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Abstract

Direct numerical simulations of fully developed low Reynolds number turbulent flows in a hor-
izontal square duct heated from below are performed at bulk Reynolds numbers Re, = 3000 and
4400 (based on duct width, H) and bulk Richardson numbers 0 < Ri < 1.03. The primary
objective of the numerical simulations concerns the characterization of the mean secondary flow
that develops in this class of flows. On one hand, it is known that turbulent isothermal flow in
a square duct presents secondary mean motions of Prandtl’s second kind that find their origin in
the turbulent coherent structures behavior. On the other hand, thermal convection effects induce
a mean secondary motion of Prandtl’s first kind directly induced by buoyancy. The first analy-
sis that will be presented concerns the determination of the correct scaling laws for the integral
quantities that characterize the mean thermo-fluid behavior. In particular, the mean cross motion
and its r. m. s. fluctuations are found to scale with the buoyancy induced velocity v, and with
the product of the latter with the magnitude of the viscous velocity (i.e., \/W , being H the
duct width and v the kinematic viscosity), respectively. The correct scalings for the r. m. s. of
streamwise velocity component and of temperature fluctuations are found to be related also with
the friction velocity u, and friction temperature T, according to the magnitudes u2/ \/W
and Tru,/ \/W , respectively. As far as the mean structure of the cross motion is concerned,
it is found that different types of secondary flow regimes take place when increasing the value of
Richardson number. In particular, the mean secondary flow found in the range 0.025 S Ri S 0.25
is characterized by a single large-scale thermal convection roll and four turbulence-driven corner
vortices as opposed to the classical scenario of the eight-vortex secondary flow pattern typical of
isothermal turbulent flows. When increasing the value of Richardson number (i.e., Ri < 0.25) the
structure of the mean secondary flow is solely determined by the large-scale circulation induced
by the buoyancy force. In this regime, the mean cross motion is characterized by the presence
of two counter-clockwise rotating vortices located near the upper-left and lower-right corners. As
expected, it is found that the secondary flow regime strongly affects the magnitude and the local

behaviour of integral quantities like the skin friction coefficient and the heat transfer rate.
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I. INTRODUCTION

The existence of secondary flow of Prandtl’s second kind is a well-known phenomenon
in fully developed turbulent square duct flow [1]. Although relatively weak, secondary flow
plays an important role in the cross-streamwise transport of heat, mass and momentum. A
complete understanding of the intimate generation mechanisms leading to the appearance
of the mean secondary flow would pave the way for introducing technological improvements
in real world applications and for enhancing the capabilities of turbulence models to predict
turbulent mean motions of Prandtl’s second kind. In the past, there have been many stud-
ies focusing on the budget of the Reynolds stress tensor and their eventual anisotropy [3, 4]
with the objective to explain the generation of this mean motion. Those studies were mainly
focused upon the budget of the averaged flow equations, while not providing much informa-
tion on the underlying physical mechanisms responsible for the formation of secondary flow.
[The preceeding sentence has already been repeated too many times by us!]

Detailed investigations of the role of the dynamics of coherent structures in low Reynolds
number isothermal turbulent duct flow has been recently carried out by the present au-
thors [5, 12]. The mentioned work has highlighted the important role played by the side-
walls which constrain the spanwise statistical distribution of coherent structures near the
wall, i.e. quasi-streamwise vortices, low- and high-speed streaks. It has been shown that the
resulting preferential locations of those structures is intimately related to the pattern of the
secondary flow in the isothermal cases.

In thermal square-duct turbulence under the action of gravity, which we shall discuss in
this paper, the mean secondary flow will be driven not only by turbulence but also by buoy-
ancy, and thus their combined effects should be taken into consideration for characterization
of the secondary motion. The behavior of near-wall turbulence structures in square-duct
flow with heated walls was previously addressed by Salinas Vazquez et. al. [6] using large
eddy simulations of compressible flow at low Mach number. They have shown that the
size limitation imposed by the lateral walls leads to a single low-speed streak located near
the duct central plane surrounded by two high-speed streaks on both sides. The ejection
motion near the heated wall is enhanced by heating, which contributes to the breaking of
the symmetries of the usual secondary flow of the second kind. These authors have not

considered the case with strong buoyancy effects, in which a large-scale thermal convection



roll appears, leading to a strong enhancement on the heat transfer rate. The buoyancy
effects on statistics of square-duct turbulence have been studied by Ma et. al. [7] by carry-
ing out Direct Numerical Simulations (DNS), with temperature difference imposed between
the vertical walls, considering a wide range of Grashof numbers. They have shown that at
higher Grashof numbers, a large scale circulation motion (we shall call it secondary flow
of Prandtl’s first kind) induced by buoyancy force has a strong impact on the budget of
energy also producing a strong enhancement of heat flux on the hot wall. Ma et. al. [7]
also report that, when increasing the Grashof number, the mean secondary flow of Prandtl’s
second kind may experience a change to a four-vortex pattern by virtue of the thermal con-
vection induced by the buoyancy force. In particular they have shown the existence of a
single large-scale circulation roll surrounded by smaller-corner secondary flow vortices with
opposite sign of rotation. However, the authors did not propose any physical mechanism
responsible for the formation of such a peculiar four-vortex pattern secondary flow and its
eventual relationship with near-wall turbulent coherent structures and their modifications
in the presence of buoyancy effects. In the present contribution we extend the findings of
isothermal square-duct turbulence in references [5, 12] to the case of a non-isothermal con-
figuration. Through high fidelity numerical simulations we determine the role played by the
coherent vortical structures embedded in the flow field in producing the pattern of the mean
turbulent flow.

In this study, we characterize the secondary flow of Prandtl’s first and second kind by
using the result of direct numerical simulations (DNS) of fully developed turbulent flow in a
horizontal square duct heated from below at low Reynolds numbers. Firstly, we determine
the functional relationship of the wall friction coefficient and of the Nusselt number from the
Richardson number. Moreover, we reveal the correct scaling for the mean quantities and their
fluctuations using a careful analysis of the mean equations supplemented by results obtained
through DNS. Next, we show that the secondary flow patterns drastically change when
increasing the bulk Richardson number which represents the ratio of buoyancy force and
inertial force. On one hand, under weak buoyancy effect, we can observe the usual secondary
flow of Prandtl’s second kind which is characterized by an eight-vortex pattern. On the other
hand, when considering stronger thermal effects, the secondary flow is predominantly driven
by buoyancy force leading to a large-scale circulation roll similar to the one found in a natural

convection scenario concerning a two-dimensional square container [8] with the temperature



difference imposed between horizontal walls. In-between those extreme conditions, when
the intensity of the buoyancy-induced velocity is comparable with the turbulence-induced
velocity one, we can observe a transitional regime whose mean secondary flow presents a
mixed pattern characterized by the presence of a large scale circulation and of four small-
scale vortices near the corners which sense of rotation is opposite to the large-scale circulation
one. We will also address the modifications of wall structures under the direct influence of
buoyancy and the buoyancy induced large recirculacion to shed some light on the nature
and origin of the residual four vortex Prandtl’s motions of second kind in this particular

regime.

II. NUMERICAL PROCEDURE AND VALIDATION

i +h |
g

FIG. 1: Flow configuration and coordinate system.

We consider an incompressible viscous fluid flowing through an infinitely straight and
horizontal square duct. As shown in Fig. 1, a Cartesian coordinates (z,y,z) system is
introduced such that = denotes the streamwise direction and y-z denote the cross-stream
plane [—h, h|x[—h, h], h being the duct half width. The vertical upward direction (i.e.,
gravity opposite direction) is represented by y, while x-, z-axes are parallel to the horizontal
plane. All the simulations were performed imposing a constant mass flow rate. Also a
constant temperature difference is given between top (cold) and bottom (hot) walls (i.e.,
unstable temperature stratification). The side walls are modeled as perfectly insulated ones.

The time evolution of the velocity vector w = (u, v, w), the pressure p and the tempera-

ture T" will be described by means of the incompressible Navier-Stokes equations using the



Boussinesq approximation and a transport equation for the temperature (energy equation):

0 1

8—1:+(u-V)u = —;Vp+l/V2u+95(T—T0)eya (1)
V.ou =0, (2)

aa_f +(u-V)T = kV°T. (3)

In (1), e, is the unit vector associated to the y-direction, p is the constant mass density, v is
the kinematic viscosity (also considered to be a constant), g (> 0) is the gravity acceleration
and Ty is the reference temperature: Ty = %(Tc +Ty) (T), and T, being the temperatures of
the heated bottom wall and of the cooled top wall, respectively). In (3), 3 is the volumetric
coefficient of thermal expansion and « is the thermal diffusion coefficient. Equations (1) and
(2) are advanced in time by means of a pressure correction method [9]. In particular, we use
a semi-implicit scheme for the diffusive terms, and a three-step low-storage Runge-Kutta

method with an explicit treatment for the convective and buoyant terms:

u —ut! Lo k1 k—1
— = —2ak;Vp —Ye[(u - V)u — gB8(T — Tp)e,]
—Gel(w - V)u = gB(T — To)e, "™ + apwV? (u” + u* ™) (4)
V.-u*
2 1k _
v ¢ N 20ékAt (5)
ub = ut — 20, AtVF (6)
ph= b — ap At Vgl (7)

where k = 1,2, 3 is the Runge-Kutta step count (k = 3 being equivalent to the next time
step), u* is the predicted non-solenoidal velocity vector, and ¢ is the pseudo pressure. A

set of coefficients leading to a second-order temporal accuracy for velocity and pressure [9]

is a = [11‘5, %, %], Ve = [%, %, %], (G = [0, —%,— %] In a similar fashion, the
semi-discrete version of equation (3)
w - _ k=1 _ k—2 2k k—1
=l VTP Gl VT VT T, ()

guarantees a second order temporal accuracy for the temperature field as well. As far as
the spatial discretization is concerned, a discrete Fourier expansion is employed to approxi-
mate the variables in the streamwise () direction, while Chebyshev polynomials are used in
the cross-streamwise (y, z) directions. The convective terms are evaluated pseudo-spectrally

with the 2/3 dealiasing technique applied only in the Fourier direction. A Fourier-Galerkin
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treatment of the elliptic operators arising from the semi-discretized system gives rise to a set
of Helmholtz and Poisson problems to be solved for each Fourier coefficient. These bidimen-
sional problems are tackled in an efficient manner using a fast diagonalisation technique [10].
More details about the algorithm and its validation in isothermal configurations are given
in Pinelli et. al. [12].

Three non-dimensional parameters that govern the flow are the bulk Reynolds number,

the Prandtl number and the bulk Richardson number, defined as:

H ATH
Roy="1  p._V g 9PATH (9)

v K Uy

where H is full duct width (H = 2h), uy is the bulk mean velocity, and AT = T, — T,
is the temperature difference between the upper and lower walls. The bulk Richardson
number, formed by the ratio of the buoyancy force and the inertial force, can be recast in
terms of the Grashof number Gr (Gr = gBATH?/v?) and Rey, as Ri = GrRe, >. Another,
alternative expression for the Richardson number is Ri = (uy/u;)?, where u, = \/gBATH
is the velocity scale associated with buoyancy. Other non-dimensional groups that will be
used hereafter are the friction Reynolds number Re, and the Nusselt number Nu which
are defined as follows: Re, = u,h/v, where u, = /(7,)4/p, is the friction velocity ( 7,
being the wall shear stress and (-), the average computed over time and over the four walls).
Nu = q,H/(kAT) will denote the local Nusselt number, where ¢, is the local heat flux on
the horizontal walls. (Nu), will refer to the mean Nusselt number where (-), is the average
computed over time and over the two horizontal walls. Finally, from now on, variables with
a + superscript will refer to variables normalized with u, and v.

In the following we present results from simulations performed at two Reynolds numbers:
Re, = 3000 and 4400. For each value of the Reynolds number, Richardson numbers are
chosen in the range 0 < R:i < 1.03. At large value of Ri, the Boussinesq approximation
can still be considered as an acceptable one in cases of square ducts with a large width
and an imposed small temperature difference. The Prandtl number Pr is fixed to 0.71 (i.e.,
the working fluid is air). The values of the parameters used for each undertaken numerical
simulation are summarized in Table I.

All the simulations have been carried out choosing a spatial discretization verifying the
following criteria: the number of Fourier modes are determined in such a way that the

streamwise grid spacing is below 16.4 wall units (Az" = Azu,/v < 16.4); the number of



TABLE I: Simulation parameters

Rey, Re, Gr Ri Sz max{dy*, 02T} Ott Tyarup/h
(a)| 3000 105.4 5.0 x 10*> 0.00056 10.4 3.4 0.071 2651
(b)| 3000 107.0 2.0 x 10> 0.022 10.5 3.47 0.074 6555
(c)] 3000 111.2 5.0 x 10> 0.056 10.9 3.6 0.080 2651
(d)] 3000 142.19 9.0 x 10° 1.00 14.0 4.6 0.13 2603
(e) | 4400 149.3 5.0 x 10> 0.00026 14.7 4.83 0.097 2333
(f) | 4400 150.6 4.3 x 10> 0.022 14.8 4.88 0.098 8482
(g)| 4400 153.4 1.0 x10° 0.052 15.1 4.97 0.10 10883
(b)| 4400 190.6 2.0 x 107 1.03 15.5 5.1 0.11 5687

Chebyshev Lobatto collocation nodes are adjusted such that the maximum cross-streamwise
grid spacing is less than 5.4 wall units (Ay*, Azt < 54). The time step was fixed at
Atuy/h = 1.93 approximately corresponding to a CFL number of 0.22. Statistics were
accumulated over a time period tgq; larger than 8000h /u,. The streamwise extension of the
computational domain was taken as L,/h = 4, which is sufficiently long to allow for an
adequate decay of the two-point velocity correlations [4].

As already mentioned, the numerical technique used in this paper has been extensively
validated by the present authors considering isothermal flows in square ducts. In partic-
ular cases at Re, = 4400 and Re, = 7000 have been proved to compare quite well with
both DNS reference data of Gavrilakis [4] and with experimental data obtained from LDV
measurements [11] (see the recent study of Pinelli et. al. [12] for details). In order to
validate the extension of the numerical procedure to non-isothermal conditions, we have
performed numerical simulations of the same configuration as considered by Ma et. al. [7].
They have undertaken finite-difference-based DNS computations in low-Reynolds-number
turbulent thermal duct flow with an imposed temperature difference between the vertical
walls, while assuming the horizontal walls to be perfectly insulated (a different configuration
from the central subject of the present contribution). In particular, we have carried out a
direct comparison for cases at Re, = 6200, Gr = 10°,10°,107 and Pr = 0.7. Figure 2 shows

a comparison of the local shear stress and the local Nusselt number on the heated vertical



FIG. 2: The lateral variation on the heated wall (z/h = —1) of (a) the wall shear stress 7,, and
(b) the Nusselt number Nu. Solid lines represent the result from the present DNS and symbols
denote from Ma et. al.’s [7] DNS: o, Gr = 1.0 x 10°; A, Gr = 1.0 x 10%; O, Gr = 1.0 x 107.

wall. Although small discrepancies can be observed, it can be asserted that the present
results show good agreement with Ma et al.’s predictions. A possible explanation for the
slight disagreements may be given in terms of the relatively short period of time considered
by Ma et. al. for the accumulation of statistical data (their sampling time was 450 u,/H
in contrast with the present simulations that considered more than 2000 u,/H time units).
Another source of inconsistency may originate from the relatively coarser spatial resolution

combined with a lower order method used by Ma et al.

III. GLOBAL CHARACTERISTICS

As a first approach, in order to determine the importance of the buoyancy effects over the
global behavior of both the velocity and the thermal fields, we will quantify the variations
of the mean friction factor f and of the mean Nusselt number (Nu), when increasing the
value of the Richardson number. Another integral measure of the velocity field that will be
considered in the analysis of Ri dependence is the intensity of the mean secondary flow U,
defined as U, = [(1/4h2) fjhh fj:(@Z + w?)dydz v

In figures 3(a, b), the predicted values of f and (Nu), are given as a function of Ri

for the two values of Re, considered in the present work. Both quantities appear to be
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FIG. 3: The Ri dependence of (a) the mean friction factor f and (b) the mean Nusselt number
(Nu)2, and the intensity of the mean secondary flow U | normalized by (c) uy, and (d) u,=+/gBATH,
respectively. —[—, Re, = 3000; ——o——, Rep, = 4400.

increasingly affected by buoyancy effects for values of the Richardson number Ri 2 0.025.
To better understand the behavior of the mean secondary flow intensity as a function of
Ri, we introduce the average operator over time and streamwise direction 6, and the
associated decomposition ¢(x,y, z,t) = ¢(y, z) + ¢'(x,y, z,t) for all the variables. Applying
the averaging operator to the momentum and temperature equations, one obtains the system

of equations that governs the distribution of the mean variables:

(10)

U@_Fw@__l@_aw_aw , 325+325
oy 0z  pox oy 0z oy?  022)°

_0v _0v  19p 7% o 0%t 0% _
Ua—y—f—wg = —;a—y— ay — aZ l/<a—y2—|—w> +gB(T—T0), (11)

0w 0w 10p  Ovw’  Ouw? V(aﬂw a%)

"oy TPz T 0z o8y oz o2 92

(12)
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and that for the mean temperature

T T T T 2 927
or _or o1 ow'T K<8T 8T> (13)

dy 0z dy 0z o2 + 022

In the case of finite Ri, when the buoyancy term may be comparable with the mean-flow
Jv v

convection terms and all other terms are of lesser magnitude (i.e., Ea— ~ Ea— ~ gB(T—Ty)),
Yy z

equation (11) provides for the balance:
U2 .

T gBAT, or equivalently U, ~ u, = \/m, (14)
In figures 3(c, d), U, is shown as a function of Ri, when normalized by w, and u, respectively.
The non-dimensional velocity scale U, /uy, associated with the mean secondary flow increases
with Ri at Ri 2 0.025, thus confirming that this value of Ri ~ 0.025 is a threshold for
buoyancy effects to come into play. Indeed, for values of Ri £ 0.25, the intensity of the mean
secondary flow starts to scale with u,, thus implying that the secondary flow is predominantly
driven by buoyancy force. Therefore, the mean flow behaviors described by figure 3 allow

for introducing three different flow regimes according to the value of Ri:

Regime (i) 0 < Ri < 0.025, buoyancy effects are negligible and therefore the mean secondary flow

is solely determined by turbulence;

Regime (ii) 0.025 S Ri S 0.25, intermediate equilibrium regime in which both turbulence and

buoyancy effects determine the character of the mean secondary flow;

Regime (iii) Ri = 0.25, buoyancy dominated regime in which thermal convection determines the

character of the secondary flow.

Next, we discuss the proper scalings of the r.m.s. fluctuations of both velocity and tempera-
ture fields. To this end we consider again the set of averaged equations (10, 11, 12 and 13),
also introducing three magnitudes to be used as a measure the intensity of the r.m.s. fluc-
tuations of the variables. In particular, the intensity of the cross stream-wise r.m.s. fluctua-
tions will be assessed by the integral velocity value Uppg = [(1/4]12) fjhh fjhh mdydz] v
Analogously, to characterize the stream-wise r.m.s. fluctuations the value of Uy, =

_ 1/2
[(1/4h2) f_Jrhh _Jrhh u’Zdydz] will be used. Finally, the r.m.s. fluctuation of the temperature

_ 1/2
field will be characterized by the value of Tyne = [(1 Jan2) [ [ Tf?dydz] . Firstly, we

focus on the scaling of U,pms; by considering equation (11). From the latter, it turns out that

11



there exist two possible balances between terms. The first one is between the mean-flow and
ov _0v  Ov? ov'w’

the turbulent convection terms (i.e., 1— ~ W— ~

oy 0 oy 0z

), which when using the

result in (14) leads to:

uz ~ U2 .| orequivalently Upms ~ Ug. (15)

The other possible balance concerns the equilibrium between the turbulent convection terms

4 the vi ( o' ow? %W BQE) dine for the estimat
and the viscous ones (i.e., ~ ~ v ~ v , providing for the estimate:
dy 0z 0y? 522" P &
u
U2 |~ l/ﬁg or equivalently Upmsi ~ /Uiy, (16)

where u,, = v/H is the viscous velocity scale. Figure 4(a, b) shows the reference value
of the cross-streamwise r.m.s. velocity normalized with w, and ,/u,u; as a function
of Ri, respectively. Uymgi could be seen to scale with VUl rather than wu,. M.U:
is the scaling really convincing? I mean, there is not a huge difference
between the collapse when using the two different scales. perhaps soften
the statement a little...

Next, we discuss the likely scaling for the streamwise r.m.s. velocity U,ns. Again, the
mean momentum equation in the streamwise direction (10) suggests two possible balances.
The first one concerns the equilibrium between the mean-flow and the turbulent convection

ou __oJu ouv  ouuw

terms (i.e.,0— ~ W— ~ ~
Ay

0z dy 0z
relation (16), we obtain the estimate

), leading to the estimate uyuy ~ UpmsUrms1 . Using

Urms ~ Up & (17)

Uy

On the other hand, if the balance between the turbulent convection and viscous terms is

d to take place (i ou'v'  Ou'w’ 0%u 0%u
supposed to take place (i.e. ~ ~V ~V

pp P T Oy 0z o0y? 022

), the following relation holds:

u2

Urmsy/Up g ~ u?, or equivalently Uppg ~ ———, (18)
/Uy

where, the last estimate is obtained by using again the relation (16). Figure 5(a, b)

shows the reference values of the streamwise r.m.s. velocity as a function of R, nor-

malized by uyy/ug/u, and u?/y/u,/u, respectively. Ums/(upy/tg/u,) monotonically de-

creases with increasing Ri, while Uuyns/(u2/+/u,/u,) increases. The latter can be seen
to approach the upper limit at larger R:, suggesting that U,.,s might scale according to

12



u?/y\/uy/u, rather than uy\/u,/u,. M.U: same as above -- the scaling seems little
convincing, i.e. both scales make curves similarly collapse!
Finally, to determine the probable scaling for the temperature r.m.s., we consider the

two possible balances offered by equation (13). The balance between the mean-flow and the
9T  _9T oW'T  ouw'T’

turbulence-convection terms, (i.e., va—y ~ W 7 o ), yields
UgAT ~ Upmsi Tims, or equivalently Tipg ~ AT, /Z—i. (19)

From the other possible balance between the turbulent convection and the diffusive terms
. ov'T ow'T! 0*°T 0*°T
(i.e., ~ ~ K

dy 0z 0y? T

), we obtain

Ur
\ /u,,ug’

where T, = (1/u;)k(0T/0y)s denotes the friction temperature. Figure 6 shows the depen-

Urmst Trms ~ w1y, or equivalently Tyns ~ T (20)

dence of the r.m.s. temperature from R: when normalized by AT\/m and TTUT/\/W
respectively. ~ Although Tiys/(AT\/uy/u,) monotonically decreases with increasing Ri,
Tims/ (Trur [\ /Uy tg) stays around a roughly constant value at large Ri, implying that the
r.m.s. of the temperature field scale with TTuT/\/zTug rather than AT\/u,/u,. M.U: here
i am lost. can you explain what is meant by scaling?

The above results have indicated that the r.m.s. of the cross-streamwise velocity, the
streamwise velocity and the temperature, Uyngi, Umms and Trys, might scale, respectively,
with | /u, g, u2/\/u,/uy and Trur [/, g, all of which have been obtained from the balances

between turbulence convection and molecular diffusion of momentum or heat.

IV. MEAN VELOCITY AND TEMPERATURE

The cross-sectional distributions of the mean streamwise and cross-streamwise velocity
at the various combinations of Grashof number and Reynolds number values (as indicated
in table I) are shown in Fig.7. At the smallest Ri, the secondary flow vectors exhibit the
usual symmetric eight-vortex patterns with respect to the wall and the corner bisectors,
being typical of the turbulence-driven cross-flow as shown in Fig. 7(a, e). At slightly larger
values (Ri = 0.022), roughly corresponding to the border between regime (i) and (ii), the
eight-vortex secondary flow is still observed, both for Re, = 3000, 4400, but at the higher

Reynolds number (Fig. 7f) the clockwise mean secondary vortices are weakened due to the

13
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FIG. 4: The Ri dependence of the reference cross-streamwise r.m.s. velocity U,ny,s) normalized by

(a) ug and (b) \/u,uy. ——, Rey = 3000; ——o——, Rej, = 4400.
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FIG. 5: The Ri dependence of the reference streamwise r.m.s. velocity Upns normalized by (a)

up\/ug/u, and (b) v/, /iy, —O—, Rey, = 3000; ——o-—, Rey, = 4400.

buoyancy effect, so that the symmetries with respect to the wall and corner bisectors are
broken.

As Ri is further increased (regime (ii)), the large-scale circulation around the duct center
acts to push four pairs of counter-rotating mean secondary vortices towards the corners, so
that the four clockwise vortices of the counter-rotating pairs disappear (Fig. 7(c, g)), and
eventually (regime (iii)) just two counter-clockwise vortices near the upper-left and lower-
right corners remain significant (Fig. 7(d, h)). Note that the symmetry of the present flow
system allows the large-scale convection with the opposite-signed rotation to that in Fig. 7(c,

d, g, h), but in this paper only the case of the clockwise circulation is shown.

14
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FIG. 6: The Ri dependence of the reference r.m.s. temperature T;ns normalized by (a) AT \/ug/u,
and (b) Trur/ /uytg. ——, Rep = 3000; ——o——, Re, = 4400.

The mean streamwise velocity is also shown by iso-lines in Fig. 7. At Ri < 0.025, i.e.,
regime (i), four pairs of the counter-rotating mean vortices with the cross-streamwise velocity
scaling with u, and so independent of Ri (see Fig. 3(c)) transport the relatively high (or low)
streamwise momentum toward the duct corner (or the duct center) along the corner bisector
(or the wall bisector). As a consequence, the iso-contours of the mean streamwise velocity
are denser in the corner regions, implying that the wall shear is stronger near the corner
circulation of the velocity scale being larger for higher R: and eventually comparable with
the order of u, (see Fig. 3 (c, d)) plays a crucial role in the transfer of the high streamwise
momentum toward the wall, so that the iso-contours are now much denser near the walls
except for the corner regions. This momentum transfer by the large-scale circulation can
enhance the wall friction with increasing Ri, as shown in Fig. 3 (a).

The cross-sectional distributions of the mean temperature are shown in Fig. 8. At
smaller Ri (regime (i)) the turbulence-driven four pairs of counter-rotating mean vortices
induce a cross-streamwise heat transfer, and thus in Fig. 8 (a, b, e, f) we can see the
corrugation of the iso-therms caused by the mean vortices. At higher Ri (regime (ii, iii)),
the buoyancy-driven large-scale circulation also plays a crucial role in the heat transfer.
The roughly uniform temperature distribution around the duct center in Fig. 8 (d, h) is
the outcome of the large-scale heat transport and subsequent turbulence diffusion (cf. the

spiral iso-therms under the action of only molecular diffusion for a comparable value of Gr
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FIG. 7: Cross-sectional distributions of the mean streamwise and cross-streamwise velocity. (a-
d) Re, = 3000, (e-h) Re, = 4400. (a) Gr = 5.0 x 103, (b) Gr = 2.0 x 10°, (¢) Gr = 5.0 x 105,
(d) Gr = 9.0 x 10°%, (e) Gr = 5.0 x 103, (f) Gr = 4.3 x 10°, (g) Gr = 1.0 x 105, (h) Gr =
2.0x107. Mean streamwise velocity is represented by iso-lines with increment 0.2 u;, and mean cross-
streamwise velocity is shown by vectors. The maximum values of the vectors, max{\/EQ—i-iﬁ2 } up,

are (a) 0.024, (b) 0.028, (c) 0.029, (d) 0.145, (e) 0.020, (f) 0.021,(g) 0.027, (h) 0.15, respectively.

in Fig. 9 (a)). M.U.: the previous statement strikes me. Actually what I see
on the figure is that the gradients near the center do not change so much,
but rather do they rotate more towards the horizontal with increasing Ri!
As discussed above for the momentum transfer, the iso-therms are much denser near the
(top and bottom) walls because of the large-scale circulation, enhancing the wall heat
transfer as shown in Fig. 3 (b).

M.U.: At this point you should motivate your little detour into 2D
better. To me it seemed to drop out of the sky. Although what we ob-
served above is turbulent mixed convection, the cross-stream motion at high R: is expected
to be traced to buoyancy-driven two-dimensional flow without axial turbulent flow.

Therefore we shall discuss the relevance of the mean secondary flow observed at higher R:
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FIG. 8: The same as Fig. 7 but for the mean temperature represented by gray scales in the interval

of 0.1 AT. (a-d) Rep, = 3000, (e-h) Re, = 4400.

(or Gr) to two-dimensional thermal convection in a square container heated from below.
The two-dimensional thermal convection is numerically examined at the same value of
the Grashof number, Gr = 1.0 x 10°, as that for the case of Re, = 4400 and Ri = 0.052
in Fig. 7 (g) (regime (ii)). In the computation, the Fourier mode of the cross-streamwise
velocity and the temperature for null streamwise wavenumber is decoupled from the other
Fourier modes to represent the two-dimensional laminar flow under the same boundary
conditions on the walls. Figure 9 (a) shows the velocity and temperature fields of the
two-dimensional laminar thermal convection. At this value of Grashof number, a steady
flow state is observed and it is characterized in terms of the large-scale circulation and the
two additional small-scale vortices in the upper-left and lower-right corner regions. Note
that the thermal convection with the same sense of rotation as before is shown in the figure.
The streamfunction ¢ of the thermal convection is shown in Fig. 9 (b). The value of the
streamfunction on the walls is taken to be zero, so that its positive (or negative) value
may represent clockwise (or counter-clockwise) rotational motion. Significantly negative v

appears neither near the upper-right corner nor near the lower-left corner, implying that the
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FIG. 9: The steady two-dimensional thermal convection pattern at Gr = 1.0 x 10°. (a) The cross-
streamwise velocity and the temperature represented, respectively, by vectors and the contour lines
in the interval of 0.1 AT. (b) The streamfunction 1. The bold solid line represents the contour of
1 = 0. The boundaries are also ) = 0. (b) The cross-streamwise distribution of pressure: (white),

the highest pressure; (black), lowest pressure.

small-scale upper-right and lower-left mean vortices observed in Fig. 7 (c, g) (regime (ii))
are turbulence-driven while the upper-left or lower-right mean vortices are buoyancy-driven.
M.U.: cannot follow the argument you are laying out next... Let us briefly
discuss why only the upper-left and lower-right vortices appear in the thermal convection.
Fluids close to the horizontal lower (or upper) wall are heated (or cooled), but their velocity
towards the vertical left (or right) wall is retatively small because the fluids thereon cannot
be directly accelerated by buoyancy under the constraint of an impermeable wall. Hot (or
cold) fluids near the vertical left (or right) wall can, on the other hand, be accelerated by
buoyancy, so that their velocity towards the horizontal upper (or lower) wall is larger. As
a consequence, ‘splashing’ of the high-velocity fluids on the horizontal wall would increase
the pressure thereon (see Fig. 9 (c)) high enough to form separation bubbles or vortices in
the upper-left and lower-right corner regions.

In order to demonstrate the quantitative difference between the turbulence- and the
buoyancy-driven corner vortices in Fig. 7, we show the Ri-dependence of the positions of
the extrema of the mean streamwise vorticity @, in Fig. 10 (see Fig. 14 (a, ¢) for the spatial

distribution of @, at Ri = 0.052, 1.03 and Re = 4400). Because the mean secondary flow in
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a square duct obtained from the Boussinesq approximation has a 180° rotational symmetry
with respect to the duct center axis, we have only shown the positions of the lower-left
and lower-right vortices. As for the small-scale lower-left (counter-clockwise) vortex, the
distance s, from the side wall (z = —h) to the position of the minimum of the mean
streamwise vorticity @, normalized by the duct half width & and the friction length v/u, is
shown in Fig. 10 (a) and (c), respectively. The distance s, from the bottom wall (y = —h) to
the position of the minimum of @, for the lower-right vortex is normalized by A and friction
length v/u, as shown in Fig. 10 (b, d), respectively.

M.U.: again, I am not so covinced by the following scaling plots. Also,
I think you should be referring to figures 10 (a) and (c), instead of twice
to 10 (c).  We can see in Fig. 10 (c¢) that the position of the lower-left vortex, which
does not appear in the laminar convection (see Fig. 9), scales with the friction length rather
than the duct width (Fig. 10 (c¢)). Such a scaling property has also been observed for
turbulence-driven mean secondary flow vortices in an isothermal duct, which are a direct
consequence of instantaneous near-wall streamwise vortices [12]. The generation mechanism
of the lower-left and upper-right (turbulence-driven) vortices will be discussed in terms of
instantaneous coherent vortices in section VI.

The position of the lower-right vortex, which is also observed in the laminar convec-
tion (Fig. 9 (b)), can be seen to scale with the duct width rather than the friction length
in Fig. 10 (b). This is a scaling property of thermal convection and is contrasted with
the above near-wall scaling of the turbulence-driven lower-left vortex. M.U.: is there a

literature reference for this scaling in thermal convection?

V. STREAMWISE R.M.S. VELOCITY AND R.M.S. TEMPERATURE

Figure 11 shows the cross-sectional distributions of the streamwise r.m.s. velocity \/ﬁ
As Ri increases, the intense region of the streamwise r.m.s. velocity shifts from the wall bi-
sector towards the corners (Fig. 11(c, g)) through the sweeping effects of the large-scale cir-
culation. As Ri further increases (Fig. 11(d, h)), the two intense regions are separated from
the side walls because of the flow detachment induced by buoyancy-driven circulation (see
Fig. 9). At Ri ~ 1.0 the streamwise r.m.s. velocity is relatively low around the centers of the

buoyancy-driven small-scale secondary flow vortices in the upper-left and lower-right corner
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FIG. 10: The R: dependence of the position of the local minimum of the mean streamwise vorticity
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the position normalized with the duct half width. (c), (d) the position normalized with the friction
length. —[J—, Rej, = 3000; ——o——, Rey, = 4400.

regions, which correspond to ‘separation bubbles’. M.U.: wouldn’t it be better to
discuss directly the turbulent kinetic energy here?  Although not shown, the
cross-streamwise r.m.s. velocity has also been observed to be small in the separation bub-
bles, and thus the bubbles could be characterized by a roughly steady quiescent state. On
the other hand, large values of the streamwise r.m.s. velocity can be observed in the upper-
right and lower-left corner regions where the turbulence-driven small-scale mean secondary
flow vortices exist.

Figure 12 shows the cross-sectional distributions of the r.m.s. temperature \/ﬁ In
contrast to the r.m.s. velocity, large temperature fluctuations can be seen to appear in the
central region of the duct at smaller Ri (Fig. 12(a, b)) because there is the mean temperature
gradient in the vertical direction (see Fig. 8 (a, b, e, f)), across which the turbulent fluid

moves up and down. At higher Ri, on the other hand, the temperature fluctuation is very
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FIG. 11: The same as Fig. 7 but for the streamwise r.m.s. velocity \/u_T2 represented in gray
scales (white and black shows the maximum and minimum value, respectively). The maximum
values of | \/ﬁ/ub, are (a) 0.66, (b) 0.67, (c) 0.66, (d) 0.63, (e) 0.65, (f) 0.64,(g) 0.61, (h) 0.63,
respectively. (a-d) Re, = 3000, (e-h) Rej, = 4400.

small in the central region. This is because the stirring effect of the large-scale circulation
and subsequent diffusion for the temperature smooth out the mean temperature distribution

around the duct center, leading to the small temperature fluctuation around the duct center.

VI. BUOYANCY EFFECTS ON FLOW STRUCTURES

Figure 13 shows the snapshots of the instantaneous flows at Re, = 4400 for three values
of Ri = 0.00026, 0.052 and 1.03, which belong to the regime (i), (ii) and (iii), respectively.
The low-velocity streaks are visualized by the corrugated gray iso-surface at the level of
0.6 u, and the streamwise vortices are visualized by the tubular iso-surfaces of the second
invariant of the velocity gradient tensor [13] at the level of 0.03 u?/v?, which are lighted or
shaded with the sign of the streamwise vorticity (the light objects are clockwise vortices and

the dark objects are counter-clockwise vortices). The visualized streaks and vortices can be
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FIG. 12: The same as Fig. 7 but for the r.m.s. temperature \/ﬁ represented in gray-scale (white
and black shows the maximum and minimum value, respectively). The maximum values of |
\/ﬁ/AT, are (a) 0.20, (b) 0.20, (c) 0.23, (d) 0.23, (e) 0.19, (f) 0.19,(g) 0.21, (h) 0.23, respectively.
(a-d) Re, = 3000, (e-h) Re;, = 4400.

seen to be swept towards the corner by the large-scale circulation induced by the buoyancy
force (cf. Figs. (a, b)). The shift of the intense region of the streamwise r.m.s. velocity and
r.m.s. temperature towards the corners in Fig. 11 and 12 is attributed to this sweeping effect
on these near-wall structures by the buoyancy-driven circulation. The streamwise vortices
exist even at Ri = 1.03 and, under the action of the wall-parallel motion induced by the
large-scale circulation, the streaks and vortices exhibit the tendency to align in the direction

which is deviated from the streamwise direction in the spanwise direction.

A. Streamwise vortices

Now, we investigate the relation between the instantaneous quasi-streamwise vortices
and the mean secondary flows. To quantitatively discuss it, we define the cross-sectional

center of the streamwise vortices as the position of a local pressure minimum with the swirl
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condition D < 0, where D is the discriminant of the velocity gradient tensor in the cross-
plane, i.e. D = (Jv/dy — O0w/0z)?/4 + (0v/Dz)(0w/dy) [14]. We do not need to set any
thresholds to the extraction of the vortex centers in this definition. M.U.: why don’t you
need any threshold here? Remember we did need one in isothermal flow. We
plot the p.d.f.s of the positions of the centers of the clockwise and counter-clockwise vor-
tices with positive and negative streamwise vorticity, respectively, in Fig. 14(a, b) and
Fig. 14(d, e). The p.d.f.s are computed by taking into account the 180°-rotational sym-
metry with respect to the duct center axis to increase the number of realizations. The result
is then replicated on the upper and lower half for convenience. The corresponding mean
streamwise vorticity is shown in Fig. 14(c) and Fig. 14(f).

In the case of Re, = 4400 and Ri = 0.052, corresponding to regime (ii) in which
turbulence- and buoyancy-driven secondary flow is observed, the positions of the maximum
p.d.f:s for the instantaneous counter-clockwise vortices (Fig. 14(b)) in all the corner regions
can be seen to be consistent with those of the negative extrema of (is this correct?) the
mean streamwise vorticity (Fig. 14(c)). The same is not true for the instantaneous clock-
wise vortices (Fig. 14(a)) which do not frequently appear near the positions of the positive
extrema of the streamwise-vorticity. Except in the corner regions we cannot see remarkable
differences in the p.d.f.s for the clockwise and counter-clockwise vortices which mostly cancel
out each other. These results imply that the instantaneous streamwise coherent vortices of
the opposite sense of rotation to the large-scale circulation play a role in the generation of
the four mean secondary corner vortices. As will be discussed below, under the effect of
the large-scale circulation as well as the geometrical constraint in the corner regions, the
instantaneous vortices of the counter-clockwise (is this correct?) sense of rotation have
a preferential location near the corner, so that the mean secondary corner vortices would
appear as their statistical footprint.

Above we have observed significant differences between the patterns of the mean sec-
ondary flow in the regimes (i) and (ii) (cf. Fig 7 (a, b, e, f) and (¢, g)). M.U.: I do not
get this following paragraph: This difference would be ascribed to a marked contrast
of dynamical behavior of the instantaneous vortices in the regime (ii) with the regimes (i)
in which just the geometrical constraint in the corner regions remain to accommodate the
coherent vortices of both senses of rotation, leading to the appearance of the mean secondary

flow exhibiting four pairs of counter-rotating vortices (see Uhlmann et al [5]).
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In the case of Ri = 1.03 allocated to the regime (iii) in which the buoyancy-driven
secondary flow is dominant, the positions of the maximum p.d.f.s for the instantaneous
counter-clockwise vortices (Fig. 14(e) in the upper-right and lower-left corner regions are
still consistent with those of the weak extreme of the mean streamwise vorticity (Fig. 14(f));
however, they can be seen to shrink to the close vicinity of the corresponding corners, imply-
ing that the instantaneous vortices are confined to the smaller regions for larger R: through
the sweeping effect of the large-scale circulation, as will be discussed below. Therefore,
the mean secondary vortices cannot be seen clearly in the upper-right and lower-left cor-
ner regions in Fig. 7(d, h). On the other hand, the positions of the maximum p.d.f.s in
the lower-right and upper-left corner regions do not shrink, because these regions are in
the ‘separation bubbles’ which are free from the sweeping effect. In the lower-right and
upper-left corner regions there appear roughly steady buoyancy-driven secondary vortices,
and thus the contribution of instantaneous vortices to the p.d.f. therein cannot be distin-
guished from that of the buoyancy-driven secondary vortices. More frequent appearance of
counter-clockwise vortices near the lower-right and upper-left corners (cf. Fig. 14 (d, e)) is
a direct consequence of the buoyancy-driven roughly steady counter-clockwise vortices.

Let us now discuss the dynamical behavior of instantaneous streamwise vortices in the
near-region of the corner. Since the vortical structures are elongated in the streamwise
direction, and the effect of viscosity on them is not expected to be crucial, we shall consider
the simplest inviscid model consisting of a streamwise vortex filament of strength ~, its three
image filaments, and a fixed streamwise filament of strength I" > 0 (clockwise rotation in
Fig. 15) and its image filaments. The vortex filament of 7 represents the streamwise vortex
tube, and the image filaments are used to express the effects of two impermeable walls. The
fixed filament is introduced to approximately take into account the swirling effects of the
large-scale circulation. In the real situation at low Reynolds numbers Re, = 3000 and 4400,
the inner and outer length scales are not separated from each other, so that the distances
from the streamwise vortex to the duct center and to the walls (or the corner), /. and ¢,,,
are of the same order. The velocity scale of the streamwise vortex in the corner region
could be estimated as 7/¢,, while the large-scale circulation might have the velocity of the
order of I'/{, near the corner. Therefore, the velocity ratio of the circulation to the vortex
should be of the order of I'/v, and at the same time it could also be estimated as u,/u..

Figure 15 shows the cross-sectional vector field, for the inviscid vortex filament, induced
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by the inviscid filaments representing the impermeable walls and the large-scale circulation.
for I'/v(~ ug/u,) = £3.3 (Ri = 0.052, Re, = 4400) and I'/y(~ u,/u,) = £11.7 (Ri =
1.02, Re, = 4400). It can be seen in Fig. 15 (b) for |I'/y| = 3.3 that the vector field for
the counter-clockwise vortex of v < 0 provides closed trajectories near the corner so that
the vortex can stay there. The vector field for the clockwise vortex of 7 < 0 in Fig. 15 (a),
on the other hand, does not allow closed trajectories, so that the vorex of v > 0 cannot stay
near the corner. This is because in the former case the geometrical constraint in the corner
region can compensate the sweeping effect of the large-scale circulation, or equivalently the
cross-streamwise velocity induced by the image vortices can compensate the one induced by
the circulation. For |I'/~v| = 11.7 (Fig. 15 (c¢)), however, the sweeping effect is much stronger,
and thus it is possible only for the counter-clockwise vortex very close to the corner to stay

there.

B. Low-velocity streaks

Next, we define the positions of low-velocity streaks near the wall as those of local minima
of the wall shear on each wall. We plot the p.d.f.s of the positions of the low-velocity
streaks in Fig. 16(a, b). It can be seen that the localization of the near-wall structures
(streaks) by the sweeping effects of large-scale circulation affects the mean profile of the skin
friction and the heat transfer rate on the top and bottom walls. The frequent appearance
of low-velocity (Fig. 16(a, d)) and high- (or low-) temperature streaks associated with the
streamwise vortices also leads to the lower skin friction and heat transfer in the left (or
right) corner region on the bottom (or top) wall in Fig. 16(c, d, e, f) for Re, = 4400. The
high-velocity and low- (or high-) temperature fluid is pushed towards the bottom (or top)
wall by the large-scale convection, enhancing the skin friction and heat transfer in the right
corner region in Fig. 16 (c, d, e, f).

In order to investigate the temporal evolution of the low-velocity streaky structures,
we consider the streamwise-minimal turbulent flow which can be achieved by reducing the
streamwise computational domain L, to the lowest value for sustaining turbulence [15].
Since in the minimal flow, the streamwise wavelength of the corrugated streaks coincides
with L,, their streamwise average may be used to represent the spanwise position of the

streaks. We perform the DNS at Re, = 4400 and Ri = 0.052 for L,/h = 4/97 (L} = 214) in
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FIG. 13: The snapshots of instantaneous low structures at Re, = 4400, (a) Ri =
0.00026 (Gr = 5.0 x 10, in regime (I)), (b) Ri = 0.052 (Gr = 1.0 x 10°%, in regime (II)),
(¢c) Ri = 1.03 (Gr = 2.0 x 107, in regime (IIT)). The streamwise velocity is shown by the gray
iso-contour mesh at the level of 0.6 uy, and the streamwise coherent vortices are shown by the iso-
surfaces of the second invariant of velocity gradient tensor (Q-criterion) at the level of 0.03 u?/v2.
The light objects are vortices with positive streamwise vorticity (the clockwise vortices) and the

dark objects are vortices with negative vorticity (counter-clockwise vortices).

the regime (ii), where the buoyancy-driven velocity is comparable with the turbulence-driven
mean secondary velocity. The minimum streamwise period to maintain turbulence in an iso-
thermal square duct has been investigated systematically by Uhlmann et. al. [5], indicating
that the minimum value is L] ~ 190, roughly independent of the Reynolds number.

In Fig. 17, we show the evolution of the low-velocity streaks by tracking the spanwise
positions of local minima in the streamwise-averaged instantaneous wall shear profile. It
can be seen onboth bottom and vertical walls that the low-velocity streaks are swept by the
large-scale circulation towards the corner at z/h = —1 (27 = —153.4) in Fig. 17 (a) and
at y/h = 1 (y* = 153.4) in Fig. 17 (b), and their spacing is roughly 100 wall units. In
the near-region of the corner y/h = 1 on the vertical wall, however, another streak remains
continuously located around y/h = 0.5 (y* & 80) and it is distinct from the usual low-
velocity streaks. This stationary streak is located at the front of the ‘separation bubble’
(cf. Fig. 7 (g) and Fig. 9 (b)) and does not appear on the bottom wall. This result is

another indication of difference between the buoyancy-driven mean secondary vortices and
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FIG. 14: P.d.f.s of the positions of the vortex centers and the mean streamwise vorticity, (a) with
positive vorticity (i.e. clockwise vortices), (b) with negative vorticity (i.e. counter-clockwise vor-
tices) at Re, = 4400, Ri = 0.052 (Gr = 1.0 x 10%). The level of p.d.f.s is represented in gray
scale (black is highest and white is lowest). (c) Mean streamwise vorticity, solid lines are posi-
tive (clockwise) and dashed lines are negative (counter-clockwise). (d-f) The same as (a-c), but for

Rey, = 4400, Ri = 1.03 (Gr = 2.0 x 107).

the turbulence-driven ones (the upper-left and lower-right vortices, and the upper-right and

lower-left ones in Fig. 7 (c, g)).

VII. CONCLUDING REMARKS

Direct numerical simulations of fully developed low-Reynolds-number turbulent flow in a

horizontal square duct heated from below are performed at bulk Reynolds numbers Re, =
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FIG. 15: Cross-sectional induced velocity vectors of vortex filaments under the effects of two
impermeable walls and (clockwise) large-scale circulation represented by the filament of strength
I' fixed at (y/h,z/h) = (0,0). (a) Vortex filament with positive (clockwise) strength v with I"/y
(~ ug/ur) =3.3. (b, c) Vortex filaments with negative (counter-clockwise) strength v < 0 (b) with
I'/y (~ug/ur) = —=3.3, (c) with I'/y (~ ug/u,) = —11.7.

3000, 4400 and bulk Richardson numbers 0 < Ri < 1.03 in order to demonstrate the effects
of buoyancy on turbulence statistics and structures, with emphasis on characterization of
the mean secondary flows of Prandtl’s first and second kinds in terms of coherent vortical
structures, thermal convection, and their interaction.

At small Richardson numbers 0 < Ri S 0.025 no visible change is observed in global prop-
erties of turbulent flow, such as mean friction factor, mean Nusselt number and secondary-
flow velocity. For this range of Ri the mean secondary flow is characterized by four pairs of
turbulence-driven counter-rotating vortices similar to those in an isothermal duct.

For Ri = 0.025 the cross-stream thermal convection represented by single large-scale
circulation is found to appear to affect the turbulence field. The sense of the circulation
depends on an initial condition, and once forming its sense does not alternate. It is observed
that the four mean secondary-flow vortices of the same sense of the circulation disappear
while those of the opposite sense remain near the corners. The near-wall coherent structures
are observed in the corner region more frequently than around the wall bisector, since they
are swept along the wall by the large-scale convection toward the corner. These structures
contribute the shift of the intense region of the streamwise r.m.s velocity and r.m.s. temper-

ature towards the corners. The four small-scale mean secondary flow vortices appear as a
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FIG. 16: P.d.f.s of the positions of low-velocity streaks, P (a, b), wall shear stress (¢, d), and

Nusselt number (e, f) on the bottom wall y/h = —1 at Re, = 4400. (a), (c), (e) Ri = 0.052, (b),

(d), (f) Ri = 1.03.

statistical footprint of the near-wall coherent structures (streamwise vortices), which is the

same generation mechanism as in the case of the mean secondary flow of Prandtl’s second

kind in the iso-thermal low-Re turbulent flows.

It is found that for Ri £ 0.025 the mean friction factor, the mean Nusselt number, the

secondary-flow velocity, and r.m.s. velocities and temperature increase with increasing R

under the action of buoyancy.

At Ri 2 0.25
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FIG. 17: Temporal evolution of the position of low-velocity streaks in the streamwise minimal
turbulent flow at Re, = 4400, L,/h = 4/97, L} = 214.2, Ri = 0.052; (a) on the bottom wall
y/h = —1 and (b) on the vertical wall z/h = —1.

At Ri = 1.03, eventually just two mean counter-clockwise vortices near the upper-left
and lower-right corners remain significant since these mean vortices are associated with the
large-scale circulation induced by the buoyancy force. The two small-scale vortices near the
upper-right and lower-left corners of the mean secondary flow still appear as a statistical
footprint of the near-wall coherent structures (streamwise vortices).

The characteristics of the small-scale vortices near the corners have been confirmed quan-
titatively by scaling of the corresponding position of the local minima of the mean streamwise
vorticity. The positions of the local minimum of the streamwise vorticity of the secondary
flow vortices related to the near-wall coherent structures scale in wall units [12]. It is obvi-
ous that the buoyancy-driven small-scale secondary flow vortices (near the lower-right and
upper-left corners in Fig. 7(d, h) and Fig. 9) have the size of outer scale.

The corner behaviour of a vortex filament with the large-scale circulation using a simple
kinetic model can explain the probability of the appearance of quasi-streamwise vortices.

The counter-clockwise vortex filaments should be located close to the corner to stay longer
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in the corner region against the advection induced by the clockwise circulation, which leads
to the shrink of the lower-left and upper-right secondary flow vortices.

The localization of the near-wall coherent structures (quasi-streamwise vortices and low-
and high-speed streaks) in the corner regions also affects skin friction and heat transfer rate
on the wall near the corners.

The effects of near-wall coherent structures play significant roles in the generation of the
secondary flow and cross-sectional distribution of the turbulent statistics in such anisotropic
flow like a square duct. More details of buoyancy effects on the behaviour of turbulent
structures at higher Reynolds numbers, i.e. not only the near-wall small-scale structures
but large-scale structures, should be revealed quantitatively in order to improve turbulent

models or to predict turbulence effects precisely.
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