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Abstract

In this paper we propose and evaluate a set of new strategies for the
solution of three dimensional separable elliptic problems on CPU-GPU plat-
forms. The numerical solution of the system of linear equations arising when
discretizing those operators often represents the most time consuming part of
larger simulation codes tackling a variety of physical situations. Incompress-
ible fluid flows, electromagnetic problems, heat transfer and solid mechanic
simulations are just a few examples of application areas that require efficient
solution strategies for this class of problems. GPU computing has emerged
as an attractive alternative to conventional CPUs for many scientific ap-
plications. High speedups over CPU implementations have been reported
and this trend is expected to continue in the future with improved program-
ming support and tighter CPU-GPU integration. These speedups by no
means imply that CPU performance is no longer critical. The conventional
CPU-control-GPU-compute pattern used in many applications wastes much
of CPU’s computational power. Our proposed parallel implementation of a
classical cyclic reduction algorithm to tackle the large linear systems arising
from the discretized form of the elliptic problem at hand, schedules comput-
ing on both the GPU and the CPUs in a cooperative way. The experimental
result demonstrates the effectiveness of this approach.

Keywords: Fast Finite Difference Poisson Solvers, Parallel Computing,
CPU-GPU Heterogeneous Architectures.
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1. Introduction

The era of single-threaded processors has come to an end due to the
limitation of the CMOS technology and in response, most hardware manu-
factures are designing and developing multi-core processors and specialized
hardware accelerators such as GPUs [6, 16, 17]. As a consequence, appli-
cations can only improve their performance if they are able to exploit the
available parallelism of the new architectures.

In this paper we study the implementation of a fast solver based on a
block cyclic reduction algorithm to tackle the linear systems that arise when
discretizing a three dimensional separable elliptic problem with standard
finite difference. A clear example of the importance of dealing efficiently
with three dimensional elliptic systems is found in the numerical simulation
of incompressible fluid flows. Indeed, the most time consuming part of almost
any incompressible unsteady Navier Stokes solver (i.e., incompressible fluid
dynamic simulation codes) is related to the solution of a pressure Poisson

equation at each time step (see for instance [12]). The achievement of a
satisfactory computational efficiency to tackle this class of elliptic partial
differential equations is therefore a key issue when simulating unsteady fluid
flow processes (turbulent flows for instance).

Other authors have addressed topics which are somehow related to the
present contribution. [5] analyzes the performance of a block tridiagonal
benchmark on GPUs. This is the first known implementation of a block
tridiagonal solver in CUDA but the pattern of the block matrices they an-
alyzed differ from our target problem. The sub-matrix element rank (m)
was assumed to be small (m = 5). In our case both m and the arithmetic
intensity of problem are higher.

For distributed multicore clusters, the BCYCLIC algorithm developed by
Hirshman et al. [3] is able to solve linear problems with dense tridiagonal
blocks. Our target algorithm, the BLKTRI code [13] is not well-suited for
dense blocks but it is the most popular approach for solving block tridiagonal
matrices which arise from separable elliptic partial differential equations.

Many authors have studied the implementation of scalar tridiagonal solver
on GPUs [8, 7, 1, 2, 4]. D. Göddeke et al. [8] proposed an efficient imple-
mentation of the Cyclic Reduction (CR) algorithm, which is used as a line
smoother in a multigrid solver. Yao Zhang et al. [7] proposed some hybrid
algorithms that combine CR with other tridiagonal solvers such as Parallel
Cyclic Reduction (PCR) or Recursive Doubling (RD). More recently, H. Kim
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et al. [4] have analyzed other hybrid algorithms and found that a combination
of PCR and Thomas gave the best overall performance.

The rest of this paper is structured as follows. Section 2 introduces the
extended block cyclic reduction algorithm used by the BLKTRI solver. Sec-
tion 3 gives a brief description of the standard algorithms for solving scalar
tridiagonal systems. In Section 4 we detail the mapping of the BLKTRI
solver on multicore and GPUs and analyze their performance and then in
Section 5 we extend our discussion to 3D problems. Finally, Section 6 con-
cludes summarizing the most relevant contributions.

2. Three Dimensional Elliptic Systems

In this section, we explain the strategy followed to solve a classical 3D
Poisson equation:

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=f(x, y, z)

defined on a Cartesian domain Ω with prescribed conditions on its boundary
∂Ω.

Discretizing the domain using a Cartesian mesh uniform along each di-
rection, for each (i, j, k) interior node we obtain:

δ2x(i, j, k) + δ2y(i, j, k) + δ2z(i, j, k) = fi,j,k (1)

where

δ2x(i, j, k) = (ui−1,j,k − 2ui,j,k + ui+1,j,k) /∆x2

δ2y(i, j, k) = (ui,j−1,k − 2ui,j,k + ui,j+1,k) /∆y2

δ2z(i, j, k) = (ui,j,k−1 − 2ui,j,k + ui,j,k+1) /∆z2

are the finite difference centred approximations to the second derivatives
along each direction. The boundary conditions that we will consider are ei-
ther of Dirichlet or Neumann type on the surfaces normal to the y and z
directions and periodic in the x one. The periodic condition aplied in one of
the directions allows to uncouple the 3D problem into a set of several inde-
pendent 2D problems (Figure 1) using a discrete Fourier transform. Hereafter
we will briefly explain how the decoupling process takes place. Let N being
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the number of equispaced nodes in the x direction that cover the interval
(0, 2π). We expand the uknown function u(x, y, z) and f(x, y, z) in Fourier
series as:

un,j,k =
1

N

N
∑

l=1

ûl,j,ke
−iα(n−1) with α =

2π(l − 1)

N
(2)

where ûl,j,k is the l
th Fourier coefficient of the expansion. Next, the expansion

is used in equation (1), obtaining the relationship:

1

N

N
∑

l=1

e−iα(n−1)

{

ûl,j,k

∆x2
(e−iα

− 2 + eiα) + δ2yûl,j,k + δ2z ûl,j,k

}

=
1

N

N
∑

l=1

F̂l,j,ke
−iαn

(3)
Equation (3) is equivalent to the set of N equations (l = 1 · · ·N):

ûl,j,k(2cos(α)− 2)

∆x2
+
ûl,j+1,k − 2ûl,j,k + ûl,j−1,k

∆y2
+
ûl,j,k+1 − 2ûl,j,k + ûl,j,k−1

∆z2
= F̂l,j,k

(4)
having used the identity eiα+ e−iα = 2cos(α). In short notation (4) reads as:

ûl,j+1,k + ûl,j−1,k

∆y2
+

ûl,j,k+1 + ul,j,k−1

∆z2
+ βlûl,j,k = F̂l,j,k, l = 1 · · ·N (5)

with βl/2 = cos(α) − 1/∆x2
− 1/∆y2 − 1∆z2. Thus, by considering the

Fourier transform (direct FFT) of F one obtains a set of N , 2D independent
problems having as unkwowns the Fourier coefficients ûl,j,k, l = 1..N . Each
independent problem concerns the solution of a linear system of equations
which coefficient matrix is block tridiagonal. Of course, each one of this
linear systems can now be solved in a distributed fashion, in parallel. Once
the solution is obtained in Fourier space a backward FFT can be used to
recast the solution in physical space. Figure (1) provides an algorithmical
sketch of the method.

To deal with each decoupled 2D problem, we have chosen a direct method
based on a block cyclic reduction algorithm. As shown above, the whole
method provides for a blend of coarse and fine-grain parallelism that can be
exploited when mapped on heterogeneous platforms.

2.1. Extended Block Cyclic Reduction

In this subsection we briefly summarize a classical direct method for the
discrete solution of separable elliptic equations based on a block cyclic re-
duction algorithm [13]. This method is commonly used when tackling the
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FFT

’N’ uncoupled problems

Several 2D problems

’N’ Discretized points

3D Problem

Figure 1: The Fourier based decoupling algorithm

solution of a linear system of equations arising from the second order cen-
tered finite difference discretization of 2D separable elliptic equations. From
the standpoint of computational complexity (speed and storage), for a m×n
net, its operation count is proportional to mn log2 n, and the storage require-
ments are minimal, since the solution is returned in the storage occupied by
the right side of the equation (i.e., m×n locations are required). More in de-
tails, consider the 2D separable elliptic equation having u(x, y) as unknown
field (Poisson equation is a particular case of what follows):

∂

∂x

(

a(x)
∂u

∂x

)

+ b(x)
∂u

∂x
+ c(x)u+

∂

∂y

(

d(y)
∂u

∂y

)

+ e(y)
∂u

∂y
+ f(y)u = g(x, y)

(6)
If we discretize (6) with given Dirichlet or Neumann boundary conditions

assigned on the edges of a square, using the usual five-point scheme with
the discrete variables ordered in a lexicographic fashion, we obtain a linear
system of m × n equations (having m nodes in the x direction and n in y
one): Aũ = g̃, where A is a block tridiagonal matrix:

A =

















B1 C1 0
A2 B2 C2

. . .
. . .

An−1 Bn−1 Cn−1

An Bn

















and the vectors ~u and ~g are consistently split as a set of sub-vectors ~uj and
~gj, j = 1 · · ·n, of length m each (i.e., the solution along the jth domain row):

u = [ũ1, ũ2, · · · · · · ũn]
T
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g = [ỹ1, ỹ2, · · · · · · ỹn]
T

There is no restriction on m; however, cyclic reduction algorithms require
n = 2k, with large values of k for optimal performances. The blocks Ai, Bi

and Ci are m × m square matrices. In particular, the BLKTRI algorithm
requires them to be of the form:

Ai = aiI (7)

Bi = B + biI (8)

Ci = ciI (9)

where ai, bi and ci are scalars. Having used a standard five point stencil for
the discretization of (6), the matrix B is of tridiagonal pattern. The solution
is obtained using an extended cyclic reduction algorithm which consists of the
following phases (more details are found in [13]):

1. Preprocessing. This phase consists of computing the roots of certain
matrix polynomials. This set of intermediate results only depends on
the entries of A (not on the right hand side rhs of the equation ).

2. Recursive Reduction. A sequence of linear systems is generated
starting from the original complete one by decoupling odd and even
equations. At each step, or level r, about half the unknown vector ~ui is
reduced by eliminating essentially half the remaining unknown vectors

until a single unknown vector ~uk
2 remains.

3. Back-substitution. The solution vectors ~ui are determined by first

solving the final system generated in the above phase ~uk
2. Then the

linear systems are solved in reverse order determining more ~ui solution
vectors, using those ~ui previously computed.

Overall, during the reduction phase the following equations are solved
[13]:

q
(r)
i = (Br

i )
−1Br−1

i−2r−1B
r−1
i+2r−1p

(r)
i (10)

p
(r+1)
i = αr

i (B
r−1
i−2r−1)

−1q
(r)
i−2r + γr

i (B
r−1
i+2r−1)

−1q
(r)
i+2r − pri (11)

where g is split in two different terms, q and p. B stores the roots
calculated in the preprocessing phase. This procedure is required to stabilize
the method [13]. α and γ have the following form:
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α
(r)
i =

i
∏

j=i−2r+1

aj (12)

γ
(r)
i =

i+2r−1

∏

j=1

cj (13)

Conversely, in the last phase the following equations are solved [13]:

for r = k, k − 1, . . . , 0 and i = 2r, 3× 2r, 5× 2r, . . . , 2k−r
× 2r :

ui = (Br
i )

−1Br−1
i−2r−1B

r−1
i+2r−1

[

p
(r)
i − αr

i (B
r−1
i−2r−1)

−1ui−2r − γr
i (B

r−1
i+2r−1)

−1ui+2r

]

(14)
This method is implemented in a FORTRAN package library called FISH-

PACK (the BLKTRI routine), which is widely used and well known within
the computational fluid dynamics community[14].

To obtain the aforementioned terms the solution of a set of scalar tridi-
agonal systems of equations must be faced. The solution of these systems
represent the most expensive stage of the algorithm. Nevertheless, other
basic mathematical operations such as vectors sums or scalar vector multi-
plications introduce a non negligible cost.

3. Parallel Tridiagonal Algorithms

As mention above, a key element of the BLKTRI algorithm is how to solve
a set of scalar tridiagonal systems. The original BLKTRI implementation in
the fishpack package makes use of the Thomas algorithm (TA) [15]. TA is a
specialized application of the Gaussian elimination that takes into account
the tridiagonal structure of the system. TA consists of two stages, commonly
denoted as forward elimination and backward substitution.

Given a linear Au = y system, where A is a tridiagonal matrix:

A =

















b1 c1 0
a2 b2 c2

. . .
. . .

an−1 bn−1 cn−1

an bn
















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The forward stage eliminates the lower diagonal as follows:

c′1=
c1
b1
, c′i=

ci
bi−c′

i−1ai
for i = 2, 3, . . . , n− 1

y′1=
y1
b1

, y′i=
yi−y′

i−1ai
bi−c′

i−1ai
for i = 2, 3, . . . , n− 1

and then the backward stage recursively solve each row in reverse order:

un = y′n, ui = y′i − c′iui+1 for i = n− 1, n− 2, . . . , 1

Overall, the complexity of TA is optimal: 8n operations in 2n− 1 steps.
Unfortunately, this algorithm is purely sequential.

Cyclic Reduction (CR) [21, 7, 4] is a parallel alternative to TA. It also
consists of two phases (reduction and substitution). In each intermediate step
of the reduction phase, all even-indexed (i) equations aixi−1+bixi+cixi+1 = di
are reduced. The values of ai, bi, ci and di are updated in each step according
to:

a′i = −ai−1k1, b
′

i = bi − ci−1k1 − ai+1k2 c′i = −ci+1k2, y
′

i = yi − yi−1k1 − yi+1k2

k1=
ai
bi−1

,k2=
ci

bi+1

After log2 n steps, the system is reduced to a single equation that is solved
directly. All odd-indexed unknowns xi are then solved in the substitution
phase by introducing the already computed ui−1 and ui+1 values:

ui=
y′
i
−a′

i
xi−1−c′

i
xi+1

b′
i

Overall, the CR algorithm needs 17n operations and 2 log2 n− 1 steps. Fig-
ure 2 graphically illustrates its access pattern.

Parallel Cyclic Reduction (PCR) [22, 7, 4] is a variant of CR, which only
has substitution phase. For convenience, we consider cases where n = 2s,
that involve s = log2 n steps. Similarly to CR a, b, c and y are updated as
follows, for j = 1, 2, . . . , s and k = 2j−1 :

a′i = αiai, b
′

i = bi + αici−k + βiai+k

c′i = βici+1, y
′

i = bi + αiyi−k + βiyi+k

αi=
−ai
bi−1

,βi=
−ci
bi
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4 6 8

84

2 6 84

84

2 6

1 3 5 7

1 3 5 7

2

Figure 2: Access pattern of the CR algorithm.

finally the solution is achieved as:

ui=
y′
i

bi

Essentially, at each reduction stage, the current system is transformed into
two smaller systems and after log2 n steps the original system is reduced to
n independent equations. Overall, the operation count of PCR is 12n log2 n.
Figure 3 sketches the corresponding access pattern.

4 6 83 5 721

4 6 83 5 721

4 6 83 5 721

4 6 83 5 721

Figure 3: Access pattern of the PCR algorithm.

We should highlight that apart from their computational complexity these
algorithms differ in their data access and synchronization patterns, which also
have a strong influence on their actual performance. For instance, in the CR
algorithm synchronizations are introduced at the end of each step and its cor-
responding memory access pattern may cause bank conflicts. PCR needs less
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steps and its memory access pattern is more regular [7]. In fact, hybrid com-
binations that try to exploit the best of each algorithm have been explored
[7, 1, 2, 4]. Figure 4 illustrates the access pattern of the CR-PCR combina-
tion proposed in [7]. CR-PCR reduces the system to a certain size using the
forward reduction phase of CR and then solves the reduced (intermediate)
system with the PCR algorithm. Finally, it substitutes the solved unknowns
back into the original system using the backward substitution phase of CR.

4 6 8

84

2 6 84

1 3 5 7

2 6

1 3 5 7

2

PCR

Figure 4: Communications pattern for the CR-PCR algorithm.

4. Parallel Block Cyclic Reduction

The reduction and back-substitution phases are the core of the BLKTRI
algorithm. In this section we focus on describing how to map these phases
onto GPUs. The mapping on multicore systems requires less transformations
to the original BLKTRI code. In this case, the most effective scheme consists
in using a coarse-grain strategy for distributing the independent tridiagonal
problems that arise at the different steps of the algorithm across the different
cores. This way, these tridiagonal systems are solved sequentially on each
core using the optimal TA algorithm. This distribution is well balanced and
data locality is optimized mapping a subset of continuous systems onto each
core. The original FISHPACK BLKTRI routine can be easily parallelized
with this approach annotating some of its loops with Open-MP pragmas.

For our mapping on GPUs, we have identified four main kernels, which
are graphically illustrated, along with their dependencies, in Figure 5. All
data need to be uploaded to the GPU memory before launching the q kernel
and finally, the solution u is transferred back to the CPU memory. For
convenience, we have denoted αr

i (B
r−1
i−2r−1)−1q

(r)
i−2r as α and γr

i (B
r−1
i+2r−1)−1q

(r)
i+2r

as γ. The p kernel consists on the addition of three vectors. The core of
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the computation is performed in the remaining three kernels, which share
a similar pattern sketched in the Generic Tridiagonal Kernel. Essentially,
these three kernels solve an independent set of tridiagonal systems but differ
on their pre- and post-processing calculations.

[q]
1

[q]
1

R
ed

uc
tio

n

1
[α]

nr
[p]

S
ub

st
itu

tio
n

α−γkernel       (Red.)

[α]
i

[γ]
i

[α]
nr

[γ]
1

[α]
i

[γ]
i

[γ]
nr

1
[α] [γ]

1
[α]

nr
[γ]

nr

kernel q

kernel p

[q]
nr

Step r=1

Step r=2

[p]

[q]
i

i

kernel       (Sub.)α−γ

kernel u

Step r=1

Step r=2

[u]
i

[u] [u]
1 nr

Generic Tridiagonal Kernel 

2

}

post−processing

tridiagonal_solver

pre−processing

r−1
for i=1 ...     {

Figure 5: Main kernels of the reduction and substitution phases of the BLKTRI algorithm.

Figure 6 illustrates with more detail the mapping of the generic kernel
on the GPU. Figure 6-top shows a coarse-grain scheme similar to the multi-
core counterpart. In this coarse distribution a set of tridiagonal systems is
mapped onto a CUDA block so that each CUDA thread fully solves a system
using the TA algorithm. Unfortunately, this approach, which is relatively
easy to implement, does not exploit efficiently the memory hierarchy of the
GPU since the memory footprint of each CUDA thread becomes too large.
Previous research has shown that fine-grain alternatives based on PCR are
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more efficient [7, 4, 9]. In this case (Figure 6-bottom), each tridiagonal sys-
tem is distributed across the threads of a CUDA block so that the shared
memory of the GPU can be used more effectively (both the matrix coeffi-
cients and the right hand side of each tridiagonal system are hold on the
shared memory of the GPU).

1
[t] [t] [t] [t]

i j nr

Cuda 
Block nr

Cuda 
Block j

Cuda 
Block 1

[t]
j

Cuda Cuda
Thread j Thread nr

Cuda
Thread 1

Cuda
Thread i

Cuda Block 1

1
[t] [t]

nr

Figure 6: Coarse (top) and fine (bottom) distributions of the generic kernel.

We should highlight that the arithmetic intensity of our generic tridiago-
nal kernels is higher than the synthetic tridiagonal benchmarks analyzed by
previous research [7, 4, 5]. This is an advantage when using the GPU as an
accelerator since the impact of CPU-GPU data transfers on performance is
much lower.

Figure 7-top (strong scaling) compares the different approaches using as
a simplified test a single 1024× 1024 2D problem. This is a relatively small
2D problem but note that it arises from the solution of a 3D problem. These
tests have been run on an heterogeneous platform, whose main features are
2 CPUs Intel E5-2650 (up to 8 cores and 16 threads per processor) with 128
GB DDR3-1600 of RAM memory and 1 GPU nVidia K20c (Kepler) with
2496 CUDA cores and 5 GB GDDR5 of device memory. We have used Fe-
dora Linux 16 and the compiler The Portland Group (PGI) Fortran (flags
-fast -Mipa=fast,inline -mp -Mcuda). Each step of the algorithm has a dif-
ferent level of parallelism but, as shown in Figure 7-top, the computational
load of all of them are similar since as the level of parallelism reduces, the
number of iterations of the generic tridiagonal kernel increases. The parallel
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implementations outperform the sequential BLKTRI routine in most cases.
Only for the steps with reduced parallelism, the GPU version becomes in-
effective. This is the expected behavior since in these cases the number of
CUDA blocks is very small, being just one CUDA block in the last (first)
step of the reduction (substitution) phase.
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Figure 7: Execution time (top) and Speedup (bottom) on each step of the reduction (left)
and substitution (right) phases of the extended 2D block cyclic reduction.

Figure 7-bottom shows the speedup at each step of the extended block
cyclic reduction algorithm over the sequential counterpart. As mention
above, the coarse thread distribution based on the TA algorithm does not
perform well on GPUs, but on multicore, this coarse approach does provide
satisfactory speedups across all steps despite this is a small problem, achiev-
ing best performance when running 16 threads on 2 CPUs and 16 cores. On
GPUs, PCR provides satisfactory speedups on the first (last) steps of the
reduction (substitution) phases and is able to outperform CR and the hybrid
CR-PCR algorithms across all steps.

According to these results, the optimal approach appears to be an het-
erogeneous combination of PCR on the GPU and TA (16 threads) on mul-
ticore for those steps with lower parallelism. Nevertheless, this combination
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Figure 8: Total execution time (left) and trend of the speedup (right) increasing the size
of the problem.

requires additional CPU-GPU data transfers that may degrade the actual
performance. Figure 8 shows the overall speedups on Kepler for different
problem sizes taking into account these data transfer overheads. We have
fixed 5 different computing platforms and increased the size of the problem
to carry out a weak scaling study. The heterogeneous approach is able to
outperform the homogeneous multicore counterpart in all cases. A fully ho-
mogeneous GPU implementation (not shown in Figure 8) does not provide
satisfactory results since in those steps with low parallelism, its performance
becomes very inefficient.

5. Parallel Three Dimensional Elliptic Systems

In this Section we present the proposed approaches to solve in parallel
a Three Dimensional Elliptic Systems problem on heterogeneous platforms.
The FFT method can be computed in parallel on both multicore and GPUs
platforms. This is a well know problem and there are several libraries that
provide satisfactory results [18, 19, 20]. We have focused instead on solving
the set of independent 2D problems in parallel, which is the main contribution
of this work. In the 2D case, the homogeneous GPU implementation does
not provide satisfactory results and the heterogeneous counterpart is able to
achieve the best performance. We want to know if this is still valid for the
3D problem.

Figure 9-left graphically sketches the parallel profile of a 2D problem.
We have highlighted three different stages: two of them have a high level of
parallelism (blue areas) while the red one has limited parallelism as explained
in the previous Section. In the 3D case (Figure 9-right) we need to solve a set
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of independent 2D problems and hence, the amount of parallelism increases
in all the steps by a problem size factor, which we have denoted as the S
factor.

High

Low

High

Low

R
ed

uc
tio

n
S

ub
st

itu
tio

n ’N’ Problems

R
ed

uc
tio

n
S

ub
st

itu
tio

n

High

High

Figure 9: Amount of parallelism for one 2D block tridiagonal problem (left) and for a set
of independent 2D block tridiagonal problems (right).

The mappings of a 3D problem on our target computing platforms are
similar to their 2D counterparts. On multicore, we follow a coarse-grain
approach mapping a set of 2D problems on each core, which are solved se-
quentially using the TA algorithm. On GPUs, we follow a fine-grain approach
based on the PCR algorithm, which is essentially the same as the 2D case.
The major different is the number of CUDA blocks at each step, which is
S times higher in 3D. An heterogeneous combination of the multicore and
GPU implementation is also possible, as in the 2D case. The data transfers
overheads are potentially much lower than in the 2D case since it is possible
to perform them asynchronously. As shown graphically in Figure 10, this al-
lows the overlapping of data transfers with useful computation on the GPUs
or the CPUs, and indirectly, of GPUs with CPUs computation.
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Figure 10: Heterogeneous approach.
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Figure 11 (strong scaling) compares the homogeneous multicore and GPU
implementations using as a test case a 512×512×512 problem. Unlike the 2D
case, the speedup figures are less dependent on the step of the algorithm due
to the higher level of parallelism. In fact, in all the steps the speedup figures
are close to the highest speedup attainable in the 2D case. Another impor-
tant consequence is that the GPU version always outperforms the multicore
counterpart.
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Figure 11: Execution time (top) and speedup (bottom) obtained in each step in the
reduction (left) and substitution (right) phases.

These results question the potential benefits that the heterogeneous strat-
egy could achieve since it seems that the homogeneous GPU implementation
is able to exploit all the available parallelism. Figure 12 (weak scaling)
compares the homogeneous and heterogeneous approaches. First, we should
highlight that in the homogeneous GPU implementation data transfers incur
a very small overhead (lower than 2% of the execution time). This is the
expected behavior since the arithmetic intensity of the 3D problem is very
high. In spite of this, the heterogeneous approach is able to outperform the
homogeneous counterpart since it benefits from actual GPUs-CPUs overlap-
ping. As shown in Figure 12, these gains grow with the “S” factor. Overall,
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Figure 12: Execution time (s) (left) and speed up (right) for all the implementations.

the extra benefit of the heterogeneous implementation can reach up to 15 %
in terms of execution time over the homogeneous GPU counterpart.

6. Conclusions

The efficient solution of block tridiagonal linear systems is of crucial im-
portance since it is the major bottleneck of several large scale simulation
codes dealing with time-dependent elliptic partial differential equations. We
have analyzed the performance of different parallel implementation that ex-
ploit homogeneous multicores and GPUs systems, as well as heterogeneous
multicores-GPUs platforms.

On multicore, a coarse grain approach based on the Thomas algorithm is
the best option for solving the intermediate scalar tridiagonal systems that
arise on both 2D and 3D problems. In contracts, on GPUs it is much better
a fine grain alternative based on using the PCR algorithm.

As expected, an heterogeneous approach that combines both implemen-
tations is the best option on 2D problems. For 3D problems, we have shown
that this is also the best choice despite the 3D problem has both higher
arithmetic intensity and higher parallelism than the 2D case. Indeed, the
homogeneous GPUs implementation outperform the multicore counterpart
even for medium size 3D problems. However, the heterogeneous approach
benefits from CPUs-GPUs overlapping an is able to achieve an additional
15% performance gain.

17



Acknowledgments

This work has been supported by the Spanish Consolider grant Super-
computación y e-Ciencia (SyeC) (Ref: CSD2007-00050).

References

[1] N. Sakharnykh, Efficient tridiagonal solvers for ADI methods and fluid
simulation, NVIDIA GPU Technology Conference, September 2010.

[2] A. Davidson, Y. Zhang, and J. D. Owens, An auto-tuned method for
solving large tridiagonal sysstonetems on the GPU, in Proceedings of the
25th IEEE International Parallel and Distributed Processing Symposium,
May 2011.

[3] S. P. Hirshman, K. S. Perumalla, V. E. Lynch, R. Sanchez, BCYCLIC: A
parallel block tridiagonal matrix cyclic solver, Journal of Computational
Physics, Volume 229, Issue 18, 2010, 6392-6404.

[4] H.-S. Kim, S. Wu, L.-W. Chang, W.-m. W. Hwu: A Scalable Tridiagonal
Solver for GPUs. ICPP 2011: 444-453.

[5] C. P. Stone, E. P. N. Duque, Y. Zhang, D. Car, J. D. Owens, and R.
L. Davis. GPGPU parallel algorithms for structured-grid CFD codes. In
Proceedings of the 20th AIAA Computational Fluid Dynamics Confer-
ence, number 2011-3221, June 2011.

[6] D. Geer. Chip markets turn to multicore processors. Computer, 38(5):11-
13, 2005.

[7] Y. Zhang, J. Cohen, J. D. Owens. Fast Tridiagonal Solvers on the GPU.
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), 127-136, 2010.

[8] D. Goddeke, R. Strzodka. Cyclic Reduction Tridiagonal Solvers on GPU
Applied to Mixed-Precision Multigrid. IEEE Transactions on Parallel and
Distributed System, 22:22-32, 2010.

[9] Pedro Valero-Lara, Alfredo Pinelli, Julien Favier, Manuel Prieto-Mat́ıas.
Block Tridiagonal Solvers on Heterogeneous Architectures. The 10th
IEEE International Symposium on Parallel and Distributed Processing
with Applications (ISPA), 2012.

18



[10] W.-C. Feng, D. Manocha. High-performance computing using accelera-
tors, Parallel Computing, Elsevier, 33:645-647, 2007.

[11] GPGPU. General-purpose computation using graphics hardware. http:
//www.gpgpu.org.

[12] J. L. Guermond, P. Minev, J. Shen. An overview of projection methods
for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195(44-
47): 6011-6045, 2006.

[13] P. N. Swarztrauber. A Direct Method for the Discrete Solution of Sep-
arable Elliptic Equations. SIAM J. Numer. Anal. 11:1136-1150, 1974.

[14] FISHPACK. http://www.cisl.ucar.edu/css/software/fishpack/

[15] S.D. Conte, C. de Boor. Elementary Numerical Analysis, McGraw-Hill,
1976.

[16] R. Buchty, V. Heuveline, W. K., J.-P. Weiss. A survey on hardware-
aware and heterogeneous computing on multicore processors and accel-
erators. Concurrency and Computation: Practice and Experience 24(7):
663-675, 2012.

[17] J. Nickolls, W. J. Dally. The GPU Computing Era. IEEE Micro 30(2):
56-69, 2010.
Parallel Computing, Elsevier, 33:645-647, 2007.
Cg: a system for programming graphics hardware in a C-like language.
SIGGRAPH’03: ACM SIGGRAPH, 896-907, 2003.

[18] FFT OpenMP, Fast Fourier Transform Using OpenMP. http:

//people.sc.fsu.edu/~jburkardt/c_src/fft_openmp/fft_openmp.

html

[19] 3D FFT. http://charm.cs.uiuc.edu/cs498lvk/projects/kunzman/
index.htm

[20] NVIDIA. The NVIDIA CUDA Fast Fourier Transform library (cuFFT).
http://developer.nvidia.com/cuda/cufft

[21] R. W. Hockney. A fast direct solution of Poisson’s equation using Fourier
analysis. Journal of the ACM, 12(1):95-113, 1965.

19



[22] R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger,
Bristol, 1981.

20


