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Abstract

The coupled dynamics of multiple flexible filaments (also called monodimen-
sional flags) flapping in a uniform fluid flow is studied numerically for the
cases of a side-by-side arrangement, and an in-line configuration. The modal
behaviour and hydrodynamical properties of the sets of filaments are studied
using a Lattice Boltzmann - Immersed Boundary method. The fluid momen-
tum equations are solved on a Cartesian uniform lattice while the beating
filaments are tracked through a series of markers, whose dynamics are func-
tions of the forces exerted by the fluid, the filaments flexural rigidity and
the tension. The instantaneous wall conditions on the filaments are imposed
via a system of singular body forces, consistently discretised on the lattice of
the Boltzmann equation. The results exhibits several flapping modes for two
and three filaments placed sid-by-side and are compared with experimental
and theoretical studies. The hydrodynamical drafting, observed so far only
experimentally on configurations of in-line flexible bodies, is also revisited
numerically in this work, and the associated physical mechanism is identi-
fied. In certain geometrical and structural configuration, it is found that
the upstream body experiences a reduced drag compared to the downstream
body, which is the contrary of what is encountered on rigid bodies (cars,
bicycles).
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1. Introduction

The scope of this work is the physical analysis of the dynamics of flap-
ping filaments in a streaming ambient fluid, which has a large spectrum of
applications in aeronautics, civil engineering or biological flows. From the
theoretical side, this fluid structure interaction problem is particularly chal-
lenging as it involves non-linear effects as well as large structural deformations
(Paidoussis, 2004; Shelley and Zhang, 2011). The present study is particu-
larly inspired by various experiments on flapping filaments realised in soap
films (Zhang et al., 2000; Zhu and Peskin, 2000; Ristroph and Zhang, 2008).
Indeed, soap film experiments associated to thin-film interferometry for flow
visualisation can be considered as a reasonable approximations of 2D fluid
structure interaction scenarios, thus suitable for the validation of the results
obtained with our 2D numerical approach.

In our simulations, we consider a 2D incoming incompressible flow mod-
eled using a Lattice Boltzmann method, coupled to a model of infinitely thin
and inextensible filament experiencing tension, gravity, fluid forces and flex-
ural rigidity (i.e. a bending term in the form of a 4th derivative with respect
to the curvilinear coordinate describing the filament). Also, at all time in-
stants tension forces are determined to maintain the inextensibility of the
structure. In this simple model the energy balance of the system is driven
by the bending forces and fluid forces, as the structure is controlled by an
inextensibility constraint which prohibits stretching or elongation motions
that would dissipate energy. This system encompasses all the essential ingre-
dients of a complex fluid-structure interaction problem: large deformations,
slender flexible body, competition between bending versus fluid forces, inex-
tensibility and effect of the filament tips on the surrounding flow as vorticity
generators.

To enforce the presence of the solid on the fluid lattice, we use a variant of
the immersed boundary method previously developed by the authors (Pinelli
et al., 2010) on finite difference and finite volume Navier Stokes solvers. In
this work we use the same algorithm as in Pinelli et al. (2010) to impose the
immersed boundary forces, but we adapt it to a Lattice Boltzmann solver.
This approach for imposing the forces has shown to be order 2 in space,



computationally cheap and directly provides for the forces exerted on the fluid
by the filaments without the introduction of any empirical parameter. Using
the Lattice Boltzmann method in conjunction with an Immersed Boundary
technique to solve the motion of an incompressible fluid also allows for a
clean imposition of the boundary conditions on the solid since it does not
suffer from errors originating from the projection step, as it is the case when
associated with unsteady incompressible Navier Stokes solvers (Domenichini,
2008).

Making use of the outlined Lattice Boltzmann - Immersed Boundary ap-
proach, we consider the coupled dynamics of systems made of highly de-
formable flexible filaments, as introduced by Favier et al. (2014). No artifi-
cial contact force is introduced between the filaments, in order to preserve
a purely hydrodynamical interaction. We focus in this work on the modal
behaviour of a set of two and three side-by-side filaments, by varying the
spacing between them. The obtained results confirm the theoretical predic-
tions and experimental observations mentioned in literature. Additionally,
the drag reducing properties of multiple in-line filaments is studied, as a
function of their relative spacing. In particular, the anomalous the so-called
anomalous hydrodynamic drafting pointed out experimentally in Ristroph
and Zhang (2008) is recovered here numerically and a physical mechanism is
proposed to explain this phenomenon.

2. Coupled Lattice Boltzmann - Immersed Boundary Method

This fluid-structure problem is tackled using an Immersed Boundary
method coupled with a Lattice Boltzmann solver. In the following we provide
a summary of the numerical technique while details of the methodology can
be found in Favier et al. (2014).

The fluid flow is modeled by advancing in time the Lattice Boltzmann
equation which governs the transport of particles density distribution f
(probability of finding a particle in a certain location with a certain ve-
locity). It is often classified as a mesoscopic method, where the macroscopic
variables, namely mass and momentum, are derived from the distribution
functions f. An excellent review of the method can be found in Succi (2001).

Using the classical BGK approach (Bhatnagar et al., 1954), and after an
appropriate discretization process (Malaspinas, 2009), the Boltzmann trans-
port equation for the distribution function f = f(x,e,?) at a node x and at



time ¢ with particle velocity vector e is given as follows:
filx+eAtt+ At) — f; (x,t) = —— (f (x,t) — fV (x,1)) + AtF; (1)
T

In this formulation, x are the space coordinates, e; is the particle velocity in
the i direction of the lattice and F} accounts for the body force applied to
the fluid, which conveys the information between the fluid and the flexible
structure. The local particle distributions relax towards an equilibrium state
{9 in a single time scale 7. Equation 1 governs the collision of particles
relaxing toward equilibrium (first term of the r.h.s.) together with their
streaming which drives the data shifting between lattice cells (1.h.s of the
equation). The rate of approach to equilibrium is controlled by the relaxation
time 7, which is related to the kinematic viscosity of the fluid by v = (7 —
1/2)/3. Equation 1 is approximated on a Cartesian uniform grid by assigning
to each cell of the lattice a finite number of discrete velocity vectors. In
particular, we use the D2Q9 model, which refers to two-dimensional and
nine discrete velocities per lattice node (corresponding to the directions east,
west, north, south, center, and the 4 diagonal directions as given by equation
2), where the subscript i refers to these discrete particle directions. As is
usually done, a convenient normalization is employed so that the spatial and
temporal discretization in the lattice are set to unity, and thus the discrete
velocities are defined as follows:

01 -10 0 1 -1 1 -1 .
ei—c(o 0 0 1 -1 1 -1 —1 1) (1=0,1,...,8) (2)

where c¢ is the lattice speed which defined by ¢ = Az/At = 1 with the cur-
rent normalization. The equilibrium function f(9 (x,¢) can be obtained by

Hermite series expansion of the Maxwell-Boltzmann equilibrium distribution
(Qian et al., 1992):

fz‘(eq) =pw; |1+
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cs 2c; 2cz

(3)

e;-u (e -u)’ u2]

In equation 3, ¢, is the speed of sound ¢, = 1/4/3 and the weight coefficient
wiare wg =4/9,w; =1/9, i = 1...4 and ws = 1/36, i = 5...8 according to the
current normalization. The macroscopic velocity u in equation 3 must satisfy
the requirement for low Mach number, M, i.e. that | u| /es & M << 1.
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This stands as the equivalent of the CFL number for classical Navier Stokes
solvers. The force F; in equation 1 is computed using a power series in the
particle velocity with coefficients that depend on the actual volume force fj,
applied on the fluid. The latter is determined using the Immersed Boundary
method, originally introduced by Peskin (2002), following the formulation
described in Uhlmann (2005) for classical Navier Stokes solvers and Favier
et al. (2014) for Lattice Boltzmann solvers. In this approach, the flexible
filaments are discretised by a set of markers X,, that in general do not
correspond with the lattice nodes x; ;. The role of fi, is to restore the desired
velocity boundary values on the immersed surfaces at each time step.

The global algorithm is decomposed as follows. The Lattice-Boltzmann
equations for the fluid are first advanced to the next time step without im-
mersed object (F; = 0), which provides the distribution functions f; needed
to build a predictive velocity uP by puP = > e;f; and p = >_f;. The pre-

K2 K2
dictive velocity is then interpolated onto the structure markers, which allows
one to derive the forcing required to impose the desired boundary condition
at each marker using:

Ud"“(XwA—t T[uP)(X) n

Fip(Xy) =

In equation 4, capital letters are used to identify variables defined on each
marker and Z[uP](Xy) refers to the interpolated predictive velocity. The
term U9""(X},) denotes the velocity value at the location X, we wish to
obtain at time step completion. Adding this force term to the right hand
side of the momentum equations allows to restore the desired velocity patt
at the boundary (see Uhlmann (2005) for instance). The value of Ut g
determined for each filament and at each Lagragian point by integrating in
time the respective dynamic equation:

Jqua™tt 99X, X,

a2\ ) T Krga

+m§—mb (5)

Here, the Richardson number is Ri = gL /U2, T is the tension of the filament
and Kp is the flexural rigidity. All variables are non dimensional and the
reference quantities used for the normalisation are: the reference force tension
Trey = ApUZ, the reference bending rigidity Kp,.; = ApUZL* and the
reference Lagrangian forcing Fi.; = EAT’;U;, where ¢ refers to the numerical
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thickness of the filament on the lattice. More details can be found in Favier
et al. (2014). The closure of equation 5 is provided by the inextensibility
condition that reads:

. ©
s s

This condition, that ensures that the filament does not stretch (and thus its
length remains constant), is satisfied using the tension values that effectively
act as Lagrange multipliers. The boundary conditions for the system (5-6)

0*X ?X
are X = X, =2k — 0 for the fixed end and T = 0, k
q 0s? 0s?
end.

Returning to equation 4, the term Z[uP|(X}) refers to the value of the
predictive velocity field interpolated at Xj;. This provides the kinematic
compatibility between solid and fluid motion, i.e. zero relative velocity on
the solid boundary. At this stage, the required forcing is known at each
marker by equation 4, and needs to be spread onto the lattice neighbours by:
fib(X) = 8<F1b(Xk>>

More details on the interpolation operator Z, spreading operator S and
the filaments equations of motion can be found in Favier et al. (2014). With
respect to literature, this approach of immersed boundary preserves an order
2 in space and ensures a conservation of the force and torque between Eulerian
and Lagrangian space, for a relatively low computational cost. The forcing
fip, is finally discretised on the lattice directions and reads (Malaspinas, 2009;
Guo et al., 2002):

1 eg—u  e-u
E:(I_Z)wi[ 2 + o ei:|'fib (7)

S

= ( for the free

Once the system of hydrodynamic forces has been determined following
the outlined procedure, equation 1 is then solved once again with the forcing
F; which impose the correct boundary condition at each marker Xj. Finally,
the macroscopic quantities are then derived from the obtained distribution
functions f by pu = Zei fi+ p%F and p = Z fi, which closes one time step

of the solver.

3. One single flapping filament in an incoming fluid flow

Following the experiments of Zhu and Peskin (2002), and the numerical
study of Huang et al. (2007), we start by considering the beating of a single
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filament fixed at one end, and subject to gravity and hydrodynamics forces.
Let L be the length of the filament, we fix the density difference between
solid and fluid Ap = p, — psL to Ap = 1.5, the non-dimensional bending
rigidity to Kz = 0.001, and the value of the Richardson number to Ri = 0.5.
The inlet velocity imposed in the Lattice-Boltzmann normalization is set
to Uy, = 0.04 (aligned with gravity direction), with a relaxation time of
7 = 0.524 and a filament length of L = 40. With these values, the simulation
is run at a Reynolds number Re = Uy L/v equal to 200. The size of the
computational domain is set to 15L x 10L, in the streamwise and transverse
direction respectively. The lattice discretization (600 x 400 nodes) has been
determined as the result of a preliminary grid convergence study. The initial
angle of the filament is set to § = 18° with respect to the gravity direction,
and its fixed end is placed at the centerline of the domain, at a distance of
4L from the inlet. The L2 norm of the inextensibility error is kept below
1072 at all times.

5 10 15 20 25 30 35 40 45 50 55 0
time

(a) Periodic flapping pattern. (b) y-coordinate of the free end.

Figure 1: Flapping motion of a single filament immersed in fluid at Re = 200, Ri = 0.5,
Ap = 1.5. Fluid flows from left to right. (a): beating pattern visualised by superimposed
positions of the filament over one beating cycle. (b) Periodic time evolution of the y-
coordinate of the free end.

Figure la shows the periodic pattern of the beating in the established
regime, characterised by sinuous traveling waves moving and amplifying
downstream from the fixed end. The same behavior has been observed both
in the simulations of Bagheri et al. (2012) and in the experiments of Shelley
and Zhang (2011). Figure 1b displays the time evolution of the y-coordinate
(transverse direction) of the free end of the filament. After six beating cycles,
a periodic orbit is established, with a period of 3 time units (the same value
as the one found by Huang et al. (2007)). The predicted amplitude of the
beating compares well: the difference with reference data on the maximal
excursion of the free end is less than 5%. Also, the peculiar trajectory of the
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free end exhibiting a characteristic figure-eight orbit (dashed line in 1a) is re-
covered, in agreement with the findings of the soap film experiments carried
out by Zhang et al. (Zhang et al., 2000).

HNZ

(a) Totally flexible filament (Kg = 0). (b) Rigid filament (K5 = 0.001).

Figure 2: Comparison between instantaneous snapshots of the flapping filament without
bending (a) and with bending (b) starting from a straight initial configuration at an angle
of 6y = 18°. The trajectory of the free end is shown in dashed line.

Figures 2a and 2b show the effect of the bending rigidity coefficient on the
beating pattern. Without bending rigidity (figure 2a), the filament is totally
flexible and a rolling up of the free extremity is observed; this effect has been
termed as kick following Bailey (2000). On the other hand, when the filament
has a finite flexural rigidity (Kp = 0.001 in this simulation), the rolling up
of the free end is inhibited, the kick disappears and the flapping amplitude
is reduced. Thus, the proposed slender structure model, incorporating both
bending terms and tension, computed to enforce inextensibility, reproduces
successfully the same phenomena as the ones observed in experiments.

4. Side-by-side flapping flaps

We now consider the case of two filaments in a side-by-side configuration
at Re = 300. The non-dimensional values, the domain size and the initial
angles (6 = 18°) are kept the same as in the case of the single beating filament.
According to the experiments of Zhang et al. (2000), varying the spacing
between filaments d/L leads to the appearance of different filaments beating
regimes. In particular, a symmetrical flapping is observed for distances d/L <
0.21. For higher values, a bifurcation towards a regime characterised by an
out-of-phase flapping is detected. Additionally, the linear stability analyses
carried out in Schouweiler and Eloy (2009); Michelin and Smith (2009) have
put forward the existence of three different modes for such configurations.



Figure 3: Snapshots of iso-vorticity for the case of two beating filaments at Re = 300 and
three different spacings. (a) mode M1 at d/L = 0.1, (b) mode M2 at d/L = 0.3, (¢) mode
M2 at d/L = 1.0.

Therefore, in this context we have considered various scenarios corresponding
to different values of the spacing d/L.

Figure 3 displays the snapshots of iso-vorticity that we predict when con-
sidering three different spacings. The wakes are characterised by a periodic
vortex shedding and by a flapping motion of the filaments (shown in fig-
ure 4 for the three cases). The variations of the relative spacings between
the filaments lead to different physical scenarios that are briefly reviewed
hereafter.

e When the spacing is small (d/L = 0.1), we observe the mode M1, where
the filaments are in close proximity and they behave almost as a single
thick filament (see figure 3a), resulting in an in-phase beating of the



filaments, as displayed in figure 4a.

In contrast, when increasing the distance to d/L = 0.3, a different
behaviour is observed. This mode (mode M2) is characterised by sym-
metrical out-of-phase oscillations, occurring after a transient period
which occurs between ¢t = 20 and ¢ = 60 (see figure 4b). By increas-
ing the filament spacing, the lock-in effect weakens but the interaction
between the wakes generated by each filament still plays a dominant
role, as shown in figure 3b. In this regime, the fluid enclosed between
the filaments behaves like a flow generated by a pump due to the out-
of-phase flapping, cyclically being compressed when the two free ends
approach (which is the case of the snapshot displayed in figure 3b), and
released when they move apart.

Further increasing the spacing to d/L = 1 results in a further wear-
kening of the wake interaction and a decoupling of the vortex streets
behind the filaments (see figure 3c). However, beyond 5L downstream
of the filaments tails, the vortices merge into a unique wake and the
filaments reach the mode M2 characterised by an out-of-phase flapping
(see figure 4c).

If the spacing d/L is further increased, the two filaments eventually
reach a totally decoupled dynamics with an in-phase flapping (mode

M1).

The modal behaviour is consistent with the experimental observations
of Zhang et al. (2000) that report the onset of the anti-phase regime at
d/L = 0.21, compared to our numerical predictions indicating a transitory
regime occurring between d/L = 0.21 and d/L = 0.24. Note that for a
sufficiently fine discretisation, the duration of this transcient is independent
of the mesh refinement.

Retaining the same Reynolds number Re = 300, the configuration of three

filaments placed side-by-side at an initial angle of 0° is investigated. Figure 5
summarizes the different coupled dynamics obtained with the present simula-
tions. The system follows the same behaviour as for the case of two filaments,
except that an additional beating mode appears:

e for small spacings (d/L < 0.1), the mode M1 is observed, as in the case
of two filaments, where the three filaments are in-phase (mode M1 in
figure 5a);
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Figure 4: Time evolution of the y-coordinates of the free extremity of a system of two
beating filaments at Re = 300. (a) Mode M1 at d/L = 0.1, (b) Mode M2 at d/L = 0.3,
(¢) Mode M2 at d/L = 1.0.

e for d/L = 0.3, the two outer filaments flap out of phase while the inner
filament is quasi stationnary (mode M2 in figure 5b);

e for large spacing (d/L = 1.0) the outer filaments flap in-phase and the
inner filament is out of phase (mode M3 in figure 5c);

e as for the case of two filaments, mode M1 is observed for very large
spacing (d/L > 4.0) with an in-phase flapping of the three filaments.

Additionally, we observe a transition mode for d/L = 0.6 characterised by
the same behaviour as mode M3 but with a low frequency modulation in the
amplitude of the flapping of the filaments, as shown in figure 6. This transi-
tion mode has been reported in the numerical study of Tian et al. (2011). In
their simulations at Re = 100, they also record a second transitional mode
whereby the inner filament is observed to flap at a frequency reduced by half
that of the outer filaments. Note that this second transitional mode is not
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Figure 5: Flapping patterns in the established regime for the beating of three filaments
in a uniform flow for various spacing. (a) mode M1 at d/L = 0.05, (b) mode M2 at
d/L = 0.3, (c) mode M3 at d/L = 1.0. The solid lines represent the time evolution of the
y-coordinates of the free extremity of each filament at Re = 300.

observed in our simulations but the Reynolds number is different (Re = 300).
For cases where more than three filaments are considered (not reported here),
the system is observed to exhibit further transitory modes resulting from the
coupling between the baseline modes (M1, M2 and M3).

5. In-line flapping filaments

Next, we consider the collective behaviour of flapping filaments aligned
with each other in the direction of an uniform fluid flow. This configuration
is well know in the case of rigid bodies for the hydrodynamic drafting phe-
nomenon which explains why one rigid body experiences a drag reduction
downstream of another one, e.g. for cars or bicycles. It is of course related
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Figure 6: Transition mode observed between M2 and M3 for d/L = 0.6. The solid lines
represent the time evolution of the y-coordinates of the free extremity of each filament at
Re = 300.

to the fact that the downstream body lies in the recirculating bubble of the
upstream one, and is therefore subjected to lower velocities and thus lower
fluid stresses. Peculiarly, these hydrodynamic properties due to the drafting
effect are not straightforwardly inherited by flexible/flapping objects. While
not formally attracting a great deal of attention to date, this issue has been
recently put forward by the work of Ristroph and Zhang (2008), who con-
ducted soap film experiments in those configurations. In particular, they
report an inverted drafing for in-line flapping filaments, as opposed to in-
line rigid bodies. A so called inverted drafting occurs where the upstream
filament experiences a drag reduction instead of the downstream filament.
Here we aim to reproduce similar hydrodynamic conditions on aligned
flexible filaments via a Direct Numerical Simulation considering a low Reynolds
number as compared to the one used in experiments (i.e., Re = 300 versus
almost 10* in experiments). The large difference in Reynolds number does
not allow for direct comparisons between numerical and experimental results.
Nonetheless, we are still able to give a qualitative analysis of the filaments
interaction with special emphasis on the inverted drafting phenomenon. The
non-dimensional values are kept the same as in the case of the single beating
filament (and thus gravity is considered), except that the initial angles are
set to @ = 0° (aligned with the flow), and that the domain size is adapted
in consequence, following the same requirements as the case of the single
beating filament. In the following, the spacing s/L is defined as the distance
between the tip of the leading filament and the pole of the trailing filament.
Figure 7 presents the beating patterns in the established regime at Re =
300 for two filaments spaced by a distance of s/L = 0.6. A good qualitative
agreement with the soap film experiments is obtained although the flapping

13



amplitudes are quite different. The amplitude of the upstream filament is
found to be significantly smaller than the downstream one.

Figure 7: Beating patterns for a pair of flapping filaments in drafting configuration with a
spacing of s/L = 0.6. The flow is going from left to right. Top: Experimental visualisations
obtained by Ristroph and Zhang (2008) using thin-film interferometry. Bottom: present
numerical results at Re = 300.

Figure 8 shows for different spacings s/L, the drag ratio D/Dq defined as
the filament drag normalised by the reference drag obtained from an isolated
filament at the same Reynolds number. For a spacing less than s/L = 1,
we find for the upstream filament (circles) a reduced drag compared to the
reference case, while the drag stays equal to the reference case for s/L > 1.
Concerning the downstream filament (squares), apart from very close spac-
ings (s/L < 0.3), a significant drag increase is observed compared to the
reference case, up to 1.5Dy. These numerical results confirm the anomalous
drafting studied experimentally by Ristroph and Zhang (2008). For the set
of parameters considered, the total drag force of the system is reduced (com-
pared to two isolated filaments) for all spacings s/L < 0.5; and is otherwise
increased. This trend is similar qualitatively to that obtained in figure 2 of
Ristroph and Zhang (2008) (although we recall that the Reynolds number is
different as we focus here on the relative effect with respect to the isolated
case).

For the small spacings (s/L < 0.5), the pair of filaments behaves as a
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Figure 8: Drag ratio D/Dy as a function of the spacing s/L; circles: upstream filament;
squares: downstream filament; triangles: sum of both drags.

single wvirtually longer filament, as the gap between the filaments enables a
hydrodynamic link between the filament extremities (tail and pole). This
effect tends to artificially increase the bending rigidity of the virtual longer
filament. As a direct consequence the amplitude of the flapping of the up-
stream filament is reduced, as the amplitude of the flapping is lower near the
filament pole. This assumption is confirmed by figure 9 which shows that the
evolution of drag is correlated to the amplitude of flapping (measured as the
maximum value of the excursion of the filament over time). Indeed a smaller
upstream amplitude is associated on the figure to a smaller drag.

For large spacings (s/L > 0.5), as the upstream filament is hydrody-
namically decoupled from the downstream one, its drag tends to the drag
equivalent of the isolated case. However, the dowstream filament is found to
have a higher drag as it experiences the perturbations induced by the wake
of the upstream filament.

Following the experimental investigation of Ristroph and Zhang (2008),
we run the simulations for a chain of 6 in-line filaments with a spacing of
s/L = 0.1, to assess if the proposed physical mechanisms hold true for more
than two filaments. Figure 10 summarises the results showing that a drastic
drag reduction is observed for the set of filaments: all six filaments experi-
ence drastic drag reductions compared to the reference drag of an isolated
filament. The beating patterns observed experimentally are also qualitatively
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Figure 9: Drag ratio for upstream filament (plain line) and downstream filament (thick
line) together with the amplitude of upstream filament (crosses) and downstream filament
(circles), plotted as functions of the spacing s/ L.

reproduced.

6. Conclusions

Using a model of flexible filament incorporating its flexural rigidity, the
tension (enforcing inextensibility) and the added mass, we have successfully
modeled numerically the dynamics of multiple flapping filaments immersed
in an uniform flow.

When considering side-by-side filaments, the wake interactions and the
modal behaviour of the system have been captured correctly, in agreement
with experiments (and linear stability analysis). In the present work we
have restricted our attention to the influence of the filament spacing, but the
influence of the added mass Ap plays also a significant role (Michelin and
Smith, 2009).

For the case of three filaments, a set of three baseline modes have been
highlighted: in-phase flapping (M1), out-of-phase flapping with the inner
filament at rest (M2), in-phase flapping with the inner filament flapping
out of phase (M3). For the general case of a layer made of N filaments,
we expect the system to be characterised by the appearance of N baseline
modes originating from the combination of the M1, M2 and M3 baseline ones
consistently with the theoretical prediction of Michelin and Smith (2009).
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Figure 10: Six flapping filaments in an in-line configuration. Top: experiments of Ristroph
and Zhang (2008). Middle: present numerical results. Bottom: Relative drag ratio for
each filament.

For flapping filaments aligned with the flow, through our simulations, we
have been able to confirm and partially characterise the inverted hydrody-
namical drafting effect: the upstream filament is seen to experience a drag
reduction compared to the downstream body. As far as drag is concerned, in
agreement with the experimental observations of Ristroph and Zhang (2008),
we have found that for flexible objects, the paradigm “it is better to be chased
than to chase” applies, as opposite to the rigid bodies case.

The physical mechanism behind this phenomenon is due to the passive
shape adaptation to the flow of flexible filaments, tending to increase the
bending rigidity of the upstream filament near the pole. The physical mech-
anism identified here is thus intrinsically passive, and as was also anticipated
by Ristroph and Zhang (2008), this effect does not necessarily extend to
active flapping bodies (birds).
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