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Abstract: We propose affine Toda field theories related to the non-crystallographic

Coxeter groups H2, H3 and H4. The classical mass spectrum, the classical three-point

couplings and the one-loop corrections to the mass renormalisation are determined. The

construction is carried out by means of a reduction procedure from crystallographic to

non-crystallographic Coxeter groups. The embedding structure explains for various affine

Toda field theories that their particles can be organised in pairs, such that their relative

masses differ by the golden ratio.

1. Introduction

The Ising model is generally considered as the prime example of integrable models. When

viewed in the continuous limit as a c = 1/2 conformal field theory [1], it is a well known fact

that it can be realized as an E
(1)
8 ⊗ E

(1)
8 /E

(2)
8 -coset model [2]. Even when the conformal

symmetry is broken, by perturbing the theory with a primary field of scaling dimension

(1/16, 1/16) [3], the E8 structure survives in form of a (minimal) E8-affine Toda field theory

(ATFT) [4, 5]. It will be one of the results in this paper to show that there is an even more

fundamental structure than E8 underlying this particular model, the non-crystallographic

Coxeter group H4. We draw here on the observation made first by Sherbak in 1988 [6],

namely that H4 can be embedded into E8, see also [7, 8] for further developments of these

mathematical structures. Loosely speaking, one may regard the E8-theory as two copies

of H4-theories. We get a first glimpse of this structure from a more physical point of view

when we bring the mass spectrum of minimal E8-affine Toda field theory found originally

in [3] into the form

m1 = 1, m2 = 2cos π
30 , m3 =

√

sin 11π
30 / sin π

30 , m4 = 2φ cos 7π
30 ,

m5 = φm1, m6 = φm2, m7 = φm3, m8 = φm4.
(1.1)

We have set here the overall mass scale to one. Remarkably, these mass ratios are the

same in the classical as well as in the quantum theory, as all masses renormalize with an

http://arXiv.org/abs/hep-th/0506226v2
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overall factor, see [9, 10, 11] and references therein. We observe here that there are four

“fundamental” masses present in the theory, whereas the other ones can be obtained simply

by a multiplication with the golden ratio

φ =
1

2
(1 +

√
5) = φ2 − 1 . (1.2)

It will turn out that each of the sets (m1,m2,m3,m4) and (m5,m6,m7,m8) can be associ-

ated with an H4-ATFT.

The other popular integrable quantum field theory is the sine-Gordon model, see e.g.

[12, 13] and references therein. It is a well known fact [14, 15] that once the coupling

constant ν is taken to be 1/ν = n, with n being an integer, the backscattering amplitudes

vanish and the theory reduces to a minimal Dn+1-ATFT. In particular for n = 5 we find

a similar pattern for the mass ratios as discussed above. The D6-ATFT mass spectrum

reads up to an overall mass scale

m1 = φ−1, m2 =
√

1 + φ−2, m3 = 1,

m4 = φm1, m5 = φm2, m6 = φm3.
(1.3)

It this case the sets (m1,m2,m3) and (m4,m5,m6) can be associated with an H3-ATFT.

The above mentioned structure can be explained simply by the fact that H4 can be

embedded into E8 and H3 into D6, such that the non-crystallographic structure is “visible”

inside the theories related to crystallographic Coxeter groups.

Besides having a “non-crystallographic pattern” inside theories related to crystallo-

graphic Coxeter groups, it is interesting to ask the question whether it is possible to

construct theories purely based on these latter groups. In particular, H3 being a three-

dimensional symmetry group of the icosahedron, a regular solid with 20 triangle faces, finds

a natural application in physical [16, 17, 18], chemical [19, 20] an even biological systems

[21, 22, 23, 24, 25]. In the context of integrable (solvable) models, Calogero-Sutherland

models have been formulated based also on H3 [26, 27] and it should be possible to ex-

tend these investigations to other non-crystallographic Coxeter groups. However, so far no

ATFT for such type of group has been considered, the main reason being that unlike for

crystallographic ones, in this case there is no Lie algebra at disposal, which is vital in that

context. This deficiency can be overcome by exploiting the embedding structure and reduce

the theories associated to crystallographic Coxeter groups to new types of theories related

entirely to non-crystallographic ones. This is somewhat similar in spirit to the folding pro-

cedure carried out by Olive and Turok [28], who constructed ATFT for non-simply laced

Lie algebras from those related to simply laced algebras, exploiting the embedding of the

former into the latter. However, in comparison, there is one crucial difference. Whereas in

the folding scenario [28] the reduced models are identical to a formulation purely in terms

of non-simply laced algebras, the models we obtain here vitally rely in their construction on

the embedding and can not be formulated directly in terms of non-crystallographic Coxeter

groups on the level of the Lagrangian.

Our manuscript is organized as follows: In section 2 we review and develop the math-

ematics associated to the embedding of non-crystallographic into crystallographic Coxeter
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groups. In section 3 we apply these notions to affine Toda field theory and construct in

particular their classical mass spectra and fusing structures. In addition we start the de-

velopment of a quantum field theory by computing the mass renormalisations. We state

our conclusions in section 4. In the appendix we present explicit computations of various

orbits of coloured simple roots related to non-crystallographic and crystallographic Coxeter

groups and exhibit how they can be embedded into one another.

2. Embedding of non-crystallographic into crystallographic Coxeter groups

Coxeter graphs are finite graphs, whose edges are labelled by some integers mij joining

the vertices i and j [29]. To each of these graphs one can associate a finite reflection

group. When the crystallographic condition is satisfied, that is mij for i 6= j takes only the

values 2, 3, 4 or 6, these groups are Weyl groups. In contrast to the non-crystallographic

groups, the crystallographic ones can be related to Lie algebras and Lie groups. Lie theory

is exploited largely in the context of integrable models, which is one of the main reasons

why crystallographic groups enjoy wider applications. Here we use the embedding of non-

crystallographic groups into crystallographic ones, such that we can still exploit the Lie

structure related to the larger groups.

2.1 Root systems

In order to assemble the necessary mathematical notions, we start by introducing a map

ω from a root system ∆c which is invariant under the action of a crystallographic Coxeter

group W of rank ℓ into the union of two sets ∆̃nc related to a non-crystallographic group

W̃ of rank ℓ̃ = ℓ/2

ω : ∆c → ∆̃nc ∪ φ∆̃nc . (2.1)

Throughout this manuscript we adopt the notation that quantities related to crystallo-

graphic and non-crystallographic groups are specified with the same symbol, distinguished

by an additional tilde, e.g. α ∈ ∆c = ∆ and α̃ ∈ ∆̃nc = ∆̃. Introducing a special labelling

for the vertices on the Coxeter graphs, or equivalently the simple roots, we can always

realize this map as

αi 7→ ω(αi) =

{

α̃i for 1 ≤ i ≤ ℓ̃ = ℓ/2

φα̃
i−ℓ̃

for ℓ̃ < i ≤ ℓ.
(2.2)

Our labelling allows for a generic treatment of the embedding and differs for instance from

the one used in [6, 7, 8]. A further important property guaranteed by our conventions

is αi · αi+ℓ̃ = 0. Both types of root systems ∆ and ∆̃ are equipped with a symmetric

bilinear form or inner product. In [7] Moody and Patera noticed the remarkable fact that

the map ω is an isometric isomorphism, such that we may compute inner products in the

root system ∆ from inner products in ∆̃

α · β = R(ω(α) · ω(β)). (2.3)

– 3 –
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Here the map R, called a rational form relative to φ, extracts from a number of the form1

a + φb with a, b ∈ Q the rational part a

R(a + φb) = a. (2.4)

We normalize all our roots to have length 2, such that α2 = α̃2 = 2 for α ∈ ∆ and α̃ ∈ ∆̃.

According to (2.3) we may therefore compute the Cartan matrix related to ∆ entirely from

inner products in ∆̃

Kij =
2αi · αj

αj · αj
= R(ω(αi) · ω(αj)) = R(φti+tj α̃

i−ti ℓ̃
· α̃

j−tj ℓ̃
). (2.5)

where ti = 0 for 1 ≤ i ≤ ℓ̃ and ti = 1 for ℓ̃ < i ≤ ℓ. For our purposes it will be most

important to achieve also the opposite, which can not be found in [7], namely to compute

inner products in ∆̃ from those in ∆. For this aim we introduce here the map

ω̃ : ∆̃ → ∆ ⊕ φ∆, (2.6)

which acts on the simple roots in ∆̃ as

α̃i 7→ ω̃(α̃i) = (αi + φαi+ℓ̃) for 1 ≤ i ≤ ℓ̃ . (2.7)

Note that ω̃(α̃i)
2 = 2 + 2φ2, such that ω̃ is not an isometry. Instead, we find that inner

products in ∆̃ are related to inner products in ∆ by means of

ω(αi) · α̃j = αi · ω̃(α̃j) for 1 ≤ j ≤ ℓ̃ , 1 ≤ i ≤ ℓ . (2.8)

Expanding (2.8) yields immediately a relation between the Cartan matrices of ∆ and ∆̃

Kij + φK
i(j+ℓ̃) =

{

K̃ij for 1 ≤ i ≤ ℓ̃

φK̃(i−ℓ̃)j for ℓ̃ < i ≤ ℓ.
(2.9)

Noting that for the Coxeter groups we consider the Cartan matrices are symmetric, such

that the relations (2.9) also hold with i ↔ j. As the right hand side involves only one inner

product in ∆̃, this formula achieves our objective and we may now express inner products

in ∆̃ in terms of those in ∆. Recalling that simple roots and fundamental weights λi are

related as αi =
∑

j Kijλj and α̃i =
∑

j K̃ij λ̃j , it follows directly that (2.8) also holds when

we replace simple roots by fundamental weights. As K−1
ij = λi · λj, this means that (2.9)

also holds for the inverse matrices

K−1
ij + φK−1

i(j+ℓ̃)
=

{

K̃−1
ij for 1 ≤ i ≤ ℓ̃

φK̃−1
(i−ℓ̃)j

for ℓ̃ < i ≤ ℓ
(2.10)

1Note that higher powers of φ can be reduced to that form by a repeated use of (1.2), e.g. φ2 = 1 + φ,

φ3 = 1+2φ, φ4 = 2+3φ, φ5 = 3+5φ,. . ., φn = fn−1 +φfn where fn is the n-th Fibonacci number obeying

the recursive relation fn+1 = fn+ fn−1.
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and (2.2), (2.7) for αi → λi, α̃i → λ̃i. With regard to our application it will be particularly

important to relate the eigensystems K and K̃. Abbreviating κij = Kij and κ̂ij = K
i(j+ℓ̃)

for 1 ≤ i, j ≤ ℓ̃ we can block-decompose the Cartan matrix K further and verify that

U−1KU = U−1

(

κ κ̂

κ̂ κ + κ̂

)

U =

(

K̃(φ) 0

0 K̃(−φ−1)

)

with U =

(

I I

φI −I/φ

)

, (2.11)

where I is the ℓ̃ × ℓ̃ unit matrix. This means of course that the ℓ eigenvalues of K, which

are known to be of the form en = 4 sin2(πsn/2h) with h being the Coxeter number (see

below for more details). The sn label the ℓ exponents of W and are identical to the union

of the ℓ̃ eigenvalues of K̃(φ) and K̃(−φ−1)

S = {s1, s2, . . . , sℓ} = S̃(φ) ∪ S̃ ′(−φ−1). (2.12)

The eigenvalues are invariant under the change φ → −φ. Labelling the ℓ eigenvectors of

K by yn, such that Kyn = enyn, we can construct the eigenvectors ỹs̃(φ) and ỹs̃′(−φ−1) of

K̃(φ) and K̃(−φ−1), respectively, from (2.11) as

U−1ys = ỹs̃(φ) ⊗ ỹs̃′(−φ−1). (2.13)

Conversely, we can construct the eigenvectors of K from the knowledge of the eigenvectors

of K̃(φ) and K̃(−φ−1)

ys̃ = ỹs̃(φ) ⊗ φỹs̃(φ) and ys̃′ = ỹs̃′(−φ−1) ⊗ (−φ−1)ỹs̃′(−φ−1) . (2.14)

The first identity follows by exploiting (2.9)

Kys̃ = K

(

ỹs̃(φ)

φỹs̃(φ)

)

=

(

κ κ̂

κ̂ κ + κ̂

)

(

ỹs̃(φ)

φỹs̃(φ)

)

=

(

K̃(φ) 0

0 K̃(φ)

)

(

ỹs̃(φ)

φỹs̃(φ)

)

. (2.15)

The second relation in (2.14) is obtained by the same argumentation with φ → −φ−1.

These facts will not only be crucial to formulate new types of ATFT, but also to explain

patterns in well studied models. The knowledge of the distribution of the exponents with

respect to the embedding is important as they grade the conserved charges. The classical

masses are known [10, 30, 31] to organise as components of the Perron-Frobenius vector

y1, such that (2.14) explains the aforementioned mass patterns (1.1) and (1.3).

2.2 Coxeter groups

Having related the root systems ∆̃ and ∆, let us see next how to relate the corresponding

Coxeter groups W and W̃, which leave them invariant. We recall [32, 29] that Coxeter

groups are generated by reflections on the hyperplane through the origin orthogonal to

simple roots αi

σi(x) = x − 2
x · αi

αi · αi

αi for 1 ≤ i ≤ ℓ, x ∈ Rℓ. (2.16)

We can then think of the Coxeter group W as the set of all words in the generators {σi}
subject to the relations

(σiσj)
mij = 1, 1 ≤ i, j ≤ ℓ, (2.17)

– 5 –
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where the mij can take the values 1, 2, 3, 4, 5 or 6. Here we focus on the Coxeter groups

for which the Cartan matrix is symmetric, in which case mij = π arccos−1(−Kij/2) are

the integers labelling the edges of the Coxeter graph mentioned at the beginning of this

section. W̃ is constructed analogously when replacing K by K̃(φ). Note that when we use

instead of K̃(φ) the matrix K̃(−φ−1), which naturally emerges through (2.11), this will

lead to the same Coxeter relations.

From a group theoretical point of view we can identify σ̃i →֒ σiσi+ℓ̃
. With the help of

the map ω we can relate the reflections σ̃i building up W̃ to those constituting W as

σ̃iω = ωσiσi+ℓ̃
for 1 ≤ i ≤ ℓ̃ . (2.18)

This is seen easily by acting on a simple root in ∆

ωσiσi+ℓ̃
(αj) = ω

[

αj − (αj · αi+ℓ̃
)α

i+ℓ̃
− (αj · αi)αi

]

(2.19)

= ω(αj) − φ(αj · αi+ℓ̃
)α̃i − (αj · αi)α̃i, (2.20)

where in (2.19) we used twice (2.16) and the fact that in our labelling we always have

αi ·αi+ℓ̃
= 0. Then (2.20) simply follows upon using (2.2). On the other hand using (2.16)

for W̃ and (2.8) thereafter, we obtain

σ̃iω(αj) = ω(αj) − (ω(αj) · α̃i)α̃i (2.21)

= ω(αj) − φ(αj · αi+ℓ̃
)α̃i − (αj · αi)α̃i. (2.22)

In [7] a similar identification has been made for the specific case of the embedding H4 →֒ E8,

which relies on the property of an inflation map which mimics the action of ω entirely inside

∆. Here we avoid the introduction of such a quantity.

Furthermore, for the second map ω̃ we have the supplementary identity

ω̃σ̃i = σiσi+ℓ̃
ω̃ for 1 ≤ i ≤ ℓ̃ , (2.23)

which follows from a similar argument as (2.18) upon using (2.16), (2.7) and (2.9). As we

saw already in (2.8), we note here that ω̃ plays the role of the “inverse” of ω. There is no

analogue to the inflation map in this case. More precisely we find

ωω̃ = (1 + φ2) I and ω̃ω =

(

I φI

φI φ2I

)

, (2.24)

where I is the ℓ̃ × ℓ̃ unit matrix already encountered in (2.11).

For the application we have in mind, it is important to note that the entire root

system ∆ can be separated into orbits Ωi, such that ∆ =
⋃ℓ

i=1 Ωi, each containing h roots.

Here h is the order of the Coxeter element σ, i.e. the Coxeter number already introduced

after (2.11), which is a product of ℓ simple reflections with the property σh = 1. As the

reflections do not commute in general, such that Coxeter elements only form conjugacy

classes, we have to specify our conventions. For this purpose we attach values ci = ±1

to the vertices i of the Coxeter graph, in such a way that no two vertices related to the
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same value are linked together. The vertices then separate into two disjoint sets V± and

the Coxeter element σ =
∏

i∈V−

σi

∏

i∈V+
σi is uniquely defined. Introducing “coloured”

simple roots as γi = ciαi, each orbit Ωi(Ω̃i) is then generated by h(h̃) successive actions of

σ(σ̃) on γi(γ̃i) [33, 34]. Since we know how to relate the simple reflections of W and W̃ by

means of (2.18) and (2.23), it is obvious that the Coxeter elements are intertwined as

σ̃ω = ωσ and ω̃σ̃ = σω̃. (2.25)

Note further that

c̃i = ci = ci+ℓ̃. (2.26)

which is important for (2.25) to work, as it guarantees that (2.18) is not an obstacle for

the above mentioned separation of the product into different colours. We then find that

ω(Ωi) =

{

Ω̃i for 1 ≤ i ≤ ℓ̃ = ℓ/2

φΩ̃i for ℓ̃ < i ≤ ℓ.
(2.27)

Thus we can realize the map (2.1) orbit by orbit.

After this generic preliminaries let us discuss in detail the concrete examples of the

embeddings H2 →֒ A4, H3 →֒ D6 and H4 →֒ E8.

2.3 The embedding H2 →֒ A4

We start with the most simple example, that is the embedding of H2 (also referred to as

I(5), see e.g. [29]) into A4. First of all we have to fix our conventions for naming the simple

roots, which we do by means of the following Coxeter graph (where we adopt the common

rule [32, 29] that the label mij = 3 corresponds to one lace)

α2α3α4α1
vvv v ω−→

α̃2φα̃1φα̃2α̃1
vvv v

These conventions guarantee that we can realize the map ω as defined in (2.2), which is

also indicated in the above diagrams. Accordingly, the Cartan matrix of A4, as defined in

general in (2.5), reads

K =











2 0 0 −1

0 2 −1 0

0 −1 2 −1

−1 0 −1 2











= R

(

K̃ φK̃

φK̃ φ2K̃

)

, (2.28)

where the Cartan matrix of H2 is

K̃ =

(

2 −φ

−φ 2

)

. (2.29)

We may read off relation (2.9) directly by comparing (2.28) with (2.29). Furthermore,

we note from the second relation in (2.28) that the identity (2.5) holds by reducing the
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higher powers of φ as indicated above. The Coxeter numbers are h = h̃ = 5 and the set of

exponents separate according to (2.12) into

{1, 2, 3, 4} = {1, 4} ∪ {2, 3}. (2.30)

Let us now see in detail how ω acts on the orbits Ωi and how the map (2.27) is realized. We

choose σ = σ1σ3σ2σ4 and σ̃ = σ̃1σ̃2 for the Coxeter element of A4 and H2, respectively. The

corresponding orbits Ωi and Ω̃i are computed by successive actions of σ and σ̃, respectively,

on the simple roots. One realizes that the map ω relates them indeed as specified in (2.27).

Indicating in the first column the elements σp (σ̃p) for 1 ≤ p ≤ h = h̃ with which we act

on the roots reported in the second row, we find for instance

Ω1 ω(Ω1) = Ω̃1 Ω3 ω(Ω3) = φΩ̃1

σ0, σ̃0 α1 α̃1 α3 φα̃1

σ1, σ̃1 α3 + α4 φ(α̃1 + α̃2) α1 + α2 + α3 + α4 φ2(α̃1 + α̃2)

σ2, σ̃2 α2 α̃2 α4 φα̃2

σ3, σ̃3 −α2 − α3 −φα̃1 − α̃2 −α1 − α3 − α4 −φ2α̃1 − φα̃2

σ4, σ̃4 −α1 − α4 −α̃1 − φα̃2 −α2 − α3 − α4 −φα̃1 − φ2α̃2

σ5, σ̃5 α1 α̃1 α3 φα̃1

In order to establish the last identification ω(Ω3) = φΩ̃1 we simply need to make use of

relation (1.2). Furthermore, we obtain for the remaining orbits

Ω2 ω(Ω2) = Ω̃2 Ω4 ω(Ω4) = φΩ̃2

σ0, σ̃0 −α2 −α̃2 −α4 −φα̃2

σ1, σ̃1 α2 + α3 φα̃1 + α̃2 α1 + α3 + α4 φ2α̃1 + φα̃2

σ2, σ̃2 α1 + α4 α̃1 + φα̃2 α2 + α3 + α4 φα̃1 + φ2α̃2

σ3, σ̃3 −α1 −α̃1 −α3 −φα̃1

σ4, σ̃4 −α3 − α4 −φ(α̃1 + α̃2) −α1 − α2 − α3 − α4 −φ2(α̃1 + α̃2)

σ5, σ̃5 −α2 −α̃2 −α4 −φα̃2

The identification ω(Ω4) = φΩ̃2 follows upon using (1.2). Having established how the root

system ∆ can be mapped into ∆̃ ∪ φ∆̃ orbit by orbit, we want to see next how W relates

to W̃. In principle we have to check all |W̃| relations in (2.17). However, it suffices to

establish the identification (2.18) for the generating relations of W̃. It is known that H2

can be generated entirely from σ̃2
i = 1 for i = 1, 2, 3 together with

(σ̃1σ̃2)
5 = 1, (2.31)

which follows directly from the previous tables, since σ = σ̃1σ̃2. In A4 this corresponds to

(σ1σ3σ2σ4)
5 = 1 . (2.32)

The remaining relations are trivially satisfied. We know that by definition σ2
i = 1 and

therefore this also holds when squaring the product of the embedding on the right hand

side of (2.18) (σiσi+ℓ̃
)2 = σ2

i σ
2
i+ℓ̃

= 1. We used here the last equality in (2.26), such that

σi and σ
i+ℓ̃

commute.
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2.4 The embedding H3 →֒ D6

In this case we fix our conventions as

α3

α4

α5

α6α2α1

@
@

�
�

v

v

vvv v ω−→

α̃3

φα̃1

φα̃2

φα̃3α̃2α̃1

@
@

�
�

v

v

vvv v

The Cartan matrix (2.5) of D6 then reads

K =



















2 −1 0 0 0 0

−1 2 0 0 0 −1

0 0 2 0 −1 0

0 0 0 2 −1 0

0 0 −1 −1 2 −1

0 −1 0 0 −1 2



















= R

(

K̃ φK̃

φK̃ φ2K̃

)

, (2.33)

where we also exhibit relation (2.5). Noting further that the Cartan matrix of H3 is

K̃ =







2 −1 0

−1 2 −φ

0 −φ 2






, (2.34)

the relation (2.9) is read off directly by comparing (2.33) with (2.34). The Coxeter numbers

are h = h̃ = 10 and the set of exponents separate according to (2.12) into

{1, 3, 5, 5, 7, 9} = {1, 5, 9} ∪ {3, 5, 7}. (2.35)

Let us now see how ω acts on the orbits Ωi and how the map (2.27) is realized. We choose

σ = σ1σ4σ3σ6σ2σ5 and σ̃ = σ̃1σ̃3σ̃2 for the Coxeter element of D6 and H3, respectively. The

corresponding orbits Ωi and Ω̃i are computed by successive actions of σ and σ̃, respectively,

on the simple roots. One realizes that the map ω relates them indeed as specified in (2.27).

See appendix A for the explicit computation of the orbits.

Once more we may check how the root system ∆ can be mapped into ∆̃∪φ∆̃ orbit by

orbit. First we relate W to W̃ and verify (2.18) for the generating relations of W̃, which

for H3 are known to be σ̃2
i = σ̃2

i+ℓ̃
= 1 for i = 1, 2, 3 together with

(σ̃2σ̃3)
5 = (σ̃1σ̃2)

3 = (σ̃1σ̃3)
2 = 1 . (2.36)

We verify that (2.36) corresponds to

(σ2σ5σ3σ6)
5 = (σ1σ4σ2σ5)

3 = (σ1σ4σ3σ6)
2 = 1 . (2.37)

By the same reasoning as in the H2-case it also follows that (σiσi+ℓ̃
)2 = 1.

– 9 –



Affine Toda field theories related to non-crystallographic Coxeter groups

2.5 The embedding H4 →֒ E8

Also in this case we first fix our conventions for naming the simple roots in order to

guarantee that we can realize the map ω as defined in (2.2). Here we label according to

the Coxeter graph

α1α2α3α8α7

α4

α6α5

v

v v v v vvv
ω−→

α̃1α̃2α̃3φα̃4φα̃3

α̃4

φα̃2φα̃1

v

v v v v vvv

The corresponding Cartan matrix of E8 together with its construction from inner products

in ∆̃ in agreement with (2.5) is

K =





























2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 0 0 0 0 −1

0 0 0 2 0 0 −1 0

0 0 0 0 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 −1 0 −1 2 −1

0 0 −1 0 0 0 −1 2





























= R

(

K̃ φK̃

φK̃ φ2K̃

)

. (2.38)

The Cartan matrix of H4 reads

K̃ =











2 −1 0 0

−1 2 −1 0

0 −1 2 −φ

0 0 −φ 2











. (2.39)

Now the Coxeter numbers are h = h̃ = 30 and the set of exponents separate according to

(2.12) into

{1, 7, 11, 13, 17, 19, 23, 29} = {1, 11, 19, 29} ∪ {7, 13, 17, 23}. (2.40)

In order to see how ω acts on the orbits Ωi and how the map (2.27) is realized, we choose σ =

σ1σ5σ3σ7σ2σ6σ4σ8 and σ̃ = σ̃1σ̃3σ̃2σ̃4 for the Coxeter element of E8 and H4, respectively.

We may then compute the corresponding orbits Ωi, Ω̃i by successive actions of σ, σ̃ and

the simple roots and realize that the map ω relates them indeed as specified in (2.27). See

appendix for the orbits. The individual reflections are related as (2.18) and the generating

relations for the Coxeter group are

(σ̃6σ̃7)
5 = (σ̃4σ̃5)

3 = (σ̃4σ̃6)
3 = 1 . (2.41)

which correspond to

(σ2σ6σ3σ7)
5 = (σ4σ8σ1σ5)

3 = (σ4σ8σ2σ6)
3 = 1 . (2.42)

By the same reasoning as in the H2-case it also follows that (σiσi+ℓ̃
)2 = 1 .
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3. Affine Toda field theories

3.1 Generalities

In this section we will demonstrate how one may construct an affine Toda field theory

related to a non-crystallographic Coxeter group W̃ from a theory related to a crystallo-

graphic Coxeter group W by means of the discussed embedding. We start by taking G to

be a Lie group with H ⊂ G a maximal Torus and h its Cartan subalgebra. Then the affine

Toda field theory Lagrangian can be expressed as [30, 31]

L =
1

β2 Tr

(

1

2
∂µg−1∂µg − m2gEg−1E†

)

, (3.1)

where g = exp(βΦ) ∈ H, β is a coupling constant and m a mass scale. The regular element

E = η·h′ with conjugate E† can be expanded in the Cartan subalgebra in apposition h′
i ∈ H ′

[35]. We normalize the trace according to the Cartan-Weyl basis, that is Tr (EαE−α) = 1.

Notice that one can not write down a Lagrangian of the type (3.1) and relate it directly to

a non-crystallographic Coxeter group, since there is no proper Lie group and Lie algebra

associated to them.

Conventionally one introduces ℓ scalar fields φi by expanding the field Φ in the Cartan

subalgebra Φ =
∑ℓ

i=1 φiHi with Cartan Weyl generators Hi ∈ h [30, 31]. Developing now

the Lagrangian (3.1) in powers of the coupling constant, it follows that the term of zeroth

order in β, i.e. the quadratic term in φi becomes

−1

2

ℓ
∑

i=1

m2
i |φi|2 = −1

2
m2

ℓ
∑

i=1

|η · αi|2 |φi|2, (3.2)

such that the mass of particle i can be identified as mi = m|η ·αi|. Here η is the eigenvector

of the Coxeter element with eigenvalue exp(2πi/h). Proceeding to the first order term in

β, the constant in front of the cubic terms in the fields divided by the symmetry factor 3!

is taken to define the three-point coupling. It is computed [31] to

Cijk =
4βm2

√
−h

εijq∆ijk (3.3)

where ∆ijk =
√

s(s − mi)(s − mj)(s − mk) with s = (mi + mj + mk)/2 is Heron’s for-

mula for the area of the triangle formed by the masses of the three fusing particles i, j, k.

The structure constants εijq result from the Lie algebraic commutator [Eγi
, Eσqγj

] =

εijqEγi+σqγj
= εijqEσq̃γk̄

and for simply laced Lie algebras are normalized to εijq = ±1, 0.

The γi = ciαi are the coloured simple roots introduced in section 2.2. In other words the

three-point coupling Cijk is non-vanishing if and only if the commutator of step operators

related to roots in the orbits Ωi and Ωj is non-zero. Through this reasoning the fusing rule

[33]

Cijk 6= 0 ⇔ γi + σqγj + σpγk = 0. (3.4)

can be related to the ATFT-Lagrangian.
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Having computed these classical quantities one may ask the question towards a formu-

lation of the corresponding quantum field theory. A first glimpse of its nature is obtained

from a perturbative computation of the mass corrections. For ATFT the logarithmic diver-

gencies of the self-energy corrections can be removed simply by normal ordering [36, 11].

Then the one loop corrections to the mass of the particle k are just the finite contributions

resulting from a bubble graph, which were found [9, 10, 11] to be

δm2
k = −i

∑

ij(m
2
k)

(2π)2
, (3.5)

where the sum extends over all intermediate contributions

∑

ij
(m2

k) = iπ
C2

ijk(π − θk
ij)

mimj sin θk
ij

, (3.6)

with θk
ij being the fusing angle for the process i + j → k̄.

One should note that instead of the Lie algebraic formulation for the affine Toda field

theory Lagrangian (3.1), one can in principle also start with a Lagrangian for which the

trace in (3.1) is already computed in the adjoint representation, such that it involves only

roots rather than Lie algebraic quantities

L =
1

2
∂µΦ∂µΦ − m2

β2

ℓ
∑

i=0

ni exp(βαi · Φ). (3.7)

Here α0 = −
∑ℓ

i=0 niαi is the negative of the highest root and ni the Kac labels. In this

case the expansion of the Lagrangian in β yields

(

M2
)

ij
= m2

ℓ
∑

p=0

npα
i
pα

j
p and Cijk = βm2

ℓ
∑

p=0

npα
i
pα

j
pα

k
p. (3.8)

In most cases the two formulations are equivalent, however one is often more advantageous

than the other. For instance, (3.7) does not allow for a generic case independent treatment

as it relies on a special choice of the basis for the roots αi needed to ensure that the

mass matrix becomes diagonal. In addition (3.1) yields an explanation [30, 31] for the

fact that the masses of ATFT organize into the Perron-Frobenius vector of the Cartan

matrix and a generic derivation [31] of the fusing rule (3.4). For our present purposes

it is important to note that (3.1) relies on the existence of a Lie algebra, whereas (3.7)

only requires a root system. Thus in principle we could write down a Lagrangian of the

type (3.7) for non-crystallographic Coxeter groups, but the formulation of an equivalent

Lie algebraic version would be impossible. In addition, classical integrability for ATFT

is established by means of a Lax pair formulation in terms of Lie algebraic quantities

[37, 38]. Therefore it would remain an open issue whether for non-crystallographic Coxeter

groups (3.7) corresponds to integrable models or not. Here our formulation will not be a

Lagrangian of the form (3.7) involving a non-crystallographic root system, but rather a

reduced system which exploits the previously discussed embedding structure with regard

to the Cartan subalgebra in apposition. The crystallographic Lie algebra structure is

preserved in the reduction procedure, from which we can see immediately that the new

theories also possess Lax pairs ensuring the classical integrability.
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3.2 Reduction from crystallographic to non-crystallographic ATFT

Somewhat analogue to the folding procedure [28], we may now alter the above expansion

of Φ in order to define a new theory, which in this case only contains ℓ̃ = ℓ/2 scalar fields

ϕ̃i. This is achieved by expanding

Φ =
ℓ
∑

i=1

µ(ϕi)Hi, with µ(ϕi) =
1

φ
√

3

{

ϕ̃i for 1 ≤ i ≤ ℓ̃ = ℓ/2

φϕ̃
i−ℓ̃

for ℓ̃ < i ≤ ℓ.
(3.9)

Here the map µ is inspired by the previously introduced map ω̃ (2.7). At this point one

could have also defined µ in such a way that it multiplies the fields ϕi for ℓ̃ < i ≤ ℓ by φ−1.

However, the choice (3.9) is distinct by the structure emerging below for the three-point

coupling. Other possibilities are also conceivable. Having an alternative expansion for the

fields Φ as in (3.9), we re-consider first the quadratic term (3.2) in the expansion of the

Lagrangian, which now becomes

−1

2

ℓ
∑

i=1

m2
i |µ(ϕ̃i)|2 = −1

2

ℓ̃
∑

i=1

1

3
(φ−2m2

i + m2
i+ℓ̃

) |(ϕ̃i)|2. (3.10)

We take this identity as the defining relation for the masses of the ℓ̃ new scalar fields φ̃i

m̃2
i =

1

3
(φ−2m2

i + m2
i+ℓ̃

) = m2
i . (3.11)

In (3.11) we made use of the fact that the masses mi can be identified as the components

of the Perron-Frobenius eigenvector of K, that is mi = (y1)i. Subsequently we employ

(2.14) which implies that mi = φm
i+ℓ̃

and then φ−2 + φ2 = 3. We also notice the fact that

the masses m̃i admit a “genuine” interpretation as belonging to an affine Toda field theory

related to a non-crystallographic Coxeter group, since (2.14) also implies that the masses

m̃i are the components of the Perron-Frobenius eigenvector of K̃(φ).

Similarly we proceed further and read off the next order term in β to define a new three-

point coupling C̃ijk. We compute

C̃ijk = φ3C(i+ℓ)(j+ℓ̃)(k+ℓ̃) + φ2
(

C
i(j+ℓ̃)(k+ℓ̃) + C(i+ℓ̃)j(k+ℓ̃) + C(i+ℓ̃)(j+ℓ̃)k

)

+φ
(

C(i+ℓ̃)jk + C
i(j+ℓ̃)k + C

ij(k+ℓ̃)

)

+ Cijk, (3.12)

for 1 ≤ i, j, k,≤ ℓ̃. The identification of the Coxeter element (2.18) translates the fusing

rule (3.4) into

C̃ijk 6= 0 ⇔ ωγi + σ̃qωγj + σ̃pωγk = 0, (3.13)

⇔ φti γ̃i + φtj σ̃q γ̃j + φtk σ̃pγ̃k = 0, (3.14)

where the ti are the integers introduced in equation (2.5). The relation (3.14) is entirely

expressed in quantities belonging to the non-crystallographic Coxeter group. In comparison

with the fusing rule related to ATFT for simply laced Lie algebras (3.4), it had to be “φ-

deformed”, somewhat similar to the q-deformed versions of the fusing rule needed for
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ATFT associated with non-simply laced Lie algebras [39]. Note that besides the two non-

equivalent solutions related as q → h+1/2(ci −cj)−q and p → h+1/2(ci −cj)−p [34, 39],

in (3.14) there could be more solutions corresponding to different values of the integers

ti, tj , tk.

Alternatively, we may compute the masses and three-point couplings from the La-

grangian (3.7). Using the expansion (3.9) in (3.7) yields the same quantities. We obtain

now
(

M̃2
)

ij
= m2

ℓ
∑

p=0

npα̂
i
pα̂

j
p and C̃ijk = βm2

ℓ
∑

p=0

npα̂
i
pα̂

j
pα̂

k
p. (3.15)

where we have folded the ℓ-components of the root αi
p with 1 ≤ i ≤ ℓ into an ℓ̃-component

vector

α̂i
p =

1

3
(φ−1αi

p + αi+ℓ̃
p ) , (3.16)

for 1 ≤ i ≤ ℓ̃. We stress that this is not the same as writing down (3.7) for a non-

crystallographic root system, since it still involves ℓ roots, albeit now represented in Rℓ̃.

Having computed the three-point couplings for the reduced theory, we may compute the

mass renormalisation from (3.6) as

∑

ij
(m̃2

k) = iπ
C̃2

ijk(π − θk
ij)

m̃im̃j sin θk
ij

. (3.17)

This will shed light on the possible form of the scattering matrix for ATFT related to

non-crystallographic Coxeter groups.

3.3 From A4 to H2-affine Toda field theory

Let us now make the above general formulae more explicit. When ignoring the overall mass

scale, the masses of A4-ATFT can be brought into the simple form

m1 = m2 = 1 and m3 = m4 = φ. (3.18)

Keeping the same normalization for the overall mass scale, the identity (3.11) yields for

the classical masses of the H2-ATFT

m̃1 = m1 and m̃2 = m2. (3.19)

According to (3.3) and (3.12) we then compute the three point couplings Cijk and C̃ijk

together with their corresponding fusing rules, which result from the tables provided in

section 2.3

C113 = 4i√
5
∆113 γ1 + σγ1 + σ3γ3 = 0 C̃111 = 3φC113 = 4i√

5

√
9 + 12φ∆̃111

C144 = φC113 γ1 + σ2γ4 + σ4γ4 = 0 C̃122 = φ3C113

C224 = −C113 γ2 + σγ2 + σ3γ4 = 0 C̃222 = −C̃111

C233 = −φC113 γ2 + σγ3 + σ3γ3 = 0 C̃211 = −C̃122.

(3.20)

We did not report the factor βm2 in each of the couplings. Here ∆̃ijk is the area of the

triangle bounded by the masses m̃i, m̃j , m̃k. Note that now the factor of proportionality
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between |C̃ijk| and ∆̃ijk is no longer universal as in (3.3). This is sufficient information to

carry out the perturbation theory up to order β2. The mass corrections to m̃1 according to

(3.17) are computed by summing the convergent contributions to the one-loop corrections,

which up to the symmetry factors are

Σ(m̃2
1) =

1̃ 1̃

1̃

1̃

+
1̃ 1̃

1̃

2̃

+
1̃ 1̃

2̃

2̃

We omitted the usual arrows indicating the time direction and assume throughout this

paper that they all run to the right hand side. We computed the symmetry factors by

applying Wick’s theorem and include them into formula (3.17), such that

∑

ij
(m̃2

1) = iπ
π
3

sin 2π
3

(

18C̃2
111 + 36C̃2

112 + 18C̃2
221

)

. (3.21)

where we assume that the particles are conjugate to each other, that is 1̄ = 2, 2̄ = 1

where the bar indicates the anti-particle. Similarly, the mass corrections to m̃2 result from

summing

Σ(m̃2
2) =

2̃ 2̃

2̃

2̃

+
2̃ 2̃

2̃

1̃

+
2̃ 2̃

1̃

1̃

which gives
∑

ij
(m̃2

2) = iπ
π
3

sin 2π
3

(

18C̃2
222 + 36C̃2

221 + 18C̃2
112

)

. (3.22)

Assembling this according to (3.5) yields the important fact that the classical mass ratios

are conserved in the quantum field theory

δm2
1

m2
1

=
δm2

2

m2
2

=

√
3

4
(5 + 3φ)C̃2

111 . (3.23)

This means at first order perturbation theory the masses renormalise equally. As the

masses of both particles coincide and they undergo the same fusing processes, they appear

to be indistinguishable at this stage. This possibly hints towards a non-diagonal scattering

theory, that means a theory in which backscattering is possible. However, it remains to be

seen whether there exist higher charges in this theory which make the particles distinct.

3.4 From D6 to H3-affine Toda field theory

The masses of D6-ATFT are known for a long time and can be brought into the form (1.3).

Keeping the same normalization for the overall mass scale, the identity (3.11) yields for

the classical masses of the H3-ATFT

m̃1 = φ−1, m̃2 =

√

1 + φ−2, m̃3 = 1. (3.24)
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According to (3.3) and (3.12) we then compute the three point couplings Cijk and C̃ijk

together with their corresponding fusing rules, which result from the tables provided in the

appendix

C112 = 4i/
√

10∆112

C442 = φ3C112

C445 = φ2C112

γ1 + σγ1 + σ6γ2 = 0

γ4 + σ3γ4 + σ7γ2 = 0

γ4 + σγ4 + σ6γ5 = 0

C̃112 = (10φ + 7)∆̃112

C665 = −φ5C112

C332 = φ3C112

C335 = φ2C112

γ6 + σ3γ6 + σ7γ5 = 0

γ3 + σ3γ3 + σ7γ2 = 0

γ3 + σγ3 + σ6γ5 = 0

C̃332 = −(1 + 5φ)∆̃332

C126 = φ2C112

C156 = φ3C112

γ1 + σ2γ2 + σ6γ6 = 0

γ1 + σ4γ5 + σ8γ6 = 0
C̃123 = 5.56758∆̃123

C225 = (φ4 − 1)C112

C255 = (φ − φ5)C112

γ2 + σ2γ2 + σ6γ5 = 0

γ2 + σ3γ5 + σ7γ5 = 0
C̃222 = −8.6253∆̃222

C134 = φ2C112 γ1 + σ3γ3 + σ7γ4 = 0 C̃113 = 2φ2∆̃113

C346 = φ3C112 γ3 + σ8γ4 + σ4γ6 = 0 C̃331 = 2φ3∆̃331.

(3.25)

Here we did not report the factor of iβm24/
√

10 in C̃. The fusing rules reduce according

to (3.13), for instance

γ1 + σγ1 + σ6γ2 = 0 ⇒ γ̃1 + σ̃γ̃1 + σ̃6γ̃2 = 0, (3.26)

γ4 + σ3γ4 + σ7γ2 = 0 ⇒ φγ̃1 + φσ̃3γ̃1 + σ̃7γ̃2 = 0, (3.27)

γ4 + σγ4 + σ6γ5 = 0 ⇒ φγ̃1 + φσ̃γ̃1 + φσ6γ2 = 0. (3.28)

Note that we can construct the solution (3.28) trivially from (3.26) simply by multiplying

it with φ. However, (3.27) can not be obtained from (3.26) or (3.28) in such a manner and

has to be regarded as independent.

As described in the previous section, we compute the mass renormalisation to

∑

ij
(m̃2

1) = iπ

(

36C̃2
112

π
10

m̃1m̃2 sin 9π
10

+
36C̃2

123φ̂

m̃2m̃3 sin(π − φ̂)
+

18C̃2
133

2π
10

m̃3m̃3 sin 8π
10

+
36C̃2

113
2π
10

m̃1m̃3 sin 8π
10

)

(3.29)

∑

ij
(m̃2

2) = iπ

(

18C̃2
222

π
3

m̃2m̃2 sin 2π
3

+
36C̃2

123
π
2

m̃1m̃3 sin π
2

+
18C̃2

112
8π
10

m̃1m̃1 sin 2π
10

+
18C̃2

233
4π
10

m̃3m̃3 sin 6π
10

)

(3.30)

∑

ij
(m̃2

3) = iπ

(

36C̃2
233

3π
10

m̃2m̃3 sin 7π
10

+
36C̃2

123φ̌

m̃2m̃3 sin(π − φ̌)
+

18C̃2
113

4π
10

m̃1m̃1 sin 6π
10

+
36C̃2

133
4π
10

m̃1m̃3 sin 6π
10

)

(3.31)

where we abbreviate φ̂ = arctan φ−1, φ̌ = arctan φ. From this it follows then that classical

mass ratios are not conserved in the quantum field theory

δm2
1

m2
1

= 196.996 . . .
δm2

2

m2
2

= 647.392 . . . and
δm2

3

m2
3

= 924.343 . . . (3.32)

This means that the scattering matrix for H3-ATFT can not be of the simple form as for

ATFT related to simply laced Lie algebras.
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3.5 From E8 to H4 affine Toda field theory

The masses of E8-ATFT in the form (1.1) indicate the underlying H4 structure and (3.11)

yields for the classical masses for the H4-ATFT

m̃1 = m1, m̃2 = m2, m̃3 = m3, m̃4 = m4. (3.33)

Similarly as in the previous section we compute the three point couplings Cijk and C̃ijk

from (3.3) and (3.12) together with their corresponding fusing rules

C111 = 4i√
30

0.433013

C511 = 4i√
30

0.475528

C551 = φC511

C555 = φ2C111

γ1 + σ10γ1 + σ20γ1 = 0

γ5 + σ12γ1 + σ18γ1 = 0

γ5 + σ12γ5 + σ21γ1 = 0

γ5 + σ10γ5 + σ20γ5 = 0

C̃111 = 31.3768 ∆̃111

C211 = 4i√
30

0.103956

C521 = −φ2C321

C655 = φ2C211

γ2 + σ14γ1 + σ15γ1 = 0

γ5 + σ13γ2 + σ23γ1 = 0

γ6 + σ14γ5 + σ15γ5 = 0

C̃211 = 37.1363 ∆̃211

C321 = − 4i√
30

0.307324

C631 = −C432/φ

C653 = C432

C765 = −φ2C321

γ3 + σ15γ2 + σ16γ1 = 0

γ6 + σ13γ3 + σ20γ1 = 0

γ6 + σ9γ5 + σ17γ3 = 0

γ7 + σ15γ6 + σ16γ5 = 0

C̃321 = 22.6132 ∆̃321

C421 = 4i√
30

0.972789

C641 = −φ2C321

C861 = φ3C321

C865 = φ2C421

γ4 + σ13γ2 + σ19γ1 = 0

γ6 + σ14γ4 + σ17γ1 = 0

γ8 + σ14γ6 + σ18γ1 = 0

γ8 + σ13γ6 + σ19γ5 = 0

C̃421 = 9.92482 ∆̃421

C431 = − 4i√
30

1.09848

C831 = C421/φ

C871 = −C421

C875 = −φ2C431

γ4 + σ13γ3 + σ24γ1 = 0

γ8 + σ14γ3 + σ16γ1 = 0

γ8 + σ14γ7 + σ27γ1 = 0

γ8 + σ13γ7 + σ24γ5 = 0

C̃431 = 8.65727 ∆̃431

C441 = 4i√
30

1.17616

C854 = −C421

C885 = −φ2C441

γ4 + σ13γ4 + σ21γ1 = 0

γ8 + σ13γ5 + σ16γ4 = 0

γ8 + σ13γ8 + σ21γ5 = 0

C̃441 = −14.4209 ∆̃441

C541 = C421/φ

C554 = −φ3C321

γ5 + σ14γ4 + σ26γ1 = 0

γ5 + σ7γ5 + σ19γ4 = 0
C̃411 = 5.35386

C771 = −C432 γ7 + σ14γ7 + σ22γ1 = 0 C̃331 = −4.27444 ∆̃331

C222 = − 4i√
30

1.71313

C622 = − 4i√
30

1.88133

C662 = φC622

C666 = −φ2C222

γ2 + σ10γ2 + σ20γ2 = 0

γ6 + σ18γ2 + σ12γ2 = 0

γ6 + σ12γ6 + σ21γ2 = 0

γ6 + σ10γ6 + σ20γ6 = 0

C̃222 = −9.1965 ∆̃222

C322 = − 4i√
30

1.96731

C762 = −C432

C766 = −φ2C322

γ3 + σ12γ2 + σ19γ2 = 0

γ7 + σ14γ6 + σ18γ2 = 0

γ7 + σ12γ6 + σ19γ6 = 0

C̃322 = 3.75947 ∆̃322
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C522 = C432/φ

C652 = −φ3C321

γ5 + σ10γ2 + σ21γ2 = 0

γ6 + σ12γ5 + σ17γ2 = 0
C̃122 = 9.55253 ∆̃122

C822 = φ2C321 γ8 + σ14γ2 + σ16γ2 = 0 C̃422 = −0.683318 ∆̃422

C432 = 4i√
30

2.37859

C832 = φ2C431

C863 = −φ3C431

C876 = φ2C432

γ4 + σ11γ3 + σ22γ2 = 0

γ8 + σ12γ3 + σ19γ2 = 0

γ8 + σ11γ6 + σ19γ3 = 0

γ8 + σ11γ7 + σ22γ6 = 0

C̃432 = 15.2555 ∆̃432

C732 = −C432/φ

C772 = −φ3C431

γ7 + σ14γ3 + σ17γ2 = 0

γ7 + σ13γ7 + σ22γ2 = 0
C̃332 = 2.68177 ∆̃332

C333 = − 4i√
30

3.78439

C733 = 4i√
30

4.15597

C773 = φC733

C777 = φ2C333

γ3 + σ10γ3 + σ20γ3 = 0

γ7 + σ12γ3 + σ18γ3 = 0

γ7 + σ12γ7 + σ21γ3 = 0

γ7 + σ10γ7 + σ20γ7 = 0

C̃333 = 7.1965 ∆̃333

C433 = − 4i√
30

3.24742

C743 = −φ2C431

C877 = φ2C433

γ4 + σ9γ3 + σ20γ3 = 0

γ7 + σ13γ4 + σ17γ3 = 0

γ8 + σ9γ7 + σ20γ7 = 0

C̃433 = −9.22437 ∆̃433

C553 = −C421 γ5 + σ4γ5 + σ17γ3 = 0 C̃113 = −2.5468

C444 = − 4i√
30

2.50428

C844 = 4i√
30

2.75016

C884 = φC844

C888 = −φ2C444

γ4 + σ10γ4 + σ20γ4 = 0

γ8 + σ12γ4 + σ18γ4 = 0

γ8 + σ12γ8 + σ21γ4 = 0

γ8 + σ10γ8 + σ20γ8 = 0

C̃444 = 29.3768 ∆̃444

C644 = φ2C431 γ6 + σ11γ4 + σ19γ4 = 0 C̃244 = −2.13686 ∆̃244

C744 = C421/φ

C874 = φ3C431

γ7 + σ15γ4 + σ16γ4 = 0

γ8 + σ12γ7 + σ23γ4 = 0
C̃344 = −8.34233 ∆̃344

Also here we did not report the overall factor of iβm24/
√

30 in C̃. Note that C̃411 and

C̃311 have no classical mass triangle associated to them and therefore yield no poles in the

propagators. The nonvanishing one-loop contributions are therefore

Σ(m̃2
1) =

1̃ 1̃

1̃

1̃

+
1̃ 1̃

1̃

2̃

+
1̃ 1̃

2̃

3̃

+
1̃ 1̃

2̃

4̃

+
1̃ 1̃

3̃

4̃

+

1̃ 1̃

2̃

2̃

+
1̃ 1̃

3̃

3̃

+
1̃ 1̃

4̃

4̃

Σ(m̃2
2) =

2̃ 2̃

1̃

1̃

+
2̃ 2̃

1̃

2̃

+
2̃ 2̃

1̃

3̃

+
2̃ 2̃

1̃

4̃

+
2̃ 2̃

2̃

3̃

+

2̃ 2̃

2̃

4̃

+
2̃ 2̃

3̃

4̃

+
2̃ 2̃

2̃

2̃

+
2̃ 2̃

3̃

3̃

+
2̃ 2̃

4̃

4̃

– 18 –



Affine Toda field theories related to non-crystallographic Coxeter groups

Σ(m̃2
3) =

3̃ 3̃

1̃

2̃

+
3̃ 3̃

1̃

3̃

+
3̃ 3̃

1̃

4̃

+
3̃ 3̃

2̃

3̃

+
3̃ 3̃

2̃

4̃

+

3̃ 3̃

3̃

4̃

+
3̃ 3̃

2̃

2̃

+
3̃ 3̃

3̃

3̃

+
3̃ 3̃

4̃

4̃

Σ(m̃2
4) =

4̃ 4̃

1̃

2̃

+
4̃ 4̃

1̃

3̃

+
4̃ 4̃

1̃

4̃

+
4̃ 4̃

2̃

3̃

+
4̃ 4̃

2̃

4̃

+

4̃ 4̃

3̃

4̃

+
4̃ 4̃

2̃

2̃

+
4̃ 4̃

3̃

3̃

+
4̃ 4̃

4̃

4̃

From this it follows that the classical mass ratios are not conserved in the quantum field

theory

δm2
1

m2
1

= 54045.1 . . .
δm2

2

m2
2

= 68239.3 . . .
δm2

3

m2
3

= 11488.2 . . .
δm2

4

m2
4

= 2914.28 . . . (3.34)

Hence we have the same type of behaviour under renormalisation as in the H3-ATFT

obtained from the reduction of the D6-ATFT.

4. Conclusions

With regard to previously studied ATFT, the embedding of non-crystallographic into crys-

tallographic Coxeter groups leads to an explanation for the fact that in some theories the

masses can be organised into pairs such that one mass differs from the other only by a

factor of φ. This also holds for the higher charges.

We showed that it is possible to construct ATFT related to non-crystallographic Cox-

eter groups despite the fact that there is no Lie algebra associated to them. The con-

struction is possible since one may exploit the embedding of non-crystallographic into

crystallographic Coxeter groups, making use of the fact that the latter do possess a Lie

algebraic structure and thus preserving integrability. Unlike the folding from simply laced

Lie algebras to non-simply laced Lie algebras [28], the resulting theories we obtain here

are not equivalent to a direct formulation of the theory in terms of non-crystallographic

Coxeter groups. In this context the reduction procedure is vital for consistency and not

merely an additional structure. It is of course possible to write down a Lagrangian of the

form (3.7) involving directly roots of ∆̃, but it remains to be seen whether such theories

are consistent and especially if they are classically integrable.

With regard to the quantum field theory, our computations showed for the H3,H4-

ATFT that the masses of these new theories do not renormalise with an overall factor, i.e.

δm2
k/m

2
k is not a universal constant for all particle types k, preventing that the classical

mass ratios can be maintained in the quantum field theory. Remarkably this was true for

ATFT related to simply laced Lie algebras, which allowed for a relatively straightforward
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construction of the scattering matrices [10]. For ATFT related to non-simply laced Lie

algebras this was found no longer to be true, such that different types of scenarios had to

be devised. One is to have floating masses such that depending on the coupling constant

the masses flow from one Lie algebra in the weak limit to its Langlands dual in the strong

coupling limit [40, 41, 42, 43, 44, 45, 46, 39]. The other alternative proposal was to

introduce additional Fermions into the model [47, 48, 49, 50], which compensate for the

unequal mass shifts. From our analysis it is clear that the construction of a consistent

quantum field theory for the proposed H3,H4-theories has to be modelled along the line

of the construction of theories related to non-simply laced algebras due to unequal mass

renormalisations for each individual particle. It remains to be seen in future work, which

of the prescriptions will be successful in this context.

As we showed, the behaviour under renormalisation is different for the H2-ATFT,

where the classical mass ratios remain preserved up to first order perturbation theory.

Despite this, it is not immediately obvious how to write down a scattering matrix to all

orders in perturbation theory.

Our detailed analysis of the embedding of non-crystallographic into crystallographic

Coxeter groups allows one to apply the aforementioned reduction method to a wide range

of application in physics, chemistry and biology, where Coxeter groups play a role. For

instance in our forthcoming publication [51] we will apply this method to the generalized

Calogero-Moser models.

Acknowledgments. C.K. is financially supported by a University Research Fellowship of

the Royal Society.
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Appendix

A. The orbits of H3 and D6

Successive action of σ = σ1σ4σ3σ6σ2σ5 and σ̃ = σ̃1σ̃3σ̃2 yields

Ω1 ω(Ω1) = Ω̃1 Ω4 ω(Ω4) = φΩ̃1

σ0 α1 α̃1 α4 φα̃1

σ1 α2 + α6 α̃2 + φ α̃3 α3 + α5 + α6 φα̃2 + φ2 α̃3

σ2 α3 + α4 + α5 φα̃1 + φα̃2 + α̃3 α1 + α2 + α4 + α5 + α6 φ2α̃1 + φ2α̃2 + φα̃3

σ3 α5 + α6 φ (α̃2 + α̃3) α2 + α3 + α5 + α6 φ2 (α̃2 + α̃3)

σ4 α1 + α2 α̃1 + α̃2 α4 + α5 φ(α̃1 + α̃2)

σ5 −α1 −α̃1 −α4 −φα̃1

Ω2 ω(Ω2) = Ω̃2 Ω5

σ0 −α2 −α̃2 −α5

σ1 α1 + α2 + α6 α̃1 + α̃2 + φα̃3 α3 + α4 + α5 + α6

σ2 α2 + α3 + α4 + α5 + α6 φα̃1 + φα̃2 + φ2α̃3 α1 + α2 + α3 + α4 + 2α5 + 2α6

σ3 α3 + α4 + 2α5 + α6 φα̃1 + 2φα̃2 + φ2α̃3 α1 + 2α2 + α3 + α4 + 2α5 + 2α6

σ4 α1 + α2 + α5 + α6 α̃1 + φ2α̃2 + φα̃3 α2 + α3 + α4 + 2α5 + α6

σ5 α2 α̃2 α5

Ω3 ω(Ω3) = Ω̃3 Ω6

σ0 α3 α̃3 α6

σ1 α4 + α5 + α6 φ(α̃1 + α̃2 + α̃3) α1 + α2 + α3 + α4 + α5 + α6

σ2 α1 + α2 + α3 + α5 + α6 α̃1 + φ2α̃2 + φ2α̃3 α2 + α3 + α4 + 2α5 + 2α6

σ3 α2 + α4 + α5 + α6 φ(α̃1 + φα̃2 + α̃3) α1 + α2 + α3 + α4 + 2α5 + α6

σ4 α3 + α5 φα̃2 + α̃3 α2 + α5 + α6

σ5 −α3 −α̃3 −α6

We did not write here the additional σ̃i in the first column. The identities ω(Ω4) = φΩ̃1,

ω(Ω4) = φΩ̃1and ω(Ω6) = φΩ̃3 follow upon using (1.2).
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B. The orbits of H4 and E8

Successive action of σ = σ1σ5σ3σ7σ2σ6σ4σ8 and σ̃ = σ̃1σ̃3σ̃2σ̃4 yields

Ω1 ω(Ω1) = Ω̃1 Ω5

σ0 α1 α̃1 α5

σ1 α2 + α3 α̃2 + α̃3 α6 + α7

σ2 α7 + α8 φ(α̃3 + α̃4) α3 + α4 + α7 + α8

σ3 α4 + α5 + α7 + α8 φ(α̃1 + α̃2 + α̃3) + α̃4
α1 + α2 + α3 + α5

+α6 + α7 + α8

σ4 α3 + α6 + α7 + α8 φα̃2 + φ2α̃3 + φα̃4
α2 + α3 + α4 + α6

+2α7 + α8

σ5 α1 + α2 + α3 + α4 + α7 + α8 α̃1 + α̃2 + φ2(α̃3 + α̃4)
α3 + α4 + α5 + α6

+2α7 + α8

σ6 α2 + α3 + α5 + α6 + α7 + α8 φ(α̃1 + α̃4) + φ2(α̃2 + α̃3)
α1 + α2 + α3 + α4

+α5 + 2α6 + 2α7 + α8

σ7 α4 + α6 + 2α7 + α8 φα̃2 + 2φα̃3 + φ2α̃4
α2 + 2α3 + α4 + α5

+α6 + 2α7 + 2α8

σ8 α3 + α4 + α5 + α6 + α7 + α8 φ(α̃1 + α̃2) + φ2(α̃3 + α̃4)
α1 + α2 + α3 + α4

+α5 + α6 + 2α7 + 2α8

σ9 α1 + α2 + α3 + α6 + α7 + α8 α̃1 + φα̃4 + φ2(α̃2 + α̃3)
α2 + α3 + α4 + α5

+2α6 + 2α7 + α8

σ10 α2 + α3 + α4 + α6 + α7 + α8 α̃2 + φ2(α̃3 + α̃4)
α3 + α4 + α6 + 2α7

+2α8

σ11 α5 + α6 + α7 + α8 φ(α̃1 + α̃2 + α̃3 + α̃4)
α1 + α2 + α3 + α4

+α5 + α6 + α7 + α8

σ12 α4 + α6 + α7 φ(α̃2 + α̃3) + α̃4
α2 + α3 + α6 + α7

+α8

σ13 α3 + α8 α̃3 + φα̃4 α4 + α7 + α8

σ14 α1 + α2 α̃1 + α̃2 α5 + α6

σ15 −α1 −α̃1 −α5
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Ω2 ω(Ω2) = Ω̃2 Ω6

σ0 −α2 α̃2 −α6

σ1 α1 + α2 + α3 α̃1 + α̃2 + α̃3 α5 + α6 + α7

σ2 α2 + α3 + α7 + α8 α̃2+φ2 α̃3+φα̃4 α3 + α4 + α6 + 2α7 + α8

σ3 α4 + α5 + α6 + 2α7 + α8 φ(α̃1 + α̃2 + 2α̃3+φα̃4)
α1 + α2 + 2α3 + α4

+α5 + α6 + 2α7 + 2α8

σ4 α3 + α4 + α5

+2(α6 + α7) + α8
φ(α̃1 + 2 α̃2)+φ3α̃3+φ2α̃4

α1 + 2α2 + 2α3 + α4

+α5 + 2α6 + 3α7 + 2α8

σ5 α1 + α2 + α4 + α6

+2(α3 + α7 + α8)
α̃1+φ2(α̃2 + 2α̃3)+φ3α̃4

α2 + 2α3 + 2α4 + α5

+2α6 + 4α7 + 3α8

σ6 α1 + α4 + α5 + α6

+2(α2 + α3 + α7 + α8)
φ2(α̃1 + 2α̃3+φα̃4) + (2+φ)α̃2

α1 + α2 + 2α3 + 2α4

+2α5 + 3α6 + 4α7 + 3α8

σ7 α2 + α3 + α4 + α5

+3α7 + 2(α6 + α8)
φ α̃1 + (φ4 − 1)α̃3+φ3(α̃2 + α̃4)

α1 + 2α2 + 3α3 + 2α4

+α5 + 3α6 + 4α7 + 3α8

σ8 α3 + α5 + 3α7

+2(α4 + α6 + α8)
φ (α̃1 + α̃2 + 2φα̃4) + (φ4 − 1) α̃3

α1 + 2α2 + 3α3 + 2α4

+α5 + 2α6 + 4α7 + 4α8

σ9 α1 + α2 + α4 + α5

+2(α3 + α6 + α7 + α8)
φ2 (α̃1 + 2α̃3)+φ3 (α̃2 + α̃4)

α1 + 2α2 + 2α3 + 2α4

+2α5 + 3α6 + 4α7 + 3α8

σ10 α1 + 2(α2 + α3) + α4

+α6 + 2(α7 + α8)
α̃1 + (2 + φ) α̃2+φ2(2α̃3+φα̃4)

α2 + 2α3 + 2α4 + α5

+3α6 + 4α7 + 3α8

σ11 α2 + α3 + α4 + α5

+α6 + 2α7 + 2α8
φ α̃1+φ2 α̃2+φ3 (α̃3 + α̃4)

α1 + α2 + 2α3 + 2α4

+α5 + 2α6 + 3α7 + 3α8

σ12 α4 + α5 + 2(α6 + α7) + α8 φα̃1 + 2 φ (α̃2 + α̃3)+φ2α̃4
α1 + 2α2 + 2α3 + α4

+α5 + 2α6 + 2α7 + 2α8

σ13 α3 + α4 + α6 + α7 + α8 φα̃2+φ2 (α̃3 + α̃4) α2 + α3 + α4 + α6 + 2(α7 + α8)

σ14 α1 + α2 + α3 + α8 α̃1 + α̃2 + α̃3+φα̃4 α4 + α5 + α6 + α7 + α8

σ15 α2 α̃2 α6
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Ω3 ω(Ω3) = Ω̃3 Ω7

σ0 α3 α̃3 α7

σ1 α1 + α2 + α3 + α7 + α8 α̃1 + α̃2+φ2α̃3+φα̃4
α3 + α4 + α5

+α6 + 2α7 + α8

σ2 α2 + α3 + α4 + α5

+α6 + 2α7 + α8
φα̃1+φ2α̃2+φ3α̃3+φ2α̃4

α1 + α2 + α4 + α5

+3α7 + 2(α3 + α6 + α8)

σ3 α3 + α4 + α5

+3α7 + 2(α6 + α8)
φ(α̃1 + 2α̃2) + (φ4 − 1)α̃3+φ3α̃4

α1 + 2(α2 + α4 + α6)

+α5 + 4α7 + 3(α3 + α8)

σ4 α1 + α2 + 2(α3 + α4)

+α5 + 3α7 + 2(α6 + α8)
φ2(α̃1+φα̃2+φ2α̃3 + 2α̃4)

α1 + 2(α2 + α4 + α5)

+3(α3 + α6) + 5α7 + 4α8

σ5 α1 + α4 + 2(α2 + α6)

+α5 + 3(α3 + α7 + α8)

φ2 (α̃1 + 2 α̃2 + 3 α̃3)

+
(

φ4 − 1
)

α̃4

α1 + 2α2 + 3(α3 + α4)

+2α5 + 6α7 + 4(α6 + α8)

σ6 2(α2 + α3 + α4 + α6)

+α1 + α5 + 4α7 + 3α8
φ2(α̃1 + 2α̃2 + 2φα̃3+φ2α̃4)

α1 + 2(α2 + α5) + 3α4

+4(α3 + α6) + 6α7 + 5α8

σ7 α2 + 2(α3 + α4 + α5)

+4α7 + 3(α6 + α8)

φ(α̃1 + 2φ2α̃3 + φ3α̃4)

+
(

φ4 − 1
)

α̃2

2(α1 + α5) + 3(α2 + α4)

+4(α3 + α6) + 6α7 + 5α8

σ8 α1 + α2 + 2(α3 + α4)

+α5 + 4α7 + 3(α6 + α8)

φ2(α̃1 + 2φα̃3 + φ2α̃4)

+
(

φ4 − 1
)

α̃2

α1 + 3(α2 + α4) + 2α5

+4(α3 + α6) + 6α7 + 5α8

σ9 α1 + 2(α2 + α4 + α6)

+α5 + 3(α3 + α7 + α8)
φ2 (α̃1 + 2 α̃2 + 3 α̃3) +φ4α̃4

α1 + 2(α2 + α5) + 4α6

+3(α3 + α4) + 6α7 + 5α8

σ10 α1 + 2(α2 + α3 + α6)

+α4 + α5 + 3(α7 + α8)

φ2(α̃1 + 2α̃2 + φ2α̃3)

+
(

φ4 − 1
)

α̃4

α1 + 2 (α2 + α5) + 4α6

+3(α3 + α4) + 5α7 + 4α8

σ11 α2 + α3 + α5 + 3α7

+2(α4 + α6 + α8)
φ α̃1+φ3α̃2 + (φ4 − 1)α̃3 + 2φ2α̃4

α1 + 2(α2 + α4) + α5

+3(α3 + α6) + 4(α7 + α8)

σ12 α3 + α4 + α5

+2(α6 + α7 + α8)
φα̃1 + 2φα̃2+φ3 (α̃3 + α̃4)

α1 + 2(α2 + α3 + α4)

+α5 + 2α6 + 3(α7 + α8)

σ13 α1 + α2 + α3 + α4

+α6 + α7 + α8
α̃1+φ2 (α̃2 + α̃3 + α̃4)

α2 + α3 + α4 + α5

+2(α6 + α7 + α8)

σ14 α2 + α3 + α8 α̃2 + α̃3+φα̃4 α4 + α6 + α7 + α8

σ15 −α3 −α̃3 −α7

– 24 –



Affine Toda field theories related to non-crystallographic Coxeter groups

Ω4 ω(Ω4) = Ω̃4 Ω8

σ0 −α4 −α̃4 −α8

σ1 α4 + α7 φα̃3 + α̃4 α3 + α7 + α8

σ2 α3 + α5 + α6 + α7 + α8 φ(α̃1 + α̃2 + φα̃3 + α̃4)
α1 + α2 + α3 + α4

+α5 + α6 + 2α7 + α8

σ3 α1 + α2 + α3 + α4

+α6 + 2α7 + α8
α̃1+φ2(α̃2 + α̃4)+φ3α̃3

α2 + α4 + α5 + 3α7

+2(α3 + α6 + α8)

σ4 α2 + α4 + α5 + α6

+2(α3 + α7 + α8)
φα̃1+φ2 (α̃2 + 2 α̃3 + φα̃4)

α1 + α2 + 2(α3 + α4 + α6)

+α5 + 4α7 + 3α8

σ5 α1 + α2 + α3 + α4

+α5 + 3α7 + 2(α6 + α8)

φ2(α̃1 + φ α̃2 + φα̃4)

+(φ4 − 1)α̃3

α1 + 2(α2 + α4 + α5)

+3(α3 + α6 + α8) + 4α7

σ6 α2 + 2(α3 + α4) + α5

+3α7 + 2(α6 + α8)
φ(α̃1+φ2α̃2+φ3α̃3+φα̃4)

α1 + 2(α2 + α4) + α5

+3(α3 + α6) + 5α7 + 4α8

σ7 α1 + α2 + 2(α3 + α6)

+α4 + α5 + 3(α7 + α8)

φ2(α̃1 + φα̃2 + φ2α̃3)

+(φ4 − 1)α̃4

α1 + 2(α2 + α5) + 5α7

+3(α3 + α4 + α6) + 4α8

σ8 α1 + 2(α2 + α3 + α4)

+α5 + 2(α6 + α8) + 3α7
φ2(α̃1 + 2α̃2+φ2α̃3 + 2α̃4)

α1 + 2(α2 + α4 + α5)

+3α3 + 5α7 + 4(α6 + α8)

σ9 α2 + α4 + α5

+2(α6 + α3) + 3(α7 + α8)

φα̃1 + φ3α̃2 + φ4α̃3

+(φ4 − 1)α̃4

α1 + 2α2 + α5 + 5α7

+3(α3 + α4 + α6) + 4α8

σ10 α1 + α2 + α3 + α5

+2(α4 + α6 + α8) + 3α7

φ2(α̃1 + 2α̃4) + φ3α̃2

+
(

φ4 − 1
)

α̃3

α1 + 2(α2 + α4 + α5)

+3(α3 + α6) + 4(α7 + α8)

σ11 α2 + α4 + α5

+2(α3 + α6 + α7 + α8)

φ α̃1 + φ3(α̃2 + α̃4)

+2φ2 α̃3

α1 + 2(α2 + α3 + α4)

+α5 + 4α7 + 3(α6 + α8)

σ12 α1 + α2 + α3 + α4

+α6 + 2(α7 + α8)
α̃1+φ2 α̃2+φ3 (α̃3 + α̃4)

α2 + 2(α3 + α4 + α6)

+α5 + 3(α7 + α8)

σ13 α2 + α3 + α4 + α5

+α6 + α7 + α8
φ α̃1+φ2 (α̃2 + α̃3 + α̃4)

α1 + α2 + α3 + α4

+α5 + 2(α6 + α7 + α8)

σ14 α6 + α7 + α8 φ(α̃2 + α̃3 + α̃4) α2 + α3 + α4 + α6 + α7 + α8

σ15 α4 α̃4 α8
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