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Isospectral Hamiltonians from Moyal products
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Recently Scholtz and Geyer proposed a very efficient method to compute metric op-
erators for non-Hermitian Hamiltonians from Moyal products. We develop these ideas
further and suggest to use a more symmetrical definition for the Moyal products, because
they lead to simpler differential equations. In addition, we demonstrate how to use this
approach to determine the Hermitian counterpart for a Pseudo-Hermitian Hamiltonian.
We illustrate our suggestions with the explicitly solvable example of the −x

4-potential
and the ubiquitous harmonic oscillator in a complex cubic potential.

PACS : 03.65.-w,02.30.Mv
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1 Introduction

Many non-Hermitian Hamiltonians H are known to possess real discrete spectra,
e.g. [1, 2], which make them potential candidates for physical systems. Unlike as for
Hermitian Hamiltonians h, the conventional inner products of the corresponding
wavefunctions are usually indefinite and the central problem in this context is to
construct meaningful inner products serving to formulate a consistent quantum
theory. Besides from compensating wrong signs by hand [3], there are essentially
three different, albeit in many cases equivalent, ways to achieve this: i) by employing
bi-orthonormal eigenstates [4], ii) by constructing the so-called C-operator [5, 6]
or iii) by restricting to pseudo-Hermitian Hamiltonians H and constructing their
Hermitian counterparts h related to H by a similarity transformation η = η† [7, 8]

h = ηHη−1 = h† ⇔ H† = η2Hη−2. (1)

See also [9] for an earlier discussion of these issues. In many respects the last
possibility is the most direct and straightforward approach on which we will almost
exclusively concentrate here. The natural starting point is usually a given non-
Hermitian Hamiltonian H for which one needs to construct η. Subsequently one
may formulate all relevant physical questions for the non-Hermitian system in terms
of the conventional formulation of quantum mechanics associated to the Hermitian
system. Thus a key task in this approach is to find η2 and η. Unfortunately this is
only possible in some exceptional cases in an exact manner and otherwise one has
to resort to perturbation theory. Building on earlier work [6, 10], we found in [11]
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the closed expressions

h = h0 +

[ ℓ
2
]

∑

n=1

g2n(−1)nEn

4n(2n)!
c(2n)
q (h0), H = h0 −

[ ℓ+1

2
]

∑

n=1

g2n−1κ2n−1

(2n− 1)!
c(2n−1)
q (h0), (2)

which are related according to (1) perturbatively. Here [x] denotes the integer part
of a number x, the non-Hermitian Hamiltonian is assumed to be of the form

H = h0 + igh1, (3)

h0 = h†
0, h1 = h†

1 and c
(n)
q (x) denotes the n-fold commutator of the operator q

with some operator x. In case one has the condition c
(ℓ+1)
q (h0) = 0 for some finite

integer ℓ the expressions (2) are exact and otherwise they are just correct up to the
stated order in the coupling constant g. The En are Euler’s numbers and the κ2n−1

may be constructed from them [11]. One should note, however, that, in practice, the
above-stated procedure may lead to rather cumbersome relations involving commu-
tators. This fact poses a major problem for determining closed formulae for specific
isospectral pairs of Hamiltonians, or for carrying out perturbative computations up
to higher orders.

The main purpose of this paper is to propose a practical scheme for overcoming
this difficulty. We elaborate further on a recent proposal by Scholtz and Geyer [12]
to solve (1) by means of Moyal products instead of computing commutators. The
central idea is to exploit isomorphic relations between commutator relations and
real valued functions multiplied by Moyal products, which correspond to differential
equations. We shall demonstrate that this approach is rather practical and allows
to compute pairs of isospectral Hamiltonians h = h† and H 6= H†.

2 Similarity transformations from Moyal Products

2.1 Generalities on Moyal products

Moyal products are applied in a wide field of research, such as non-commutative(nc)
M-theory [15], nc-string theory [16], nc-integrable field theories [17, 18, 19, 20],
etc. The key idea is to transfer the noncommutative nature of some operators to
real valued functions. Technically one may set up such an isomorphism in various
different ways. In the present context of studying non-Hermitian Hamiltonians such
possibilities have been exploited in [12]. The authors defined the Moyal product of
real valued functions depending on the variables x and p as

f(x, p) ∗ g(x, p) = f(x, p)ei
←−
∂x

−→
∂pg(x, p) =

∑∞

s=0

is

s!
∂s

xf(x, p)∂s
pg(x, p). (4)

The classical, more widespread and symmetrical definition is, see e.g. [14, 21, 22]

f(x, p) ⋆ g(x, p) = f(x, p)e
i
2
(
←−
∂x

−→
∂p−
←−
∂p

−→
∂x)g(x, p) (5)

=

∞
∑

s=0

(−i/2)s

s!

s
∑

t=0

(−1)t

(

s
t

)

∂t
x∂s−t

p f(x, p)∂s−t
x ∂t

pg(x, p),
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or exchange the roles of x and p in (4). In order to achieve a proper isomorphism
between the operator expressions and those computed with Moyal products one
requires different types of prescriptions to translate real valued functions into oper-
ator valued expressions. Products computed with definition (4) must be viewed as
ordered products in which all p̂-operators are moved to the left of all x̂-operators.
In expressions computed with definition (5) on the other hand one should replace
each monomial pmxn or xnpm by the totally symmetric polynomial Sm,n in the m
operators p̂ and n operators x̂

Ŝm,n =
m!n!

(m + n)!

∑

π
p̂mx̂n. (6)

Here π indicates the sum over the entire permutation group. The simplest example
to illustrate this is

[x̂2, p̂2] = 4ip̂x̂−2 ∼= x2 ∗p2−p2 ∗x2 = 4ipx−2 ∼= x2 ⋆p2−p2 ⋆x2 = 4ipx. (7)

We use here the standard canonical commutation relation [x̂, p̂] = i and throughout
the paper we employ atomic units h̄ = e = me = cα = 1. We observe that the ∗-
product yields the correct operator expression upon replacing x → x̂, p → p̂. The
⋆-product on the other hand corresponds to the correct commutation relations for
px → S1,1 = (p̂x̂ + x̂p̂)/2. The defining relation (5) is slightly more complicated
than (4), but it is more symmetrical and leads therefore to cancellations of various
terms as one can easily convince oneself. Loosely speaking, it has the advantage
that it incorporates already more of the noncommutative nature of x̂ and p̂ from
the very beginning. As we shall see below, this is the reason why it leads to simpler
differential equations for the quantities we wish to determine. These statements
are also supported by comparing the equations resulting from (5) and (4) for all
examples calculated up to now with this method [12]1).

2.2 Hermitian counterparts from Pseudo-Hermitian Hamiltonians

Let us now briefly discuss in general how we proceed to construct h from a given
H by first solving (1) for η2 and η. The explicit knowledge of η is vital, since once
it is known one may control the entire quantum mechanical formalism, such as
inner products, observables, time evolution, etc. However, in general one can not
compute η exactly and has to rely on perturbative methods [6, 10, 11] in which
one has to solve the commutator relations occurring in (2) order by order. This is
a very cumbersome procedure and up-to-now it has only been carried out for few
cases to lowest order. Here we present a simple and more efficient scheme which
leads to the exact determination of η by employing Moyal products. We build on

1) For instance for the example H = p2 + igx3, definition (4) yields

2gx3η2(x, p) + 3igx2∂pη2(x, p) − 3gx∂2

p
η2(x, p) − ig∂3

p
η2(x, p) + 2p∂xη2(x, p) + i∂2

x
η2(x, p) = 0,

whereas (5) gives the simpler form 4gx3η2(x, p) − 3gx∂2
p
η2(x, p) + 4p∂xη2(x, p) = 0.

Czech. J. Phys. 56 (2006) A3
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suggestions of [12], but as a starting point we use instead of the definition (4) the
definition (5) and write the second equation in (1) isomorphically as

H† ⋆ η2 = η2 ⋆ H. (8)

With definition (5) this will then lead to a differential equation in η2, whose order
depends on the degree of x and p in H . In most cases this equation can not be
solved exactly and under these circumstances we assume a perturbative expansion
for η2 in the coupling constant g, which was introduced in (3)

η2(x, p) =
∑∞

n=0
gncn(x, p). (9)

Combining (8) and (9) then leads to a differential equation, which involves the
functions cn in a recursive manner and can therefore be solved order by order. Ul-
timately we aim at exact expressions, which yield η2 to all orders in perturbation
theory [13]. Having then solved various differential equations, we naturally expect
some ambiguities in the general solutions, which mirror the possibility of different
boundary conditions. We would like to stress that this is not a drawback, which is
only present when using Moyal products, but it is rather a reflection of a general
feature of perturbation theory. The same kind of ambiguity occurs in the perturba-
tive approach based on commutators. In that context one may only fix the operator
corresponding to the cn(x, p) up to any operator which commutes with the Hermi-
tian part of H , that is h0. This means that, in (2), the expressions are insensitive
to any replacement q → q + q̃ with [q̃, h0] = 0. A further type of ambiguity, which
is always present irrespective of an exact or perturbative treatment, is a multipli-
cation of η2 by operators which commute with H , i.e. we could re-define η2 → η2Q
for any Q, which satisfies [Q, H ] = 0.

We may fix these ambiguities by invoking a further property of η. As discussed
in [11], assuming a dependence on the coupling constant g of the form

η(−g) = η(g)−1, h(g) = h(−g) and H†(g) = H(−g), (10)

will guarantee the pseudo-Hermiticity relations (1). Therefore we require next

η2(g) ⋆ η2(−g) = 1, (11)

which may be solved systematically order by order when we already know the
expansion (9) up to the ambiguities. Note that (11) is automatically satisfied if we
take η2 = eq and q =

∑∞
n=1 g2n−1q2n−1 as assumed in many cases on the grounds

of PT-invariance [6]. Having determined η2 the transformation η is subsequently
computed easily order by order from

η ⋆ η = η2 =
∑∞

n=0
gncn(x, p), (12)

when assuming a further power series expansion

η(x, p) =
∑∞

n=0
gnqn(x, p). (13)

A4 Czech. J. Phys. 56 (2006)
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Finally, having obtained an explicit expression for η, we may compute the Hermitian
counterpart to H from (1) as

h ⋆ η = η ⋆ H. (14)

According to the above arguments, i.e. the second equation in (10), we should find
an expression of the general form

h(x, p) =
∑∞

k=0
g2kh2k(x, p). (15)

Let us now illustrate the above with two explicit examples, by starting with one for
which the differential equation may be solved exactly and thereafter complicating
it to a case which requires perturbation theory.

3 The non-Hermitian -x4 potential

As a straightforward example we consider the non-Hermitian Hamiltonian

H(x̂, p̂) = p̂2 − p̂

2
+ α

(

x̂2 − 1
)

+ ig

({x̂, p̂2}
2

− 2 αx̂

)

, (16)

which results from H = −d2/dz2− εz4 when using z = −2i
√

1 + ix as transforma-
tion, α = 16ε and the introduction of the coupling constant g to separate off the
non-Hermitian part [23]. The exact similarity transformation η for this Hamilto-
nian was recently constructed by Jones and Mateo [23] using perturbation theory in
terms of commutators in the spirit of equation (2). See also [23] for further reason-
ing on how the Hamiltonian (16) can be used to make sense of the −εz4-potential
despite its unappealing property of being unbounded from below.

In order to illustrate the method let us see how to determine η by using Moyal
products. First we notice that we wish to treat H(x̂, p̂) as a real valued function
and we therefore have to replace the anti-commutator with the appropriate Moyal
products. When using definition (5) we have to replace {x̂, p̂2} by x ⋆ p2 + p2 ⋆ x =
2xp2 and the differential equation (8) for the Hamiltonian (16) reads

0 = 4gp2xη2(x, p)− 8gxαη2(x, p) − 4xα∂pη
2(x, p) (17)

−∂xη2(x, p) + 4p∂xη2(x, p) + 2gp∂p∂xη2(x, p) − gx∂2
xη2(x, p).

As a comparison we also present the differential equation resulting from (8) when
using the ∗-product instead of the ⋆-product. When converting the operator valued
Hamiltonians into a function, we have to pay attention to the fact that (f ∗ g)∗ 6=
f∗ ∗ g∗. Thus in H we replace i{x̂, p̂2} by i(x∗p2 +p2 ∗x) = 2ip2x −2p, whereas in
H† we substitute −i{x̂, p̂} by −i(x∗p2+p2∗x) = −2ip2x +2p, which is of course not
the same as converting first the anti-commutator with a subsequent conjugation.
The resulting differential equation reads

0 = 4gp2xη2(x, p) − 8gxαη2(x, p)− 4xα∂pη
2(x, p) (18)

+i2gp2∂pη
2(x, p)− i2α∂2

pη2(x, p)− i4gα∂pη
2(x, p) + i4gpη2(x, p)

−(1 + 2g − 4p− 4pxig)∂xη2(x, p) + (2i− 2gx)∂2
xη2(x, p).

Czech. J. Phys. 56 (2006) A5
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Obviously, equation (18) is more complicated than (17), which illustrates our asser-
tion that the ⋆-product is more advantageous than the ∗-product. Ultimately they
should lead, however, to the same result. Indeed, each line in (17) as well as (18)
vanishes separately for

η2(x, p) = e
g p3

3 α
−2 g p, (19)

which, when compensating a slight difference in convention, is precisely the same
expression as found in [23]. To find η(x, p) from η2(x, p) by means of (12) is trivial

in this case as we just have to take the square root, i.e. η(x, p) = e
g p3

6 α
−g p. Using

(14) thereafter we find the Hermitian counterpart of H

h(x, p, g) = p2 − p

2
+ α

(

x2 − 1
)

+ g2

(

p2 − 2 α
)2

4 α
. (20)

When setting the artificially introduced parameter g to 1, we recover precisely the
expression found in [23]

h(x, p, g = 1) =
p4

4 α
− p

2
+ x2 α. (21)

In [23] also the interesting massive case H = −d2/dz2 + m2z2 − εz4 has been
discussed. The transformation from the z-variable to the x-variable will add in (16)
a term −m2(1 + 4igx). The resulting similarity transformation is then η(x, p) =

e
g p3

6 α
−g p(1+2m2/α) and the Hermitian counterpart reads

h(x, p, g) = p2 − p

2
+ α

(

x2 − 1
)

− 4m2 + g2

(

p2 − 2 α− 4 m2
)2

4 α
, (22)

which for g → 1 reduces precisely to the expression reported in [23].

Let us next embark on an example for which the differential equation (17) can
not be solved exactly.

4 Harmonic oscillator perturbed by a complex cubic potential

The prototype example for the study of non-Hermitian Hamiltonian systems is
the harmonic oscillator perturbed with a complex cubic potential

H =
p2

2
+

x2

2
+ igx3. (23)

It was the discovery [1] that this Hamiltonian possesses a positive real discrete
spectrum, which led to the current interest in this subject. This Hamiltonian is
obviously non-Hermitian, but PT-invariant and pseudo-Hermitian [5, 8, 7, 10]. The
latter property means that the relations (1) hold. For the Hamiltonian (23) the

A6 Czech. J. Phys. 56 (2006)
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conjugation relation (8) translates into the differential equation2)

0 = 4gx3η2(x, p)− 3gx∂2
pη2(x, p) − 2x∂pη

2(x, p) + 2p∂xη2(x, p). (24)

Using the expansion (12) we find the recursive equation

0 = 4x3cn−1(x, p)− 3x∂2
pcn−1(x, p)− 2x∂pcn(x, p) + 2p∂xcn(x, p). (25)

Notice the occurrence of the aforementioned ambiguities. It is easy to see that we
may add to cn(x, p) any arbitrary function ζ[(p2 + x2)/2]. This type of ambiguity
just reflects the fact that in the perturbative formulation in terms of operators we
may add to q any function of h0 = (p2 + x2)/2. We write cn(x, p) = c̃n(x, p) +
ζ[(p2 + x2)/2] and determine first the functions c̃n(x, p) which also obey (25).

Taking as the initial condition c̃0(x, p) = 1, we find order by order

c̃1(x, p) =
4 p3

3
+ 2 p x2, c̃2(x, p) = 6 x2 − 2 p2 x4

3
− 8 x6

9
,

c̃3(x, p) =
112p5

15
− 64p9

81
+

56p3x2

3
− 32p7x2

9
+ 14px4 − 56p5x4

9
− 140p3x6

27

−16px8

9
,

c̃4(x, p) = 112p2x2 − 128p6x2

3
+ 98x4 − 1856p4x4

15
+

32p8x4

81
− 5392p2x6

45

+
416p6x6

243
− 1768x8

45
+

230p4x8

81
+

176p2x10

81
+

160x12

243
,

c̃5(x, p) = −224p3 +
2752p7

5
− 19456p11

405
+

2048p15

3645
− 336px2 +

9632p5x2

5

−107008p9x2

405
+

1024p13x2

243
+ 1928p3x4 − 26752p7x4

45
+

3328p11x4

243

+
8332px6

15
− 272896p5x6

405
+

18304p9x6

729
− 154132p3x8

405
+

760p7x8

27

−11488px10

135
+

23524p5x10

1215
+

5536p3x12

729
+

320px14

243
,

This can be expanded effortlessly to higher orders, but we will not report these
functions here. Next we demand the dependence on the coupling constant g to be
of the form (11) in order to fix the ambiguities. Since we may add to ca(x, p) any
arbitrary function ζa

0 [h0 = (p2 + x2)/2] , due to the recursive equation (25) this

2) For comparison definition (4) yields

0 = 4 g x3 η2(x, p) − 2 x ∂pη2(x, p) + 6 i g x2 ∂pη2(x, p) − i∂2

p
η2(x, p)

−6 g x ∂2

p
η2(x, p) − 2 i g ∂3

p
η2(x, p) + 2 p ∂xη2(x, p) + i ∂2

x
η2(x, p).

Czech. J. Phys. 56 (2006) A7



C. Figueira de Morisson Faria and A. Fring

function will produce descendents at higher level in cn for n > a. Thus we have the
general form

cn(x, p) = c̃n(x, p) +
∑n−a

k=0
ζ
(a)
k [h0]. (26)

We can now use this function and achieve that (11) is satisfied order by order.
Explicitly,

c1(x, p) =
4p3

3
+ 2px2,

c2(x, p) = c̃2(x, p) + ζ
(2)
0 [h0] = c̃2(x, p) +

8

9
h3

0 − 4h0.

As we note, indeed the additional function just depends on h0. In a similar fashion
we can compute the higher order functions

c3(x, p) = 12p− 248p5

15
+

32p9

81
− 64p3x2

3
+

16p7x2

9
− 2px4 +

8p5x4

3
+

4p3x6

3
,

c4(x, p) = 152p4 − 832p8

45
+

32p12

243
+ (56p2 − 2368p6

45
+

64p10

81
)x2

−(26 +
128p4

3
− 16p8

9
)x4 − (8p2 − 16p6

9
)x6 +

2p4x8

3
,

c5(x, p) = −1024p3 +
2144p7

5
− 4672p11

405
+

128p15

3645
+ (−168p +

10864p5

15

−20416p9

405
+

64p13

243
)x2 + (

712p3

3
− 3488p7

45
+

64p11

81
)x4

−(28p + 48p5 − 32p9

27
)x6 − (

28p3

3
− 8p7

9
)x8 +

4p5x10

15
,

c6(x, p) = 3584p2 − 98336p6

15
+

340256p10

675
− 6016p14

1215
+

256p18

32805
− (1024

+6160p4 − 70592p8

45
+

35392p12

1215
− 256p16

3645
)x2 − (216p2 − 70288p6

45

+
26816p10

405
− 64p14

243
)x4 + (340 +

1520p4

3
− 3232p8

45
+

128p12

243
)x6

+(14p2 − 328p6

9
+

16p10

27
)x8 − (

20p4

3
− 16p8

45
)x10 +

4p6x12

45
,

We observed that always ζ
(2n+1)
0 [h0] = 0. Making next the ansatz (13), we compute

the qn(x, p) by reading off the corresponding powers in the expression (12). We find
order by order

q1(x, p) =
2 p3

3
+ px2, q2(x, p) = −p2 +

2p6

9
+

x2

2
+

2p4x2

3
+

p2x4

2
,

q3(x, p) = 6p− 79p5

15
+

4p9

81
− 23p3x2

3
+

2p7x2

9
− 13px4

4
+

p5x4

3
+

p3x6

6
,

q4(x, p) =
67p4

2
− 148p8

45
+

2p12

243
+ (

37p2

2
− 442p6

45
+

4p10

81
)x2

A8 Czech. J. Phys. 56 (2006)
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−(
61

8
+

29p4

3
− p8

9
)x4 − (

7p2

2
− p6

9
)x6 +

p4x8

24
,

q5(x, p) =
−997p3

3
+

443p7

5
− 434p11

405
+

4p15

3645
− 355px2

2
+

4681p5x2

30

−1952p9x2

405
+

2p13x2

243
+

1199p3x4

12
− 361p7x4

45
+

2p11x4

81

+
149px6

8
− 6p5x6 +

p9x6

27
− 43p3x8

24
+

p7x8

36
+

p5x10

120
,

q6(x, p) =
1677p2

2
− 103649p6

90
+

84373p10

1350
− 286p14

1215
+

4p18

32805
− (

1131

4

+
16811p4

12
− 8987p8

45
+

1717p12

1215
− 4p16

3645
)x2 − (

2503p2

8
− 43021p6

180

+
1361p10

405
− p14

243
)x4 + (

1861

16
+

1625p4

12
− 359p8

90
+

2p12

243
)x6

+(
943p2

32
− 173p6

72
+

p10

108
)x8 − (

29p4

48
− p8

180
)x10 +

p6x12

720

Finally, having obtained an explicit expression for the η, we may compute the
Hermitian counterpart to H from (14). We find order by order

h0(x̂, p̂) =
p̂2

2
+

x̂2

2
, h2(x̂, p̂) = −1

2
+ 3Ŝ2,2 +

3 x̂4

2

h4(x̂, p̂) = 27p̂2 + 2p̂6 +
15x̂2

2
− 36Ŝ4,2 −

51Ŝ2,4

2
− 7 x̂6

2
(27)

h6(x̂, p̂) = 128− 984p̂4 − 72p̂8 − 1464Ŝ2,2 + 768Ŝ6,2 − 84 x̂4 + 660Ŝ4,4

+288Ŝ2,6 +
27x̂8

2
,

where we have already converted from real valued functions to operators. Notice
that h(x̂, p̂) is of the form (15) and as we expect all terms h2k−1 = 0, such that
indeed the second relation in (10) holds. Up to h4(x̂, p̂) our results agree precisely
with [24]. Higher orders do not seem to appear in the literature.

5 Conclusions

We have shown that Moyal products can be used as a very powerful tool to com-
pute the similarity transformation η relating a pseudo-Hermitian Hamiltonian H to
its Hermitian counterpart h. As concrete examples, we have applied such products
to a situation for which η can be calculated exactly, namely the non-Hermitian −x4

potential, and to a case for which it can only be computed perturbatively, that is
the harmonic oscillator with a complex cubic perturbation. In the latter case, we
profited considerably from the fact that the Moyal products involve only real-valued
functions, instead of commutators, and lead to differential equations which can be
solved recursively. Relation (11) was crucial to fix the ambiguities, which result
from operators which commute with the unperturbed Hamiltonian h0.
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In a more general context, this is a far less cumbersome procedure than those
involving commutators, and allows one to evaluate isospectral pseudo-Hermitian–
Hermitian pairs perturbatively up to a very high order. Even more, Moyal products
can be employed to obtain closed formula for the similarity transformation η to all
orders in perturbation theory. Such formulae have been obtained for several specific
isospectral pairs, and will be discussed in a subsequent publication [13].

Despite the practical use of this approach, there are clear limitations, such as
for instance when the potential is of a nonpolynomial nature. In that case the sum
in the definition for the Moyal product does not terminate and one has to deal
with differential equations of infinite order. Hence, there is a clear need for further
alternative methods, such as recently proposed in [25].
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