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ABSTRACT: We propose affine Toda field theories related to the non-crystallographic
Coxeter groups Hs, H3 and H4. The classical mass spectrum, the classical three-point
couplings and the one-loop corrections to the mass renormalisation are determined. The
construction is carried out by means of a reduction procedure from crystallographic to
non-crystallographic Coxeter groups. The embedding structure explains for various affine
Toda field theories that their particles can be organised in pairs, such that their relative

masses differ by the golden ratio.

1. Introduction

The Ising model is generally considered as the prime example of integrable models. When
viewed in the continuous limit as a ¢ = 1/2 conformal field theory [fl], it is a well known fact
that it can be realized as an Eél) ® Eél)/Eg)—coset model [P]. Even when the conformal
symmetry is broken, by perturbing the theory with a primary field of scaling dimension
(1/16,1/16) [{], the Eg structure survives in form of a (minimal) Eg-affine Toda field theory
(ATFT) [, fi]. It will be one of the results in this paper to show that there is an even more
fundamental structure than Eg underlying this particular model, the non-crystallographic
Coxeter group Hy. We draw here on the observation made first by Sherbak in 1988 [f],
namely that Hy can be embedded into Eg, see also [[f, §] for further developments of these
mathematical structures. Loosely speaking, one may regard the Eg-theory as two copies
of Hy-theories. We get a first glimpse of this structure from a more physical point of view
when we bring the mass spectrum of minimal Fg-affine Toda field theory found originally
in [B] into the form

my =1, mg = 208 35, mgzw/sinl?}—ow/singr—o, m4:2¢cos§—g, (1.1)
ms = ¢mi, me = gma, m7 = ¢msg, ms = ¢ma.

We have set here the overall mass scale to one. Remarkably, these mass ratios are the
same in the classical as well as in the quantum theory, as all masses renormalize with an
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overall factor, see [f], [0, [[] and references therein. We observe here that there are four
“fundamental” masses present in the theory, whereas the other ones can be obtained simply
by a multiplication with the golden ratio

¢:%(1+\/5)=¢2—1. (1.2)

It will turn out that each of the sets (mq,ma, ms3, my) and (ms, mg, m7, mg) can be associ-
ated with an H4-ATFT.

The other popular integrable quantum field theory is the sine-Gordon model, see e.g.
[[2, (3] and references therein. It is a well known fact [[4, [[(§] that once the coupling
constant v is taken to be 1/v = n, with n being an integer, the backscattering amplitudes
vanish and the theory reduces to a minimal D,,1-ATFT. In particular for n = 5 we find
a similar pattern for the mass ratios as discussed above. The Dg-ATFT mass spectrum
reads up to an overall mass scale

mlz(b_l? m2: \% 1+¢_27 m3:17 (1 3)

my = ¢my, ms = ¢ma, me = ¢ms.

It this case the sets (mq,mg, m3) and (mg4, ms, mg) can be associated with an H3-ATFT.

The above mentioned structure can be explained simply by the fact that Hy can be
embedded into Fs and Hs into Dg, such that the non-crystallographic structure is “visible”
inside the theories related to crystallographic Coxeter groups.

Besides having a “non-crystallographic pattern” inside theories related to crystallo-
graphic Coxeter groups, it is interesting to ask the question whether it is possible to
construct theories purely based on these latter groups. In particular, Hs being a three-
dimensional symmetry group of the icosahedron, a regular solid with 20 triangle faces, finds
a natural application in physical [[I6, [, [§], chemical [[9, PO an even biological systems
B1, B2, B3, B4, RJ). In the context of integrable (solvable) models, Calogero-Sutherland
models have been formulated based also on Hz 6, 7] and it should be possible to ex-
tend these investigations to other non-crystallographic Coxeter groups. However, so far no
ATFT for such type of group has been considered, the main reason being that unlike for
crystallographic ones, in this case there is no Lie algebra at disposal, which is vital in that
context. This deficiency can be overcome by exploiting the embedding structure and reduce
the theories associated to crystallographic Coxeter groups to new types of theories related
entirely to non-crystallographic ones. This is somewhat similar in spirit to the folding pro-
cedure carried out by Olive and Turok [P§], who constructed ATFT for non-simply laced
Lie algebras from those related to simply laced algebras, exploiting the embedding of the
former into the latter. However, in comparison, there is one crucial difference. Whereas in
the folding scenario [P§] the reduced models are identical to a formulation purely in terms
of non-simply laced algebras, the models we obtain here vitally rely in their construction on
the embedding and can not be formulated directly in terms of non-crystallographic Coxeter
groups on the level of the Lagrangian.

Our manuscript is organized as follows: In section 2 we review and develop the math-
ematics associated to the embedding of non-crystallographic into crystallographic Coxeter
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groups. In section 3 we apply these notions to affine Toda field theory and construct in
particular their classical mass spectra and fusing structures. In addition we start the de-
velopment of a quantum field theory by computing the mass renormalisations. We state
our conclusions in section 4. In the appendix we present explicit computations of various
orbits of coloured simple roots related to non-crystallographic and crystallographic Coxeter
groups and exhibit how they can be embedded into one another.

2. Embedding of non-crystallographic into crystallographic Coxeter groups

Coxeter graphs are finite graphs, whose edges are labelled by some integers m;; joining
the vertices 4 and j R9]. To each of these graphs one can associate a finite reflection
group. When the crystallographic condition is satisfied, that is m;; for ¢ # j takes only the
values 2,3,4 or 6, these groups are Weyl groups. In contrast to the non-crystallographic
groups, the crystallographic ones can be related to Lie algebras and Lie groups. Lie theory
is exploited largely in the context of integrable models, which is one of the main reasons
why crystallographic groups enjoy wider applications. Here we use the embedding of non-
crystallographic groups into crystallographic ones, such that we can still exploit the Lie
structure related to the larger groups.

2.1 Root systems

In order to assemble the necessary mathematical notions, we start by introducing a map
w from a root system A€ which is invariant under the action of a crystallographic Coxeter
group W of rank ¢ into the union of two sets A" related to a non-crystallographic group
W of rank £ = (/2

Wi AC s AU pATe | (2.1)

Throughout this manuscript we adopt the notation that quantities related to crystallo-
graphic and non-crystallographic groups are specified with the same symbol, distinguished
by an additional tilde, e.g. & € A° = A and & € A" = A. Introducing a special labelling
for the vertices on the Coxeter graphs, or equivalently the simple roots, we can always
realize this map as

(=10/2
. (2.2)

INIA

Q; for 1<

ai = wloi) = { oo, g for 0<i

Our labelling allows for a generic treatment of the embedding and differs for instance from

the one used in [, [, §. A further important property guaranteed by our conventions

is a; - a;, ; = 0. Both types of root systems A and A are equipped with a symmetric

bilinear form or inner product. In [[j] Moody and Patera noticed the remarkable fact that

the map w is an isometric isomorphism, such that we may compute inner products in the
root system A from inner products in A

a-f = R(w(a) - w(f)). (2.3)
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Here the map R, called a rational form relative to ¢, extracts from a number of the form!
a + ¢b with a,b € Q the rational part a

R(a + ¢b) = a. (2.4)

We normalize all our roots to have length 2, such that a2 = @2 =2 for « € A and & € A.
According to (P.J) we may therefore compute the Cartan matrix related to A entirely from
inner products in A

205 -

Kij = = R(w(o) w(og)) = R(¢"Ha,_ 76, 7). (2.5)

aj'aj

where t; = 0 for 1 <7 < ¢ and t; = 1 for 0 < < ¢. For our purposes it will be most
important to achieve also the opposite, which can not be found in [ff], namely to compute
inner products in A from those in A. For this aim we introduce here the map

©: A= AdPA, (2.6)

which acts on the simple roots in A as

& 0(6;) = (o + day, ) for 1<i< i, (2.7)

Note that @(&;)? = 2 + 262, such that @ is not an isometry. Instead, we find that inner
products in A are related to inner products in A by means of

wlog) & =a;-@(a;)  for 1<j<l,1<i<{. (2.8)
Expanding (R.§) yields immediately a relation between the Cartan matrices of A and A

Kt 6K B K}-- for 1§z’§€~ (2.9)
ij 00 T 9K, _p,;  for £ <i<L '
Noting that for the Coxeter groups we consider the Cartan matrices are symmetric, such
that the relations (R.9) also hold with i <+ j. As the right hand side involves only one inner
product in A, this formula achieves our objective and we may now express inner products
in A in terms of those in A. Recalling that simple roots and fundamental weights \; are
related as a; = ) ; Kij\jand &; =) ; KA}, it follows directly that (R.§) also holds when
we replace simple roots by fundamental weights. As K i L\ A;j, this means that (P.9)
also holds for the inverse matrices

Kl 4+ oK ! - =

K1 for 1<i</t
ah (2.10)

qﬁff_,}j for 0 <i</t

!Note that higher powers of ¢ can be reduced to that form by a repeated use of (Q), eg ¢ =1+¢,
3=142¢, ¢* =2+3¢, ¢° =3+56¢,..., ¢" = fn_1+ ¢fn where f, is the n-th Fibonacci number obeying
the recursive relation fn+1 = fn+ fn-1.
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and (2.9), (7)) for a; — i, &; — Xi. With regard to our application it will be particularly
important to relate the eigensystems K and K. Abbreviating kij = K;j and R;; = Kl.(j +)
for 1 < i,j < ¢ we can block-decompose the Cartan matrix K further and verify that

- N ([ K(p) 0 : (T I
UlKU_U1< H+fa>U_< 0 K(_¢_1)) with U_<¢H_H/¢), (2.11)

where I is the ¢ x ¢ unit matrix. This means of course that the ¢ eigenvalues of K, which
are known to be of the form e, = 4sin?(ws,/2h) with h being the Coxeter number (see

x>

below for more details). The s, label the ¢ exponents of VW and are identical to the union
of the / eigenvalues of K(¢) and K(—¢™)

S={s1,50,...,80t =S(p) US (—¢ ). (2.12)

The eigenvalues are invariant under the change ¢ — —¢. Labelling the ¢ eigenvectors of
K by yn, such that Ky, = e,yn,, we can construct the eigenvectors z(¢) and g (—¢ 1) of
K(¢) and K(—¢™ '), respectively, from (2:11)) as

U™ lys = §s(¢) @ iz (—9 7). (2.13)

Conversely, we can construct the eigenvectors of K from the knowledge of the eigenvectors

of K(¢) and K(—¢™1)
ys = 05(0) ® ¢75(¢)  and  yy =Py (=0 ) @ (—¢ Nz (—07") . (2.14)

The first identity follows by exploiting (2-9)

s =K (%@)) - (a +> <¢yy(52>> - (Ké@ fz?¢>> <¢yy(?2>> (215

The second relation in (P.14) is obtained by the same argumentation with ¢ — —¢ L.

=

These facts will not only be crucial to formulate new types of ATFT, but also to explain
patterns in well studied models. The knowledge of the distribution of the exponents with
respect to the embedding is important as they grade the conserved charges. The classical
masses are known [[L0, B, B1] to organise as components of the Perron-Frobenius vector
y1, such that (P-14) explains the aforementioned mass patterns ([[.1) and ([.3).

2.2 Coxeter groups

Having related the root systems A and A, let us see next how to relate the corresponding
Coxeter groups W and W, which leave them invariant. We recall B2, B9 that Coxeter
groups are generated by reflections on the hyperplane through the origin orthogonal to

simple roots a;
PN e 7

oi(x) =2 —2 o for 1 <i </, xeR" (2.16)

(67N e 7]
We can then think of the Coxeter group W as the set of all words in the generators {o;}
subject to the relations
(0io;)™7 =1, 1<4,5 <U¢, (2.17)
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where the m;; can take the values 1,2,3,4,5 or 6. Here we focus on the Coxeter groups
for which the Cartan matrix is symmetric, in which case m;; = marccos™ (—K;;/2) are
the integers labelling the edges of the Coxeter graph mentioned at the beginning of this
section. W is constructed analogously when replacing K by K (¢). Note that when we use
instead of K(¢) the matrix K(—¢~1), which naturally emerges through (B-11]), this will
lead to the same Coxeter relations.

From a group theoretical point of view we can identify 6; < o0, ;. With the help of
the map w we can relate the reflections &; building up W to those constituting W as

Giw = woio,, ; for 1<i<?. (2.18)

This is seen easily by acting on a simple root in A

woio,, p(ay) = w oy — (aj - g gy, — (0 - ai)a] (2.19)
= w(aj) — (o - o, )a; — (- i), (2.20)
where in (R.19) we used twice (2.16) and the fact that in our labelling we always have

;- a;,;=0. Then (B-2Q) simply follows upon using (2.9). On the other hand using (R.14)
for W and (2.§) thereafter, we obtain

Giw(oy) = w(oy) — (w(ay) - &;)a; (2.21)

= w(ozj) - ¢(()éj . O‘H-Z)di — (Oéj . Oéi)di. (2.22)

In [[i] a similar identification has been made for the specific case of the embedding Hy — Fg,
which relies on the property of an inflation map which mimics the action of w entirely inside
A. Here we avoid the introduction of such a quantity.

Furthermore, for the second map © we have the supplementary identity

D6 =00, ;@ for 1<i<?, (2.23)

which follows from a similar argument as (R.1§) upon using ([.16), (B.7) and (£.9). As we
saw already in (2.§), we note here that @ plays the role of the “inverse” of w. There is no
analogue to the inflation map in this case. More precisely we find

- 2 - [T oI
wo=(14¢)I and @w= (@I (bzﬂ), (2.24)

where T is the £ x £ unit matrix already encountered in (E-11)).

For the application we have in mind, it is important to note that the entire root
system A can be separated into orbits €2;, such that A = Ule Q;, each containing h roots.
Here h is the order of the Coxeter element o, i.e. the Coxeter number already introduced
after (R.11]), which is a product of £ simple reflections with the property o = 1. As the
reflections do not commute in general, such that Coxeter elements only form conjugacy
classes, we have to specify our conventions. For this purpose we attach values ¢; = +1
to the vertices i of the Coxeter graph, in such a way that no two vertices related to the
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same value are linked together. The vertices then separate into two disjoint sets Vi and
the Coxeter element o = [[,oy, 0y Hi€Y+ o; is uniquely defined. ]introducing “coloured”
simple roots as 7; = ¢;a;, each orbit €;(£2;) is then generated by h(h) successive actions of
o(5) on v;(3;) B3, B4]. Since we know how to relate the simple reflections of W and W by

means of (P.1§) and (E.ﬁ), it is obvious that the Coxeter elements are intertwined as

ow = wo and o = ow. (2.25)

Note further that

5@' = C; = Ci—l—f‘ (2.26)

which is important for (2:2§) to work, as it guarantees that (R.1§) is not an obstacle for
the above mentioned separation of the product into different colours. We then find that

Q; for 1<i<i=10/2
Q;) = ~ ~ 2.2
w(€) {ngi for ¢<i<U4. (2:27)

Thus we can realize the map (R.1) orbit by orbit.
After this generic preliminaries let us discuss in detail the concrete examples of the
embeddings Hy «— Ay, H3 — Dg and Hy — Eg.

2.3 The embedding Hy — Ay

We start with the most simple example, that is the embedding of Hs (also referred to as
I(5), see e.g. [9)) into A4. First of all we have to fix our conventions for naming the simple
roots, which we do by means of the following Coxeter graph (where we adopt the common
rule B2, B9 that the label m;; = 3 corresponds to one lace)

v g a3 o w 01 90y Pay G
® ® @ | ] — @ ® ® o

These conventions guarantee that we can realize the map w as defined in (R.3), which is
also indicated in the above diagrams. Accordingly, the Cartan matrix of A4, as defined in
general in (R.H), reads

2 0 0-1
0 2-1 0 K oK

K= =R| - ‘é’ , (2.28)
0-1 2-1 oK °K
-1 0-1 2

where the Cartan matrix of Hs is

- 2 —¢
K = <_¢ 2) : (2.29)

We may read off relation (R.9) directly by comparing (R.2§) with (£.29). Furthermore,
we note from the second relation in (R.2§) that the identity (P.§) holds by reducing the
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higher powers of ¢ as indicated above. The Coxeter numbers are h = h =5 and the set of
exponents separate according to (2.12) into

{1,2,3,4} = {1,4} U {2,3}. (2.30)

Let us now see in detail how w acts on the orbits 2; and how the map (.27) is realized. We
choose 0 = 01030904 and 6 = G169 for the Coxeter element of A4 and Hs, respectively. The
corresponding orbits §2; and Q,; are computed by successive actions of o and &, respectively,
on the simple roots. One realizes that the map w relates them indeed as specified in (2.27).
Indicating in the first column the elements o? (67) for 1 <p < h = h with which we act
on the roots reported in the second row, we find for instance

H | [w(@) =0 Qs | w(Qs) = ¢ |
007 &0 (€3] 641 a3 ¢&1
0'1,5'1 a3+ ay ¢(d1 +C~¥2) a1 +ag +az+ oy ¢2(C~¥1 —l—dg)
0'2, 52 a9 (~Jé2 g qbdg
03,6% | —as —az | —¢d1 — ao —o1 —ag—as | —¢°a) — pan
o', 6 | —an —ay | —a1 — ¢y —ap—az—ay | —pd — ¢%as
057 &5 g 641 a3 ¢&1

In order to establish the last identification w(Q3) = ¢Q; we simply need to make use of
relation ([.9). Furthermore, we obtain for the remaining orbits

| [ 9 | w(@)=9 | 94 [w(0) =60, |
o9, 60 —g —aup —oy —pan
0'1,51 Qg + a3 Py + Qo a1+ a3+ oy ¢2d1+¢d2
0'2, 52 a1+ oy 01 + O a9+ a3+ oy oay + ¢2C~¥2
0'3, 5’3 —Q] —dl —Q3 —¢d1
oh,6" | —as—ou | —¢(a1 +d) | —a1 — s —ag— oy | —¢° (A1 + da)
o°,5° - —ar —oy —pas

The identification w(Qy) = ¢Qy follows upon using ([.J). Having established how the root
system A can be mapped into A U ¢A orbit by orbit, we want to see next how W relates
to W. In principle we have to check all [W]| relations in (E17). However, it suffices to
establish the identification (P.I§) for the generating relations of W. It is known that H
can be generated entirely from 67 = 1 for i = 1,2,3 together with

(6162)° = 1, (2.31)
which follows directly from the previous tables, since ¢ = 6162. In A4 this corresponds to
(01030204)° =1 . (2.32)

The remaining relations are trivially satisfied. We know that by definition 0? = 1 and
therefore this also holds when squaring the product of the embedding on the right hand
side of (R.1§) (O’iO'H_l;)z = U?O’?+Z = 1. We used here the last equality in (R.24), such that
o; and o, 47 commute.
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2.4 The embedding Hs — Dg

In this case we fix our conventions as

QY ¢dl

o—o ° s -  e—e ° Bévs

2-1 0 0 0 0
-1 2 0 0 0-1
00 2 0-1 0 K ¢K

K: :R ~ ~ 5 233
0 0 0 2—-1 0 <¢K¢2K> (2.33)
0 0-1-1 2-1
0-1 0 0-1 2

where we also exhibit relation (R.F). Noting further that the Cartan matrix of Hj is

2 -1 0
K=|-1 2-¢], (2.34)
0—¢ 2

the relation (P.9)) is read off directly by comparing (P.33) with (R.34). The Coxeter numbers
are h = h = 10 and the set of exponents separate according to (R.12) into

{1,3,5,5,7,9} = {1,5,9} U {3,5,7}. (2.35)

Let us now see how w acts on the orbits €2; and how the map (R.27) is realized. We choose
0 = 010403060205 and & = 616309 for the Coxeter element of Dg and Hg, respectively. The
corresponding orbits €; and ; are computed by successive actions of o and &, respectively,
on the simple roots. One realizes that the map w relates them indeed as specified in (2.27).
See appendix A for the explicit computation of the orbits.

Once more we may check how the root system A can be mapped into AU ¢A orbit by
orbit. First we relate W to W and verify (B1§) for the generating relations of W, which
for H3 are known to be &ZZ = 6?+2 =1 for i = 1,2, 3 together with

(6263)° = (5152)° = (6163)> =1, (2.36)
We verify that (R.36) corresponds to
(02050306)° = (01040205)> = (01040306)* =1 . (2.37)

By the same reasoning as in the Hs-case it also follows that (o0, H;)z =1.
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2.5 The embedding H; — Fjg
Also in this case we first fix our conventions for naming the simple roots in order to
guarantee that we can realize the map w as defined in (R.9). Here we label according to
the Coxeter graph

(67} 544

as o Ia7 ag oz a2 Qg w pa1 Pan I¢d3 Pay 3 Qy  Qq
o—o o—9o o o — o—o o—9o o o

The corresponding Cartan matrix of Fg together with its construction from inner products
in A in agreement with (R.) is

2-10 0 0 0 0 O
-1 2-1 0 0 0 0 0
0-1 2 0 0 0 0-1
000 2 0 0-1 0 K ¢K
K: :R ~ ~ . 238
00 00 2—-1 0 0 <¢K¢2K) (2.38)
00 0 0-1 2-1 0
00 0-1 0-1 2-1
0 0-1 0 0 0-1 2
The Cartan matrix of H, reads
2-1 0 0
- -1 2 -1
K= 0 (2.39)
0-1 2—¢
0 0—¢ 2

Now the Coxeter numbers are h = h = 30 and the set of exponents separate according to
(2.12) into
{1,7,11,13,17,19,23,29} = {1,11,19,29} U {7,13,17,23}. (2.40)

In order to see how w acts on the orbits 2; and how the map (B.27) is realized, we choose o =
01050307020¢0408 and 6 = 1030204 for the Coxeter element of Fg and Hy, respectively.
We may then compute the corresponding orbits €;, €; by successive actions of o, & and
the simple roots and realize that the map w relates them indeed as specified in (P.27). See
appendix for the orbits. The individual reflections are related as (R.1§) and the generating
relations for the Coxeter group are

(6667)° = (6465)° = (6466)° =1 . (2.41)
which correspond to
(020'60307)5 = (040'80'105)3 == (040'80'206)3 =1. (2.42)

By the same reasoning as in the Hs-case it also follows that (o0, +Z>2 =1.

— 10 —
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3. Affine Toda field theories

3.1 Generalities

In this section we will demonstrate how one may construct an affine Toda field theory
related to a non-crystallographic Coxeter group W from a theory related to a crystallo-
graphic Coxeter group W by means of the discussed embedding. We start by taking G to
be a Lie group with H C G a maximal Torus and h its Cartan subalgebra. Then the affine
Toda field theory Lagrangian can be expressed as [B0, B

L= %Tr <% 8ug_18“g — ngEg_lET> , (3.1)
where g = exp(8®) € H, 3 is a coupling constant and m a mass scale. The regular element
E = n-h' with conjugate E' can be expanded in the Cartan subalgebra in apposition h; e H'
BH]. We normalize the trace according to the Cartan-Weyl basis, that is Tr (E,E_o) = 1.
Notice that one can not write down a Lagrangian of the type (B.1]) and relate it directly to
a non-crystallographic Coxeter group, since there is no proper Lie group and Lie algebra
associated to them.

Conventionally one introduces ¢ scalar fields ¢, by expanding the field ® in the Cartan
subalgebra ® = Zle ¢;H; with Cartan Weyl generators H; € h [B0, Bll]. Developing now
the Lagrangian (B.1]) in powers of the coupling constant, it follows that the term of zeroth
order in 3, i.e. the quadratic term in ¢; becomes

l l
1 1
5 Som o = =g Y il [ (32)
i=1 i=1

such that the mass of particle ¢ can be identified as m; = m|n-«;|. Here 7 is the eigenvector
of the Coxeter element with eigenvalue exp(27i/h). Proceeding to the first order term in
0, the constant in front of the cubic terms in the fields divided by the symmetry factor 3!
is taken to define the three-point coupling. It is computed @] to

43m?
Ve

where A;jr = /s(s —m;)(s —m;)(s — myg) with s = (m; + mj +my,)/2 is Heron’s for-
mula for the area of the triangle formed by the masses of the three fusing particles i, j, k.

Cijk = EijgDijk (3.3)

The structure constants e, result from the Lie algebraic commutator [E,,, quwj] =
eiqu%Jrgq,Yj = siququ and for simply laced Lie algebras are normalized to ;54 = +1,0.
The ~v; = ¢;; are the coloured simple roots introduced in section 2.2. In other words the
three-point coupling Cjj;, is non-vanishing if and only if the commutator of step operators
related to roots in the orbits €2; and €2; is non-zero. Through this reasoning the fusing rule
B3

Cijk#0 & y+o0ly+0Py, =0 (3.4)

can be related to the ATFT-Lagrangian.
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Affine Toda field theories related to non-crystallographic Coxeter groups

Having computed these classical quantities one may ask the question towards a formu-
lation of the corresponding quantum field theory. A first glimpse of its nature is obtained
from a perturbative computation of the mass corrections. For ATFT the logarithmic diver-
gencies of the self-energy corrections can be removed simply by normal ordering [B6, [L1].
Then the one loop corrections to the mass of the particle & are just the finite contributions
resulting from a bubble graph, which were found [§, [0, [L1] to be

_ZZw(mi)

om2 = 3.5
my (27T)2 ) ( )
where the sum extends over all intermediate contributions
C: o~
S ) = in T 0) 36
ij m;my; sin 07

with 9% being the fusing angle for the process i + j — k.

One should note that instead of the Lie algebraic formulation for the affine Toda field
theory Lagrangian (B.1]), one can in principle also start with a Lagrangian for which the
trace in (B.1)) is already computed in the adjoint representation, such that it involves only
roots rather than Lie algebraic quantities

m2 L

% 0,® - —2 Z n; exp(fa; - ). (3.7)

=0

L =

Here ag = — Zf:o n;a; is the negative of the highest root and n; the Kac labels. In this
case the expansion of the Lagrangian in 3 yields

l
MQ)Z.]. =m? ana;af, and Cijx = Bm? anap ) p (3.8)
=0 p=0

In most cases the two formulations are equivalent, however one is often more advantageous
than the other. For instance, (B.7) does not allow for a generic case independent treatment
as it relies on a special choice of the basis for the roots «; needed to ensure that the
mass matrix becomes diagonal. In addition (B.I)) yields an explanation [30, B for the
fact that the masses of ATFT organize into the Perron-Frobenius vector of the Cartan
matrix and a generic derivation [BI]] of the fusing rule (B.4). For our present purposes
it is important to note that (B.1) relies on the existence of a Lie algebra, whereas (B.7)
only requires a root system. Thus in principle we could write down a Lagrangian of the
type (B-7) for non-crystallographic Coxeter groups, but the formulation of an equivalent
Lie algebraic version would be impossible. In addition, classical integrability for ATFT
is established by means of a Lax pair formulation in terms of Lie algebraic quantities
B, BY). Therefore it would remain an open issue whether for non-crystallographic Coxeter
groups (B7) corresponds to integrable models or not. Here our formulation will not be a
Lagrangian of the form (B.7) involving a non-crystallographic root system, but rather a
reduced system which exploits the previously discussed embedding structure with regard
to the Cartan subalgebra in apposition. The crystallographic Lie algebra structure is
preserved in the reduction procedure, from which we can see immediately that the new
theories also possess Lax pairs ensuring the classical integrability.
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Affine Toda field theories related to non-crystallographic Coxeter groups

3.2 Reduction from crystallographic to non-crystallographic ATFT

Somewhat analogue to the folding procedure [R], we may now alter the above expansion
of ® in order to define a new theory, which in this case only contains ¢ = ¢/2 scalar fields
©@,. This is achieved by expanding

= /2

/\I/\

IA IA
S~

‘ 1 ¢ for 1
O =3 ulp)H;  with u(soi):—{j;, o (3.9)

P V3 for
Here the map p is inspired by the previously introduced map & (R.7). At this point one
could have also defined y in such a way that it multiplies the fields ¢, for £ < i < £ by ¢~ L.
However, the choice (B.9) is distinct by the structure emerging below for the three-point
coupling. Other possibilities are also conceivable. Having an alternative expansion for the

fields @ as in (B.9), we re-consider first the quadratic term (B.9) in the expansion of the
Lagrangian, which now becomes

7
——Zm2 |1(&,)] 2_:

We take this identity as the defining relation for the masses of the ¢ new scalar fields &52

(67*mi +m? ;) (@) (3.10)

l\’)l»i
OJ|>—‘

~ 2

3

1 -2 2 2 2

In (B.11) we made use of the fact that the masses m; can be identified as the components
of the Perron-Frobenius eigenvector of K, that is m; = (y1);- Subsequently we employ
(2.14) which implies that m; = ¢m, 47 and then ¢~ 2+ ¢% = 3. We also notice the fact that
the masses m; admit a “genuine” interpretation as belonging to an affine Toda field theory
related to a non-crystallographic Coxeter group, since (R.14) also implies that the masses
m; are the components of the Perron-Frobenius eigenvector of K ().

Similarly we proceed further and read off the next order term in 8 to define a new three-
point coupling éwk We compute

Cijk = $°Cliroyisbord T 9 ( iG+0 (k48 T Clirdyjord) T C(z'+2)(j+£)k)
+¢ ( @ikt Cigirpe + € (k+£)> + Cijk, (3.12)

for 1 < i,j,k,< £. The identification of the Coxeter element (2.1§) translates the fusing
rule (B-4) into

Cijk # 0 VN wy; + 6wy + Pwy, =0, (3.13)

& ¢+ G167, + ¢ PT, =0, (3.14)

where the t; are the integers introduced in equation (R.5). The relation (B.14) is entirely
expressed in quantities belonging to the non-crystallographic Coxeter group. In comparison

with the fusing rule related to ATFT for simply laced Lie algebras (B.4), it had to be “¢-
deformed”, somewhat similar to the g-deformed versions of the fusing rule needed for
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ATFT associated with non-simply laced Lie algebras [BY]. Note that besides the two non-
equivalent solutions related as ¢ — h+1/2(¢; —c¢j) —q and p — h+1/2(¢; —¢j) —p B4, B9,
in (B.14) there could be more solutions corresponding to different values of the integers
tiyty, th.

Alternatively, we may compute the masses and three-point couplings from the La-
grangian (B.7). Using the expansion (B.9) in (B.7) yields the same quantities. We obtain
now

0
(312) =m?Y mpajag  and  Cyp=Bm? Y myahagal. (3.15)
ij
0

where we have folded the /-components of the root a;, with 1 <4 < ¢ into an /-component

vector 1
S0 ah+apth) | (3.16)

for 1 < i < . We stress that this is not the same as writing down (B77) for a non-
crystallographic root system, since it still involves ¢ roots, albeit now represented in R¥.
Having computed the three-point couplings for the reduced theory, we may compute the
mass renormalisation from (B.6) as

C: oF.
> (mp) =ir 7”'“( ) (3.17)
ij m;m; SIH9

This will shed light on the possible form of the scattering matrix for ATFT related to
non-crystallographic Coxeter groups.

3.3 From A, to Hs-affine Toda field theory
Let us now make the above general formulae more explicit. When ignoring the overall mass
scale, the masses of A4-ATFT can be brought into the simple form

mi=mg =1 and ms = my = o. (3.18)

Keeping the same normalization for the overall mass scale, the identity (B.11) yields for
the classical masses of the Ho-ATFT

ﬁll = mi and ﬁlg = may. (319)

According to (B:d) and (B13) we then compute the three point couplings Cyj and Cjjx
together with their corresponding fusing rules, which result from the tables provided in
section 2.3

Ciiz = %Ang Y1+ 07, +0%y3 =0 |Cri1 = 3¢Chi3 = %\/9 +126A11
Craa = ¢C11z |71 + 0%y, + 0yy = 0[Cra2 = ¢°Clus
Coos = —Ciiz 7o+ 075+ 07, =0 |Cago = —Ci13
Cass = —¢C113|70 + 075 + 073 = 0 [Cary = —Chas.

(3.20)

We did not report the factor 3m? in each of the couplings. Here Aijk is the area of the
triangle bounded by the masses m;,m;,my. Note that now the factor of proportionality
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between ]C’Uk\ and Aijk is no longer universal as in (B.J). This is sufficient information to
carry out the perturbation theory up to order 52. The mass corrections to 7 according to
B.17) are computed by summing the convergent contributions to the one-loop corrections,
which up to the symmetry factors are

1 1 2
(12 :% + *& + *&
(1) i . i i _ i i . i
i 5 5

We omitted the usual arrows indicating the time direction and assume throughout this
paper that they all run to the right hand side. We computed the symmetry factors by
applying Wick’s theorem and include them into formula (), such that

T ~ - ~

3 () = in—35- (1801211 + 3602, + 1802221> . (3.21)
ij sin 5

where we assume that the particles are conjugate to each other, that is 1 = 2, 2 = 1
where the bar indicates the anti-particle. Similarly, the mass corrections to 1o result from

summing

2 2 1
(3) 5 . 5 5 - 5 5 . 5
p) i i
which gives

s _ N -
3 () = in—35- (1802222 + 3602, + 1801212> . (3.22)
ij sin 5
Assembling this according to (B.H) yields the important fact that the classical mass ratios
are conserved in the quantum field theory

dm?2  om3 /3 ~

—t=—2=""(54+3¢)C%; . 3.23

m% m% 4 ( (b) 111 ( )
This means at first order perturbation theory the masses renormalise equally. As the
masses of both particles coincide and they undergo the same fusing processes, they appear
to be indistinguishable at this stage. This possibly hints towards a non-diagonal scattering
theory, that means a theory in which backscattering is possible. However, it remains to be
seen whether there exist higher charges in this theory which make the particles distinct.

3.4 From Dg to Hs-affine Toda field theory

The masses of Dg-ATFT are known for a long time and can be brought into the form ([L.3).
Keeping the same normalization for the overall mass scale, the identity (B.11) yields for
the classical masses of the H3-ATFT

my = ¢ ", My =1/1+ ¢ 2, s = 1. (3.24)
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According to (B.J) and (B.12) we then compute the three point couplings Ciyjr and C’ijk
together with their corresponding fusing rules, which result from the tables provided in the

appendix

Ci2 = 4i/vV/10A119
Caz = $°C119
Caas = ¢*C11a

Y1407 + 0%, =0
Y4+ 0P+l =0
Y4+ 074+ 0% =0

Cr12 = (106 + ) A1z

Coes = —°Ch12
C332 = ¢°C119
C335 = ¢*C112

Y6+ 076+ 0775 =0
V3 + 003+ 0Ty, =0
V3 + 073+ 0% =0

C339 = —(1 + 5¢)Azag

Ci26 = $*C112
Cis6 = ¢°C11a

v+ 0Py + 0% =0
N ot +0%y =0

Cla3 = 5.56758 A 195

(3.25)

Ca25 = (¢* — 1)Ci12
Cas5 = (¢ — ¢°)Ch12

Y2+ 0%y, + 005 =0
Y2+ %5 +07y5 =0

Co = —8.6253A999

C134 = ¢*C112

M+t +olyy =0

Criz = 2¢°Aq13

C346 = $°C112

V3 + 0%y, + oty =0

Ca31 = 2¢°Aga1.

Here we did not report the factor of i#m?24/4/10 in C. The fusing rules reduce according

to (B.1J), for instance

Y1+ oy + 0%, =0 = 5, +5%, +5%, =0, (3.26)
Y+ 0P+ 07y, =0 = 97+ ¢6°7, + 57, =0, (3.27)
Y4+ 07+ 0% =0 = ¢ + ¢57, + po’vy, = 0. (3.28)

Note that we can construct the solution (B.2§) trivially from (B.24) simply by multiplying
it with ¢. However, (B-27) can not be obtained from (B.26) or (B.2§) in such a manner and
has to be regarded as independent.

As described in the previous section, we compute the mass renormalisation to

N2 T ~2 ~2 2w ~2 2w
(m3) = im (3.29)
ij mimesin ¥ gmgsin(r — @) amgsin ¥ mymgsin 5%
2 T 2 T ~2 8w ~2  Am
Z (7%2) —in 18C5% 36CT935 18CT15 75 4 18C333 75 (3.30)
.. 2) — ~  ~ . ~  ~ . ~  ~ . ~ ~ . .
v momao sin 2% mimsgsim % mimg sin % ms3ms sin %
~2 3w ~2 ~2 4w ~2 4w
(m3) = im (3.31)
ij momgsin & momgsin(m — @) mymasin S mymgsin 85

where we abbreviate ¢ = arctan ¢~ ', ¢ = arctan ¢. From this it follows then that classical

mass ratios are not conserved in the quantum field theory

5 2 2 5 2
T _196.996... 2 —647.392... and 3 —024.343...  (3.32)
my ma ms3

This means that the scattering matrix for H3-ATFT can not be of the simple form as for
ATFT related to simply laced Lie algebras.
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3.5 From Fjs to H, affine Toda field theory

The masses of Eg-ATFT in the form ([[.1)) indicate the underlying Hy structure and (B.11)
yields for the classical masses for the H4-ATFT

ml =m, mg = my, mg =ms, m4 = Mmy. (333)

Similarly as in the previous section we compute the three point couplings C;j;, and C’ijk
from (B.3) and (B.12) together with their corresponding fusing rules

Cinn = \;?Z,;o 0.433013 71+ 010, 1 620, =0
Cs11 = —= 0.475528 12 18y —0 | - .
v Yoo o Chuy = 31.3768 Ay
Css51 = ¢Cs11 Vs +o s +ot iy =0
Css5 = $*Cint ¥5 + 00795 + 0205 =0
Con = 5 0.103956 |~y + oMy, + 015y, =0
Cso1 = —¢*Csn V5 4+ 0B3vy + 0%y =0 | Copr = 37.1363 Appy
Coss = ¢°Conn Y6 + ot ys + oty =0
21 = — 5 0.307324 |y, + 015y, + 0109, =0
Cg31 = —C. By, 400y, =0 | = ~
631 132/ ¢ V6 9’}’3 ; " Gt — 22,6132 Aoy
Ces3 = Ci32 Y6+ 005+ olTyy =0
Cre5 = —¢20321 Y7+ 015’}/6 + 01675 =0
Cin = fg—o 0.972789 Y4 0By, + 0%, =0
C = — 20 + 0—14 + 0.17 =0 5 ~
o = =07 Cn Toro Jato Cuan = 9.92482 Aoy
Cse1 = ¢°Ca1 vg + oty + o8y =0
Cses = ¢°Cya g + B + 01995 =0
Cuz1 = —fé—o 1.09848 [ ~, + 03y5 + 0249, =0
Cs31 =C. + oty + oy, =0 | .
831 121/ ¢ V8 1473 2771 Gt = 8.65727 Ay
Csr1 = —Cuz s + oy, + 0%y =0
Csrs = —¢*Cuzt g + By, + 0%y =0
Cin = = 1.17616 4+ 0By + o2y, = 0
Cgsas = —Cyoq g + 013’75 + 016’74 =0 | Cya1 = —14.4209 Ays1
Csss = —¢*Can v + B3y + 0?ly, =0
Cs41 = Cy21/0 Y5 + 01474 + 02671 =0 C~’411 _ 5 95386
Ch54 = —¢°Ca1 Y5+ 0Ty + 09y, =0
Crr = —Cuso | 7+ oty + 0%y =0 | Cagr = —4.27444 Agyy
Cao = _\;l?i_o L71313 | 4y + 010y, + 020y, =0
Co22 = ——= 1.88133 +ol® 120, =0 | - _
" Va0 o 01272 i 02172 Ca2 = —9.1965 A
Ce62 = 9Cp22 Yo+ o v+ 077, =0
Cog6 = —¢*Caao Y6 + %76 + 0205 =0
Cz92 = —fé—o 196731 [ g+ 012y, + 099, =0
Crea = —Cazo Y4 oMyg + 018y, =0 | Cz2o = 3.75947 Aszgy
Cre6 = —¢*Csa2 Y7 4 012y + 01995 =0
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Cs22 = Cuz2 /0
Cosa = —¢°Cs1

Y5+ 00 + 0%y =0
Yo+ 05+ 0ty =0

Clao = 9.55253 Ao

| Cson = ¢°Csn

Y8ty + 0%, =0

Cyoo = —0.683318 Ao

V30
Cszo = $*Cuz
Csoz = —¢*Cuz
Csr6 = ¢°Cuzo

Chzo = 2L 2.37859

Yty + 0Py =0
Vs + 0Py + 0y, =0
Vs + 0y + 0y =0
Vs + 0y + 0%y =0

Cysz = 15.2555 Ayso

Cr3a = —Cuz2/
Crra = —¢°Cuz

vr+otlyz+ oty =0
e+ 0By + 0%y =0

Cy30 = 2.68177 Asss

V3 + 0095+ 0073 =0
Y7+ 0Py + 018y =0
V7 + 0Py + 0%y =0
V7 + 009 + 0%y =0

Cs33 = 7.1965 Asss

Csrr = $*Cuss

Caag = — j% 3.78439
Cr3z = \j% 4.15597
Cr73 = ¢Cr33
Crrr = ¢*Cass
Cyzz = — j% 3.24742

Cra3 = —¢*Cuz

Ya+ 003+ 023 =0
Vet By + oty =0
V3 + 0%+ 0%, =0

Cuss = —9.22437 Ays3

Csgs = —¢*Cuaa

Vs + 00 + 0075 =0

Css3 = —Ciy21 vs+ oty + 0Ty, =0 | Criz = —2.5468
Cuag = — 755 250428 | o, + 6105, + 020, =0
Csys = -2 2.75016 +ol2y 4 ol8y =0 | - }
844 \/_@ 78 1274 2174 0 Couut = 20.3768 Ay
Cssa = ¢Csaq Vst o g+ 0Ty =

| Cou = ¢°Cuz

Yo+ 0" v+, =0

| Ca1q = —2.13686 Aoy

Craqa = Cy21/9
Csra = ¢°Cuz

Y1+ 00+ 00y, =0
Vs + 0Py + 0%y, =0

Csay = —8.34233 Asyy

Also here we did not report the overall factor of i3m?4/+/30 in C. Note that Cy1; and
Cs11 have no classical mass triangle associated to them and therefore yield no poles in the

propagators. The nonvanishing one-loop contributions are therefore

i i 3 3 3
Y(m?) = 1{}1+T<}1+1{>1+T<}1+1{}1+
1 2 3 4 4

5 3 i
iCQ I+iC§ 1+Tg

i i i i 2
2m3) = < O+ O+ O+ O+ <O
i 2 3 i 3

5 3 5 3 i
QCZL Q+QCZL §+7<Q>Q+QC§ Q+QCZL 5
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i i i 2 2
3 = < O+ O+ O+ O+ O+

2 3 i 3 4

3 2 3 4

éCZL 3+gC§é+?<§>§+écag

i i 1 2 2
Sy = < O+ O+ O+ O+ O+

2 3 4 3 i

3 2 3 i
21:4 21+?1:§ 4+T<§}4+4:1?1

From this it follows that the classical mass ratios are not conserved in the quantum field

theory
om? om3 m3 om3
O 54045.1... U2 - 68230.3... 8 —11488.2... ol —=291428... (3.34)
my m3 m3 my

Hence we have the same type of behaviour under renormalisation as in the H3-ATFT
obtained from the reduction of the Dg-ATFT.

4. Conclusions

With regard to previously studied ATFT, the embedding of non-crystallographic into crys-
tallographic Coxeter groups leads to an explanation for the fact that in some theories the
masses can be organised into pairs such that one mass differs from the other only by a
factor of ¢. This also holds for the higher charges.

We showed that it is possible to construct ATFT related to non-crystallographic Cox-
eter groups despite the fact that there is no Lie algebra associated to them. The con-
struction is possible since one may exploit the embedding of non-crystallographic into
crystallographic Coxeter groups, making use of the fact that the latter do possess a Lie
algebraic structure and thus preserving integrability. Unlike the folding from simply laced
Lie algebras to non-simply laced Lie algebras [2§], the resulting theories we obtain here
are not equivalent to a direct formulation of the theory in terms of non-crystallographic
Coxeter groups. In this context the reduction procedure is vital for consistency and not
merely an additional structure. It is of course possible to write down a Lagrangian of the
form (B.7) involving directly roots of A, but it remains to be seen whether such theories
are consistent and especially if they are classically integrable.

With regard to the quantum field theory, our computations showed for the Hs, H4-
ATFT that the masses of these new theories do not renormalise with an overall factor, i.e.
(5mi /mi is not a universal constant for all particle types k, preventing that the classical
mass ratios can be maintained in the quantum field theory. Remarkably this was true for
ATFT related to simply laced Lie algebras, which allowed for a relatively straightforward
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construction of the scattering matrices [[{J]. For ATFT related to non-simply laced Lie
algebras this was found no longer to be true, such that different types of scenarios had to
be devised. One is to have floating masses such that depending on the coupling constant
the masses flow from one Lie algebra in the weak limit to its Langlands dual in the strong
coupling limit [0, [, B3, E3, B4, E3, EG, Bdl. The other alternative proposal was to
introduce additional Fermions into the model [{7, B§, 9, b0, which compensate for the
unequal mass shifts. From our analysis it is clear that the construction of a consistent
quantum field theory for the proposed Hg, H4-theories has to be modelled along the line
of the construction of theories related to non-simply laced algebras due to unequal mass
renormalisations for each individual particle. It remains to be seen in future work, which
of the prescriptions will be successful in this context.

As we showed, the behaviour under renormalisation is different for the Hs-ATFT,
where the classical mass ratios remain preserved up to first order perturbation theory.
Despite this, it is not immediately obvious how to write down a scattering matrix to all
orders in perturbation theory.

Our detailed analysis of the embedding of non-crystallographic into crystallographic
Coxeter groups allows one to apply the aforementioned reduction method to a wide range
of application in physics, chemistry and biology, where Coxeter groups play a role. For
instance in our forthcoming publication [F1]] we will apply this method to the generalized
Calogero-Moser models.

Acknowledgments. C.K. is financially supported by a University Research Fellowship of
the Royal Society.
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Appendix

A. The orbits of H; and Dy

Successive action of 0 = 010403060205 and 6 = 616302 yields

[ o [ em=m [ o | s@-on ]
" a aq Qy Py
ol a9 + Qg Qs+ ¢ as asz + as + ag 5256[2—1—@2525(3
02 | a3+ oyt a5 | pan + Gdg +ag | a1+ az+ oy + a5+ ag | 9701 + @as + dag
o3 a5 + ag 10} (542 + 5&3) a9 + a3 + as + ag ¢2 (542 + 543)
ot a1 + o ay + g a4 + as o(a + ao)
o” - —ay —oy —pa

] . . % |
O'O — Q9 —6&2 —Q5
ol a1 + ag + ag a1 + Qo + ¢pag a3+ a4 + a5+ ag
o | az+as+tast+as+as | ¢par+ das + ¢*as | a1+ ag +az+ as + 2a5 + 206
o3 as +ag+ 205 +ag | da + 2060 + 2as | oy 4+ 200 + ag + ay + 205 + 20
ot a1+ o+ as + ag 5414—(2326&24-(;5543 s + ag + ay + 2a5 + ag
O'5 (65) 6&2 (6759

L | % [ (@) =05 | % |
O'O Qs 6&3 Qg
ol ay + a5 + ag d(aq + ag + as) ]+ o+ a3+ a4+ a5 + ag
o || a1 + s+ as + a5 + ag &1+¢2d2—|—¢2d3 s + a3z + a4 + 205 + 204
o3 Qs + ay + a5 + ag d(a1 + paa + a3) | a1+ g+ as+ ag + 2a5 + ag
ot as + as ¢dvo + g ag + a5 + o
o® —asg —ag —Qg

We did not write here the additional &° in the first column. The identities w(Qy) = ¢,
w(Q4) = N and w(Qg) = #3 follow upon using ().
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B. The orbits of H, and FEjx

Successive action of 0 = 01050307020¢0408 and & = G103020, yields

L [ w() = 2 H
O‘O o 6[1 (07
ol a9 + a3 Qo + Qg ag + ar
o2 ar + ag (23(0734-644) az + a4 + ar + ag
- - - N a1+ o+ a3+
o3 || as+ as + ar + ag d(a1 + g + ag) + ay ! 2 3 5
+ag + a7 + ag
- - - a9+ o3+ oy +
o a3 + ag + a7 + ag pao + 5252043 + ¢y 2 3 1 6
+2a7 + ag
- - - - a3+ o4+ oy +
o | +as+az+as+ar+ag | a+ s+ ¢ (a3 + dy) 3T E4TES 6
+2a7 + ag
6 N - 2/~ - a1+ g + a3+ g
o Q9 + a3+ a5+ ag + a7+« a1+ oyq) + Q9 + «
2 +az+as+as+ar+ag | ¢(ar + as) + o7 (ar + az) s 4 20 4 200 + ag
7 N » 9~ a9 + 203 + oy + as
ay + ag + 207 + « Qo + 2003 + o“ &
o 4+ g 7+ o3 Pag + 2003 + ¢ ay o+ 200 + 20
8 N - 9/~ 5 a1+ ag +asz+ ay
o a3+ o4+ a5+ ag + a7+« a1+ ag) + a3+«
3+ s+ as+ag+ar+ag | ¢(a1 + a2) + ¢7(as + du) s+ ag 200 + 205
9 N - 9/~ 5 a9 + as + ayg + ax
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