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CONJECTURES OF ALPERIN AND BROUÉ FOR 2-BLOCKS WITH

ELEMENTARY ABELIAN DEFECT GROUPS OF ORDER 8

RADHA KESSAR, SHIGEO KOSHITANI, AND MARKUS LINCKELMANN

Abstract. Using the classification of finite simple groups, we prove Alperin’s weight conjecture
and the character theoretic version of Broué’s abelian defect conjecture for 2-blocks of finite
groups with an elementary abelian defect group of order 8.

1. Introduction

Throughout this paper p is a prime and O a complete discrete valuation ring having an alge-
braically closed residue field k of characteristic p and a quotient field K of characteristic 0, which is
always assumed to be large enough for the finite groups under consideration. For G a finite group,
a block of OG or kG is a primitive idempotent b in Z(OG) or Z(kG), respectively. The canonical
map OG → kG induces a defect group preserving bijection between the sets of blocks of OG and
kG. By Brauer’s First Main Theorem there is a canonical bijection between the set of blocks of kG
with a fixed defect group P and the set of blocks of kNG(P ) with P as a defect group. Alperin’s
weight conjecture predicts that the number ℓ(b) of isomorphism classes of simple kGb-modules is
an invariant of the local structure of b. For b a block of kG with an abelian defect group P , de-
noting by c the block of kNG(P ) corresponding to b, Alperin’s weight conjecture holds if and only
if the block algebras of b and c have the same number of isomorphism classes of simple modules,
or equivalently, the same number of ordinary irreducible characters. Thus, for blocks with abelian
defect groups, Alperin’s weight conjecture would be implied by any of the versions of Broué’s
Abelian Defect Conjecture, predicting that there should be a perfect isometry, or isotypy, or even
a (splendid) derived equivalence between the block algebras, over O, of b and c. Alperin announced
the weight conjecture in [1]. At that time, the conjecture was known to hold for all blocks of finite
groups with cyclic defect groups (by work of Brauer and Dade), dihedral, generalised quaternion,
semidihedral defect groups (by work of Brauer and Olsson), and all defect groups admitting only
the trivial fusion system (by the work of Broué and Puig on nilpotent blocks). Since then many
authors have contributed to proving Alperin’s weight conjecture for various classes of finite groups
- such as finite p-solvable groups (Okuyama), finite groups of Lie type in defining characteristic
(Cabanes), symmetric and general linear groups (Alperin, Fong, An) and some sporadic simple
groups (An).

Theorem 1.1. Suppose p = 2. Let G be a finite group and let b be a block of kG with an elementary
abelian defect group P of order 8. Denote by c the block of kNG(P ) corresponding to b. Then b and
c have eight ordinary irreducible characters and there is an isotypy between b and c; in particular,
Alperin’s weight conjecture holds for all blocks of finite groups with an elementary abelian defect
group P of order 8.

1

http://arxiv.org/abs/1012.3553v1


For principal blocks, Theorem 1.1 follows from work of Landrock [48] and Fong and Harris [34].
Theorem 1.1 implies Alperin’s weight conjecture for all blocks with a defect group of order at most
8. Indeed, the groups C2, C4, C8 and C2×C4 admit no automorphisms of odd order, hence arise as
defect groups only of nilpotent blocks, and by work of Brauer [10], [11] and Olsson [62], Alperin’s
weight conjecture is known in the case of C2 × C2, D8 and Q8. Using a stable equivalence due
to Rouquier we show in Theorem 5.1 that for blocks with an elementary abelian defect group of
order 8 Alperin’s weight conjecture implies Broué’s isotypy conjecture.

The proof of Theorem 1.1 uses the classification of finite simple groups. By the work of Landrock
already mentioned, Alperin’s weight conjecture holds for blocks with an elementary abelian defect
group of order 8 if and only if all irreducible characters in the block have height zero (this is the ‘if’
part of Brauer’s height zero conjecture, which predicts that all characters in a block have height
zero if and only if the defect groups are abelian). This part of Brauer’s height zero conjecture has
been reduced to quasi-simple finite groups by Berger and Knörr [5]; we verify in Theorem 4.1 that
this reduction works within the realm of blocks with an elementary abelian defect group of order at
most 8 and certain fusion patterns. We finally prove Alperin’s weight conjecture for blocks with an
elementary abelian defect group of order 8 for quasi-simple groups in the remaining sections. For
certain classes, such as central extensions of alternating groups, sporadic groups or finite groups of
Lie type defined over a field of characteristic 2, this is a simple inspection (based on calculations
and well-known results by many authors) and yields results for higher rank defect groups as well:

Theorem 1.2. Suppose p = 2. Let G be a quasi-simple finite group such that Z(G) has odd order.

(i) If G/Z(G) is isomorphic to an alternating group An, n ≥ 5, then kG has no block with an
elementary abelian defect group of order 2r, where r ≥ 3.

(ii) If G/Z(G) is a sporadic simple group or a finite group of Lie type defined over a field of
characteristic 2 and if kG has a block b with an elementary abelian defect group of order 2r, where
r ≥ 3, then either b is the principal block of PSL2(2

r) or r = 3 and b is the principal block of J1,
or b is a non-principal block of Co3, and Alperin’s weight conjecture holds in these cases.

This follows from combining 6.3, 8.1, 8.2 and 9.1 below. Before embarking on the verification
for finite groups of Lie type defined over a field of odd characteristic, we need further background
material on these groups and their local structure, collected in the sections §10, §11. Assembling
these parts yields the proof of 1.1 in §20. It is noticeable how few blocks of quasi-simple groups
have an elementary abelian defect group - and when they do, many of them are nilpotent:

Theorem 1.3. Suppose p = 2. Let q be an odd prime power and G a finite quasi-simple group.
Suppose that Z(G) has odd order.

(i) If G/Z(G) is a simple group of Lie type An(q) or 2A(q) and if b is a block of kG with an
elementary abelian defect group of order 2r for some r ≥ 3 then r is even and b satisfies Alperin’s
weight conjecture.

(ii) If G/Z(G) is a simple group of Lie type Bn(q), Cn(q), Dn(q) then every block of kG with an
elementary abelian defect group of order 2r for some integer r ≥ 3 is nilpotent.

(iii) If G/Z(G) is simple of type G2(q) or
3D4(q) then kG has no block with an elementary abelian

defect group of order 2r, where r ≥ 3.

(iv) If G/Z(G) is simple of type 2G2(q) and if b is a block of kG with an elementary abelian defect
group of order 2r, where r ≥ 3, then r = 3 and b is the principal block of 2G2(q), and Alperin’s
weight conjecture holds in this case.
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This follows from combining Corollary 10.2, the Theorems 12.1, 13.1, 14.1 and the Propositions
15.1, 15.2, 15.3 below. Note the absence of the exceptional types F and E in the above result - we
do not know whether these groups actually have blocks with elementary abelian defect groups of
order 8. What we show is that if they do then these blocks satisfy Alperin’s weight conjecture. At
present there seems to be no general reduction for blocks with elementary abelian defect groups of
order 2r for r ≥ 4, but the above results for quasi-simple groups would allow us to settle Alperin’s
weight conjecture in infinitely many cases if we did have a satisfactory reduction. More precisely,
using the above results and the fact (see [22, Corollary]) that the 2-rank of exceptional finite simple
groups of Lie type in odd characteristic is at most 9 we obtain the following.

Corollary 1.4. Suppose p = 2. Let be G a finite quasi-simple group such that Z(G) has odd order.
Every block of kG with an elementary abelian defect group of order 2r for some integer r ≥ 10
satisfies Alperin’s weight conjecture.

2. Reduction techniques

For general background on block theory we refer to [73]. Given a finite group G and a block
b of OG or of kG, we denote by IrrK(G, b) the set of ordinary irreducible K-valued characters
of G associated with b and by Irrk(G, b) the set of irreducible Brauer characters of G associated
with b. We set ℓ(b) = |Irrk(G, b)|. We denote by ZIrrK(G, b) the group of class functions on G
generated by IrrK(G, b), and by ZIrrk(G, b) the corresponding group of class functions on the set
of p-regular elements in G. By a classical result of Brauer, the decomposition map ZIrrK(G, b) →
ZIrrk(G, b) induced by restriction of class functions to p-regular elements is surjective. The kernel
of the decomposition map, denoted by L0(G, b), consists of all class functions associated with
b which vanish on the set of p-regular elements of G, or equivalently, all generalised characters
in ZIrrK(G, b) which are perpendicular to the characters of the projective indecomposable OG-
modules associated with b. We write L0(G) instead of L0(G, 1) if OG is indecomposable as an
O-algebra. We denote by Cn a cyclic group of order n. For G a finite group and α ∈ H2(G; k×)
we denote by kαG the twisted group algebra which is equal to kG as a k-vector space, endowed
with the bilinear multiplication x · y = α(x, y)(xy), for x, y ∈ G, where α denotes abusively a
2-cocycle representing the class α (and one verifies that this construction is, up to isomorphism,
independent of the choice of this 2-cocycle). If b is a block of kG with a defect group P and if c
is the corresponding block of kNG(P ) then c is a sum of NG(P )-conjugate block idempotents of
kCG(P ); for any choice e of such a block idempotent of kCG(P ) the group E = NG(P, e)/PCG(P )
is called the inertial quotient of b. This is a p′-subgroup of the outer automorphism group of
P , unique up to conjugacy by an element in NG(P ), hence lifts uniquely, up to conjugacy, to a
p′-subgroup of Aut(P ), still abusively denoted E and called inertial quotient. By there is α ∈
H2(E; k×) such that kNG(P )c is Morita equivalent to the twisted group algebra kα(P ⋊E), where
α is extended trivially from E to P ⋊ E. We review some of the standard reduction techniques
due to Dade, Fong, Külshammer, Puig, Reynolds. The reduction techniques work irrespective of
the characteristic, so for now, p is an arbitrary prime.

Proposition 2.1 (Fong-Reynolds reduction [33], [67]). Let G be a finite group, N a normal
subgroup of G, c a G-stable block of kN and b a block of kG such that bc = b. Let P be a defect
group of b. If P ∩N = 1 then kNc is a block of defect zero and we have a canonical isomorphism

kGc ∼= kNc⊗k kα(G/N)
3



for some α ∈ H2(G/N ; k×) such that kGb is Morita equivalent to a block b̂ of a finite central
p′-extension of G/N via a bimodule with diagonal vertex ∆P and endo-permutation source.

See for instance [40, 4.4] for an explicit description of this isomorphism. The previous result has
been generalised by Külshammer as follows:

Proposition 2.2 (Külshammer [46, Proposition 5, Theorem 7]). Let G be a finite group, N a
normal subgroup of G, c a G-stable block of kN and b a block of kG such that bc = b. Suppose that
for any x ∈ G conjugation by x induces an inner automorphism of kNc. Then there is a canonical
isomorphism

kGc ∼= kNc ⊗Z(kNc) Z(kNc)α(G/N)

for some α ∈ H2(G/N ; (Z(kNc))×). Moreover, if N contains a defect group P of b then the blocks
kGb and kNc are source algebra equivalent.

As before, this isomorphism can be described explicitly; see e.g. [24, 2.1].

Proposition 2.3 (Dade [25, 3.5, 7.7]). Let G be a finite group, N a normal subgroup of G, c a
G-stable block of kN and b a block of kG such that bc = b. Suppose that no element x ∈ G − N
acts as inner automorphism on kNc. Then b = c and G/N has order prime to p.

Proposition 2.4 (Puig [66, 4.3]). Let G be a finite group, N a normal subgroup of G, c a G-stable
block of kN and b a block of kG such that bc = b. Suppose that b is nilpotent. Then the block
algebra of c is Morita equivalent to its Brauer correspondent via a Morita equivalence induced by
a bimodule with endo-permutation source; in particular, c satisfies Alperin’s weight conjecture.

3. Background material on blocks with defect group C2 × C2 × C2

We assume from now on that p = 2. Let P ∼= C2 × C2 × C2 be an elementary abelian group of
order 8. The order of GL3(2) is 8 · 21, from which one easily deduces that a non-trivial subgroup
E of Aut(P ) of odd order has either order 3 or 7, or is a Frobenius group of order 21. In all cases,
E has a trivial Schur multiplier, and hence any block with a normal defect group P has as source
algebra k(P ⋊E). What is unusual in this case is that the number of characters at the local level
does not depend on fusion (this is well-known; we include a sketch of a proof for the convenience
of the reader):

Proposition 3.1. Let P be an elementary abelian group of order 8 and E a subgroup of Aut(P )
of odd order. The group P ⋊ E has 8 ordinary irreducible characters.

Proof. This is trivial if E = 1. Suppose that |E| = 3. Then E fixes an involution in P , hence
P ⋊ E ∼= C2 × (V4 ⋊ C3), from which the statement follows. If |E| = 7 then P ⋊ E is a Frobenius
group with E acting transitively on the involutions in P , which implies the result. The only
remaining case is where E is a Frobenius group C7⋊C3. In that case, E has 5 characters, three of
degree 1 with C7 in the kernel, and two more of degree 3 corresponding to the non-trivial C3-orbits
in the character group of C7. Using the fact that the degrees of irreducible characters of P ⋊ E
divide |E| and that the square of their degrees sums up to |P ⋊ E| = 168 one finds that there are
three further irreducible characters of degree 7. �

Landrock showed the inequality ℓ(b) ≤ 8 of Alperin’s weight conjecture for 2-blocks b with an
elementary abelian defect group P of order 8 without the classification of finite simple groups.
Landrock’s results are more precise in that they also include information about defects and heights
of characters; we briefly recall these notions. Given a block b of OG or of kG with a defect group
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P of order pd, the defect of a character χ in the set IrrK(G, b) of irreducible K-valued characters
associated with b is the integer d(χ) such that pd(χ) is the largest power of p dividing the rational

integer |G|
χ(1) . It is well-known that d(χ) ≤ d; the integer h(χ) = d − d(χ) is called the height

of χ. There is always at least one character in IrrK(G, b) having height zero, and it has been
conjectured by Brauer that P is abelian if and only if all characters in IrrK(G, b) have height zero.
The following summary of some of Landrock’s results in [48] implies in particular that Alperin’s
weight conjecture holds for blocks with an elementary abelian defect group of order 8 if and only
if all characters in those blocks have height zero.

Proposition 3.2 (Landrock, [48, 2.1, 2.2, 2.3]). Let G be a finite group and b a block of kG
with an elementary abelian defect group P of order 8 and inertial quotient E ≤ Aut(P ). Then
5 ≤ |IrrK(G, b)| ≤ 8. If |IrrK(G, b)| = 8 then all characters in IrrK(G, b) have height zero. If
|IrrK(G, b)| < 8 then exactly four characters in IrrK(G, b) have height zero, the remaining charac-
ters have height one, and ℓ(b) = 4. Moreover, the following hold.

(i) If E has order 1 then |IrrK(G, b)| = 8 and ℓ(b) = 1.

(ii) If E has order 3 then |IrrK(G, b)| = 8 and ℓ(b) = 3.

(iii) If E has order 7 then either |IrrK(G, b)| = 5, ℓ(b) = 4 or |IrrK(G, b)| = 8, ℓ(b) = 7.

(iv) If E has order 21 then either |IrrK(G, b)| = 7, ℓ(b) = 4 or |IrrK(G, b)| = 8, ℓ(b) = 5.

Besides Landrock’s original proof it is also possible to prove this as a consequence of stronger
results obtained later: the case |E| = 1 is a particular case of nilpotent blocks [17], the case |E| = 3
follows from Watanabe [76, Theorem 1]. In the case |E| = 7, the group E acts regularly on P−{1},
and by a result of Puig in [64] there is a stable equivalence of Morita type (cf. [15, §5]) between OGb
and O(P ⋊ E). Any such stable equivalence induces an isometry L0(G, b) ∼= L0(P ⋊ E) between
the generalised character groups which vanish on p-regular elements; in this case, these groups
have rank one and are generated by an element of norm 8, whence the inequality |IrrK(G, b)| ≤ 8.
If |E| = 21 then there is again a stable equivalence of Morita type, by a result of Rouquier in [71].
Again by calculating a basis of L0(P ⋊ E) - which in this case has rank 3 with a basis consisting
of three elements of norm four, one also gets this inequality. See for instance [45] for an exposition
of the well-known technique exploiting partial isometries induced by stable equivalences of Morita
type; this will be used in the proof of Theorem 5.1. The following observation is a slight refinement
of Proposition 3.2(iii) in the case where the inertial quotient has order 7 and |IrrK(G, b)| < 8.

Proposition 3.3. Let G be a finite group, b a block of kG with an elementary abelian defect group
P of order 8 and inertial quotient E of order 7. Suppose that b does not satisfy Alperin’s weight
conjecture. Then there is a labelling IrrK(G, b) = {χi | 1 ≤ i ≤ 5} with the following properties:

(i) χ1 has height one and χi has height zero, for 2 ≤ i ≤ 5.

(ii) The group L0(G, b) has rank 1 and a basis element of the form 2χ1−
∑5

i=2 δiχi for some signs
δi ∈ {±1}, 2 ≤ i ≤ 5; moreover, at least one of the δi is positive.

(iii) If i, j ∈ {2, 3, 4, 5} such that χi(1) = χj(1) then δi = δj.

Proof. Statement (i) is just a reformulation of 3.2 (iii). Using Puig’s stable equivalence of Morita
type [64, 6.8] we get that L0(G, b) ∼= L0(P ⋊ E), which is a free abelian group of rank one with
a basis element of norm 8. The only way to write a norm 8 element in L0(G, b) with less than
8 characters is with five characters, exactly one of which shows up with multiplicity 2, and then
this character must have height one, as follows from comparing character degrees in conjunction
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with the fact that every generalised character in L0(G, b) vanishes at 1. The signs δi cannot all be
negative because the group L0(G, b) does not contain any actual non-zero character (again because
its elements vanish at 1). This proves (ii). If i, j ∈ {2, 3, 4, 5} then δiχi − δjχj is orthogonal to
L0(G, b), hence a generalised projective character. In particular, at 1, its value is divisible by the
order of a Sylow 2-subgroup of G. But if χi(1) = χj(1) and δi 6= δj , this value is ±2χi(1), which
cannot be divisible by the order of a Sylow 2-subgroup of G as χi has height zero. The result
follows. �

It is not known in general whether a Morita equivalence between two block algebras preserves
their local structures, but some easy standard block theoretic arguments show that this is true,
even for stable equivalences of Morita type, if one of the two blocks has an elementary abelian
defect group of order 8.

Proposition 3.4. Let G, H be finite groups, b a block of kG with an elementary abelian defect
group P of order 8 and c a block of kH with a defect group Q. If there is a stable equivalence of
Morita type between kGb and kHc then Q ∼= P and the blocks b and c have isomorphic inertial
quotients (or equivalently, isomorphic fusion systems).

Proof. A stable equivalence of Morita type preserves the largest elementary divisors of the Cartan
matrices of the blocks, and these are equal to the orders of the defect groups, whence |Q| = |P |.
A stable equivalence of Morita type preserves also the complexity (cf. [4, 5.3.4]) of modules; since
the largest complexity of a module in a block is the rank of a defect group, we get that Q has
rank 3, and thus Q ∼= P . Alternatively, a stable equivalence of Morita type preserves the Krull
dimension of the Hochschild cohomology rings, which are also known to be equal to the ranks of the
defect groups. (This part of the argument is well-known to remain valid for blocks with arbitrary
elementary abelian defect groups, but we do not need this here.) Finally, a stable equivalence of
Morita type preserves the rank of L0(G, b), which is equal to |IrrK(G, b)| − ℓ(b), or also equal to
∑

(u,eu)
ℓ(eu), where (u, eu) runs over a set of representatives of the conjugacy classes of non-trivial

(G, b)-Brauer elements. It happens so that this number determines the structure of the inertial
quotient E of b. Indeed, by Proposition 3.2, this number is equal to 7 if and only if |E| = 1, equal
to 5 if and only if |E| = 3, equal to 1 if and only if |E| = 7, and equal to 3 if and only if |E| = 21,
whence the result. �

When dealing with the exceptional groups of type E7(q) we will need a refinement of the
preceding result because the finite group of Lie type E7(q) is a central extension of the simple
group of type E7(q) by an involution, and so Bonnafé-Rouquier’s Jordan decomposition [8, §11,
Théorème B’] will have to be applied to blocks with a defect group of order 24.

Proposition 3.5. Let G, H be finite groups, b a block of G with a defect group P and c a block of
H with a defect group Q. Suppose that there are central involutions s ∈ Z(G) and t ∈ Z(H) such
that P/〈s〉 is elementary abelian of order 8. Denote by b̄ and c̄ the images of b and c in kG/〈s〉
and kH/〈t〉, respectively. Suppose that the block algebras kGb and kHc are Morita equivalent. If
b̄ does not satisfy Alperin’s weight conjecture then neither does c̄ and the defect groups of c̄ are
elementary abelian of order 8.

Proof. Suppose that b̄ does not satisfy Alperin’s weight conjecture. Since the defect group P/〈s〉
of b̄ is elementary abelian of order 8 we have ℓ(b̄) = 4 by Proposition 3.2. Using that the number
of isomorphism classes of simple modules is invariant under central 2-extensions and Morita equiv-
alences we get that ℓ(c̄) = 4. Note that P and Q have the same order since b and c are Morita
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equivalent, and hence c̄ has a defect group R = Q/〈t〉 of order 8. If R is cyclic or abelian of rank 2
or isomorphic to one of the non-abelian groups of order 8 then then ℓ(c̄) ∈ {1, 3}, a contradiction.
So, R is elementary abelian. Now it is immediate from Proposition 3.2 that c̄ does not satisfy the
weight conjecture. �

Remark 3.6. Experts seem to agree that the Morita equivalences from Bonnafé-Rouquier’s Jordan
decomposition [8, §10, §11] should preserve the local structure of the blocks, but at present there
is no written reference for this fact. The two propositions 3.4 and 3.5 circumvent this issue by
adhoc methods.

4. Reduction to quasi-simple groups

The part of Brauer’s height zero conjecture predicting that all characters in a block with an
abelian defect group have height zero has been reduced to blocks of quasi-simple finite groups in
work of Berger and Knörr [5]. We need to make sure that in the reduction we can indeed restrict
the problem to checking only defect groups of order at most 8; this is not entirely obvious since
in Step 6 of the proof of [5, Theorem] the order of the defect group may possibly go up, an issue
which arises also in the alternative proof given by Murai in [58, §6].

Theorem 4.1. Let G be a finite group and b a block of kG with an elementary abelian defect group
P of order 8. Suppose that |G/Z(G)| is minimal such that |IrrK(G, b)| < 8. Then Z(G) has odd
order and G/Z(G) is simple. If moreover we also choose |Z(G)| minimal then G is quasi-simple.
In addition, the inertial quotient of b is either cyclic of order 7 or a Frobenius group of order 21.

Proof. If |Z(G)| is even then P ∩ Z(G) is non-trivial, hence contains a subgroup Z of order 2.
The image b̄ of b in kG/Z is then a block of kG/Z with a Klein four defect group P/Z. Thus,
since b̄ satisfies Alperin’s weight conjecture, so does b, a contradiction to the assumption. Thus
Z(G) has odd order. Let (P, e) be a maximal (G, b)-Brauer pair and set E = NG(P, e)/CG(P ). By
Proposition 3.2, the order of E is either 7 or 21. In both cases, E acts transitively on P−{1}. Thus,
if N is a normal subgroup of G then either N ∩ P = {1} or P ≤ N . Moreover, the minimality of
|G/Z(G)| implies that if N is a normal subgroup of G containing Z(G) then there is a unique block
c of kN covered by b; that is, bc = b. Let now N be a maximal normal subgroup of G containing
Z(G) and let c be the block of kN satisfying bc = b. Consider first the case P ∩N = {1}. In that
case, by Proposition 2.1, we have an isomorphism

kGc ∼= kNc⊗k kα(G/N)

for some α ∈ H2(G/N ; k×) such that kGb is Morita equivalent to a block b̂ of a finite central
2′-extension H of the simple group G/N . Consider next the case P ≤ N . Let G[c] be the subgroup
of G consisting of all x ∈ G such that conjugation by x induces an inner automorphism of kNc.
Since N is maximal normal in G we have either N = G[c] or G[c] = G. Suppose first that G[c] = G.
Then, by Proposition 2.2, we have an isomorphism

kGc ∼= kNc ⊗Z(kNc) Z(kNc)α(G/N)

for some α ∈ H2(G/N ; (Z(kNc))×), and the blocks kGb and kNc are source algebra equivalent -
but this contradicts the minimality of |G| since source algebra equivalent blocks have in particular
the same number of ordinary irreducible characters. Thus we have N = G[c]. Then, by Proposition
2.3, we have b = c and G/N has odd order. Since alsoG/N is simple, this implies that G/N is cyclic
of odd prime order ℓ, by Feit-Thompson’s Odd Order theorem. By standard results in Clifford
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theory, any η ∈ IrrK(N, c) is either G/N -stable, in which case it extends to exactly ℓ different

characters in IrrK(G, b), or IndG
N (η) ∈ IrrK(G, b). It follows that

|IrrK(G, b)| = ℓ ·m+ r < 8

where m is the number of characters in IrrK(N, c) fixed by G/N and where r is the number of
non-trivial G/N -orbits in IrrK(N, c). Since ℓ ≥ 3 we have m ≤ 2. Using induction, we have

8 = |IrrK(N, c)| = ℓ · r +m

In all possible choices of ℓ, m, r satisfying this equality we get the contradiction ℓ ·m+r ≥ 8. Thus
the assumption P ≤ N is not possible, and therefore the above implies that G/Z(G) is simple.
Finally, since G/Z(G) is simple we haveG = Z(G)[G,G], soG/[G,G] acts trivially on all characters
of [G,G], and so |IrrK(G, b)| = |IrrK([G,G], d)|, where d is a block of [G,G] satisfying bd = b. After
repeating this, if necessary, we also may assume that G is perfect, hence quasi-simple. �

5. Perfect isometries

Using Rouquier’s stable equivalence for blocks with an elementary abelian defect group of order
8, described in the Appendix below, we show that Alperin’s weight conjecture implies the character
theoretic version of Broué’s abelian defect conjecture for these blocks:

Theorem 5.1. Let G be a finite group and let b be a block of OG with an elementary abelian
defect group P of order 8. Set H = NG(P ) and denote by c the block of OH with defect group
P corresponding to b via the Brauer correspondence. Suppose that K is large enough for b and c.
If |IrrK(G, b)| = |IrrK(H, c)| then the blocks b and c are isotypic; in particular, there is a perfect
isometry ZIrrK(G, b) ∼= ZIrrK(H, c). In particular we have Z(OGb) ∼= Z(OHc).

See [13, 6.1, 6.2], [14], [15] for more precise versions of Broué’s abelian defect conjecture, as well
as background material on perfect isometries and isotypies.

Proof of Theorem 5.1. We refer to [45, §§2, 3] for notation and an expository account of the stan-
dard techniques on extending partial isometries induced by stable equivalences of Morita type.
By a result of Rouquier in [71], there is a stable equivalence of Morita type between the block
algebras of b and of c over O (a proof of this result is given in Theorem 21.1 below) given by a
bounded complex of bimodules whose indecomposable summands all have diagonal vertices and
trivial source. Denote by E the inertial quotient of b. Since the block algebra OHc is Morita
equivalent to O(P ⋊ E) via a bimodule with diagonal vertex and trivial source this implies that
there is a stable equivalence of Morita type between OGb and O(P ⋊ E), induced by a bounded
complex of bimodules with diagonal vertices and trivial source. It is well-known (see e.g. [45,
3.1]) that any such stable equivalence induces an isometry L0(P ⋊ E) ∼= L0(G, b). It suffices to
show that this partial isometry extends to an isometry ZIrrK(P ⋊ E) ∼= ZIrrK(G, b) because any
such extension is then a p-permutation equivalence by [45, 3.3], hence induces an isotypy by [50,
Theorem 1.4]. We do this by running through all possible inertial quotients E.

If E = {1} the block b is nilpotent, hence Morita equivalent to OP , and so the result holds
trivially in this case. Assume that |E| = 3. Then P ⋊E ∼= C2×A4, and hence we can list the eight
ordinary irreducible characters of P ⋊ E in such a way that the three characters of the projective
indecomposable O(P ⋊ E)-modules are of the form χi + χi+3 + χ7 + χ8 where 1 ≤ i ≤ 3. Thus a
basis of L0(P ⋊ E) is of the form

{χ1 − χ4, χ2 − χ5, χ3 − χ6, χ7 − χ8, χ1 + χ2 + χ3 − χ7}
8



The four elements of norm 2 in this basis must be sent to norm 2 elements under the isometry
L0(P ⋊ E) ∼= L0(G, b) no two of which involve a common irreducible character in IrrK(G, b), and
hence are mapped to elements of the form δ1(η1 − η4), δ2(η2 − η5), δ3(η3 − η6), δ7(η7 − η8), for
some labelling IrrK(G, b) = {ηi |1 ≤ i ≤ 8} and some signs δi. We may then choose notation (after
possibly exchanging η1 and η4 etc.) in such a way that the image in L0(G, b) of the norm four
element χ1+χ2+χ3−χ7 is equal to δ1η1+ δ2η2+ δ3η3− δ7η7. Setting δi+3 = δi for 1 ≤ i ≤ 3, and
δ8 = δ7 it follows that the map sending χi to δiηi induces an isometry ZIrrK(P ⋊E) ∼= ZIrrK(G, b)
extending the isometry L0(P ⋊ E) ∼= L0(G, b) as required.

Assume next that |E| = 7. Then P ⋊ E is a Frobenius group, whose seven characters of the
projective indecomposable modules are of the form χi + χ8 with 1 ≤ i ≤ 7, for some labelling
IrrK(P ⋊ E) = {χi | 1 ≤ i ≤ 8}; the characters χi, 1 ≤ i ≤ 7 have P in their kernel, and
χ8 is induced from a nontrivial character of P to P ⋊ E. The group L0(P ⋊ E) has rank 1,

with a basis element
∑7

i=1 χi − χ8. This element has norm 8, hence its image in L0(G, b) has
norm 8 as well. Moreover, all irreducible characters in IrrK(G, b) have to be involved in this
element. Since we assume that Alperin’s weight conjecture holds for b, we have |IrrK(G, b)| = 8,

and so the image of this element in L0(G, b) is of the form
∑7

i=1 δiηi − δ8η8 for some labelling
IrrK(G, b) = {ηi | 1 ≤ i ≤ 8} and some signs δi. Again, the map sending χi to δiηi induces the
required isometry ZIrrK(P ⋊ E) ∼= ZIrrK(G, b).

Finally, assume that |E| = 21. Then E is itself a Frobenius group, isomorphic to C7 ⋊ C3 with
the obvious nontrivial action of C3 on C7. The group E has 5 ordinary irreducible characters, hence
O(P ⋊ E) has five isomorphism classes of projective indecomposable modules, and thus L0(G, b)
has rank 3. We can label IrrK(P ⋊ E) = {χi | 1 ≤ i ≤ 8} in such a way that χ1, χ2, χ3 have
degree 1, the characters χ4, χ5 have degree 3 and χ6, χ7, χ8 have degree 7. An easy calculation
shows that L0(P ⋊ E) has a basis of the form

{χ6 − χ4 − χ5 − χ1, χ7 − χ4 − χ5 − χ2, χ8 − χ4 − χ5 − χ3}

consisting of three elements of norm 4, such that any two different of these basis elements involve
two common irreducible characters. Thus the same is true for L0(G, b). Using again the hypothesis
|IrrK(G, b)| = 8 one deduces that L0(G, b) has a basis of the form

{δ6η6 − δ4η4 − δ5η5 − δ1η1, δ7η7 − δ4η4 − δ5η5 − δ2η2, δ8η8 − δ4η4 − δ5η5 − δ3η3}

for some labelling IrrK(G, b) = {ηi | 1 ≤ i ≤ 8} and some signs δi. As before, the map sending
χi to δiηi induces the required isometry ZIrrK(P ⋊ E) ∼= ZIrrK(G, b). Since a perfect isometry
induces an isomorphism between centers, the result follows. �

6. Sporadic finite simple groups

Let G be a finite group and b a block of OG. The kernel KerG(b) of b is defined by

KerG(b) =
⋂

χ∈IrrK(G,b)

Ker(χ),

see [10, §3]. By [10, Proposition (3B)] we have KerG(b) = Op′(G)∩Ker(χ) for any χ ∈ IrrK(G, b).
Hence, KerG(b) is a normal p′-subgroup of G, See [59, Chap.5, Theorem 8.1] for an exposition of
this material. We say that b is faithful if KerG(b) = 1.

Proposition 6.1. Let G be a quasi-simple finite group such that p divides |G|.

(i) We have Op′(Z(G)) = Op′(G) and KerG(b) = Op′(Z(G)) ∩Ker(χ) for any χ ∈ IrrK(G, b).
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(ii) Set Ḡ = G/KerG(b) and denote by b̄ the image of b in OḠ. Then b̄ is a faithful block of OḠ
and the canonical map G→ Ḡ induces an O-algebra isomorphism OGb ∼= OḠb̄.

Proof. Statement (i) follows from Brauer’s result mentioned above, and (ii) is an easy consequence
of [59, Chap.5, Theorem 8.8]. �

The following table is due to Noeske [60]. By Proposition 6.1(ii) it is enough to consider faithful
blocks.

Proposition 6.2 ([60]). The following is a list of all faithful non-principal 2-blocks with non-cyclic
abelian defect groups of sporadic simple groups and their covers. Each number in the 2nd column
corresponds to the number attached to each block in the Modular Atlas [56].

group blocks b defect groups k(b) ℓ(b)
M12 2 C2 × C2 4 3
12.M22 4, 5 C2 × C2, C2 × C2 4, 4 1, 1
J2 2 C2 × C2 4 3
HS 2 C2 × C2 4 3
Ru 2 C2 × C2 4 3
Co3 2 C2 × C2 × C2 8 5
2.F i22 3 C2 × C2 4 1
Fi24

′ 2 C2 × C2 4 3

Proposition 6.3. Let G be a quasi-simple finite group such that G/Z(G) is a sporadic simple
group, and let b be a block of kG with an elementary abelian defect group of order 2r for some
integer r ≥ 3. Then r = 3 and either b is the principal block of kJ1 or a non-principal block of
kCo3. In both cases we have |IrrK(G, b)| = 8; in particular, Alperin’s weight conjecture holds for
b.

Proof. If b is a principal block then r = 3 and G = J1, hence the result follows from [48, Theorem
3.8]. Suppose that b is a non-principal block; by Proposition 6.1 we may assume that b is faithful.
Proposition 6.2 implies that r = 3, G = Co3 and |IrrK(G, b)| = 8. �

7. Finite simple groups of Lie type with exceptional Schur multipliers

The Schur multipliers of finite groups of Lie type tend to be ‘generic’ (that is, dependent only
on the series to which the group belongs) except in a few cases of low rank where they are larger;
see [39, Definition 6.1.3]. We consider in this section the groups of Lie type from [39, Table 6.1.3]
defined over a field of odd characteristic.

Proposition 7.1 ([39, Table 6.1.3, p.313], [56]). The finite simple group G of Lie type defined
over a field of odd characteristic with exceptional Schur multipliers are as follows:

G A1(9) ∼= A6
2A3(3) ∼= PSU4(3) B3(3) ∼= PΩ7(3) G2(3)

Me 3 3, 3 3 3
M(G) 6 12 6 3

where Me denotes the elementary divisors of the exceptional parts of the Schur multipliers M(G)
of G.

Proposition 7.2. If G is a quasi-simple finite group such that Z(G) has odd order and G/Z(G) is
of Lie type either A1(9),

2A3(3), B3(3) or G2(3), then G has no 2-blocks b with elementary abelian
defect group of order 2r, where r ≥ 3.
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Proof. For the isomorphismsA1(9) ∼= A6 and
2A3(3) ∼= PSU4(3) and B3(3) ∼= PΩ7(3) (also denoted

O7(3) in the Atlas [23, p. 106]), used already in the previous Proposition, see [38, p.8, Table I].
If G/Z(G) ∼= A6 then G is isomorphic to A6 or 3.A6; in both cases G has no 2-blocks with an
elementary abelian defect group of order 2r, r ≥ 3 by [56], or by 8.2 below. If G/Z(G) is isomorphic
to one of PSU4(3), PΩ7(3), G2(3) then again G has no 2-blocks with elementary abelian defect
group of order 2r, r ≥ 3, by [56]. �

8. Alternating groups

We denote in this section by An the alternating group of degree n, where n is a positive integer.

Proposition 8.1. If G ∼= An for some n ≥ 5 then G has no 2-blocks with an elementary abelian
defect group of order 2r, where r ≥ 3.

Proof. By [44, 1.2, 1.3, 1.4, 1.7], a 2-block of an alternating group An with defect group P is
source algebra equivalent to a block of an alternating group Am for some m ≤ n having P as
Sylow 2-subgroup. But there is no alternating group with an elementary abelian Sylow 2-subgroup
of order 2r, r ≥ 3. �

Proposition 8.2. If G is 3.A6 or 3.A7, then G has no 2-block with an elementary abelian defect
group of order 2r, where r ≥ 3.

Proof. This is clear since Sylow 2-subgroups of G are dihedral of order 8, see [23, p.4, p.10]. �

9. Finite groups of Lie type in characteristic 2

Proposition 9.1. Let G be a quasi-simple group such that G/Z(G) is a finite group of Lie type
in characteristic 2. Suppose that Z(G) has odd order. Let b be a block of G having an elementary
abelian defect group of order 2r for some integer r ≥ 3. Then G ∼= PSL2(2

r), the block b is the
principal block of G, and Alperin’s weight conjecture holds for b.

Proof. Consider first the case where G/Z(G) is not isomorphic to the Tits simple group 2F4(2)
′,

PSp4(2)
′ ∼= A6, or G2(2)

′ ∼= PSU3(3). Then, by [24, Proposition 8.7], the defect groups of any
2-block of G are either trivial or the Sylow 2-subgroups of G. It is well-known that the only finite
groups of Lie type in characteristic 2 having abelian Sylow 2-subgroups are the groups PSL2(2

r),
and hence G ∼= PSL2(2

r), where we use that the Schur multiplier of PSL2(2
r) is trivial. By [13,

A 1.3], the principal block is isotypic to its Brauer correspondent; in particular, Alperin’s weight
conjecture holds. The group 2F4(2)

′ has trivial Schur multiplier and by the pages on decomposition
numbers in the Modular Atlas [56], 2F4(2)

′ has three 2-blocks: the principal block (of defect 11)
and two defect zero blocks; 2F4(2)

′ has no block with an elementary abelian defect group of order
2r, r ≥ 3. The case PSp4(2)

∼= A6 is already checked in §7 and in Proposition 8.2. Finally, PSU3(3)
has trivial Schur multiplier and again by the pages on decomposition numbers in the Modular Atlas
[56], PSU3(3) has besides the principal block (of defect 5) two blocks of defect zero; in particular,
PSU3(3) has no blocks with an elementary abelian defect group of order 2r, r ≥ 3. �

Remark 9.2. For the purpose of the proof of 1.1 one could have excluded the Tits simple group
2F4(2)

′ and A6 also by observing that its order is not divisible by 7, and hence the inertial quotient
of a hypothetical block with elementary abelian defect group of order 8 can only be trivial or cyclic
of order 3, in which case Alperin’s weight conjecture holds by Proposition 3.2 above.
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10. Further background results on finite reductive groups

The book [26], especially Chapters 13 and 14 is a useful reference for the first part of this
section. The following notation will be in effect for this section. Let r and ℓ be disctinct primes
and let q be a power of r. Let G a connected reductive group over F̄q and F : G → G a Frobenius
morphism with respect to an Fq-structure on G. Let (G∗, F ∗) be a pair in duality with (G, F ) with
respect to some choice of an F -stable (respectively F ∗-stable) maximal torus of G (respectively
G∗) and with respect to a fixed isomorphism F̄×

q
∼= (Q/Z)r′ and a fixed embedding F̄×

q →֒ Q̄×
ℓ .

For an F ∗-stable semi-simple element s of G∗, we denote by E(GF , (s)) ⊆ IrrQ̄ℓ
(G) the subset

of characters corresponding to the geometric conjugacy class (s) and by E(GF , [s]) the subset of
characters corresponding to the rational conjugacy class [s]; the geometric (and rational) class
of the trivial element will be just denoted E(GF , 1). The elements of E(GF , 1) are called the
unipotent characters of GF . We set C(s) = CG∗(s), C◦(s) = CG∗(s)◦, the connected component
of C(s), C̄◦(s) = C◦(s)/Z(C◦(s)), the quotient of the connected centraliser by its centre, and

C◦(s)′ = [C◦(s),C◦(s)] the derived subgroup of the connected centraliser. Set as = |C(s)F
∗

|
|C◦(s)F∗ |

,

Z◦(s) = Z(C◦(s)) and z(s) = |Z◦(s)F
∗

|. For any positive integer m we denote by m+ the highest
power of 2 dividing m.

10.1. Jordan decomposition of characters. By the work of Lusztig ([51, Theorem 4.23],
[52, Proposition 5.1], see also [26, 13.24]), there is a bijection between E(GF , [s]) and the set
E(C(s)F

∗

, 1) of unipotent characters of C(s)F
∗

such that if χ ∈ E(GF , [s]) corresponds to τ ∈
E(C(s)F

∗

, 1), then

(1) χ(1) =
|GF |r′

|C(s)F∗ |r′
τ(1).

Here we note that if C(s) is not connected, then E(C(s)F
∗

, 1) is defined to be the set of irre-
ducible characters of C(s)F

∗

covering the set E(C◦(s)F
∗

, 1) of unipotent characters of C◦(s)F
∗

.

By standard Clifford theory, if τ is an irreducible character of C(s)F
∗

covering an irreducible char-
acter λ of C◦(s)F

∗

, then τ(1) = aλ(1), for an integer a dividing a(s). Thus, to each element of

E(GF , (s)) is associated a C(s)F
∗

-orbit of E(C◦(s)F
∗

, 1) such that if χ ∈ E(G, (s)) corresponds to
the orbit of λ ∈ E(C◦(s)F

∗

, 1), then

(2) χ(1) =
|GF |r′

aχ|C◦(s)F∗ |r′
λ(1)

for some integer aχ dividing as.

Restriction induces a degree preserving bijection λ 7→ λ′ between the sets E(C◦(s)F
∗

, 1) and

E(C◦(s)′
F∗

, 1) and there is also a degree preserving bijection λ → λ̄ between E(C◦(s)F
∗

, 1) and

E(C̄◦(s)F
∗

, 1) (cf. [19, Proposition 3.1]). Further, the group C̄◦(s)F
∗

=
∏

ω C̄◦F
∗

ω , where ω runs
through the F -orbits of the Dynkin diagram ∆s of C̄◦(s), and for each ω, C̄◦

ω(s) is the direct
product of subgroups of C̄◦(s) corresponding to the elements of ω. The elements of E(C̄◦(s)F

∗

, 1)

are products
∏

ω φω where φω is a unipotent character of C̄◦(s)F
∗

ω for each ω. Tracing through the
above bijections, and noting that

|C◦(s)F
∗

| = z(s)|C◦(s)
′F∗

| = z(s)|C̄◦(s)F
∗

|
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it follows that if χ ∈ E(G, (s)) corresponds to the orbit of λ ∈ E(C◦(s)F
∗

, 1), and λ corresponds to

to the unipotent character λ′ of C◦(s)′F
∗

and to the unipotent character λ̄ :=
∏

ω φω of C̄◦(s)F
∗

,
then

χ(1) =
|GF |r′

z(s)aχ|C◦(s)′F∗ |r′
λ′(1)

=
|GF |r′

z(s)aχ

∏

ω

φω(1)

|C̄◦F∗

ω (s)|r′
.(3)

The above correspondences have the following consequence, which we record for use in later
sections. If r is odd, then

2-defect of χ = αχ + ζs + 2-defect of λ′(4)

= αχ + ζs +
∑

ω

(2-defect of φω)(5)

where 2ζs = z(s)+ and 2αχ = |aχ|+. We note that we get an analogous formula for ℓ-defects, for
any prime ℓ different from r.

10.2. Jordan decomposition of blocks. As is the case of many sources cited below, we divert
in this section from our previous notation and use the prime ℓ, instead of p, for the characteristic of
k, which is assumed to be different from the defining characteristic r. We identify without further
comment the sets IrrQ̄ℓ

(GF ) and IrrK(GF ). Let t be a semi-simple element of G∗F∗

of order prime

to ℓ and let Eℓ(GF , [t]) = ∪uE(GF , [tu]), where u runs over the ℓ-elements of C◦
G∗(t)F

∗

. By [16,
Théorème 2.2], Eℓ(GF , [t]) = ∪uE(GF , [tu]), is a union of ℓ-blocks of G; a block b of GF is in
this union if and only if E(G, [t]) ∩ IrrK(GF , b) 6= ∅ (cf. [41, Theorem 3.1]). In this case, we say
that b is in the series [t] or that [t] is the semi-simple label of b. Blocks with semi-simple label
[1] are called unipotent. Let L∗(t) be the (necessarily F ∗-stable) minimal standard Levi subgroup
of G∗-containing C(t) (if C(t) is not contained in any proper Levi subgroup of G∗, we take for

L∗(t) the group G itself) and let L be an F -stable Levi subgroup of G dual to L∗(t). Let eG
F

t

and eL
F

t be the sum of block idempotents of OGF and OLF in the series [t]. Then by Theorem B’

of [8], the algebras OGF eG
F

t and OLF eL
F

t are Morita equivalent. Further, if C(t) is itself a Levi

subgroup of G∗, ie. if C(t) = L∗(t), then by Theorem 11.8 of [8], OGF eG
F

t is Morita equivalent

to the sum of unipotent blocks OLF eL
F

1 of OLF . We record a consequence of these results for
classical groups for ℓ = 2.

Theorem 10.1. Suppose that ℓ = 2 and either G = GLn(F̄q) or that G is simple of classical type

B, C or D. Let t be an odd order semi-simple element of G∗F∗

. Then, C(t) is a Levi subgroup of

G∗. Let L be an F -stable Levi subgroup of G in duality with C(t) as above. Then eG
F

t is a block

of OGF , and eL
F

1 is the principal block of OLF . The block algebras OGF eG
F

t and OLF eL
F

1 are

Morita equivalent and a Sylow 2-subgroup of LF is a defect group of OGF eG
F

t .

Proof. The element t has odd order, whereas Z(G)/Z◦(G) is a 2-group, hence C(t) is connected.
The prime 2 is the only bad prime for G (if G is a general linear group, then all primes are
good for G). Thus, the order of t is not divisble by any bad prime, which means that C◦(t)

is a Levi subgroup of G∗. Thus by the Bonnafé-Rouquier theorem, OGF eG
F

t and OLF eL
F

1 are
13



Morita equivalent. Now the components of L are all of classical types A, B, C or D. Hence by
[18, Theorem 13], the principal block of OLF is the unique unipotent 2-block of OLF , and the

Morita equivalence implies that eG
F

t is a block of OGF . The assertion on defect groups is in [31,
Proposition 1.5(ii), (iii)]. �

Corollary 10.2. Suppose that ℓ = 2 and either G = GLn(F̄q) or that G is simple of classical type
B, C or D. Let b be a block of OGF . If b has abelian defect groups, then OGF b is nilpotent.

Proof. Let t be the semi-simple label of b and suppose that b has abelian defect groups. By the

theorem, b = eG
F

t and the Sylow 2-subgroups of LF are abelian. Suppose that [L,L] 6= 1. If L has a
component of type different from A1, then [L,L]F contains a subquotient isomorphic to SL2(q

′) for
some power q′ of q (see Theorem 3.2.8 of [39]). If all components of L are of type A1, then [L,L]F

is a commuting product of finite special linear and projective general linear groups of degree 2.
But the Sylow 2-subgroups of SL2(q

′) are quaternion and those of PGL2(q
′) are dihedral of order

at least 8 for any odd prime power q′ (see 11.1 below), a contradiction. Hence, L and therefore
LF is an abelian group. In particular, any block of OLF is nilpotent. Since nilpotent blocks with
abelian defect groups are precisely the blocks with a symmetric centre (cf. [61, Theorems 3 and
5] and [57]), any block Morita equivalent to a block of OLF is nilpotent with an abelian defect
group, whence the result. Alternatively, Morita equivalences of blocks preserve nilpotence by [65,
Theorem 8.2]. �

11. On the 2-local structure of finite classical groups

Let n be a natural number, q an odd prime power and let L denote one of the groups GLn(q),
GUn(q), O2n+1(q), Sp2n(q), O

+
2n(q), or O−

2n(q). Let Z be a central subgroup of L contained in
[L,L] and set G = [L,L]/Z. We gather together a few well-known facts on the Sylow 2-structure
of the groups L and G.

Lemma 11.1. With the notation above,

(i) If n ≥ 3, then the Sylow 2-subgroups of G (and hence of [L,L] and L) are non-abelian.

(ii) If n = 2, the Sylow 2-subgroups of [L,L] are non-abelian. Further, if n = 2 and L is not one
of GL2(q), q ≡ ±3 (mod 8), GU2(q), q ≡ ±3 (mod 8), or O+

4 (q), q ≡ ±3 (mod 8), then the Sylow
2-subgroups of G are non-abelian.

(iii) If L is one of GL2(q), GU2(q) or Sp2(q) then the Sylow 2-subgroups of [L,L] are generalised
quaternion groups. They have order at least 16 if q ≡ ±1 (mod 8) and in this case the Sylow
2-subgroups of G are non-abelian. If q ≡ ±3 (mod 8), then the Sylow 2-subgroups of [L,L] have
order 8 and the Sylow 2-subgroups of G are Klein 4-groups. The Sylow 2-subgroups of PGL2(q)
are dihedral of order at least 8.

(iv) If L is one of O+
2 (q), respectively O−

2 (q), then L is a dihedral group of order 2(q−1), respectively
2(q + 1).

(v) If L = O3(q) and if q ≡ 1 (mod 4) then the Sylow 2-subgroups of L are isomorphic to the direct
product of a cyclic group of order 2 with a Sylow 2-subgroup of O+

2 (q) and the Sylow 2-subgroups of
SO3(q) are isomorphic to the Sylow 2-subgroups of O+

2 (q). If L = O3(q) and q ≡ 3 (mod 4) then
the Sylow 2-subgroups of L are isomorphic to the direct product of a cyclic group of order 2 with
a Sylow 2-subgroup of O−

2 (q) and the Sylow 2-subgroups of SO3(q) are isomorphic to the Sylow
2-subgroups of O−

2 (q).
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Proof. Statements (iii), (iv), (v) can be found in [21]. The only simple groups with abelian Sylow
2-subgroups are PSL2(q

′), q′ ∼= ±3 (mod 8), PSL2(2
a), 2G2(q

′), q′ = 32u+1, u ≥ 1, 2G2(3)
′ ∼=

PSL2(8) or J1 (cf. [74], [3]). Also, if n ≥ 2, then unless L is one of O+
4 (q), GL2(2), GL2(3)

or GU2(2), the groups G are all quasi-simple. Statement (i) and the second assertion of (ii) are
immediate from this. If L = GL2(q), or L = GU2(q), the second assertion of (ii) is immediate from
(iii). Now consider L = O+

4 (q). Then L contains a subgroup isomorphic to GL2(q) or to GU2(q)
(as a centraliser of a semi-simple element), hence [L,L] = Ω+

4 (q) contains a subgroup isomorphic
to SL2(q) or to SU2(q) and SL2(q) and SU2(q) have non-abelian Sylow 2-subgroups. �

In the next sections, we will analyse closely the structure of centralisers of semi-simple elements
in classical groups. The following elementary lemma will be useful in this context. In what follows,
O±

0 (q) are to be interpreted as the trivial group, and O1(q) as a cyclic group of order 2. Also note
that the center of L is a 2-group.

Lemma 11.2. Let t ≥ 0, let di, mi, 1 ≤ i ≤ t, be positive integers and let m0 be a non-negative
integer. Let

H =
∏

0≤i≤t

Hi

be a subgroup of L such that H0 is one of the groups Sp2m0
(q), O2m0+1(q) or O±

2m0
(q) and Hi is

isomorphic to GLmi
(qdi) or GUmi

(qdi) for 1 ≤ i ≤ t. Let Z be a central subgroup of L contained
in H such that if the above decomposition of H has more than one non-trivial factor, then Z∩Hi =
1 for all i, 0 ≤ i ≤ t. Let T be a Sylow 2-subgroup of H and set P = (T ∩ [L,L]Z)/Z. Suppose
that P is abelian. Then,

(i) mi ≤ 2, 0 ≤ i ≤ t.

(ii) If m0 = 2, then H = H0 = O+
4 (q).

(iii) If mi = 2 for some i ≥ 1, then t = 1 and m = 0, that is H = H1. Further, d1 is odd and
q ≡ ±3 (mod 8).

(iv) If H0 = Sp2n(q) and if m0 6= 0, then t = 0, that is H = H0.

Proof. For 0 ≤ i ≤ t, [Hi, Hi] ≤ H ∩ [L,L], and hence

[Hi, Hi]/[Hi, Hi] ∩ Z ∼= [Hi, Hi]Z/Z ≤ (H ∩ [L,L]Z)/Z.

Suppose first that two of the factors of H are non-trivial, say Hi and Hj , i 6= j. Then, by
assumption [Hi, Hi]∩Z = 1. It follows from the above that [Hi, Hi] is a subgroup of (H∩[L,L])/Z.
In particular, the Sylow 2-subgroups of [Hi, Hi] are abelian. But by Lemma 11.1, [Hi, Hi] has non-
abelian Sylow 2-subgroups if mi ≥ 2. This proves the first assertions of (ii) and (iii).

Now supppose that some mi ≥ 2. By what has just been proved, either t = 0 or t = 1 and
m0 = 0. If t = 0, then H = H0 is an orthogonal or symplectic group of dimension m0. By Lemma
11.1, it follows that H0 = O+

4 (q), proving (ii). If t = 1 and m0 = 0, then [H,H ]/Z([H,H ]) is a
projective special linear or unitary group, and by Lemma 11.1 (i), m1 = 2, H ∼= GL2(q

d1), and
qd1 ≡ ±3 (mod 8). The last can only hold if d1 is odd and q ≡ ±3 (mod 8). This proves (iii). The
proof of (iv) is similar, using the fact that symplectic groups Sp2n(q) are perfect for n ≥ 2. �

12. Type A in odd characteristic

By results of Blau and Ellers in [6], Brauer’s height zero conjecture holds for all blocks in
non-defining characteristic of quasi-simple groups of type A and 2A, and hence so does Alperin’s

15



weight conjecture for all blocks of these groups in odd characteristic with an elementary abelian
defect group of order 8, by Landrock’s results quoted in Proposition 3.2. This proves in particular
Theorem 1.1 for these groups. For future reference, and using methods similar to those in [6],
we prove in this and the following section that elementary abelian 2-defect groups of odd rank
at least three do not occur in type A and type 2A, and that blocks with an elementary abelian
2-defect group of even rank at least four of these groups satisfy Alperin’s weight conjecture. For
the remainder of the paper, we assume p = 2.

Theorem 12.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such that
G/Z(G) ∼= PSLn(q) for some positive integer n and some odd prime power q. Let b be a block of
kG with an elementary abelian defect group of order 2r for some integer r ≥ 3. Then r is even
and b satisfies Alperin’s weight conjecture.

Lemma 12.2. Let n, m, d be positive integers such that n = md. Consider GLm(qd) as subgroup
of GLn(q) through some Fq-decomposition (Fq)

n ∼= (Fqd)
m. Denote by det the determinant function

on GLn(q). Then there is an element x ∈ GLm(qd) such that det(x) has order q − 1.

Proof. Let λ be a generator of F×
qd

and f ∈ Fq[X ] the minimal polynomial of λ over Fq. Then f

has degree d, and the roots of f are λ, λq, λq2,..., λq
d−1

. Let y ∈ GLd(q) with minimal polyomial f .
Define x ∈ GLn(q) via d× d-block diagonal matrices where the first block is y and the remaining
m blocks are the identity matrices Idd. Then, in GLn(F̄q), the element x is conjugate to a diagonal

matrix whose diagonal entries are λ, λq, λq2,...,λq
d−1

, 1, 1, ...,1. Thus the determinant of x is

det(x) = λ ·λq · · ·λq
d−1

= λ
qd−1
q−1 . Since λ has order qd−1 it follows that det(x) has order q−1. �

Lemma 12.3. Let n, m, d be positive integers such that n = md. Consider GLm(qd) as subgroup
of GLn(q) through some Fq-decomposition (Fq)

n ∼= (Fqd)
m. If m ≥ 2 and qd ≡ 1 (mod 4) then

there is an element y ∈ GLm(qd) of order 4 such that the image of y in PGLn(q) has order 4. If
moreover m ≥ 3 we can choose such an element y in SLn(q).

Proof. Since m ≥ 2, the group GLm(qd) contains a subgroup isomorphic to F×
qd

× F×
qd
; choose

y = (y1, 1) in this subgroup, where y1 ∈ F×
qd

has order 4. Then y has an eigenvalue 1, hence if

some power yr is a scalar multiple of Idn then yr = Idn, which shows that the order of y remains
unchanged upon taking its image in PGLn(q). If m ≥ 3 then GLm(qd) contains a subgroup
isomorphic to (F×

qd
)3; choose y = (y1, 1, y3) with y3 such that det(y3) = det(y1)

−1, which is

possible thanks to Lemma 12.2, and as before, y has the required properties. �

Since the case PSL2(9) ∼= A6 is dealt with in §7 in order to prove Theorem 12.1 we may assume
that G = SLn(q)/Z+, where Z+ is the Sylow 2-subgroup of Z(SLn(q)). Note that |Z+| is equal to
the 2-part (n, q − 1)+ of (n, q − 1).

Let b be a block of kG and denote by P a defect group of b. Since PSLn(q) ∼= G/Z−, where Z−

is the complement of Z+ in Z(SLn(q)) identified to its image in G, the image of P in PSLn(q) is

isomorphic to P . Since Z+ is a central 2-subgroup, b is the image of a unique block b̃ of k SLn(q),

and the inverse image P̃ of P in SLn(q) is a defect group of b̃. Let d be a block of kGLn(q)

covering b̃ with a defect group T such that T ∩ SLn(q) = P̃ . By [24, Proposition 6.3] the block b̃

is stable under the 2-part of GLn(q)/ SLn(q), and hence T/P̃ is cyclic of order the 2-part (q− 1)+
of q − 1. By [12, Théorème 3.3], there exists a semi-simple element s of odd order in GLn(q) such
that T is a Sylow 2-subgroup of CGLn(q)(s) (this can also be seen as a consequence of the Jordan
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decomposition of Theorem 10.1). Further there exist positive integers mi, di, 1 ≤ i ≤ t such that

n =
∑

1≤i≤t

midi,

and setting Hi = GLmi
(qdi), there is a decomposition

CGLn(q)(s) ≡
∏

1≤i≤t

Hi

corresponding to a subspace decomposition of the underlying Fq-vector vector space as isotypic
Fq[s]-modules. In particular, Hi = GLmi

(qdi) is a subgroup of GLmidi
(q) through some Fq-

decomposition (Fq)
midi ∼= (Fqdi )

mi .

Lemma 12.4. With the notation above, suppose that P is elementary abelian and that t ≥ 3.
Then the following holds.

(i) q ≡ 3 (mod 4).

(ii) mi = 1 for 1 ≤ i ≤ t.

(iii) di is odd for 1 ≤ i ≤ t.

(iv) If t is even then |P | = 2t−2, and if t is odd then |P | = 2t−1; in particular, the 2-rank of P is
even.

(v) The block d of GLn(q) is nilpotent with an elementary abelian defect group T of order 2t.

(vi) The block b of kG satisfies Alperin’s weight conjecture.

Proof. Clearly, P = (T ∩ SLn(q))/Z+ and Z+ ∩ Hi = 1 for any i such that Hi 6= CL(s). Thus
Lemma 11.2 (ii) and (iii) apply with L = GLn(q), H = CL(s) and Z = Z+, and assertion (ii)
is immediate. If q ≡ 1 (mod 4) or if d1 is even, then the group H1 = GL1(q

d1) contains an
element y1 of order 4. By Lemma 12.2 the group H2 = GL1(q

d2) contains a 2-element y2 such that
det(y2) = det(y1)

−1. Thus x = y1y2 ∈ SLn(q) = [L,L]. Since t ≥ 3, we have H1 ×H2 ∩ Z+ = 1,
and it follows that the image xZ+ of x in P has order 4, a contradiction. Thus (i) and (iii) hold.

Hence T is a Sylow 2-subgroup of
∏t

i=1 F×
qdi

. Since the di are odd and q ≡ 3 (mod 4) this implies

that T is elementary abelian of rank t, and hence P̃ is elementary abelian of rank t− 1. If n is odd
then P ∼= P̃ and since n =

∑t
i=1 di and the di are odd it follows that t is odd, hence |P | = 2t−1.

If n is even then |P | = |P̃ |
2 and since n =

∑t
i=1 di and the di are odd it follows that t is even and

|P | = 2t−2, which proves (iv). Since T is clearly abelian, (v) is immediate from Corollary 10.2.
Statement (vi) follows from (v) and Proposition 2.4. �

Lemma 12.5. Suppose that P is elementary abelian and that t = 2. Then m1 = m2 = 1, |P | ≤ 4

and P̃ contains an element of order max((qd1 − 1)+, (q
d2 − 1)+).

Proof. The fact thatm1 = m2 = 1 is a consequence of Lemma 11.2. So Hi
∼= GL1(q

di). By Lemma

12.2, it follows that P̃ = T ∩ SLn(q) contains elements of order max((qd1 − 1)+, (q
d2 − 1)+). �

Lemma 12.6. Suppose that P is elementary abelian and that t = 1. Then m1 ≤ 2.
If m1 = 2, then d1 is odd, n = 2d1, |P | = 4 and P̃ is a quaternion group of order 8.

If m1 = 1, then T , P̃ and P are cyclic, |P | = 2 if and only if n is even, and either q ≡ 3 (mod 4)
and n+ ≤ (q − 1)+ or q ≡ 1 (mod 4) and n+ = 2(q − 1)+.
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Proof. By Lemma 11.2, m1 ≤ 2. Suppose that m1 = 1, so T is a Sylow 2-subgroup of GL1(q
n) and

in particular, T is a cyclic group of order (qn−1)+. It follows from Lemma 12.2 that P̃ = P∩SLn(q)

is cyclic of order (qn−1)+
(q−1)+

, and hence P is cyclic of order (qn−1)+
(q−1)+|Z+| . Now, |Z+| = min(n+, (q−1)+).

If n is odd then (qn − 1)+ = (q− 1)+ and if n is even then (qn − 1)+ = (q2−1)+n+

2 . The statement
of the lemma for the case m1 = 1 follows by an easy calculation. Now suppose m1 = 2. Then
by Lemma 11.2, (ii) we have CGLn(q)(s) = GL2(q

di), q ≡ ±3 (mod 8), di is odd and n = 2di.

With this arithmetic, one sees easily that |P | = 4 and |P̃ | = 8. Finally, P̃ is quaternion since it
contains a subgroup isomorphic to the Sylow 2-subgroups of SL2(q

di), which by Lemma 11.1 are
quaternion. �

Proof of Theorem 12.1. If t ≥ 3, Lemma 12.4 shows that the 2-rank of P is at least 4 and even
and that b satisfies Alperin’s weight conjecture. If t ≤ 2, Lemma 12.5 and Lemma 12.6 show that
the rank of P is at most 2. �

We also note the following.

Lemma 12.7. Suppose that n = 2m, m ≥ 1, and P is elementary abelian of order 2 or 4. Then
the inverse image of P in a non-split central extension 2.G has an element of order 4 unless t = 4,
q ≡ 3(mod 4), and di is odd for 1 ≤ i ≤ 4. In particular, if P has order 2, then the inverse image
has order 4.

Proof. The central extension 2.G may be assumed to be a central quotient of SLn(q) and the

inverse image, P0 of P in 2.G is a quotient of P̃ by a cyclic (central) group of order 1
2 |Z+|. We will

show that unless we are in the exceptional case above, that either P̃ is cyclic or that P̃0 contains an
element of order 2|Z|+. If t = 1 and m1 = 1, then CL(s), and hence P̃ is cyclic. So certainly P0 is
cyclic. If t = 1 and m1 = 2, then [H2, H2] ≤ CL(s)∩ [L,L] is a special linear group of dimension 2

and hence P̃ ∩ [H2, H2] is a quaternion group of order q2d−1. In particular, P̃ contains an element

of order 1
2 (q

2d − 1). Since |Z|+ ≤ (q − 1)+, if d is even, then P̃ contains an element of order at

least 2|Z|+. So we may assume that d is odd. Then |Z|+ = 2, and 1
2 (q

2d − 1) ≥ 4 = 2|Z|+. Now
suppose t = 2. So, m1 = m2 = 1 and n = d1 + d2. Thus, T = T1 × T2, with Hi a cyclic group of
order (qdi − 1)+, i = 1, 2. We assume without loss of generality that |T1| ≥ |T2|. By Lemma 12.2,

it is easy to see that P̃ = T ∩ SLn(q) is a direct product Q1 ×Q2 such that Q1 is cyclic of order

|T1| and Q2 is cyclic of order |T2|
(q−1)+

. If d1 is even, then |T1| ≥ 2(q − 1)+ ≥ 2|Z|+. If d1 is odd,

then d2 is also odd (as n is even), hence T2 = 1, that is T̃ is cyclic. Finally, suppose that t ≥ 3.
By Lemma 12.4, P is not of order 2, and P is of order 4 if and only if t = 4, q ≡ 3(mod 4), and di
is odd for 1 ≤ i ≤ 4. Note that in this case, P̃ is elementary abelian of order 8. �

13. Type 2A in odd characteristic

We show that type 2A yields no blocks with elementary abelian defect groups of order 8; in
fact, more generally, we have the following result:

Theorem 13.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such that
G/Z(G) ∼= PSUn(q) for some positive integer n and some odd prime power q. Let b be a block of
kG with an elementary abelian defect group of order 2r for some integer r ≥ 3. Then r is even
and b satisfies Alperin’s weight conjecture.
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The proof of this follows the same lines as the untwisted case. We give details for the convenience
of the reader. We single out two elementary observations which we will use in the proof below:

Lemma 13.2. Let n, m, d be positive integers and denote by det the determinant function on
GLn(F̄q).

(i) Suppose that n ≥ 2d. Consider the inclusions GL1(q
2d) ≤ GLd(q

2) ≤ GU2d(q) ≤ GUn(q), where
GL1(q

2d) is a subgroup of GLd(q
2) through some Fq2-vector space isomorphism (Fq2)

d ∼= Fq2d ,

GLd(q
2) is a subgroup of GU2d(q) through some Fq2-vector space embedding (Fq2)

d →֒ (Fq2)
d ⊕

(Fq2)
d of the form λ→ λ+λ−q and GU2d(q) is a subgroup of GUn(q) through some decomposition

(Fq2)
n ∼= (Fq2)

2d ⊕ (Fq2)
n−2d. There is an element x ∈ GL1(q

2d) such that det(x) has order q+ 1.

(ii) Suppose that d is odd and that n ≥ d. Consider the inclusions GU1(q
d) ≤ GUd(q) ≤ GUn(q),

where GU1(q
d) is a subgroup of GUd(q) through an irreducible unitary representation of GU1(q

d) on
a d-dimensional Fq2-space, and where GUd(q) is a subgroup of GUn(q) through some decomposition

(Fq2)
n ∼= (Fq2)

2d ⊕ (Fq2)
n−2d. There is an element x ∈ GL1(q

2d) such that det(x) has order q+ 1.

Proof. (i) Let λ be a generator of F×
q2d

and f ∈ Fq2 [X ] the minimal polynomial of λ over Fq2 .

Then f has degree d, and the roots of f are λ, λq
2

, λq
4

,..., λq
2(d−1)

. Let x ∈ GLd(q
2) with

minimal polyomial f . Then, in GLn(F̄q), the element x is conjugate to a diagonal matrix whose

diagonal entries are λ, λq
2

, λq
4

,...,λq
2(d−1)

, λ−q, (λq
2

)−q, (λq
4

)−q,...,(λq
2(d−1))−q, 1 · · · 1. Thus the

determinant of x is det(x) = aa−q, where a = λ ·λq
2

· · ·λq
2(d−1)

= λ
q2d−1

q2−1 . Since λ has order q2d−1
it follows that det(x) has order q + 1.

(ii) Let λ be an element of order qd+1 in F×
q2d

and f ∈ Fq2 [X ] the minimal polynomial of λ over

Fq2 . Since d is odd, f has degree d. Let x ∈ GUd(q) with minimal polyomial f . In GLn(F̄), the

element x is conjugate to a diagonal matrix whose diagonal entries are λ, λq
2

, λq
4

,...,λq
2(d−1)

. Thus
the determinant of x is

det(x) = λ · λq
2

· · ·λq
2(d−1)

= λ
q2d−1

q2−1 .

Since λ has order qd + 1 and since d being odd, the integers, qd−1
q−1 and qd + 1 are relatively prime,

it follows that det(x) has order q + 1. �

We turn now towards the proof of Theorem 13.1. Since the case PSU4(3) is dealt with in §7
in order to prove Theorem 12.1 we may assume that G = SUn(q)/Z+, where Z+ is the Sylow
2-subgroup of Z(SUn(q)). Note that |Z+| is equal to the 2-part (n, q + 1)+ of (n, q + 1). Let b
be a block of kG and denote by P a defect group of b. Since PSUn(q) ∼= G/Z−, where Z− is
the complement of C+ in Z(SLn(q)) identified to its image in G, the image of P in PSUn(q) is

isomorphic to P . Since Z+ is a central 2-subgroup, b is the image of a unique block b̃ of k SUn(q),

and the inverse image P̃ of P in SUn(q) is a defect group of b̃. Let d be a block of kGUn(q)

covering b̃ with a defect group T such that T ∩SUn(q) = P̃ . By [24, Proposition 6.3] the block b̃ is

stable under the 2-part of GUn(q)/ SUn(q), and hence T/P̃ is cyclic of order the 2-part (q + 1)+
of q + 1. By Fong-Srinivasan [35], T is isomorphic to a Sylow 2-subgroup of

H =

s
∏

i=1

GLmi
(q2di)×

t
∏

j=1

GUnj
(qej )
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for some non-negative integers s, t, and some positive integers mi, ni di, ej such that all ej are
odd and satisfy

n =

s
∑

i=1

2midi +

t
∑

j=1

njej .

We keep this notation for the remainder of this section.

Lemma 13.3. (i) Suppose that
∑

1≤i≤smi +
∑

1≤j≤t nj ≥ 3. If for some i, j, either GL1(q
2di) or

GU1(q
ej ) contains an element of order 2a, then so does P .

(ii) Suppose that
∑

1≤i≤smi +
∑

1≤j≤t nj ≥ 4 and either mi ≥ 2 for some i, 1 ≤ i ≤ s or nj ≥ 2
for some j, 1 ≤ j ≤ t. Then P contains an element of order 8.

(iii) Suppose that nj ≥ 2 for some j, 1 ≤ j ≤ t and
∑

1≤i≤smi+
∑

1≤j≤t nj ≥ 3. Then, P̃ contains
an element of order 8.

Proof. (i) This follows easily from Proposition 13.2 using arguments similar to Lemma 12.3.
(ii) Similar argument to (i) using the fact that GL2(q

′) and GU2(q
′) contain elements of order

8 for any odd prime power q′.
(iii ) Again, we use the fact that GU2(q

ei ) has an element of order 8. �

Lemma 13.4. Suppose that P is elementary abelian and that s+ t ≥ 3. Then the following hold.

(i) s = 0.

(ii) ni = 1 for all i, 1 ≤ i ≤ t.

(iii) q ≡ 1 (mod 4).

(iv) If t is even then |P | = 2t−2, and if t is odd then |P | = 2t−1; in particular, the 2-rank of P is
even.

(v) The block d of GUn(q) is nilpotent with an elementary abelian defect group T of order 2s.

(vi) The block b of kG satisfies Alperin’s weight conjecture.

Proof. Since GL1(q
2d1) contains an element of order 8, conclusion (i) is immediate from Lemma

13.3(i). Assume from now on that s = 0. If n1 ≥ 2, then the fact that s + t ≥ 3 implies that
∑

1≤j≤s nj ≥ 4. So, by Lemma 13.3(ii), P has an element of order 8, a contradiction. So, (ii) holds.

If q ≡ 3 (mod 4), then GU1(q
ei) contains an element of order 4, and again by Lemma 13.3(i), P

has an element of order 4. This proves (iii). Hence T is a Sylow 2-subgroup of
∏t

j=1 F×
qej

. Since

the ej are odd and q ≡ 1 (mod 4) this implies that T is elementary abelian of rank t, and hence P̃

is elementary abelian of rank t− 1. If n is odd then P ∼= P̃ and since n =
∑t

j=1 ej and the ej are

odd it follows that t is odd, hence |P | = 2t−1. If n is even then |P | = |P̃ |
2 and since n =

∑t
j=1 ej

and the ej are odd it follows that t is even and |P | = 2t−2, which proves (iv). Finally, the block
d of GUn(q) is nilpotent in that case because (ii) implies that the centraliser of the semi-simple
element labelling d is a torus, whence (v). Statement (vi) follows from (v) and Proposition 2.4. �

Lemma 13.5. Suppose that P is elementary abelian and that s+ t ≤ 2 . Then |P | ≤ 4.

Proof. Suppose s+t = 1; that is, T is a Sylow 2-subgroup of GLm(q2d), wherem = m1 and d = d1,
and we have n = 2md or T is a Sylow 2-subgroup of GUm(qe), where m = n1 and e = e1, and
we have n = me. In the former case, if m = 1 then T is cyclic, hence |P | ≤ 2, so we may assume
m ≥ 2. If m ≥ 3, then since GL1(q

2d) contains an element of order 8, by Lemma 13.3 (i), P has
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an element of order 8, a contradiction. This contradiction shows m = 2. Thus n = 4d, and so T
is a Sylow 2-subgroup of GL2(q

2d), and one easily checks that any elementary abelian subquotient
of T has rank at most 2. In the latter case, again if m = 1, then T is cyclic. If m ≥ 4, then by
Lemma 13.3 (ii), P contains an element of order 8, a contradiction. If m = 3, then by Lemma 13.3

(iii), P̃ has an element of order 8. But n = 3e is odd, and hence P ≡ P̃ . This contradiction shows
that m = 2, and T is a Sylow 2-subgroup of GU2(q

2). But any elementary abelian subquotient
of T has rank at most 2. Now suppose that s + t = 2 and

∑

imi +
∑

j nj ≥ 3. By Lemma 13.3

(i), s = 0, whence t = 2. By Lemma 13.3 (ii), at least one of n1 or n2 equals 1, say n2 = 1. If
n1 ≥ 3, then by Lemma 13.3 (ii), P contains an element of order 8. I If n2 = 2, then by Lemma

13.3 (iii), P̃ contains an element of order 8. But in this case, n = 2e1 + e2 is odd, which means

that P̃ ≡ P , and hence P has an element of order 8. If n1 = 1, then T is abelian of rank 2, hence
P has order at most 4. Finally suppose that s + t = 2 and

∑

imi +
∑

j nj = 2. If s = 0, t = 2,
then n1 = n2 = 1; if s = 1, t = 1, then m1 = n1 = 1 and if s = 2, t = 0, then m1 = m2 = 1. In all
cases T is abelian of rank 2 whence P has order at most 4. �

Proof of Theorem 13.1. This is immediate from the preceding lemmas. �

14. Orthogonal and symplectic groups in odd characteristic

We show that blocks of orthogonal and symplectic groups with elementary abelian defect groups
of order at least 8 are all nilpotent.

Theorem 14.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such that
G/Z(G) is isomorphic to one of PSp2n(q), n ≥ 2, PΩ2n+1(q) , n ≥ 3 or PΩ±

2n(q), n ≥ 4 for some
odd prime power q. Let b be a block of kG with elementary abelian defect groups of order 2r for
some integer r ≥ 3. Then b is nilpotent.

Notation. The group G will denote one of the groups in the above theorem. Further, we define
L, L0 and G̃ as follows.

If G/Z(G) = PSp2n(q), then L = L0 = Sp2n(q) and G̃ = Sp2n(q).

If G/Z(G) = PΩ2n+1(q), then L = O2n+1(q), L0 = SO2n+1(q) and G̃ = Ω2n+1(q).

If G/Z(G) = PΩ+
2n(q), then L = O+

2n(q), L0 = SO+
2n(q) and G̃ = Ω+

2n(q).

If G/Z(G) = PΩ−
2n(q), then L = O−

2n(q), L0 = SO−
2n(q) and G̃ = Ω−

2n(q).

So, G̃⊳L0⊳L with the indices of the inclusions being 1 or 2 and G = G̃/Z where Z is a central

subgroup of G̃ of order 1 or 2. Let b be a block of kG and denote by P a defect group of b. Since
Z is a central 2-subgroup, b is the image of a unique block b̃ of kG̃, and the inverse image P̃ of P
in kG̃ is a defect group of b̃. Let d0 be a block of kL0 covering b̃ with a defect group T0 such that
T0 ∩ G̃ = P̃ . We note that the block b̃ is L0-stable (see [24, Corollary 6.4]) whence, d0 = b̃ and

T0/P̃ is cyclic of order [L0 : G̃]. Let d be a block of kL covering d0 = b̃ and T a defect group of
b containing T0. As a byproduct of the Jordan decomposition of blocks (see Theorem 10.1), there
exists a semi-simple element s ∈ L0 of odd order such that T0 is a Sylow 2-subgroup of CL0(s) and
T is a Sylow 2-subgroup of CL(s) (see [2, (5A)]).

Lemma 14.2. If the defect groups of kL0d0 are abelian, then kL0d0, kLd, kG̃b̃ and kGb are all
nilpotent blocks.

Proof. L0 = LF
0 , where L0 is a simple algebraic group of type B, C or D over F̄q and F : L0 →

L0 is a Frobenius endomorphism with respect to an Fq-structure on L0. Thus, by Corollary 10.2,
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kLod0 is nilpotent. Since G̃ is a normal subgroup of L0 of index a power of 2 and d0 covers b̃, kG̃b̃
is nilpotent. Since G is a quotient of G̃ by a central 2-subgroup, and b̃ lifts b, kGb is nilpotent.
Finally L0 is of index 1 or 2 in L, and d covers d0, hence kLd is nilpotent. �

For the rest of this section s will denote a semi-simple element of odd order in L0 such that T0
is a Sylow 2-subgroup of CL0(s) and T is a Sylow 2-subgroup of CL(s).

Lemma 14.3. Suppose that G = PSp2n(q), n ≥ 2. If P is abelian, then b is nilpotent.

Proof. Note that G̃ = [L,L] = L0 = L, G = L/Z, |Z| = 2, and d = d0 = b̃. Further, by [36,
§1], and noting that s has odd order, the group H = CL(s) is a direct product of groups Hi as in
Lemma 11.2 with H0

∼= Sp2m0
(q) and

n = m0 +
∑

1≤i≤t

midi.

The above decomposition of CL(s) corresponds to the orthogonal decomposition of the underlying
symplectic space as a direct sum of isotypic Fq[s]-modules (for instance, H0 corresponds to the
1-eigen space of s). In particular, if the decomposition has more than one non-trivial factor, then

Z ∩ Hi = 1 for all i, 0 ≤ i ≤ t. We have T = T0 = P̃ and P = T ∩ [L,L]/Z = T/Z. Suppose
that P is abelian. If m0 6= 0, then by Lemma 11.2(ii) and (iv), m0 = 1, H = H0 = Sp2(q). In
particular, n = m0 = 1, a contradiction. Thus m0 = 0. Suppose that mi = 2 for some i ≥ 1.
Then by Lemma 11.2, t = 1 and H = GL2(q

d1) or H1 = GU2(q
d1). But as observed above, P is

the quotient of a Sylow 2-subgroup of H by Z(H), and PGL2(q
′) and PGU2(q

′) have non-abelian
Sylow 2-subgroups for any odd prime power q′, a contradiction. Thus m0 = 0 and mi ≤ 1 for all
i, 1 ≤ i ≤ t. In particular, H and therefore T0 is abelian. The result follows by Lemma 14.2. �

Before we proceed, we recall the structure of CL(s) when L is an orthogonal group as described
in [36, §1]. Let V be an underlying Fq-vector space for L, and let τ : V → Fq be a non-degenerate
quadratic form underlying L. So L = I(V ), the subgroup of GL(V ) consisting of isometries with
respect to τ , L0 = I0(V ), the subgroup of I(V ) consistsing of matrices of determinant 1 and

G̃ = Ω(V ) = [I(V ), I(V )]. Let V0 denote the 1-eigen space of s. The space V decomposes as an
orthogonal direct sum

V = V0 ⊕ (⊕1≤i≤tVi)

where for i ≥ 1, Vi, is an isotypic Fq[s]-module, such that Vi and Vj have no common irreducible
Fq[s]-summands for 0 ≤ i 6= j ≤ t and such that

CL(s) =
∏

i

CL(s) ∩GL(Vi).

Here
∏

i GL(Vi) is considered as a subgroup of GL(V ) in the standard way. Further, setting
Hi = CL(s) ∩GL(Vi), we have that

Hi =

{

L ∩GL(Vi) if i = 0
GLmi

(ǫiq
di) if i ≥ 1.

Here for each i ≥ 1, 2dimi is the Fq-dimension of Vi and H0 = I(V0). Also, ǫi ∈ {±1} and
GLmi

(ǫiq
di) denotes GUni

(qdi) if ǫi = −1. If i ≥ 1, then Hi ≤ L0. Thus,

CL0(s) = (H0 ∩ L0)×
∏

1≤i≤s

Hi.
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For each i, 0 ≤ i ≤ t, the restriction of τ to Vi is non-degenerate. This form has maximal Witt
index if ǫmi

i = 1 and is of non-maximal Witt index if ǫmi

i = −1. For 1 ≤ i ≤ t, let ti be the unique
involution in the centre of Hi. As an element of GL(V ), ti acts as −1 on Vi and as 1 on all Vj ,

j 6= i. Now G̃ = [I(V ), I(V )] is the kernel of the spinorial norm from I0(V ) to F×
q /F

×2
q (see [39,

§2.7]). From this it follows that ti ∈ Ω(V ) if and only if qdimi ≡ ǫmi

i (mod 4). We will use this fact
in the sequel.

Lemma 14.4. Suppose that G = PΩ2n+1(q), n ≥ 3 and that P is elementary abelian with |P | ≥
8. Then b is nilpotent.

Proof. Note that since the dimension of the underlying vector space is odd, G = G̃ = [L,L], G̃ is

of index 2 in L0 and L0 is of index 2 in L. In particular, P̃ = P . By Lemma 11.2, either m1 = 2
and mi = 0 for all i different from 1, or all mi ≤ 1. In the former case, again by Lemma 11.2, T
is isomorphic to a Sylow 2-subgroup of a 2-dimensional general linear group. In particular, T has
an element of order 8. Since T ≤ L in this case, P is of index 2 in of T , hence P has an element of
order 4, a contradiction. We assume from now on that all mi ≤ 1. If m0 = 0, then T and therefore
T0 is abelian and we are done by Corollary 14.2. So, m0 = 1, i.e. H0 = O3(q). Since n ≥ 2, i ≥ 1,
i.e., m1 6= 0. Let T i be the i-th component of T . We claim that T i 6≤ P for any i ≥ 1. Indeed,
suppose the contrary. Then T i = 〈ti〉 has order 2. In particular, this means that qdi 6≡ ǫi (mod 4).
But since mi = 1, this means that ti /∈ Ω(V ) and hence ti /∈ P . This proves the claim. By Lemma
11.2, T 0 ∩H0 is a dihedral group of order at least eight. Also, clearly T 0 ∩H0 ≤ T0. Since P is of
index 2 in T0, and since as just shown T 1 6≤ P , it follows that P contains a subgroup isomorphic
to T 0 ∩H0, an impossibility as P is abelian and T 0 ∩ SO3(q) is not. �

Lemma 14.5. Suppose that G = PΩ+
2n(q), or PΩ−

2n(q), n ≥ 4 and that P is elementary abelian
with |P | ≥ 8. Then b is nilpotent.

Proof. We first consider G = PΩ+
2n(q). If m1 = 2, then by Lemma 11.2(i) and (iii), mj = 0

for j 6= i, CL(s) = H1
∼= GL(ǫ1q

d1), where q ≡ ±3 (mod 8) and d1 is odd. But qd1m1 ≡ 1 ≡
ǫm1
1 (mod 4), hence the central involution t1 of H1 is in [L,L] and P is a subgroup of T/〈ti〉. Since
T/〈ti〉 is a dihedral group (see [21]), P has rank at most 2, a contradiction. Now suppose m0 = 2.
Then, mi = 0 for all i ≥ 1, and n = 2, a contradiction, as n is assumed to be at least 3. Thus,
mi ≤ 1 for all i. If m0 = 0, then T0 is abelian and we are done by Theorem 14.2. So, suppose that
m1 = 1. Then H0 = O±

2 (q) is a dihedral group and H0 ∩ L0 = SO±
2 (q) is a cyclic group (see [39,

§2.7]). Since Hi is also cyclic for all i ≥ 1, T0 is abelian and we are done by Theorem 14.2. The
proof for G = PΩ−

2n(q) is similar. �

Proof of Theorem 14.1. This is immediate from the preceding lemmas. �

15. Type G2,
2G2 and 3D4 in odd characteristic

Let q an odd prime power. The 2-rank of G2(q),
2G2(q) and

3D4(q) is 3; see e.g. [37, §1], [39,
Theorem 4.10.5].

Proposition 15.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is simple of type G2(q). Then kG has no block with an elementary abelian defect
group of order 8.

Proof. This follows from [42], where the 2-blocks of G are determined. Alternatively, one can
use the arguments in [24, 12.2]: there is a unique conjugacy class of involutions u in G and by
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[39, 4.5.1], CG(u) ∼= Z(G)× (2.(PSL2(q)×PSL2(q)).2). The acting 2-automorphism in the second
factor is inner-diagonal, hence stabilises any block of 2.(PSL2(q)×PSL2(q)). Thus a block of CG(u)
with elementary abelian defect group of order 8 would cover a block of 2.(PSL2(q)×PSL2(q)) with
a Klein four defect group, whose image modulo the central involution would yield a block of
PSL2(q)× PSL2(q) with a defect group of order 2. Any block of this direct product is of the form
c0 ⊗ c1, where c0, c1 are blocks of PSL2(q), so exactly one of c0, c1 would have defect zero and the
other defect one. But since any inverse image of an involution in PSL2(q) in SL2(q) has order 4
this is impossible. �

Proposition 15.2. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is simple of type 2G2(q). The principal block b0 is the unique block of kG having an
elementary abelian defect P group of order 8, and we have |IrrK(G, b0)| = 8.

Proof. The Sylow 2-subgroups of 2G2(q) are elementary abelian of order 8. The simple group of
type 2G2(q) has trivial Schur multiplier, hence Z(G) = 1. In that case we have NG(P ) ∼= P ⋊ E,
with E a Frobenius group of order 21 acting faithfully on P , and hence, by Brauer’s First Main
Theorem, the principal block b0 of kG is the unique block having P as defect group. By Ward’s
explicit calculations in [75] or Landrock’s general results in [48, §3] we have |IrrK(G, b0)| = 8. �

Finally for the trialityD4-groups we have the following proposition due to Deriziotis and Michler
[29, Proposition 5.3]

Proposition 15.3. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is simple of type 3D4(q). Let P be a defect group of some block of kG. Then either
P is non-abelian or P has rank at most 2. In particular, no block of kG has defect groups which
are elementary abelian of order 8.

16. Unipotent characters with small 2-defects

Recall that the 2-defect of an irreducible character χ of a finite group G is the largest integer

d(χ) such that 2d(χ) divides the rational integer |G|
χ(1) . The notation of the finite groups of Lie type

and the labelling of their unipotent characters due to Lusztig in the following two propositions are
from the tables page 75/76 and pages 465–488 in Carter’s book [20]. In particular, if X is some
simple type we denote by X(q) the finite group of Lie type (that is, the group of fixed points in the
algebraic group under some Frobenius endomorphism). We will deviate from the notation of [20]
in one respect, i.e., we will denote by 2Al(q),

2Dl(q), and
3D4(q) the twisted groups denoted by

2Al(q
2), 2Dl(q

2), and 3D4(q
3) respectively in [20]. For classical groups, we will also draw upon

Olsson’s treatment of the combinatorics of symbols [63]. Given a positive integer n, let n+ denote
as before the 2-part of n and n− the 2′-part of n. So, n = n+n−, no odd prime divides n+ and 2
does not divide n−.

Proposition 16.1. Let q be a power of an odd prime r. Let (q − 1)+ = 2d and (q + 1)+ = 2e.

(i) Every unipotent character of Al(q) has 2-defect greater than or equal to dl. If l + 1 is not a
triangular number, then the 2-defect of any unipotent character of Al(q) is at least dl + e ≥ 2 + l.
If l ≥ 3, then all unipotent charecters have 2-defect greater than or equal to 5. A2(q) has one
unipotent character, χ(1,2) of 2-defect 2d, all other unipotent characters have 2-defect 2d+ e ≥ 4.
The 2-defect of any unipotent character of A1(q) is d+ e ≥ 3.

(ii) Every unipotent character of 2Al(q) has 2-defect greater than or equal to el. If l + 1 is not a
triangular number, then the 2-defect of any unipotent character of 2Al(q) is at least el+ d ≥ 2+ l.
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If l ≥ 3, then all unipotent characters have 2-defect greater than or equal to 6. 2A2(q) has one
unipotent character, χ(1,2) of 2-defect 2e, all other uniptent characters have 2-defect 2e + d ≥ 4.
The 2-defect of any unipotent character of 2A1(q) is d+ e ≥ 3. (iii) Every unipotent character of

Bl(q) or Cl(q), l ≥ 2 has 2-defect at least 2l ≥ 4.

(iv) Every unipotent character of Dl(q) or
2Dl(q), l ≥ 4 has 2-defect at least 2l− 1 ≥ 7.

Proof. We note that d+ e ≥ 3.
(i) The unipotent characters of Al(q) are parametrized by the partitions of l + 1. If α is a

partition of l and χα is the corresponding unipotent character, then

|χα(1)|r′ =
(q − 1)|Al(q)|r′
∏

h(q
h − 1)

where h runs over the set of hook lengths of α (see for instance [54, pp.152-153]). Thus the 2-defect

of χα is f where 2f =
∏

h
(qh−1)+

(q−1)+
. Since α has l+1 hooks, the first assertion follows. If l+1 is not

a triangular number, then at least one hook of α is of even length. So, (q2−1) divides qh−1 for at
least one hook length h of α, whence f ≥ (d+e)+d(l−1). Since 5 is not a triangular number, it is
immediate from the first two assertions that any unipotent character of Al(q), l ≥ 4 has 2-defect at
least 6. Any partition of 4 has two hooks of even length, hence f ≥ 2(d+ e) ≥ 6. If α = (1, 1, 1) or
α = (3), then the hook lengths of α are 1, 2 and 3 and it follows that f = 2d+ e ≥ 4. If α = (2, 1),
then the hook lengths of α are 1, 1 and 3 and the 2-defect is 2d. Finally, if α = (1, 1) or (2), then
the hook lengths are 1 and 2 and the 2-defect is d+ e.

(ii) The unipotent characters of 2Al(q) are also parametrised by partitions of l+1. If χα is the
character labelled by α, then

|χα(1)|r′ =
(q + 1)| 2Al(q)|r′
∏

h((−q)
h − 1)

,

where h runs over the set of hook lengths of α (see [53]). The assertions of (ii) follow as in (i).
(iii) and (iv) Let G be one of the groups Bl(q), Cl(q), l ≥ 2, Dl(q),

2Dl(q), l ≥ 4. In Lusztig’s
description, the unipotent characters are labelled using symbols. A symbol is an equivalence class
[X,Y ] of unordered pairs [X,Y ] with X , Y (possibly empty) subsets of the non-negative integers.
The pair [X,Y ] is equivalent to [X ′, Y ′] if and only if there exists an integer t such that either
X = X ′+t and Y = Y ′+t orX = Y ′+t and Y = X ′+t. Let [X,Y ] be a symbol, X = {a1, a2, · · · , ak},
Y = {b1, b2, · · · , br}, with a1 > a2 · · · > ak ≥ 0 and b1 > b2 > · · · br ≥ 0. The rank of [X,Y ] is
defined by

rk[X,Y ] =
∑

i

ai +
∑

j

bj − ⌊

(

k + r − 1

2

)2

⌋

where ⌊x⌋ denotes the greatest integer less than or equal to x. Let c(X,Y ) be defined by

c(X,Y ) =

{

⌊k+r−1
2 ⌋ − |X ∩ Y | : X 6= Y

0 : X = Y.

If χ[X,Y ] is the unipotent character of G indexed by the symbol [X,Y ], then rk[X,Y ] = l and

|χ[X,Y ](1)|r′ =
|G|r′

2c(X,Y )
∏

h(q
h − 1)

∏

h′(qh
′ + 1)

where h runs over the set of hooks of [X,Y ] and h′ runs over the set of cohooks of [X,Y ] (see
[63, Proposition 5]). Let h+[X,Y ] be the number of hooks of [X,Y ] and let h−[X,Y ] denote
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the number of cohooks of [X,Y ]. Then by the character formula above it suffices to prove that
c(X,Y ) + h+[X,Y ] + h−[X,Y ] = 2(rk[X,Y ]) in case G = Bl(q) or G = Cl(q) and that c(X,Y ) +
h+[X,Y ] + h−[X,Y ] = 2(rk[X,Y ])− δ, where δ ∈ {0, 1} in case G = Dl(q) or G = 2Dl(q). By [63,
Equations 15, 16],

(6) h+[X,Y ] =
∑

i

ai +
∑

j

bj −

(

k

2

)

−

(

r

2

)

and

(7) h−[X,Y ] =
∑

i

ai +
∑

j

bj − kr + |X ∩ Y |.

From these it is straighforward to check that

c(X,Y ) + h+[X,Y ] + h−[X,Y ]− 2(rk[X,Y ]) = 0

if either k − r is odd or X = Y and

c(X,Y ) + h+[X,Y ] + h−[X,Y ]− 2(rk[X,Y ]) = −1

if k − r is even and X 6= Y . The result follows since if G = Bl(q) or G = Cl(q) then k − r is odd
and if G = Dl(q) or G = 2Dl(q) then k − r is even (see [20, Section 13.8]). �

Proposition 16.2. Let q be an odd prime power.

(i) G2(q) has two unipotent characters of 2-defect 0, (labelled G2[θ], G2[θ
2]); if q ≡ 1 (mod 4) then

G2(q) has two unipotent characters of 2-defect 3 (labelled G2[1], G2[−1]), and if q ≡ 3 (mod 4)
then G2(q) has one unipotent character of 2-defect 3 (labelled Φ2,2). In both cases, all remaining
unipotent characters of G2(q) have 2-defect at least 4.

(ii) 2G2(q) has two cuspidal unipotent characters of 2-defect 0, four cuspidal unipotent characters
of 2-defect 2, and the remaining two unipotent characters have 2-defect at least 4.

(iii) F4(q) has two unipotent characters of 2-defect 0 (labelled F4[θ], F4[θ
2]), and two unipotent

characters of 2-defect 5 (labelled F4[i], F4[−i]). All other unipotent characters of F4(q) have 2-
defect at least 7.

(iv) E6(q) and
2E6(q) each have two unipotent characters of 2-defect 0 (labelled E6[θ], E6[θ

2] in the
case of E6(q)), and all other unipotent characters have 2-defect at least 8. The unipotent characters
of defect 0 of E6(q) each have degree 1

3q
7Φ6

1(q)Φ
4
2(q)Φ

2
4(q)Φ5(q)Φ8(q) and the unipotent characters

of defect 0 of 2E6(q) each have degree 1
3q

7Φ4
1(q)Φ

6
2(q)Φ

2
4(q)Φ8(q)Φ10(q).

(v) E7(q) has four unipotent characters of 2-defect d ≥ 3, labelled (E6[θ], 1), (E6[θ
2], 1), (E6[θ], ǫ),

(E6[θ
2], ǫ), where 2d is the largest power of 2 dividing q2 − 1. These characters each have degree

1
3q

7Φ6
1(q)Φ

6
2(q)Φ

2
4(q)Φ5(q)Φ7(q)Φ8(q)Φ10(q)Φ14(q). Furthermore, E7(q) has exactly two unipotent

characters of 2-defect 8 (labelled E7[ξ], E7[−ξ] if q ≡ 1 mod 4 and Φ512,11, Φ512,12 if q ≡ 3 mod 4);
all other unipotent characters have 2-defect at least 14.

(vi) E8(q) has four unipotent characters of 2-defect 0 (labelled E8[ζ], E8[ζ
2], E8[ζ

3], E8[ζ
4]), four

unipotent characters of 2-defect 3 (labelled E8[θ], E8[θ
2], E8[−θ], E8[−θ2] if q ≡ 1 mod 4, and

(E8[θ],Φ2,1), (E8[θ
2],Φ2,1), (E8[θ],Φ

′
2,2), (E8[θ

2],Φ′
2,2) if q ≡ 3 mod 4); all other unipotent

characters have 2-defect at least 5.

(vii) 3D4(q) has two unipotent characters with 2-defect 3, two unipotent characters with 2-defect
at least 5, and four unipotent characters with 2-defect at least 6.
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Proof. One proves this by first expressing the group orders given in [20, pp. 75-76] as products of
cyclotomic polynomials evaluated at q. Then, for any of the above groups G and any unipotent

character Φ of G one calculates the 2-part of |G|
Φ(1) by running through Lusztig’s lists of character

degrees of unipotent characters in [20, pp. 477–488], observing that the only cyclotomic polynomi-
als Φd which occur in these character degrees for which Φd(q) is even, are those for d ∈ {1, 2, 4, 8}.
While the 2-part of Φ4(q) and Φ8(q) is exactly 2, the 2-part of Φ1(q)Φ2(q) = q2 − 1 is at least 8,
possibly bigger, which accounts for the inequalities in the above statements. �

17. Type F4

Proposition 17.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is a simple group of type F4(q), where q is an odd prime power. If kG has a block
b with an elementary abelian defect group P of order 8, then either |IrrK(G, b)| = 8 or OGb is
Morita equivalent to a block of OL of a finite group L such that |L/Z(L)| < |G/Z(G)|.

Proof. Here Z(G) = 1 and G = GF , where G is a simple algebraic group of type F4 over F̄q and
F : G → G is a Frobenius morphism with respect to an Fq-structure on G. Let [t] be the semi-
simple label of b (see §10) and let C(t) := CG∗(t). Suppose first that C(t) is contained in a proper
Levi subgroup of G∗. Then by the Jordan decomposition of blocks (see §10), there exists a proper
F -stable Levi subgroup, L such that the block OGb is Morita equivalent to some block of OLF .
Since L is a proper Levi subgroup ofG, |L(t)F /Z(L(t)F )| is strictly smaller than |G/Z(G)|. Hence,
we may assume that t is a quasi-isolated element ofG∗, i.e. thatC(t) is not contained in any proper
Levi subgroup of G∗. Since Z(G) is trivial, C(t) = C◦(t), hence t is even isolated in G∗, i.e C◦(t)
is not contained in any proper Levi subgroup of G∗. From the tables describing centralisers of
semi-simple elements in groups of type F4 in [72], (see also the tables in [28]) one sees that C̄◦(t)F

∗

is isomorphic to one of F4(q), B4(q), C3(q)×A1(q), A3(q)×A1(q),
2A3(q)×A1(q), A2(q)×A2(q)

or 2A2(q)× 2A2(q) (and Z
◦(C◦(t)) = 1). By (1), (4) and Propositions 16.1 and 16.2, the 2-defect

of any element of E(GF , [t]) = E(GF , (t)) is at least 4, whence E(GF , (t)) ∩ IrrK(G, b) = ∅, a
contradiction. �

18. On characters of small defect in type E groups

We use the notation of §10.

Proposition 18.1. Suppose that G is simple, simply connected of type E6, and GF is a group
of type E6(q). Let s be a semi-simple element of G∗F∗

and let χ ∈ IrrK(G) ∩ E(GF , [s]). Let λ,
λ′ and λ̄ correspond to χ as in §10 (3). Suppose that the 2-defect d(χ) of χ is at most 3. Then
aχ is 1 or 3, αχ = 0 (see notation after (4) in §10) and s, χ and λ̄ satisfy one of the rows in the
following table.
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∆s C
◦(s)′F

∗

z(s) λ̄ aχχ(1)r′ d(χ) cond. on q

(i) - - Φ2
1Φ

2
3 1 Φ4

1Φ
4
2Φ3Φ

2
4Φ5Φ

2
6Φ8Φ9Φ12 2 q ≡ 3 mod 4

(ii) - - Φ2
1Φ5 1 Φ4

1Φ
4
2Φ

3
3Φ

2
4Φ

2
6Φ8Φ9Φ12 2 q ≡ 3 mod 4

(iii) - - Φ1Φ2Φ
2
3 1 Φ5

1Φ
3
2Φ3Φ

2
4Φ5Φ

2
6Φ8Φ9Φ12 3 (q2 − 1)+ = 8

(iv) - - Φ1Φ2Φ5 1 Φ5
1Φ

3
2Φ

3
3Φ

2
4Φ

2
6Φ8Φ9Φ12 3 (q2 − 1)+ = 8

(v) - - Φ1Φ2Φ3Φ6 1 Φ5
1Φ

3
2Φ

2
3Φ

2
4Φ5Φ6Φ8Φ9Φ12 3 (q2 − 1)+ = 8

(vi) - - Φ3
3 1 Φ6

1Φ
4
2Φ

2
4Φ5Φ

2
6Φ8Φ9Φ12 0

(vii) - - Φ2
2Φ3Φ6 1 Φ6

1Φ
2
2Φ

2
3Φ

2
4Φ5Φ6Φ8Φ9Φ12 2 q ≡ 1 mod 4

(viii) - - Φ3Φ12 1 Φ6
1Φ

4
2Φ

2
3Φ

2
4Φ5Φ

2
6Φ8Φ9 0

(ix) - - Φ9 1 Φ6
1Φ

4
2Φ

3
3Φ

2
4Φ5Φ

2
6Φ8Φ12 0

(x) - - Φ3Φ
2
6 1 Φ6

1Φ
4
2Φ

2
3Φ

2
4Φ5Φ8Φ9Φ12 0

(xi) A2 A2(q) Φ2
3 χ(2,1) Φ4

1Φ
4
2Φ

2
4Φ5Φ

2
6Φ8Φ9Φ12 2 q ≡ 3 mod 4

(xii) A2
2A2(q) Φ3Φ6 χ(2,1) Φ6

1Φ
2
2Φ3Φ

2
4Φ5Φ8Φ9Φ12 2 q ≡ 1 mod 4

(xiii) D4
3D4(q) Φ3 φ2,2

1
2
Φ4

1Φ
4
2Φ

2
4Φ5Φ8Φ9Φ12 3 q ≡ 3 mod 4

(xiv) D4
3D4(q) Φ3 φ2,1

1
2
Φ4

1Φ
4
2Φ

2
4Φ5Φ

2
6Φ8Φ9 3 q ≡ 3 mod 4

(xv) D4
3D4(q) Φ3

3D4[−1] 1
2
Φ6

1Φ
2
2Φ

2
3Φ

2
4Φ5Φ8Φ9 3 q ≡ 1 mod 4

(xvi) D4
3D4(q) Φ3

3D4[1]
1
2
Φ6

1Φ
2
2Φ

2
4Φ5Φ8Φ9Φ12 3 q ≡ 1 mod 4

(xvii) 3A2 A2(q
3) 1 χ(2,1) Φ4

1Φ
4
2Φ3Φ

2
4Φ5Φ8Φ12 2 q ≡ 3 mod 4

(xviii) E6 E6(q) 1 E6[θ], E6[θ
2] 1

3
Φ6

1Φ
4
2Φ

2
4Φ5Φ8 0

Here Φd = Φd(q) denotes the d-th cyclotomic polynomial over Q evaluated at q. The non-blank

entries of the third column are to be interpreted as C◦(s)′F
∗

being a group of the given type, and
do not specify the isomorphism type of C◦(s)′F

∗

.

Proof. Let s, χ, λ be as in the statement. The group C(s)/C◦(s) is isomorphic to a subgroup of
IrrQ̄2′

(Z(G)/Z◦(G)) (see for instance [26, Lemma 13.14(iii), Remark 2.4]). The first two assertions

follow since Z(G)/Z◦(G) is a cyclic group of order 3.
We will use (4), and Propositions 16.1 and 16.2 in conjunction with the tables giving connected

centralisers of semi-simple elements in groups of type E6(q) in [28] in order to identify the ∆s,

C◦(s)F
∗

, z(s) and λ̄ entries of a row in the table. Once these have been identified, the χ(1)r′
αχ

entry

of the row is calculated using (3), the degree formulae for unipotent characters as given in [20,
§13.8] and the order formulae for the finite groups of Lie type (see [20, pp.75-76]). The last two

entries are obtained by comparing χ(1)r′
αχ

with |GF |. We note here that

|GF | = q36Φ6
1Φ

4
2Φ

3
3Φ

2
4Φ5Φ

2
6Φ8Φ9Φ12.

The connected components of ∆s are of type Al, l ≥ 1, D4, D5, or E6. If ∆s has a component of
type E6 (and in particular is a single component), then s is central in G∗, z(s) = 1 and λ̄ is one
of the unipotent characters E6[θ] or E6[θ

2] of E6(q) as in Proposition 16.2. Both E6[θ] and E6[θ
2]

have degree 1
3q

7Φ6
1Φ

4
2Φ

2
4Φ5Φ8, hence χ, s, and λ̄ are as in the last row of the table.

Assume from now on that the components of ∆s are of classical type. So C̄◦(s)F
∗

is a direct
product of groups Al(q

j), l ≥ 1, 2Al(q
j), l ≥ 2, Dl(q

j), 2Dl(q
j), l ≥ 4 or 3D4(q). By Propositions

16.1 and 16.2, the 2-defect of any unipotent character of a group Al(q
j), l ≥ 1, 2Al(q

j), l ≥ 2,
Dl(q

j), 2Dl(q
j), l ≥ 4 or 3D4(q) is at least 2. On the other hand, by (4), λ̄ has 2-defect at most

3 (note that αχ = 0). Thus, the connected components of ∆(s) form one orbit under the action
of F ∗, and in particular are all pairwise isomorphic. It also follows from Proposition 16.1 that the
connected components are not of type D5 or of type Al, l ≥ 3.
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Let j be the number of connected components of ∆s. We claim that the connected components
of ∆s are not of type A1. Indeed, assume otherwise, so C◦(s)′F

∗

= A1(q
j). By Proposition 16.1(i)-

(ii), every unipotent character of A1(q
j) or 2A1(q

j) has 2-defect at least 3. Thus, by (4), ζs = 0.
But by [28], whenever ∆s is of type jA1, ζs ≥ 1, proving the claim.

Suppose that the connected components of ∆s are of type A2, 1 ≤ j ≤ 3. If j = 3, then by [28],
C◦(s)′F

∗

= A2(q
3), z(s) = 1, and by Proposition 16.1(i), λ̄ is the character χ(2,1). By the hook-

length degree formula for unipotent characters of groups of type A (see the proof of Proposition
16.1(i)),

λ̄(1)r′ =
(q3 − 1)|A2(q

3)|

(q9 − 1)(q3 − 1)2
=

|A2(q
3)|

Φ2
1Φ

2
3Φ9

,

we see that s and χ are as in row (xvii) of the table. If j = 2, then by [28], C◦(s)′F
∗

(s) = A2(q
2),

whereas by Proposition 16.1 any unipotent character of A2(q
2) has 2-defect at least 6 (note that

(q2 − 1)+ ≥ 8). Thus this case does not occur.

If j = 1, and C◦(s)′F
∗

= A2(q), then ζs ≤ 1, hence by [28], z(s) is (q2 + q + 1) and s and χ are
as in row (xi) of the table. If j = 1, and C◦(s)′F

∗

= 2A2(q), then ζs ≤ 1, hence by [28], z(s) is
(q4 + q2 + 1) and s and χ are as in row (xii) of the table.

Suppose that the connected components of ∆s are of type D4, so j = 1. By Proposition 16.1(iv),
and by [28], C◦(s)′F

∗

= 3D4(q) and z(s) = q2 + q+1. By Proposition 16.2(vii) λ̄ is one of φ2,2 or
φ2,1 if q ≡ 3 (mod 4) and λ̄ is one of 3D4[−1] or 3D4[1] if q ≡ 1 (mod 4). Hence, χ, s and λ are
as in lines (xiii)-(xvii) of the table.

Finally assume that C◦(s) is a torus, soC◦(s)′ and λ̄ are trivial. By (4) we have z(s) = d(χ) ≤ 3.
An inspection of [28] yields that z(s) is as in the first ten rows of the table. �

Proposition 18.2. Suppose that G is simple, simply connected of type E6, and GF is a group
of type 2E6(q). Let s be a semi-simple element of G∗F∗

and let χ ∈ IrrK(G) ∩ E(GF , [s]). Let λ̄
correspond to χ as in (3). Suppose that the 2-defect d(χ) of χ is at most 3. Then aχ is 1 or 3,
αχ = 0 and s, χ and λ̄ satisfy one of the rows in the following table.

∆s C◦(s)′F
∗

z(s) λ̄ aχχ(1)r′ d(χ) cond. on q

(i) - - Φ2
2Φ

2
6 1 Φ4

2Φ
4
1Φ6Φ2

4Φ10Φ2
3Φ8Φ18Φ12 2 q ≡ 1 mod 4

(ii) - - Φ2
2Φ10 1 Φ4

2Φ
4
1Φ

3
6Φ

2
4Φ

2
3Φ8Φ18Φ12 2 q ≡ 1 mod 4

(iii) - - Φ2Φ1Φ2
6 1 Φ5

2Φ
3
1Φ6Φ2

4Φ10Φ2
3Φ8Φ9Φ12 3 (q2 − 1)+ = 8

(iv) - - Φ2Φ1Φ10 1 Φ5
2Φ

3
1Φ

3
6Φ

2
4Φ

2
3Φ8Φ18Φ12 3 (q2 − 1)+ = 8

(v) - - Φ2Φ1Φ6Φ3 1 Φ5
2Φ

3
1Φ

2
6Φ

2
4Φ10Φ3Φ8Φ18Φ12 3 (q2 − 1)+ = 8

(vi) - - Φ3
6 1 Φ6

2Φ
4
1Φ

2
4Φ10Φ2

9Φ8Φ18Φ12 0
(vii) - - Φ2

1Φ6Φ3 1 Φ6
2Φ

2
1Φ

2
6Φ

2
4Φ10Φ3Φ8Φ18Φ12 2 q ≡ 3 mod 4

(viii) - - Φ6Φ12 1 Φ6
2Φ

4
1Φ

2
6Φ

2
4Φ10Φ2

3Φ8Φ18 0
(ix) - - Φ18 1 Φ6

2Φ
4
1Φ

3
6Φ

2
4Φ10Φ2

3Φ8Φ12 0
(x) - - Φ6Φ2

3 1 Φ6
2Φ

4
1Φ

2
6Φ

2
4Φ10Φ8Φ18Φ12 0

(xi) A2
2A2(q) Φ2

6 χ(2,1) Φ4
2Φ

4
1Φ

2
4Φ10Φ2

3Φ8Φ18Φ12 2 q ≡ 1 mod 4

(xii) A2 A2(q) Φ6Φ3 χ(2,1) Φ6
2Φ

2
1Φ6Φ2

4Φ10Φ8Φ18Φ12 2 q ≡ 3 mod 4

(xiii) D4
3D4(q) Φ6

3D4[1]
1
2
Φ4

2Φ
4
1Φ

2
4Φ10Φ8Φ18Φ12 3 q ≡ 1 mod 4

(xiv) D4
3D4(q) Φ6

3D4[−1] 1
2
Φ4

2Φ
4
1Φ

2
4Φ10Φ2

3Φ8Φ18 3 q ≡ 1 mod 4

(xv) D4
3D4(q) Φ6 φ2,1

1
2
Φ6

2Φ
2
1Φ

2
6Φ

2
4Φ10Φ8Φ18 3 q ≡ 3 mod 4

(xvi) D4
3D4(q) Φ6 φ2,2

1
2
Φ6

2Φ
2
1Φ

2
4Φ10Φ8Φ18Φ12 3 q ≡ 3 mod 4

(xvii) 3A2
2A2(q3) 1 χ(2,1) Φ4

2Φ
4
1Φ6Φ2

4Φ10Φ8Φ12 2 q ≡ 1 mod 4

(xviii) E6
2E6(q) 1 2E6[θ], 2E6[θ2]

1
3
Φ6

2Φ
4
1Φ

2
4Φ10Φ8 0

29



Proof. This is exactly as in the proof of Proposition 18.1, replacing q by −q and noting that this
switches the roles of the pairs Φ1 and Φ2, Φ3 and Φ6, Φ5 and Φ10, and Φ9 and Φ18. �

19. Type E in odd characteristic

Let q be an odd prime power. We do not know whether there are any blocks with elementary
abelian defect group of order 8 in type E over a field of odd characteristic - the next result says
that if there is such a block, it is either nilpotent or its inertial quotient has order 7.

Proposition 19.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is a simple group of type E6(q),

2E6(q), E7(q) or E8(q). If kG has a block b with
an elementary abelian defect group P of order 8, then the inertial quotient of b is either trivial (in
which case b is nilpotent) or has order 7.

Proof. It suffices to show that if u ∈ P is an involution and if e is a block of kCG(u) with defect
group P then e is nilpotent. Indeed, there are non-nilpotent (G, b)-Brauer elements if and only
if the inertial quotient of b has order 3 or 21. The pattern of the proof is this: using the lists of
centralisers in [39, 4.5.1, 4.5.2], we show that in ‘most’ cases, CG(u) has a direct factor of the form
2.H.2 for some finite group H . As in [24], this means that 2.H is a central extension of H by an
involution such that 2.H is contained as a subgroup of index 2 in 2.H.2, and an automorphism
α of 2.H induced by conjugation with a 2-element a in 2.H.2 − 2.H has an image ᾱ in the outer
automorphism group of 2.H of order 2. Using [24, 6.4] and again [39, 4.5.1, 4.5.2], we will then
show that α stabilises all blocks of H , implying that a is contained in a defect group of any block,
and so any block of 2.H.2 with an elementary abelian defect group P is necessarily nilpotent,
because its image in H.2 is a block with a Klein four defect group which is also a 2-extension of a
block of H with a defect group of order 2. Here are the details for the different groups; this follows
arguments in [24, §12]. All group theoretic facts about centralisers of involutions are from [39, §4].

Suppose that G/Z(G) is of type E6(q). There are two classes of involutions in G, with rep-
resentatives t1, t2. If u = t1 then CG(u) has a central cyclic subgroup of order gcd(4, q − 1),
hence q ≡ 3 (mod 4) since P has exponent 2. Then CG(u) ∼= 2.PΩ10(q).2 × C(q−1)/2. The au-
tomorphism α of PΩ10 as constructed above is inner diagonal, hence [24, 6.4] implies that it is
contained in a defect group of any block of CG(u). Thus any block of CG(u) with P as defect
group is nilpotent by the argument outlined at the beginning of the proof. If u = t2 then CG(u) ∼=
2.(PSL2(q) × Z(N).PSL6(q)).2. Again, α is inner diagonal on both factors, and so the same
argument using [24, 6.4] shows that any block of CG(u) with defect group P is nilpotent.

Suppose that G/Z(G) is of type 2E6(q). There are two classes of involutions in G, with repre-
sentatives t1, t2. If u = t1 then CG(u) has a central cyclic subgroup of order gcd(4, q + 1), hence
q ≡ 1 (mod 4) since P has exponent 2. Then CG(u) ∼= 2.PΩ−

10(q).2 × C(q+1)/2. If u = t2 then
CG(u) ∼= 2.(PSL2(q) × (3, q + 1).PSU6(q)).2, and the same argument as for E6(q) shows that in
both cases, any block of kCG(u) with defect group P is nilpotent.

Suppose that G/Z(G) is of type E7(q). In that case Z(G) = {1}, so G is simple, but the
finite group of Lie type E7(q) is a central extension of G by an involution. Let E = Inndiag(G);
then |E : G| = 2. Table 4.5.1 in [39] describes CE(u), for any involution u in G, and invo-
lutions in G which are E-conjugate will have isomorphic centralisers in G. There are five E-
conjugacy classes of involutions in G, represented by t1, t4, t

′
4, t7 and t′7. If u = t1 then CE(u) ∼=

2.(PSL2(q)×PΩ12(q)).(C2 ×C2), so our standard argument implies that any block of CG(u) with
P as defect group is nilpotent. If u = t4 then q ≡ 5 (mod 8) (else t4 is non-inner), and CE(u) ∼=
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2.PSL8(q).Cgcd(8,q−1).γ, where γ is a graph automorphism. It follows from considering the ta-
ble 4.5.2 in [39] applied to the inverse image of u in E7(q) that γ is not in G, hence CG(u) ∼=
2.PSL8(q).Cgcd(8,q−1). Since gcd(8, q − 1) is at least 2, we get again that any block of CG(u)
with P as defect group is nilpotent. If u = t′4 then q ≡ 3 (mod 4) (or else t′4 is non-inner) and
CE(u) ∼= 2.PSU8(q).Cgcd(8,q−1).γ. As in the previous case we get CG(u) ∼= 2.PSU8(q).Cgcd(8,q−1),
and thus that any block of CG(u) with P as defect group is nilpotent. If u = t7 then q ≡ 1 (mod 4)
and CE(q) ∼= (gcd(3, q − 1).E6(q).3 ∗ Cq−1).2, and hence, by an argument as before (using [39,
4.5.2]), we get that CG(u) ∼= (gcd(3, q − 1).E6(q).3 ∗ Cq−1). This shows that CG(u) has a nor-
mal cyclic subgroup of order 4, hence has no block with P as defect group. Similarly, if u = t′7
then q ≡ 3 (mod 4) and CE(q) ∼= (gcd(3, q + 1).2E6(q).3 ∗ Cq+1).2; as above we get CG(u) ∼=
(gcd(3, q+1).2E6(q).3∗Cq+1). This shows that CG(u) has again a normal cyclic subgroup of order
4, hence has no block with P as defect group.

Suppose finally that G/Z(G) is of type E8(q). Then Z(G) = {1} andG has two conjugacy classes
of involutions, with representatives t1 and t8. Their centralisers are isomorphic to 2.PΩ16(q).2 and
2.(PSL2(q) × Ē7(q)).2, where Ē7(q) is the simple quotient of E7(q). In both cases our standard
argument shows that every block with defect group P is nilpotent. �

Notation. For each n > 2, let pn be a Zsigmondy prime for the pair (q, n), i.e., pn is a prime
number such that pn divides qn− 1 but pn does not divide qm− 1 for any m < n. Such pn exist by
Zsigmondy’s theorem (see [69, Theorem 3]), and note that q is odd and that n is assumed greater
than 2. Since q has order n modulo pn, if pn divides Φd(q) for some natural number d then pn
divides qd − 1, whence n|d.

Proposition 19.2. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is a simple group of type E6(q). If kG has a block b with an elementary abelian defect
group P of order 8, then either |IrrK(G, b)| = 8 or OGb is Morita equivalent to a block of OL of
a finite group L such that |L/Z(L)| < |G/Z(G)|.

Proof. The centre Z(G) has order 1 or 3 and we may assume without loss of generality that Z(G)
has order 3. Hence G = GF , where G is a simply connected simple algebraic group of type E6

over F̄q and F : G → G is a Frobenius morphism with respect to an Fq-structure on G. Keeping
the notation of the previous section let [t] be the semi-simple label of b. Arguing as for Proposition
17.1, we may and we will assume that t is quasi-isolated. Suppose, if possible that |IrrK(G, b)| 6= 8.
By Propositions 3.3 and 19.1,

|IrrK(G, b)| = 5 and IrrK(G, b) = {χj , 1 ≤ j ≤ 5}

where χ1 has height one and χj has height zero for 2 ≤ j ≤ 5. For each j, 1 ≤ j ≤ 5, let

sj be a semi-simple element in G∗F∗

such that χj ∈ E(G, [sj ]). By [16, Théorème 2.2], for any

1 ≤ j ≤ 5, sj can be chosen to have the form sj = tuj , where uj is a 2-element of C(t)F
∗

.
Since C(t)/C◦(t) has exponent dividing the order of t, (see for example [26, Remark 13.15 (i)]),
uj ∈ C◦(t)F

∗

. In particular, the connected components of ∆sj are subdiagrams of the extended
connected components of ∆t. Here, by an extended Dynkin diagram we mean a completed Dynkin
diagram in the sense of [9, Chapter 6, §4.3].

Since t is quasi-isolated and has odd order, by [7, Table III], ∆t is one of E6, A2 ×A2 ×A2, or
D4. On the other hand, since E(G, [t]) ∩ IrrK(G, b) 6= ∅, E(G, [t]) and hence E(G, (t)) contains an
element of 2-defect 2 or 3. By Equation 4 and Proposition 18.1, it follows that CG(t)F

∗

contains a
unipotent character of 2-defect at most 3 and at least 2. Now if ∆t is of type E6, then t is central
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in G∗, i.e. CG(t)F
∗

= E6(q). But by Proposition 16.2 the 2-defect of a unipotent character of a
group of type E6(q) is either 0 or at least 8, a contradiction.

Suppose that ∆t = 3A2. Then, since CG(t)◦F
∗

contains a unipotent character of 2-defect 2 or 3,
we see that t is as in row (xvii) of Table 18.1. But since the characters corresponding to (xvii) have
2-defect 2, it follows by Proposition 3.3 that u1 = 1 and that uj is non-trivial for all j, 2 ≤ j ≤ 5.

Let 2 ≤ j ≤ 5. Since the 2-defect of sj is 3 and since ∆sj is not of type D4 or E6, CG∗(sj)
◦ is a

torus corresponding to rows (iii), (iv) or (v) of Table 18.1. In particular, Φ9(q) and hence p9 is a
divisor of χj(1) for all j, 2 ≤ j ≤ 5. On the other hand, χ1 corresponds to row (xvii) of Table 18.1
and we see that p9 does not divide χ1(1). Hence, p9 does not divide 2χ1(1)−

∑

2≤j≤5 δjχj(1). In

particular, 2χ1(1)−
∑

2≤j≤5 δjχj(1) 6= 0, contradicting Proposition 3.3(ii).

So ∆t = D4. Let j0 be such that sj0 = t, 1 ≤ j0 ≤ 2. Then t corresponds to one of rows (xiii)-
(xvi) of Table 18.1. Since the characters corresponding to these rows have 2-defect 2, j0 ≥ 2, say
j0 = 2. Let us first consider the case that χ2 corresponds to row (xiii) of the table, so q ≡ 3 (mod
4) and let l, 3 ≤ l ≤ 5 be such that (sl, χl) also corresponds to row (xiii) of the table. Then semi-
simple part of CG∗(sl)

◦, and hence of CCG∗(t)◦(ul) is of type D4. Thus ul is central in CG∗(t)◦.
Since ul is a 2-element, and ζt is odd, we get that ul is a central element of [CG∗(t)◦, CG∗(t)◦].
But the group 3D4(q) has a trivial centre, hence u1 = 1. Thus, if (sl, χl) corresponds to row (xiii)
of Table 18.1, then [sl] = [t]. By [7], t is quasi-isolated but not isolated and CG∗(t)◦ is of index 3
in CG∗(t). Since φ2,1 is the unique unipotent character of its degree in 3D4(q), φ2,1 is stable under
CGF∗ (t) and hence there are three possibilities for χl, each of degree

δ =
1

6
q33Φ4

1(q)Φ
4
2(q)Φ

2
4(q)Φ5(q)Φ8(q)Φ9(q)Φ12(q).

Let χ1 −
∑

2≤i leq5 δiχi be the element of L0(G, b) as in Proposition 3.3. Then, δl = δ2. Thus,

from the degree formula above, it follows that
∑

i δiχi(1), where i ranges over the indices for which
si corresponds to row (xiii) of Table 18.1 is not divisible by the Zsigmondy prime p6 (note that
the number of such indices is at most 3).

Now let j, 1 ≤ j ≤ 5 be such that sj does not correspond to row (xiii) of Table 18.1. Since q ≡ 3
(mod 4), and ∆sj is a subdiagram of the extended Dynkin diagram of ∆t, (sj , χj) corresponds to
one of rows (i), (ii), (iii), (iv), (v), (xi), or (xiv) of Table 18.1. In particular, from the character
degree column of Table 18.1, we see that χj(1) is divisible by p6 for any such j. Hence, 2χ1(1)−
∑

2≤i≤5 δiχi(1) is not divisible by p6, a contradiction.

We get a similar contradiction if (t, χ2) corresponds to row (xvi) of Table 18.1 and with p6
replaced by p12 if (t, χ2) corresponds to row (xiv) or row (xv) of Table 18.1. �

Proposition 19.3. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is a simple group of type 2E6(q). If kG has a block b with an elementary abelian
defect group P of order 8, then either |IrrK(G, b)| = 8 or OGb is Morita equivalent to a block of
OL of a finite group L such that |L/Z(L)| < |G/Z(G)|.

Proof. This is as the proof of Proposition 19.2, with the roles of q and −q suitably reversed. �

Proposition 19.4. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is a simple group of type E7(q). Suppose that kG has a block b with an elementary
abelian defect group P of order 8 such that |IrrK(G, b)| 6= 8. Then, there exists a finite group L
with |L/Z(L)| < |G/Z(G)| and a block c of OL with elementary abelian defect groups of order 8
and such that |IrrK(L, c)| 6= 8.
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Proof. First note that Z(G) = 1 and that G = G̃/〈z〉, where G̃ = G̃F for a simply-connected

simple algebraic group G̃ of type E7, F : G̃ → G̃ is a Frobenius morphism with respect to an
Fq-structure on G̃, and 〈z〉 is the central subgroup of order 2 of G̃. Let b̃ be the block of OG̃

lifting b and let [t] be the semi-simple label of b̃.

Suppose first that t is not a quasi-isolated element of G̃∗. Then, arguing as for Proposition
17.1, there exists a proper F -stable Levi subgroup L̃ of G̃, and a block c̃ of OL̃F such that OG̃F b̃
and OL̃F c̃ are Morita equivalent. Noting that z ∈ L̃F , set L = L̃F /〈z〉 and let c be the image in
OL of c̃. By Proposition 3.5, the defect groups of c are elementary abelian and c does not satisfy
Alperin’s weight conjecture. Since

|L/Z(L)| ≤ L =
|L̃F |

2
<

|G̃F |

2
= |G| = |G/Z(G)|,

the result follows.
We assume from now on that t is quasi-isolated in G̃∗ . Before proceeding we note that since t

has odd order, C
G̃∗(t) is connected and hence t is in fact isolated. By table III of [7], and using

that t is of odd order, we get that either t = 1 and the Dynkin diagram ∆t corresponding to C
G̃
(t)

is of type E7 or t has order 3 and ∆t is of type A2 × A5. Since there is an ordinary irreducible
character of b̃ in the E(G̃F , [t]), it follows from Equation (3) in §10 that (C

G̃∗(t)/Z(CG̃∗(t)))F
∗

has a unipotent character of defect at most 4 (note that b̃ has defect groups of order 16). By

Proposition 16.1 it follows that ∆t is not of type A2 × A5. So, ∆t is of type E7, i.e., b̃ is a
unipotent block. But the defect groups of all non-principal unipotent blocks of G̃F which are not
central in G̃F are dihedral groups ([30, p.357]). On the other hand, a defect group of b̃ is a central
extension of an elementary abelian group of order 8 by a group of order 2, a contradiction. �

Proposition 19.5. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is a simple group of type E8(q). Suppose that kG has a block b with an elementary
abelian defect group P of order 8 such that |IrrK(G, b)| 6= 8. Then, there exists a finite group L
with |L/Z(L)| < |G/Z(G)| and a block c of OL with elementary abelian defect groups of order 8
and such that |IrrK(L, c)| 6= 8.

Proof. Note that G = GF for a simply-connected simple algebraic group G of type E8, and
F : G → G a Frobenius morphism with respect to an Fq-structure on G. Let [t] be the semi-
simple label of b. Again, the Bonnafé-Rouquier result allows us to reduce to the case that t is a
quasi-isolated (hence isolated) element of G∗. By the tables in [27], one sees that ∆t is one of
A4 ×A4, A5 ×A2 ×A1, A7 ×A1, A8, D5 ×A3 , D8, E6 ×A2, E7 ×A1 or E8. Using as before that
(CG∗(t)/Z(CG∗(t)))F

∗

has a unipotent character of defect at most 3 (see Equation (3) in §10) and
Propositions 16.1 and 16.2 we have that ∆t is one of E6 × A2, or E8. By [30, p.364], the defect
groups of any unipotent block of positive defect of G have order at least 16 hence ∆t is not of type
E8.

Suppose that ∆t is of type E6 × A2 and set C = CG∗(t). Since C is connected and has
centre of odd order, by Propositions 16.1 and 16.2, and the discussion preceding Proposition 18.1,
CF∗

has no unipotent character of defect 3, and at most one unipotent character of 2-defect 2
(corresponding to the product of the unipotent character of 2-defect 2 of A2(q) or 2A2(q) and a
unipotent character of 2-defect zero of E6(q) or 2E6(q)). We have |IrrK(G, b)| = 5 and can write
IrrK(G, b) = {χj, 1 ≤ j ≤ 5} as in Proposition 3.3. For each j, 1 ≤ j ≤ 5, let sj and uj be as in
the proof of Proposition 19.2. Let j0, 1 ≤ j0 ≤ 5 be such that χj0 is in the rational series indexed
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by [t]. By the above discussion j0 = 1 and χ1 is the unique character of b in the rational Lusztig
series corresponding to [t]. In other words, uj is a non-trivial 2-element for 2 ≤ j ≤ 5.

Let 2 ≤ j ≤ 5. Set Cj = CG∗(sj) = C◦
G∗(sj), Zj = Z(CG∗(sj)) and C̄j = Cj/Zj . Set

zj = |ZF∗

j | and let ζj be defined by 2ζj = zj+. Further, let λ̄j be a unipotent character of C̄F∗

j

corresponding to χj as in the discussion preceding Equation 4, i.e., such that

(8) χj0(1) =
|G|r′

zj |C̄F∗

j |
λ̄j(1)

and

(9) ζj + d(τj) = 3

where d(τj) is the 2-defect of τj . We have that C := CG∗(t) = X.Y where X is a simply connected
group of type A2 and Y is a simple group of type E6, X and Y commute and intersect in a central
subgroup of order 3. As uj is a non-trivial F ∗-stable 2-element, there are unique F ∗-stable 2-
elements v1 ∈ X, v2 ∈ Y, at least one of which is non-trivial and such that uj = v1v2,

CG∗(sj) = CX(v1)CY(v2)

and CG(sj)
F∗

contains CX(v1)
F∗

CY(v2)
F∗

as a normal subgroup of index 3.

In particular, 〈v1, v2〉 is a central subgroup of CG∗(sj)
F∗

. Since the centre of CG∗(sj)
F∗

is

contained in the kernel of any unipotent character of CG∗(sj)
F∗

it follows that the product of the
orders of v1 and v2 is at most 8.

First suppose that both CX(v1) and CY(v2) are tori. Then, both v1 and v2 are non-trivial. On
the other hand, the product of the orders of v1 and v2 is at most 8, hence at least one of v1 and
v2 has order 2. But the centraliser of an element of order 2 in a simple algebraic group of type A2

or E6 is not a torus (see [39, Table 4.3.1]), a contradiction.
Suppose that neither CX(v1) nor CY(v2) is a torus. We have

C̄j = CX(v1)/Z(CX(v1))× CY(v2)/Z(CY(v2)).

Hence, λ̄j = φ1 × φ2, where φ1 is a unipotent character of CX(v1)/Z(CX(v1))
F∗

and φ2 is a

unipotent character of CY(v2)/Z(CY(v2))
F∗

, such that the sum of ζj and the 2-defects of φ1 and
φ2 equals 3. Since the only subdiagrams of the extended Dynkin diagram of type A are of type
A, it follows from [27] and Propositions 16.1 and 16.2 that either ∆j is A1 × E6, and ζj has odd
order or ∆j is A2 × E6 and ζj has even order. But by [27], there are no such sj.

Thus, exactly one of CX(v1) or CY(v2) is a torus. Then ζj > 0 (vi is a 2-element) so by Equation
(9), the 2-defect of λ̄j is at most 2. From Propositions 16.1 and 16.2, it follows that either ∆j is a
product of copies of A2 transitively permuted by F ∗ or ∆j is of type E6.

If ∆j is a product of copies of A2 transitively permuted by F ∗, then by the tables in [27], one
sees that either ζj = 0 or ζj ≥ 2, whence by Equation (9), λ̄j has 2-defect 3 or at most 1. This is a
contradiction as any unipotent character of A2(q

m) or 2A2(q
m) has 2-defect 2 or greater than 3.

If ∆j is of type E6, then λ̄j has 2-defect 0, whence the Sylow 2-subgroups of ZF∗

j have order 8.

Since ∆j is a subdiagram of the extended diagram associated to A2×E6, it follows that CX(v1) is a

torus and that the Sylow 2-subgroups of CX(v1)
F∗

have order 8. From [27] (or from the description

of F ∗-stable maximal tori in type A2), it follows that |CX(v1)
F∗

| is one of (q2 − 1), (q ± 1)2, or
(q2 ± q + 1). Thus the only possibility is that |CX(v1)

F∗

| = (q2 − 1) and 8 is the highest power of
2 dividing q2 − 1.

34



First suppose that CF∗

is of type E6(q) or A2(q). Then C̄F∗

j is of type E6(q) for all j, 2 ≤ j ≤ 5.

By the formula for the character degrees of unipotent characters of 2-defect 0 of E6(q), we get that
for all j, 2 ≤ j ≤ 5,

(10) χj(1) =
|G|r′

3|E6(q)|(q2 − 1)
q7Φ6

1Φ
4
2Φ

2
4Φ5Φ8 =

|G|r′

3|E6(q)|
q7Φ5

1Φ
3
2Φ

2
4Φ5Φ8.

Here, as before, we use Φd to denote Φd(q).
The unipotent character of defect 2 of A2(q) is of degree q(q + 1) whence

(11) χ1(1) =
|G|r′

3|E6(q)||A2(q)|
(q + 1)q8Φ6

1Φ
4
2Φ

2
4Φ5Φ8 =

|G|r′

3|E6(q)|

q8Φ4
1Φ

4
2Φ

2
4Φ5Φ8

Φ2
3

.

Consider the element 2χ1 −
∑

2≤j≤5 δjχj of L0(G, b) as in Proposition 3.3(ii). By the equation

above, all χj , 2 ≤ j ≤ 5 have the same degree. Hence, by Proposition 3.3(iii), δj = δi for all i, j
such that 2 ≤ i, j ≤ 5. Thus,

2χ1(1)−
∑

2≤j≤5

δjχj(1) = 0

implies that

qΦ2 − 2δ2Φ1Φ
2
3 = 0,

but this is impossible since p3 does not divide Φ2(q).

The case that CF∗

is of type E6(q)A2(q) is similar with p3 replaced by p6. �

20. Proof of Theorem 1.1

Proof of Theorem 1.1. By Theorem 5.1, and using its notation, it suffices to show that |IrrK(G, b)| =
8. Arguing inductively, in order to prove Theorem 1.1 we may assume, by Theorem 4.1, that G
is a quasi-simple finite group with a centre of odd order. We also may assume, by [48, Theorem
3.7], that b is a non-principal block. If G/Z(G) is a sporadic simple group then by Proposition 6.2
we have G ∼= Co3 and by Proposition 6.3, we have |IrrK(G, b)| = 8. By the results in §§7 and 8,
G/Z(G) is neither a finite simple group with an exceptional Schur multiplier nor an alternating
group. If G/Z(G) is a finite group of Lie type in characteristic 2 then, by Proposition 9.1, we have
G ∼= PSL2(8) and b is the principal block; in particular, we have again |IrrK(G, b)| = 8. Let q
be an odd prime power and n a positive integer. By Theorems 12.1 and 13.1, the group G/Z(G)
cannot be isomorphic to PSLn(q) or PSUn(q); alternatively, |IrrK(G, b)| = 8 holds in these cases
as a consequence of [6]. If G/Z(G) is isomorphic to one of PSp2n(q), (n ≥ 2), PΩ2n+1(q), (n ≥ 3),
or PΩ±

2n(q), (n ≥ 4) then, by Theorem 14.1, the block b is nilpotent; in particular, |IrrK(G, b)| =
8. By Proposition 15.1, G/Z(G) cannot be isomorphic to a simple group of type G2(q). Since b is
assumed to be non-principal, G/Z(G) cannot be isomorphic to a simple group of type 2G2(q), and
by Proposition 15.3, G/Z(G) cannot be isomorphic to a simple group of type 3D4(q). If G/Z(G)
is isomorphic to one of the remaining exceptional simple groups F4(q), E6(q),

2E6(q), E7(q) or
E8(q) then b is Morita equivalent to a block of a finite group L such that |L/Z(L)| is smaller
than |G/Z(G)|, by Propositions 17.1, 19.2, 19.3, 19.4 and 19.5, respectively. Theorem 1.1 follows
inductively. �

Remark 20.1. We do not know whether there are actually any blocks with an elementary abelian
defect group of order 8 if G/Z(G) is of one of the exceptional types F or E. If not, one could avoid
the rather tedious calculations from §16 onwards.
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21. Appendix

We provide a proof for a result announced by Rouquier in [71]. The notation is as in [50,
Appendix]. Let O be a complete local commutative Noetherian ring having an algebraically closed
residue field k of characteristic 2; we allow the case O = k. For A, B two symmetric O-algebras,
a bounded complex X of A-B-bimodules which are projective as left A-modules and as right B-
modules is said to induce a stable equivalence if there are isomorphisms of complexes of bimodules
X⊗BX

∗ ∼= A⊕Y and X∗⊗AX ∼= B⊕Z with Y and Z homotopy equivalent to bounded complexes
of projective A-A-bimodules and B-B-bimodules, respectively. If Y and Z are homotopic to zero
then X is called a Rickard complex.

Theorem 21.1 (cf. [71, Theorem 6.10]). Let G be a finite group, let b be a block of OG with
an elementary abelian defect group of order 8, set H = NG(P ) and denote by c the block of OH
satisfying Br∆P (b) = Br∆P (c). Let i ∈ (OGb)∆P and j ∈ (OHc)∆P be source idempotents such
that Br∆P (i) = Br∆P (j). There is a bounded complex of OGb-OHc-bimodules whose components
are finite direct sums of summands of the bimodules OGi ⊗OQ jOH, with Q running over the
subgroups of P , such that X induces a stable equivalence.

Proof. The proof follows the lines of [71, 6.3]. For any subgroup Q of P denote by eQ and fQ the
unique blocks of kCG(Q) and kCH(Q), respectively, satisfying Br∆Q(i)eQ 6= 0 and Br∆Q(j)fQ 6=
0. Since P is abelian, the fusion systems on P determined by i and by j are equal to that of
kN(P, eP )eP . Hence, for any subgroup Q of P , we have

NG(Q, eQ)/CG(Q) ∼= NH(Q, fQ)/CH(Q)

and both sides have odd order (either 1 or 3 in case Q is a proper subgroup of P ). The blocks

eQ, fQ lift to unique blocks êQ, f̂Q of OCG(Q), OCH(Q), respectively. The images of êQ, f̂Q
in OCG(Q)/Q, OCH(Q)/Q are blocks, denoted by ēQ, f̄Q, respectively. Suppose now that Q
has order 2. Then ēQ, f̄Q have the Klein four group P/Q as defect group, and CH(Q)/Q is the
normaliser in CG(Q)/Q of P/Q. Thus f̄Q is in fact the Brauer correspondent of ēQ. By [24,
Theorem 1.1], the source algebras of blocks with a Klein four defect group V4 are either OV4, or
OA4, or OA5b0, where b0 is the principal block of OA5. By [68, §3], there is an explicitly described
two-term splendid Rickard complex between OA4 and OA5b0. Thus there is a Rickard complex of
OCG(Q)/QēQ-OCH(Q)/Qf̄Q-bimodules C̄Q of the form

C̄Q = · · · // 0 // N̄Q

Φ̄Q
// ēQCG(Q)/Qf̄Q // 0 // · · ·

for some (possibly zero) projective bimodule N̄Q. By [70, 10.2.11], this complex lifts to a Rickard

complex of OCG(Q)êQ-OCH(Q)f̂Q-bimodules of the form

CQ = · · · // 0 // NQ
ΦQ

// êQCG(Q)f̂Q // 0 // · · ·

where NQ is a projective O(CG(Q) × OCH(Q))/∆Q-module lifting N̄Q, inflated to O(CG(Q) ×
CH(Q)), and where ΦQ lifts the map Φ̄Q. By adapting arguments of Marcuş [55, 5.5] this complex
extends to the group

T = NG×H(∆Q) ∩ (NG(Q, eQ)×NH(Q, fQ))

and T contains CG(Q)×CH(Q) as normal subgroup of odd index at most 3 by the above remarks.
One can see this also directly: the modules of the complex CQ are clearly T -stable, hence extend
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to T (cf. [70, 10.2.13]), and the map Φ̄ lifts to a T -stable map Ψ because NQ remains projective
when considered as OT/∆Q-module. We set

VQ = IndG×H
T (NQ) .

The inclusion CG(Q) ⊆ G induces an OT -homomorphism eQOCG(Q)fQ −→ bOGc, which, by
adjunction, yields a homomorphism of O(G×H)-modules

αQ : IndG×H
T (eQOCG(Q)fQ) −→ bOGc .

Set ψQ = αQ ◦ IndG×H
T (ΦQ) : VQ → bOGc and define the complex X by

X = · · · // 0 // ⊕QVQ
⊕QΨQ

// bOGc // 0 // · · ·

with bOGc in degree zero, where Q runs over a set of representatives of the NG(P, eP )-conjugacy
classes of subgroups of order 2 of P . One checks that if Q, R are two subgroups of order 2 which
are not NG(P, eP )-conjugate then VR(∆Q) = {0}. This implies that eQX(∆Q)fQ ≃ CQ⊗O k, and
this is a Rickard complex of kCG(Q)eQ-CH(Q)fQ-bimodules. Moreover, bOGc is a direct summand
of OGi ⊗OP jOH , and VQ is a direct sum of summands of OGi⊗OQ jOH because it is obtained
from lifting, inflating and inducing a projective bimodule. Thus another result of Rouquier (with
a proof given in [50, Theorem A.1]) applies, showing that X induces a stable equivalence. �

Remark 21.2. We have used [24, Theorem 1.1] for the description of Rickard complexes for blocks
with a Klein four group, which requires the classification of finite simple groups. One can avoid
this by making use of another technique of Rickard, replacing one of the endo-permutation sources
of a simple module by a p-permutation resolution (see e.g. [49, Theorem 1.3]). The only difference
this makes is that the resulting complex may have more than two non-zero components. One can
be more precise in Theorem 21.1 if E is either trivial or has order 7. If E is trivial, b is nilpotent,
and its source algebra is of the form EndO(V )⊗O OP for some indecomposable endo-permutation
OP -module V with P as vertex. Using again [24, Theorem 1.1] we get that V ∼= Ωn

P (O) for some
integer n. Equivalently, if E is trivial then OGb is Morita equivalent to OP via an OGb-OP -
bimodule which, when viewed as O(G× P )-module, has vertex ∆P = {(u, u) | u ∈ P} and source
Ωn

∆P (O) for some integer n. By applying Ω−n
O(G×P ) to M one gets a stable equivalence of Morita

type given by a bimodule with vertex ∆P and trivial source. Similarly, if E is cyclic of order 7,
then by a result of Puig [64], there is a stable equivalence of Morita type between OGb and OP
given by a bimodule with vertex ∆P and trivial source.
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