 3− 3c0 3λ0 − iκ0 3− 3c0 2λ0 − iκ0 λ0

0 c0 0 iκ0 2iκ0 iκ0 0 −λ0

0 0 c0 − iκ0 −2iκ0 −2iκ0 −2iκ0 −iκ0 − λ0 0

0 iκ0 2iκ0 c0 + 2iκ0 2iκ0 2iκ0 − λ0 2iκ0 iκ0

0 −2iκ0 −2iκ0 −2iκ0 2(c0 − iκ0)− 1 −2iκ0 −2iκ0 −2iκ0

0 iκ0 2iκ0 2iκ0 − λ0 2iκ0 c0 + 2iκ0 2iκ0 iκ0

0 0 −λ0 − iκ0 −2iκ0 −2iκ0 −2iκ0 c0 − iκ0 0

0 −λ0 0 iκ0 2iκ0 iκ0 0 c0





























.

(3.4)
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In order to achieve a more compact notation we introduced here the abbreviations κ0 =
√

c20 − c0 and λ0 = 1− c0. Therefore the deformed simple roots resulting from (2.1) are

α̃1 = α1 + λ0 (α2 + 2α3 + 3α4 + 3α5 + 3α6 + 2α7 + α8)− iκ0 (α3 + α5 + α7) , (3.5)

α̃2 = c0 (α2 + α8)− α8 + iκ0 (α4 + 2α5 + α6) , (3.6)

α̃3 = c0 (α3 + α7)− α7 − iκ0 [α3 + 2 (α4 + α5 + α6) + α7] , (3.7)

α̃4 = c0 (α4 + α6)− α6 + iκ0 [α2 + 2 (α3 + α4 + α5 + α6 + α7) + α8] , (3.8)

α̃5 = (2c0 − 1)α5 − 2iκ0 (α2 + α3 + α4 + α5 + α6 + α7 + α8) , (3.9)

α̃6 = c0α6 + α4 (c0 + 2iκ0 − 1) + iκ0 [α2 + 2 (α3 + α5 + α6 + α7) + α8] , (3.10)

α̃7 = c0α7 + (c0 − 1)α3 − iκ0 [α3 + 2 (α4 + α5 + α6) + α7] , (3.11)

α̃8 = c0α8 − λ0α2 + iκ0 (α4 + 2α5 + α6) . (3.12)

To construct the invariant root space we compute the undeformed reduced root space ∆̃

from the orbits Ω̃i for 1 ≤ i ≤ 8 and subsequently replace the undeformed roots in a

one-to-one fashion by their deformed counterparts. We evaluate

∆̃ α1 α2 α3 α4 α5 α6 α7 α8

σ̃ 1;4 3;4 -2;3;4 2;3;4;5;6 -4;5;6 4;5;6;7;8 -6;7;8 6;7

σ̃2 1;2;3;42;5;6 5;6 -3;4;5;6 3;4;5;6;7;8 -2;3;4;5;6;7;8 2;3;4;5;6;7 -4;5;6;7 4;5

σ̃3 1;2;32;43;52;62;7;8 7;8 -5;6;7;8 5;6;7 -3;4;5;6;7 3;4;5 -2;3;4;5 2;3

σ̃4 1;2;32;43;53;63;72;8 -8 -7 -6 -5 -4 -3 -2

σ̃5 1;2;32;43;53;62;72;8 -6;7 6;7;8 -4;5;6;7;8 4;5;6 -2;3;4;5;6 2;3;4 -3;4

σ̃6 1;2;32;42;52;6;7 -4;5 4;5;6;7 -2;3;4;5;6;7 2;3;4;5;6;7;8 -3;4;5;6;7;8 3;4;5;6 -5;6

σ̃7 1;3;4;5 -2;3 2;3;4;5 -3;4;5 3;4;5;6;7 -5;6;7 5;6;7;8 -7;8

We report in this table the roots which emerge as a result of computing σ̃n(αi) with

1 ≤ n ≤ 7 and 1 ≤ i ≤ 8, where we indicate multiple occurrences by a power. Since

these root are either positive or negative it suffices to report the overall sign. For instance

we read off from the table that σ̃3(α1) = α1 + α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7 + α8 or

σ̃2(α3) = −α3 − α4 − α5 − α6.

Next we compute the action of σ̃± on the simple roots. We find

σ̃−α1 = α1, σ̃−α2 = α2 + α3 = σ̃3α8,

σ̃−α3 = −α3, σ̃−α4 = α3 + α4 + α5 = σ̃3α6,

σ̃−α5 = −α5, σ̃−α6 = α5 + α6 + α7 = σ̃3α4,

σ̃−α7 = −α7, σ̃−α8 = α7 + α8 = σ̃3α2,

(3.13)

and
σ̃+α1 = α1 + α4 = σ̃α1, σ̃+α2 = −α2,

σ̃+α3 = α2 + α3 + α4 = σ̃5α7, σ̃+α4 = −α4,

σ̃+α5 = α4 + α5 + α6 = σ̃5α5, σ̃+α6 = −α6,

σ̃+α7 = α6 + α7 + α8 = σ̃5α3, σ̃+α8 = −α8.

(3.14)

From (3.13), (3.14) and the above table we observed that σ̃±αi ∈ ∆̃ for 1 ≤ i ≤ 8, such

that σ̃±∆̃ = ∆̃. Therefore replacing in the above table simple roots by deformed simple

– 6 –



PT invariant complex E8 root spaces

roots, αi 7→ α̃i for 1 ≤ i ≤ 8, consitutes a complex root space ∆̃(ε) consisting of 64 different

complex roots which remains invariant under the antilinear involutory transformations σ̃ε
±.

Note that in this particular case the introduction of the representative γi, which is often

needed to avoid overcounting, is not essential.

In order to obtain non-trivial invariant root spaces with different amounts of roots we

may select elements σ̃ ∈ W of other order h̃. For instance we compute

σ̃ = σ1σ3σ7σ4σ6σ8, with h̃ = 4,

σ̃ = σ1σ3σ5σ7σ4σ6σ8, with h̃ = 12,

σ̃ = σ1σ3σ7σ2σ4σ6σ8, with h̃ = 20,

σ̃ = σ1σ3σ5σ7σ2σ4σ8, with h̃ = 24.

(3.15)

Generalizing then the Ansatz (3.3) to

θε = c0I+ (1− c0)σ̃
h̃/4 + i

√

c20 − c0(σ̃
h̃/2 − σ̃−h̃/2), (3.16)

yields non-trivial deformation matrices satisfying the constraint (2.6). In general we may

try any element of the form

σ̃ =
∏

j∈Ṽ−

σi

∏

j∈Ṽ+

σi =: σ̃−σ̃+ (3.17)

where the product might not extend over all four odd and four even roots in V− or V+,

respectively. It is clear that this creates a large amount of possibilities. In [16] we report

on how one may organise these options systematically.

4. Conclusions

We have provided a general construction procedure for invariant root spaces under an-

tilinear involutory transformations. The starting point can be any element in the Weyl

group. Since by definition such elements consist of products of Weyl reflections we may

always bring it into a factorised form (3.17), such that each of the factors is comprised of

elements related to simple roots which are not connected on the Dynkin diagram. Then

each of the factors σ̃± will be an involution, which we can identify as an analogue to the

P-operator and subsequently we deform it to introduce the antilinear maps σ̃ε
±. Solving

the constraints (2.6) we construct simple deformed roots. The entire root space ∆̃(ε) may

then be constructed from the union of the reduced orbits Ω̃i(ε). By construction it remains

invariant under the action of σ̃ε
± if and only if σ̃±∆̃ = ∆̃.

We may then employ these spaces to investigate new types of non-Hermitian general-

isation of Calogero models

H(p, q) =
p2

2
+

ω2

4

∑

α̃∈∆̃(ε)

(α̃ · q)2 +
∑

α̃∈∆̃(ε)

gα̃
(α̃ · q)2

, (4.1)

or the analogues of Calogero-Moser-Sutherland models when replacing the rational poten-

tial by a trigonometric or elliptic one. We may also employ only the deformed simple roots

– 7 –
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and investigate properties of generalised versions of affine Toda field theories decribed by

Lagrangians of the form

L =
1

2
∂µφ∂

µφ−
m2

β2

ℓ
∑

i=0

n0e
βα̃i·φ. (4.2)

For the case of E8 we have provided the explicit construction for the rootspaces. Based

on the conjecture that E8 plays a crucial role in the understanding and realisation of

perturbations of the Ising model it is conceivable that the complex deformed root systems

serve to faciliate a systematic study of non-Hermitian perturbations of the Ising model.

Generalisions to other types of spin chain and their scaled versions might be based on

generalisations to other Coxeter groups.
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