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1 Introduction

Financial risk is related to the possibility that financial loss (or gain) due to unforeseen

changes in underlying risk factors may take place. One particular type of financial risk

is market risk, i.e. the risk of loss (or gain) arising from unexpected changes in market

prices or market rates. Value-at-risk (VaR) is the most commonly used tool in financial

risk management and it is widely used by financial institutions to evaluate the market risk

exposure of their trading portfolios. VaR is the quantile of the distribution of gains and

losses over a target horizon and as such it summarizes in a single value the possible losses

which could occur with a given probability in a given temporal horizon. The VaR measure

has been criticized for not being subadditive and hence violating the axioms of coherency

(see Artzner et al. 1999), and alternative coherent risk measures such as Expected Shortfall

have been proposed. We focus on VaR only because it is the most utilized risk measure in

applied works and it is commonly used in the financial industry. In this paper, we propose

two novel multilevel testing procedures for VaR prediction, to evaluate the accuracy of VaR

forecasts from the same model at different confidence levels.

Over the last decade a wide array of parametric (for instance RiskMetrics and GARCH

models) and non-parametric (for instance Historical Simulation) statistical methods have

been proposed to quantify VaR. Since financial institutions are required to hold regulatory

capital based on their VaR forecasts, ex post techniques aimed at validating their measure of

market risk are required. Hence, if on one hand it is relevant for banks to implement accurate

VaR models, on the other hand they need to use sound statistical backtests to validate them.

In essence, backtesting procedures are constructed comparing realized returns and model-

generated VaR measures. Commonly used backtests for VaR models include the likelihood

ratio test of Kupiec (1995), the Markov tests of Christoffersen (1998) and the duration based
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test of Christoffersen and Pelletier (2004). The one of Kupiec (1995) is an unconditional

coverage test in the sense that it only measures how distant the nominal coverage rate is

from the proportion of violations in the sample, i.e. the number of time the ex post loss

exceeds the ex ante VaR. Christoffersen (1998) proposes an independence test aimed at

verifying if there is any clustering in the violation sequence. The intuition is that in a good

model, a VaR violation today should be independent of whether or not yesterday’s VaR was

violated. Testing both the unconditional coverage and the independence hypotheses results

in the so called conditional coverage test. The test of Christoffersen and Pelletier (2004)

is based instead on the duration sequence, i.e. the number of observations between two

consecutive violations. Authors exploit the fact that under a correct VaR model durations

should have a geometric distribution with average equal to the reciprocal of the coverage

probability. Further developments of duration tests in a GMM framework can be found in

the recent paper of Candelon et al. (2011). Another testing procedure is the one introduced

in Engle and Manganelli (2004). The authors build their dynamic quantile test on the idea

that, if the violations are a martingale difference sequence, the probability of exceeding the

VaR must be independent of all the past information. The test is based on a regression of

the violations on their lagged values and other lagged variables available when the VaR is

computed.

Denoting by K the number of coverage probabilities used in the VaR estimation, the

testing procedures described above are based on K = 1, i.e. they are unilevel procedures.

For example, when estimating 1%, 2.5% and 5% quantiles, the standard unilevel approach

is to perform a separate test for each of these three quantiles. Unilevel tests are known to

have small power especially when the sample considered has a realistic (small) number of

observations, as confirmed by the Monte Carlo study in Berkowitz et al. (2011). In a recent
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paper, Perignon and Smith (2008) propose a multilevel test based on K > 1 coverage prob-

abilities. Again, when estimating 1%, 2.5% and 5% quantiles, a multilevel test is a joint test

for the coverage of all three quantiles. The test of Perignon and Smith (2008) stands between

the unconditional coverage test of Kupiec (1995), that compares the fraction of days with a

VaR violation with the nominal coverage probability, and the test of Berkowitz (2001), that

allows one to test the entire distribution (or the left tail) via the Rosenblatt transformation.

A similar approach is in Diebold et al. (1998). In this paper, however, the authors present

only graphical analyses for diagnosing how models fail, rather than formal testing proce-

dures. For instance, they notice that the transformed data should be uniformly distributed.

Hence, if the model does not capture fat tails, the histogram of the transformed data will

have peaks near zero and one. The Kupiec (1995) test is widely used among practitioners

but displays low power when applied to financial datasets. The Berkowitz (2001) method-

ology, though more powerful, is not used in practice since banks are only willing to disclose

one-day ahead VaR estimates and not the entire profit/loss distribution. Multilevel tests,

namely the Perignon and Smith (2008) procedure, represent instead an optimal compromise

between the two cases above: they show good performance in terms of power, while requir-

ing only a limited information disclosure from banks or financial institutions. Furthermore,

multilevel tests are useful and appealing firstly because it is common for quantiles to be

estimated for two or more different confidence levels, and, secondly, because they represent

a more efficient and statistically more powerful alternative with respect to separate unilevel

tests. However, the Perignon and Smith (2008) procedure does not allow to test for the

presence of clusters of VaR exceptions, which we allow in the multilevel tests we propose in

this paper. Tests designed to detect whether the VaR violations are independent and the

average number of violations is correct are called conditional coverage tests. The importance
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of conditional coverage backtesting procedures is confirmed by the study of Berkowitz et al.

(2011), who, using desk-level profit/loss data from four business lines in a large international

commercial bank and Historical Simulation VaR estimates, document the presence of severe

clustering in VaR violations for two of the four business lines. To the best of our knowledge,

the only existing conditional coverage backtesting procedure valid in the multilevel context

is the one of Hurlin and Tokpavi (2006). The testing procedure the authors propose is based

on a multivariate extension of the Box and Pierce (1970) test, which is used to jointly test

the absence of autocorrelation in the vector of violations for various coverage probabilities.

In this paper, instead, we consider conditional coverage testing procedures in a multilevel

framework by proposing the multilevel generalization of the Markov test of Christoffersen

(1998) and a Pearson-type of test based on the bivariate distributions of the total number

of VaR violations in period t, Nt, and its jth lag Nt−j. Nt is obtained by summing up the

usual indicator variables corresponding to different coverage rates obtained from the unilevel

tests. In an extensive Monte Carlo study we show the superiority of the proposed tests with

respect to the one of Hurlin and Tokpavi.

The paper is organized as follows. In Section 2, we review the existing multilevel tests

and we introduce the Markov and Pearson-type tests that we propose in this paper. The

power properties of the proposed tests are examined in a Monte Carlo study presented in

Section 3. In Section 4, the multilevel tests are applied to univariate and multivariate VaR

models in a backtesting exercise involving daily returns on 15 MSCI world indices. Section 5

concludes.
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2 Multilevel backtesting procedures

Denote by rt with t = 1, . . . , T the time series of log-returns or bank revenues we are

interested in for backtesting purposes. Given a coverage probability α, VaR for time t + 1,

given the information up to time t, satisfies

P
(
rt+1 ≤ −VaRt+1|t(α)|Ft

)
= α,

where Ft denotes the information set at time t.

Consider K different critical levels α1 > α2 > . . . > αK . The associated VaRs are in

opposite monotonic order, namely

VaRt+1|t(α1) < VaRt+1|t(α2) < . . . < VaRt+1|t(αK).

Using the notation and set-up of Perignon and Smith (2008), for each VaR measure an

indicator variable is constructed as follows

Ji,t+1 =





1 if −VaRt+1|t(αi+1) < rt+1 ≤ −VaRt+1|t(αi)

0 otherwise

, (1)

for all i = 1, . . . , K. By convention, we take αK+1 = 0, VaRt+1|t(αK+1) = +∞, and

J0,t+1 =
∏K

i=1(1− Ji,t+1). With the additional convention that α0 = 1, the random variables

{Ji,t+1}i=0,...,K are Bernoulli distributed with probability θi = αi − αi+1 under the null that

the VaR model is unconditionally accurate. Hence θi represents, under the null, the proba-

bility of falling in between the VaR quantiles associated to the coverage probabilities αi and

αi+1.
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Since in any time period only one of those variables can be equal to one, these random

variables are not independent. Furthermore, each J can be expressed as

Ji,t+1 = Ii,t+1 − Ii+1,t+1, i = 1, . . . , K,

where I is the usual exception indicator:

Ii,t+1 =





1 if rt+1 ≤ −VaRt+1|t(αi)

0 if rt+1 > −VaRt+1|t(αi)

. (2)

Consider the time series {Nt} such that Nt+1 = i when Ji,t+1 = 1 for i = 0, . . . , K. Note

that since

Nt+1 =
K∑

i=1

Ii,t+1, (3)

Nt represents the total number of VaR violations in period t at the different coverage prob-

abilities1. Under the null that the VaR model is unconditionally accurate, the first two

moments of Nt+1 are

µ = E(Nt+1) =
K∑

i=1

i · θi =
K∑

i=1

αi (4)

E(N2
t+1) =

K∑

i=1

i2 · θi =
K∑

i=1

αi[i
2 − (i− 1)2] =

K∑

i=1

αi(2i− 1) = 2
K∑

i=1

i · αi − µ (5)

and hence

σ2 = Var(Nt+1) = 2
K∑

i=1

i · αi − µ− µ2.

1 We assume that in any given period we can observe at most one VaR violation for each coverage
probability.
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Note that σ2 6=∑K

i=1 Var(Ii,t+1), because the indicators I are not independent.

In what follows, we briefly introduce the two existing multilevel backtesting procedures,

namely the Perignon and Smith (2008) and the Hurlin and Tokpavi (2006) tests.

The Perignon and Smith (2008) test. A recent approach for backtesting VaR models

is proposed by Perignon and Smith (2008). This is a generalization of Kupiec (1995) un-

conditional test to the case of K different critical levels and its null hypothesis can simply

be tested using a standard chi-square goodness-of-fit test. The multivariate unconditional

coverage test of Perignon and Smith (2008) is a likelihood ratio test that the empirical π

significantly deviates from the hypothesized θ = (θ0, θ1, . . . , θK)
′. The null is

H0,uc : πi = θi, i = 0, 1, . . . , K − 1.

Collecting in the vector π = (π0, π1, . . . , πK)
′ the observed probabilities of falling in

between the VaR quantiles, the probability density of N is given by

g(n;π) = P (Nt+1 = n;π) = P (Jn,t+1 = 1;π) =
K∏

i=0

π
Ji,t+1

i (6)

and hence the log-likelihood function for a sample with T observations is

ℓ(π) =
T∑

t=1

K∑

i=0

Ji,t ln(πi) =
K∑

i=0

Ti ln(πi), (7)

where Ti =
∑T

t=1 Ji,t is the number of observations in the sample for which Nt = i.

Denoting by ℓ0,uc and by ℓ1,uc the log-likelihoods under the null and the alternative
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hypotheses, the test statistic is

LRuc = 2 (ℓ1,uc − ℓ0,uc) = 2 (ℓ(π̂)− ℓ(θ)) = 2

(
K∑

i=0

ln(π̂i/θi)
Ti

)
(8)

where π̂i is the maximum likelihood estimator of the i-th component of π, and it is given by

π̂i =
Ti

T
(see the Appendix). The test statistic is asymptotically chi-square with K degrees of

freedom and when K = 1 one recovers the unconditional coverage test developed by Kupiec

(1995).

Perignon and Smith (2008) stress the importance of multilevel testing procedures for

VaR prediction. However, their procedure is only an unconditional coverage test, which is

not capable of detecting clustering in the sequence of VaR violations. Hurlin and Tokpavi

(2006), instead, propose a multilevel conditional coverage testing procedures.

The Hurlin and Tokpavi (2006) test. Hurlin and Tokpavi jointly test the absence of

autocorrelation and cross-correlation in the vector of hit sequences for various coverage rates.

Their null hypothesis is

H0 : E[(Ih,t − αh)(Ik,t−j − αk)] = 0, ∀j = 1, . . . ,m, ∀h, k = 1, . . . , K.

Hence, under the null all the autocorrelations from order 1 to the maximum lag length m in

the hit sequences are zero. The authors propose using the multivariate portmanteau statistic

of Li and McLeod (1981), which is a multivariate extension of the Box and Pierce (1970)

test. The elements of the hits covariance matrix at the lag j can be estimated by

γ̂hk
j =

1

T − j

T∑

t=j+1

(Ih,t − αh)(Ik,t−j − αk).
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The test statistic is

Qm = T (T + 2)
m∑

j=1

1

T − j
vec(Rj)

′
(
R

−1
0 ⊗R

−1
0

)
vec(Rj)

where Rj is the cross-correlation matrix whose element of position (h, k) is

Rhk
j =

γ̂hk
j√

γ̂hh
0 γ̂kk

0

h, k = 1, . . . , K.

Li and McLeod (1981) show that the test statistic is asymptotically chi-square with mK2 de-

grees of freedom. Hurlin and Tokpavi (2006) suggest selecting the lag lengthm ∈ {1, 2, 3, 4, 5}.

This choice is motivated by a simulation study in which the distance between the observed

and the theoretical chi-square distribution is evaluated by means of the Kolmogorov-Smirnov

test.

A drawback of the Hurlin and Tokpavi (2006) test is that Qm cannot be calculated if the

matrix R0 is singular. This is likely to happen with coverage rates that are very close to

each other. Indeed, in this case, it is more likely the R0 matrix will have several identical

columns. This happens especially in small samples, because they are characterized by the

same occurrences of violations at 1% and at 1.5%, say.

2.1 New multilevel tests

In this paper, we propose two novel multilevel testing procedures designed to test the con-

ditional coverage hypothesis.
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2.1.1 Markov tests

The first test we propose is a generalization of the Christoffersen (1998) independence test

to the multilevel case.

Consider the following transition matrix

Π = [πi,j]i,j=0,...,K , (9)

where

πi,j = P (Jj,t+1 = 1|Ji,t = 1).

Under the null hypothesis of independence, all rows in the matrix Π are the same, i.e.

H0,ind : π0,j = π1,j = . . . = πK,j , for j = 0, . . . , K − 1. (10)

The intuition is that the return has equal probability of being in interval j in period t + 1,

regardless of which of the K + 1 intervals the return lies in period t.

Note that in the above formulation the column index j runs from 0 to K − 1 given that

πi,K = 1−∑K−1
j=0 πi,j for each i = 0, . . . , K.

If we assume that transitions are described by matrix (9), the log-likelihood is

ℓ(Π) =
∑

0≤i≤K
0≤j≤K

Ti,j ln(πi,j). (11)

where Ti,j denotes the number of observations in the sample of Nt values with a j following

an i, with i, j = 0, . . . , K.

The null hypothesis in (10) can be tested using a likelihood ratio test, that we construct as
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follows. Denoting by ℓ0,ind and by ℓ1,ind the log-likelihoods under the null and the alternative

hypotheses, respectively, the test statistic is

LRind = 2 (ℓ1,ind − ℓ0,ind) = 2
(
ℓ(Π̂)− ℓ(π̂)

)
= 2



∑

0≤i≤K
0≤j≤K

Ti,j ln(π̂i,j)−
K∑

i=0

Ti ln(π̂i)


 (12)

where π̂i = Ti

T
is, as already mentioned, the maximum likelihood estimator of the i-th

component of π, and π̂i,j =
Ti,j

Ti
is the maximum likelihood estimator of the (i, j)-element of

matrix Π (see the Appendix for the derivation of this result). Under (10) the test statistic

is asymptotically chi-square with K2 degrees of freedom, given that there are K2 +K free

parameters under the alternative and K free parameters under the null hypothesis.

We now turn to the conditional coverage test. Note that conditional coverage and in-

dependence are not the same concept given that conditional coverage entails testing also

whether the average number of violations is correct. In this case, under the null hypothesis

all rows in the matrix Π are the same and equal to the vector (θ0, . . . , θK), i.e.

H0,cc : π0,j = π1,j = . . . = πK,j = θj, for j = 0, . . . , K − 1. (13)

Denoting by ℓ0,cc and by ℓ1,cc the log-likelihoods under the null and the alternative hypotheses

respectively, the likelihood ratio test statistic is

LRcc = 2 (ℓ1,cc − ℓ0,cc) = 2
(
ℓ(Π̂)− ℓ(θ)

)
= 2



∑

0≤i≤K
0≤j≤K

Ti,j ln(π̂i,j)−
K∑

i=0

Ti ln(θi)


 (14)

where π̂i and π̂i,j are as before. The test statistic is asymptotically chi-square with K2 +K
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degrees of freedom. Note that

LRcc = LRuc + LRind,

since ℓ1,cc = ℓ1,ind, ℓ0,cc = ℓ0,cc and ℓ1,uc = ℓ0,ind.

The feasible versions of (12) and (14) require replacing (11) and (7) with

ℓ(Π) =
∑

i,j∈{0,...,K}:
Ti,j>0

Ti,j ln(πi,j) and ℓ(π) =
∑

i∈{0,...,K}:
Ti>0

Ti ln(πi)

respectively, because in empirical applications we can have cases where Ti,j = 0 or even

Ti = 0 for some i and j.

2.1.2 Pearson’s χ2 tests

The Markov test is powerful only against the first-order Markov alternative. In this section

we propose a new test powerful against more general alternatives.

Consider the bivariate distribution

pNt,Nt−j
(x, y) = P (Nt = x,Nt−j = y).

Under the null of the conditional coverage test, it holds that

pNt,Nt−j
(x, y) = P (Nt = x)P (Nt−j = y) = θxθy ∀x, y.

Denote by T
(j)
x,y the number of observations in the sample for which Nt = x and Nt−j = y.

Note that T
(1)
x,y coincides with Tx,y of Section 2.1.1.
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The proposed test statistic for a sample of T observations is

Xm =
m∑

j=1

X(j), (15)

where

X(j) =
∑

x,y

(T
(j)
x,y − (T − j)θxθy)

2

(T − j)θxθy
. (16)

The test is designed to detect whether the average number of violations at the different rates

is correct and to check for the independence in Nt with respect to its lags up to m 2. While

the asymptotic distribution of (16) is chi-square, the distribution of the test statistic (15) is

not standard even for large samples because it is the sum of dependent chi-square random

variables3. In order to calculate critical values, we use the Monte Carlo testing technique of

Dufour (2006) which consists of the following three steps:

Step 1: generate under the null M time series of i.i.d. variables Nt each of length T ;

Step 2: for each replica j = 1, . . . ,M , calculate the test statistic (15) whose value we

denote by Xm,j ;

Step 3: compute the p-value as

p̂M(Xm,0) =
M × ĜM(Xm,0) + 1

M + 1
(17)

where ĜM(Xm,0) =
1
M

∑M

j=1 I(Xm,0 < Xm,j), I(·) is the indicator function, and Xm,0 is the

2 We provide some guidance for the choice of m in Section 3 where we report the results of the Monte
Carlo exercise.

3 An alternative formulation to (16) is based on the likelihood ratio test statistic

X(j) = 2
∑

x,y

T (j)
x,y log

(
T

(j)
x,y/(T − j)

θxθy

)
.
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test statistic calculated from the original sample.

The test statistic, however, can only take on a countable number of distinct values.

Consequently, the test value obtained from the sample, Xm,0, could coincide with some of

the values obtained from simulating under the null hypothesis. The following tie-breaking

procedure is used in these cases: for each test statistic, Xm,j , j = 0, . . . ,M , we draw an

independent standard uniform random variate, Uj . The Monte Carlo p-value we calculated,

p̃M(Xm,0), is obtained replacing in (17) ĜM(Xm,0) with

G̃M(Xm,0) = 1− 1

M

M∑

j=1

I(Xm,0 ≥ Xm,j) +
1

M

M∑

j=1

I(Xm,0 = Xm,j)× I(U0 ≤ Uj).

Note that under the null, the hit sequence is generated by i.i.d. variables Nt, with

distribution completely described by the K probability levels α1, α2, . . . , αK . Hence, we

do not have nuisance parameters under the null hypothesis. The validity of the above

procedure is confirmed by Proposition 2.4 of Dufour (2006), which shows that, under the

above construction it holds that

P (p̃M(Xm,0) ≤ p) =
[p(M + 1)]

M + 1
for p ∈ [0, 1],

where [x] is the largest integer less than or equal to x.

One advantage of using Monte Carlo testing instead of bootstrap procedures is that

the former guarantees consistency even when some parameters are on the boundary of the

parameter space.
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2.2 Numerical example

In this section, we report a numerical exercise in which we show that our test procedures,

based on (14) and (15), perform better than the test of Perignon and Smith (2008) which, of

course, is not designed to detect clusters in VaR violations. Let us consider three probability

levels, α1 = 5%, α2 = 2.5%, and α3 = 1% and assume that, in a sample of dimension 500,

VaR(1%) is violated 8 times, VaR(2.5%) 11 times, and VaR(5%) 21 times. Regarding the

p-values for the Kupiec tests, the only difference with the previous example is for the 2.5%

level for which we now find p-value(2.5%) =0.7129. For the multilevel test, where T0 = 479,

T1 = 10 T2 = 3, and T3 = 8, we find that LRuc = 5.5930, with a p-value of 0.1332 which

clearly means the null is not rejected. Suppose, however, that some sort of clustering is

present in the violation sequence. For instance, suppose that the first 8 returns are less

than −VaR(1%), the subsequent 3 returns fall between −VaR(1%) and −VaR(2.5%), the

subsequent 10 returns fall between −VaR(2.5%) and −VaR(5%), and finally the remaining

479 returns are larger than −VaR(5%). Of course the value of the Perignon and Smith

(2008) test does not change. Using the first of the two new tests proposed in this paper,

i.e. the Markov test described in section 2.1.1, we find LRcc = 203.45, with a p-value of the

order of 10−6. If instead we apply the the second of the two new tests, i.e. Pearson’s χ2

tests of section 2.1.2, we find X1 = 1301.84, X5 = 4242.97 and X10 = 6251.19. Again, in

all the three cases the p-value is of the order of 10−6, which strongly rejects the null. For

completeness, the values of the Hurlin and Tokpavi tests are Q1 = 1095.28, Q5 = 13925.44,

and Q10 = 6297.31. In all the three cases the null is strongly rejected.

The above numerical example is just a simple illustration of the limits of both the unilevel

testing procedures and of the multilevel unconditional coverage test. A robust comparison

requires instead a comprehensive Monte Carlo exercise, which we report in the next section.

16



3 A Monte Carlo evaluation of the testing procedures

In this section, we study the performance of the multilevel tests proposed in this paper via

a Monte Carlo exercise.

3.1 Monte Carlo design

A short description of the Monte Carlo design follows. First, 10000 time series suitable to

describe financial returns are generated according to the following GARCH(1,1) model with

Student-t innovations:

ht+1 = ω + αe2t + βht, (18)

with et =
√
htut, ut ∼ t(6.5), i.e. the distribution of the innovation is Student-t with 6.5

degrees of freedom. We use the same parameters as in the Monte Carlo experiments of

Perignon and Smith (2008), i.e. ω̂ = 0.05, α̂ = 0.05 and β̂ = 0.9.

In order to capture excess skewness and kurtosis, important features of financial data

especially in a period of financial turmoil, we extend our Monte Carlo analysis to the case

of returns generated by a GARCH(1,1) with skew-t (see Hansen, 1994) and GED distribu-

tions (see Box and Tiao, 1992). In both cases the parameters used in the simulations are

estimated from the daily S&P 500 returns over the period March 2008 to March 2012 (1000

observations).

For the GARCH(1,1) specification (18), the values of the parameters are ω̂ = 1.86×10−6,

α̂ = 0.1051 and β̂ = 0.8924 in the skew-t case and ω̂ = 2.17×10−6, α̂ = 0.1109 and β̂ = 0.8835

in the GED case. Further, for the skew-t specification, the degrees of freedom are 7.2760

and the asymmetry parameter is −0.1939. For the GED distribution, the shape parameter

equals 1.4021.
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For each sample size T ∈ {250, 500, 1000, 2500} and for each sample path, we generate

250 additional returns. Next, we compute for each sample path T out-of-sample VaR es-

timates based on a rolling window of length 250. VaR estimates are computed using four

different models: Normal, Historical Simulation (HS), Hybrid Historical Simulation (HHS,

see Boudoukh et al. 1998), and RiskMetrics (RM) with decay factor λ = 0.94. In addition

to the existing multilevel tests of Perignon and Smith (PS), and Hurlin and Tokpavi (Qm),

we evaluate the performance of the novel tests proposed in the present paper, namely the

Markov and the Pearson (Xm) tests. For both the Hurlin and Tokpavi and the Pearson test

we choose the lag length m ∈ {1, 5, 10}. We compare the above multilevel tests in the case

of α1 = 5%, α2 = 2.5% and α3 = 1%. For all tests, we use simulated critical values, based

on M = 50000 simulations, in order to avoid small sample distortions when calculating the

rejection frequencies. This is important for both the Pearson test that has a non-standard

distribution and the remaining tests that have an asymptotic chi-square distribution. Hence,

we report size-adjusted rejection frequencies.

3.2 Results

Tables 1–3 report, for each of the testing procedures, the proportion of times (rejection

frequency) a test rejects the null that the VaR model is ‘appropriate’. Since returns are

generated from a GARCH model and quantiles are estimated according to a different model

(Normal, HS, HHS and RM models), the higher the rejection frequency, the better is the

associated test.

Table 1 reports the results for the case when returns are generated according to a GARCH

model with Student-t innovations. For the Normal VaR the proposed Pearson tests based

on m = 5 and m = 10 outperform both the Perignon and Smith and Hurlin and Tokpavi
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test across all sample sizes. It is worth stating that the Pearson X1 test shows the same

properties of the Perignon and Smith test. The performance of the Markov test introduced

in the paper is something in between the Pearson and the Perignon and Smith tests, but

better than the Hurlin and Tokpavi test. The results for the Normal VaR are confirmed

by those in Panel C (HHS VaR) and Panel D (RM VaR). For the case of HS VaR (Panel

B) when m = 1 the Pearson test is better than the corresponding Q test. For m = 5 and

m = 10 the Pearson tests outperform the corresponding Q tests in small sample.

Tables 2 and 3 report the size-adjusted powers of the different test for the case when

returns are generated according to a GARCH model with Skew Student-t and with GED

innovations, respectively.

If we compare the results in Tables 2–3 with those in Table 1, we notice a substantial

increase in power mainly due to the fact that the underlying distributions (skew-t and GED)

make the misspecification in VaR modelling easier to be captured by the tests.

For the case where the Normal distribution is used for computing VaR, i.e. Panel A of

Tables 2 and 3, the Pearson tests we propose in this paper, based on m = 5 and m = 10,

outperform both the Perignon and Smith and Hurlin and Tokpavi tests across all sample

sizes. When T = 2500 all tests but the Hurlin and Tokpavi show the same performance. As

in Table 1, the results of Panels C and D (HHS and RM VaR, respectively) of both tables are

in line with those of Panel A. In Panel B, instead, the best performance is achieved by the

Q10 statistic which is marginally better for T larger than 500, while for T = 2500 all tests

have the same performance. It is worth noticing that the Pearson tests are always better in

terms of power than all the other tests when T = 250, which is the most common sample size

used in practice. Finally, from the Monte Carlo experiments we can draw useful information

for the choice of the lag length m providing guidelines to practitioners. Indeed, especially
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Table 1: Size-adjusted rejection frequencies of multilevel tests at the 5% nominal level and
vector of critical levels (1%, 2.5%, 5%). PS denotes the Perignon and Smith (2008) test, Qm,
m ∈ {1, 5, 10}, is the Hurlin and Tokpavi (2006) test, Markov is the test (14) and Xm, m ∈
{1, 5, 10}, is the Pearson test based on (15). Returns are generated according to a GARCH

model with Student-t innovations.

Panel A: Normal VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.163 0.020 0.007 0.002 0.147 0.177 0.209 0.215
T = 500 0.226 0.086 0.140 0.167 0.200 0.228 0.303 0.307
T = 1000 0.417 0.135 0.246 0.305 0.345 0.381 0.517 0.528
T = 2500 0.834 0.202 0.399 0.509 0.736 0.818 0.902 0.900

Panel B: HS VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.058 0.016 0.004 0.001 0.097 0.136 0.156 0.157
T = 500 0.025 0.083 0.151 0.181 0.090 0.132 0.154 0.142
T = 1000 0.022 0.140 0.264 0.327 0.103 0.161 0.175 0.159
T = 2500 0.032 0.210 0.423 0.537 0.145 0.240 0.284 0.244

Panel C: HHS VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.101 0.005 0.000 0.000 0.079 0.127 0.152 0.160
T = 500 0.282 0.018 0.009 0.006 0.172 0.238 0.376 0.413
T = 1000 0.740 0.031 0.017 0.011 0.526 0.632 0.816 0.846
T = 2500 0.999 0.049 0.039 0.035 0.995 0.999 1.000 1.000

Panel D: RM VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.116 0.010 0.002 0.001 0.099 0.119 0.138 0.138
T = 500 0.222 0.037 0.037 0.032 0.156 0.186 0.252 0.268
T = 1000 0.435 0.049 0.052 0.045 0.304 0.366 0.499 0.511
T = 2500 0.884 0.058 0.062 0.060 0.747 0.842 0.914 0.919
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Table 2: Size-adjusted rejection frequencies of multilevel tests at the 5% nominal level and
vector of critical levels (1%, 2.5%, 5%). PS denotes the Perignon and Smith (2008) test, Qm,
m ∈ {1, 5, 10}, is the Hurlin and Tokpavi (2006) test, Markov is the test (14) and Xm, m ∈
{1, 5, 10}, is the Pearson test based on (15). Returns are generated according to a GARCH

model with Skew Student-t innovations.

Panel A: Normal VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.550 0.047 0.041 0.029 0.532 0.499 0.559 0.563
T = 500 0.738 0.184 0.438 0.557 0.717 0.739 0.814 0.824
T = 1000 0.940 0.394 0.775 0.880 0.931 0.950 0.981 0.983
T = 2500 1.000 0.749 0.984 0.996 1.000 1.000 1.000 1.000

Panel B: HS VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.341 0.061 0.052 0.033 0.388 0.354 0.413 0.412
T = 500 0.308 0.241 0.523 0.648 0.443 0.487 0.579 0.585
T = 1000 0.327 0.447 0.816 0.909 0.563 0.654 0.783 0.787
T = 2500 0.614 0.750 0.985 0.997 0.815 0.916 0.978 0.977

Panel C: HHS VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.102 0.061 0.052 0.033 0.088 0.142 0.187 0.201
T = 500 0.241 0.241 0.523 0.648 0.164 0.236 0.374 0.393
T = 1000 0.608 0.447 0.816 0.909 0.438 0.539 0.739 0.768
T = 2500 0.991 0.750 0.985 0.997 0.967 0.986 0.996 0.997

Panel D: RM VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.300 0.009 0.002 0.000 0.296 0.364 0.482 0.499
T = 500 0.596 0.044 0.070 0.070 0.540 0.634 0.774 0.791
T = 1000 0.918 0.090 0.136 0.160 0.865 0.921 0.976 0.978
T = 2500 1.000 0.149 0.290 0.352 0.999 1.000 1.000 1.000
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Table 3: Size-adjusted rejection frequencies of multilevel tests at the 5% nominal level and
vector of critical levels (1%, 2.5%, 5%). PS denotes the Perignon and Smith (2008) test, Qm,
m ∈ {1, 5, 10}, is the Hurlin and Tokpavi (2006) test, Markov is the test (14) and Xm, m ∈
{1, 5, 10}, is the Pearson test based on (15). Returns are generated according to a GARCH

model with GED innovations.

Panel A: Normal VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.481 0.064 0.056 0.040 0.465 0.432 0.491 0.492
T = 500 0.601 0.220 0.497 0.622 0.618 0.631 0.723 0.731
T = 1000 0.823 0.429 0.801 0.899 0.844 0.870 0.940 0.946
T = 2500 0.995 0.761 0.988 0.998 0.992 0.998 1.000 1.000

Panel B: HS VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.328 0.063 0.057 0.038 0.381 0.357 0.419 0.424
T = 500 0.287 0.255 0.552 0.672 0.444 0.490 0.584 0.590
T = 1000 0.325 0.460 0.831 0.923 0.571 0.668 0.800 0.801
T = 2500 0.636 0.779 0.990 0.999 0.838 0.933 0.983 0.983

Panel C: HHS VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.115 0.007 0.001 0.000 0.104 0.169 0.233 0.247
T = 500 0.271 0.029 0.031 0.032 0.185 0.268 0.431 0.456
T = 1000 0.660 0.063 0.077 0.078 0.505 0.611 0.796 0.824
T = 2500 0.995 0.118 0.198 0.241 0.981 0.993 0.999 0.999

Panel D: RM VaR
PS Q1 Q5 Q10 Markov X1 X5 X10

T = 250 0.144 0.012 0.004 0.001 0.167 0.224 0.286 0.291
T = 500 0.239 0.066 0.098 0.109 0.242 0.322 0.430 0.438
T = 1000 0.480 0.109 0.182 0.211 0.437 0.548 0.707 0.712
T = 2500 0.919 0.169 0.333 0.413 0.830 0.931 0.973 0.974
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in Tables 2–3, we notice an increase in power moving from m = 1 to m = 5, whereas the

increase in power moving from m = 5 to m = 10 is only marginal. Thus we suggest using

m = 5 in practical applications.

4 Empirical application

In this section, we use the full set of multilevel tests for a comprehensive backtesting exercise.

The aim is to illustrate the implementation of the different tests, and to show how they can

deliver contrasting conclusions.

We use daily returns on 15 MSCI world indices traded as iShares on the American

Exchange for the following countries: US, Mexico, Canada, the UK, the Switzerland, Sweden,

Spain, Italy, Germany, France, Australia, Singapore, Japan, Hong Kong and Malaysia. The

exchange traded funds (ETF) do not suffer from problems related to non-synchronicity and

different closing times, unlike the raw indices which trade at different times around the world.

The data covers the period December 2000 to November 2011 (2750 observations).

4.1 Univariate models

First, we consider, in an out-of-sample exercise, the following univariate VaR models: HS,

RM, GARCH and GARCH-t (both with and without an AR(1) model for the mean), HHS,

Filtered Historical Simulation (FHS), and GJR and GJR-t (both with and without an AR(1)

model for the mean). The order of all the GARCH and GJR models is (1,1). For all the

VaR models, with the exception of HS, we use a rolling window of 250 observations, for

both parameters estimation and VaR calculation. Consequently, we end up with 2500 VaR

estimates for the period December 2001 to November 2011. In the HS case, instead, we use
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an expanding window with the first one comprising the first 250 observations, obtaining the

same number of VaR estimates and relative to the same period as the alternative methods.

In Table 4, we report some representative results for a limited number of countries, i.e.

Australia, Germany, USA, and Singapore 4. The table reports the p-values for the multilevel

tests based on coverage probabilities 5%, 2.5%, and 1%. For Australia, the Hurlin and

Tokpavi tests do not reject the null in all cases but HS, GARCH and GARCH-t in contrast

to the finding from the Pearson tests that systematically reject the null. For Singapore,

there is evidence of non-contradiction between tests for the case of AR(1)-GARCH-t and

AR(1)-GJR-t only; in all the other cases the Q1, Q5 and Q10 accept the null whereas all

other tests lead to a rejection. The same applies for USA, where however the two models

dominate but in a weaker form than the Singapore case. In addition for USA, the Q1 test

systematically accepts the null with the only exception of the HHS and GJR models. For

Germany, once again all tests do not reject the null only in the AR(1)-GJR-t case. The

HHS model is strongly rejected by all tests with the exeption of the Hurlin and Tokpavi

tests. With respect to the results we do not report in the paper, we mention that GARCH-

t models perform better than GARCH models with normal innovations and the inclusion

of the mean component (AR(1)-GARCH, AR(1)-GARCH-t, AR(1)-GJR and AR(1)-GJR-t

models) generally improves upon GARCH models without the mean.

4.2 Multivariate models

Next, we estimate the VaR measures in a Multivariate GARCH (MGARCH) context for an

equally weighted portfolio comprising the 15 securities. The motivation for including such

an analysis is that modeling the dependence among returns should improve VaR forecasting.

4The full set of results is available from the authors upon request.
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Table 4: Backtesting Results. The table reports the calculated p-values of the different multilevel tests with vector
of probability levels (1%, 2.5%, 5%) under different VaR models.

AR(1)- AR(1)- AR(1)- AR(1)-
HS RM GARCH GARCH-t GARCH GARCH-t HHS FHS GJR GJR-t GJR GJR-t

PS 0.188 0.002 0.000 0.000 0.000 0.098 0.000 0.276 0.000 0.000 0.000 0.021
Q1 0.004 0.039 0.032 0.035 0.421 0.256 0.707 0.287 0.361 0.071 0.304 0.646
Q5 0.000 0.041 0.015 0.005 0.143 0.122 0.489 0.073 0.713 0.167 0.488 0.628
Q10 0.000 0.069 0.005 0.005 0.053 0.035 0.317 0.011 0.766 0.270 0.578 0.432

Australia -EWA Markov 0.004 0.005 0.000 0.000 0.000 0.096 0.000 0.421 0.000 0.000 0.000 0.077
X1 0.001 0.003 0.000 0.000 0.000 0.124 0.002 0.162 0.000 0.000 0.000 0.040
X5 0.000 0.001 0.000 0.000 0.000 0.035 0.000 0.054 0.000 0.000 0.000 0.009
X10 0.000 0.001 0.000 0.000 0.000 0.029 0.000 0.039 0.000 0.000 0.000 0.006

PS 0.096 0.070 0.420 0.400 0.114 0.955 0.000 0.000 0.019 0.064 0.008 0.190
Q1 0.001 0.038 0.087 0.079 0.181 0.083 0.422 0.013 0.005 0.011 0.152 0.256
Q5 0.000 0.002 0.004 0.001 0.002 0.000 0.484 0.000 0.007 0.023 0.293 0.474
Q10 0.000 0.002 0.042 0.007 0.010 0.002 0.606 0.000 0.053 0.135 0.727 0.801

Germany -EWG Markov 0.000 0.019 0.153 0.138 0.090 0.228 0.000 0.000 0.001 0.004 0.008 0.113
X1 0.000 0.004 0.150 0.140 0.077 0.305 0.000 0.000 0.004 0.013 0.021 0.222
X5 0.000 0.002 0.064 0.034 0.011 0.072 0.000 0.000 0.006 0.026 0.009 0.219
X10 0.000 0.004 0.192 0.120 0.035 0.281 0.000 0.000 0.013 0.052 0.014 0.274

PS 0.097 0.012 0.001 0.001 0.004 0.899 0.000 0.030 0.000 0.000 0.001 0.807
Q1 0.243 0.688 0.731 0.725 0.676 0.531 0.381 0.643 0.825 0.813 0.638 0.699
Q5 0.000 0.289 0.469 0.425 0.324 0.070 0.413 0.578 0.937 0.935 0.986 0.865
Q10 0.000 0.335 0.675 0.569 0.326 0.059 0.453 0.106 0.949 0.924 0.761 0.709

Singapore -EWS Markov 0.065 0.039 0.006 0.008 0.016 0.322 0.000 0.052 0.003 0.004 0.003 0.537
X1 0.104 0.051 0.012 0.011 0.029 0.831 0.000 0.076 0.005 0.006 0.007 0.851
X5 0.000 0.005 0.002 0.002 0.006 0.396 0.000 0.017 0.001 0.002 0.002 0.896
X10 0.000 0.005 0.002 0.002 0.004 0.498 0.000 0.006 0.001 0.001 0.001 0.771

PS 0.033 0.001 0.016 0.056 0.027 0.288 0.000 0.003 0.000 0.001 0.001 0.016
Q1 0.003 0.153 0.257 0.074 0.411 0.901 0.037 0.288 0.205 0.368 0.913 0.856
Q5 0.000 0.075 0.041 0.019 0.069 0.149 0.047 0.026 0.479 0.442 0.774 0.852
Q10 0.000 0.020 0.012 0.010 0.014 0.060 0.104 0.004 0.708 0.571 0.775 0.689

USA -SPY Markov 0.000 0.001 0.057 0.032 0.069 0.652 0.000 0.031 0.000 0.003 0.006 0.078
X1 0.000 0.001 0.016 0.021 0.042 0.506 0.000 0.004 0.001 0.003 0.003 0.052
X5 0.000 0.000 0.002 0.005 0.002 0.077 0.000 0.000 0.000 0.000 0.000 0.014
X10 0.000 0.000 0.001 0.004 0.001 0.061 0.000 0.000 0.000 0.000 0.000 0.008
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In all cases we estimate an Asymmetric Dynamic Conditional Correlation (ADCC) model

under the multivariate normal assumption (see Cappiello et al., 2006).

In Panel A of Table 5, we report the results for the equally-weighted portfolio of the

15 countries using the univariate VaR models of Tables 4. There is evidence that the PS

test favors the AR(1)-GARCH-t model while all other tests confirm the dominance of the

AR(1)-GJR-t model. The HS model is consistently rejected by all the test employed. The

RM and FHS models are rejected by all the testing procedures with the exception of the

Markov and Hurlin and Tokpavi tests. Finally, the HHS model is always rejected with the

exception of the Markov, X1 and Hurlin and Tokpavi tests. Again, the Q1 test does not

reject any model.

Panel B of Table 5 reports the results for Gaussian MGARCH models. We consider four

different models for the first stage, i.e. GJR with normal (GJR-N) or Student-t innovations

(GJR-t) with and without an AR(1) process for the mean. In all the four cases we fit

a GJR(1,1) model in the first stage and an ADCC(1,1,1) in the second stage. Contrary

to the univariate results, the inclusion of the mean makes the results worse. The GJR-t

model dominates all the other models because it is only rejected by the X10 test at the 5%

confidence level, but not at the the 1% confidence level. Contrary to all the other testing

procedures, the Hurlin and Tokpavi tests are in favour of all the four multivariate compared

in the exercise.

5 Concluding remarks

In this paper, we proposed novel independence and conditional coverage tests in a multilevel

setup, able to overcome the reduced power of the standard unilevel testing procedures in
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Table 5: Backtesting Results for an equally weighted portfolio of the 15 securities. The table reports the calculated
p-values of the different multilevel tests with vector of probability levels (1%, 2.5%, 5%) under different VaR models.

Panel A: Univariate Models

AR(1)- AR(1)- AR(1)- AR(1)-
HS RM GARCH GARCH-t GARCH GARCH-t HHS FHS GJR GJR-t GJR GJR-t

PS 0.003 0.015 0.015 0.140 0.014 0.543 0.026 0.016 0.002 0.039 0.002 0.249
Q1 0.015 0.626 0.956 0.389 0.870 0.093 0.785 0.346 0.811 0.799 0.706 0.713
Q5 0.000 0.392 0.167 0.229 0.329 0.030 0.212 0.164 0.642 0.749 0.918 0.878
Q10 0.000 0.217 0.006 0.020 0.034 0.000 0.164 0.071 0.296 0.402 0.613 0.550

Markov 0.000 0.110 0.209 0.284 0.130 0.282 0.128 0.061 0.023 0.198 0.010 0.332
X1 0.000 0.044 0.083 0.089 0.063 0.159 0.107 0.021 0.010 0.108 0.007 0.347
X5 0.000 0.005 0.003 0.040 0.003 0.149 0.023 0.003 0.001 0.039 0.002 0.261
X10 0.000 0.003 0.001 0.021 0.002 0.071 0.026 0.003 0.001 0.023 0.001 0.145

Panel B: Gaussian MGARCH Models

GJR N-ADCC GJR t-ADCC AR-GJR N-ADCC AR-GJR t-ADCC

PS 0.024 0.186 0.012 0.038
Q1 0.834 0.746 0.491 0.632
Q5 0.524 0.165 0.451 0.650
Q10 0.119 0.048 0.111 0.039

Markov 0.185 0.490 0.021 0.109
X1 0.083 0.310 0.026 0.079
X5 0.018 0.058 0.004 0.023
X10 0.008 0.044 0.002 0.005
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presence of small samples. In risk management analysis, it is practice to estimate quantiles

for two or more different probability levels. To this purpose, using a multilevel test is

intuitively more efficient, and statistically more powerful, than to use separate unilevel tests.

Moreover, multilevel tests are particularly useful because they make the best use of the

limited amount of information regarding the return distribution made available by banks or

financial institutions in general to assess their risk exposure.

The first test we proposed is a generalization to the multilevel case of the Markov test

of Christoffersen (1998), while the second test is a Pearson-type of test based on the joint

distribution of the total number of VaR violations in a period and its lags. In an extensive

Monte Carlo exercise, where returns were generated under alternative GARCH models with

skewed and leptokurtic innovations (i.e. Student-t, skew-t and GED innovations), and where

VaR were estimated using models commonly used in practice (i.e. Normal, HS, HHS and

RM), the multilevel tests we proposed showed higher power than both the multilevel uncon-

ditional test of Perignon and Smith (2008) and the multilevel conditional tests of Hurlin and

Tokpavi (2006). Via an empirical application using daily returns on 15 MSCI world indices,

we implemented all available multilevel tests and we showed that in most cases different tests

deliver different conclusions.

Appendix: Maximum likelihood estimators of πi and πi,j

Let us write the log-likelihood function (7) as

ℓ(π) =
K∑

i=0

Ti ln(πi) = Tj ln(πj) +
∑

i 6=j

Ti ln(πi) = Tj ln

(
1−

∑

h 6=j

πh

)
+
∑

i 6=j

Ti ln(πi),

for some j = 0, . . . , K.
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Setting the derivative w.r.t. πi, i 6= j, equal to zero yields

Tjπi = Ti

(
1−

∑

h 6=j

πh

)
.

Since the quantity in brackets is equal to πj, the first order conditions are

Tjπi = Tiπj, i = 0, . . . , K, i 6= j.

Summing both sides for every i 6= j yields

Tj

∑

i 6=j

πi = πj

∑

i 6=j

Ti =⇒ Tj(1− πj) = πj(T − Tj) =⇒ π̂j =
Tj

T
.

Similarly, let us write (11) as

ℓ(Π) =
K∑

i=0

[
Ti,j ln(πi,j) +

∑

h 6=j

Ti,h ln(πi,h)

]
=

K∑

i=0

[
Ti,j ln

(
1−

∑

h 6=j

πi,h

)
+
∑

h 6=j

Ti,h ln(πi,h)

]
.

Setting the derivative w.r.t. πi,l, i = 0, . . . , K, l 6= j, equal to zero yields

Ti,jπi,l = Ti,l

(
1−

∑

h 6=j

πi,h

)
= Ti,lπi,j,

since 1−
∑

h 6=j πi,h = πi,j.

Summing over l = 0, . . . , K, l 6= j yields

Ti,j

∑

l 6=j

πi,l = πi,j

∑

l 6=j

Ti,l =⇒ Ti,j(1− πi,j) = πi,j(Ti − Ti,j) =⇒ π̂i,j =
Ti,j

Ti

.
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