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ABSTRACT

Shear flows have an important impact on the dynamics in amtassat of diferent astrophysical objects including accreditation
discs and stellar interiors. Investigating shear flow ibi§itées in a polytropic atmosphere provides a fundameuntalerstanding of
the motion in stellar interiors where turbulent motionsximj) processes, as well as magnetic field generation takes pHere, a
linear stability analysis for a fully compressible fluid invao-dimensional Cartesian geometry is carried out. Outysfocuses on
determining the critical Richardson number foffdient Mach numbers and the destabilisiffii@ets of high thermal diusion. We
find that there is a deviation of the predicted stability sived for moderate Mach number flows along with a signific#lietoe on the
growth rate of the linear instability for small Péclet numrdhaNe show that in addition to a Kelvin-Helmholtz instatyila Holmboe
instability can appear and we discuss the implication cf ithistellar interiors.

Key words. instabilities — hydrodynamics — stars: interiors

1. Introduction gations that examine shear flows irfffdrent contexts that can
i o ) ) . help inform our approach to the examination of shear flows in

(/) .Understanding the complex dynamic interactions in theriote gtgg.

(T of stars, such as the Sun, is crucially important if we areeto dpreyious studies of shear flows have shown that such flows can
—velop a physical model of these objects in their entiretyo&@gin _undergo what is known as the Kelvin-Helmholtz (KH) insta-
to obtain a comprehensive knowledge of the motions in st&'s ijity, which develops due to conversion of the available ki
> convenient to focus initially on the Sun, which we have thesmonetic energy of the shear flow into kinetic energy of the dis-
S detailed observational evidence for. Helioseismologydfesvn  ,rhances (sde Drazin & REid 2004, chap. 6). In addition éo th
o) that at the base of the solar convection zone there is a tiarre K jnstability, other instabilities such as baroclinic tasility
R~ of radial shear called the tachocline (Kosovichev et al. 7199sed Charndy 1947), or the Holmboe instability (Holnmboe2) 96

Tobias 2004). This region is believed to play a crucial rolée  can appear when flows are either rotating or stratified. For ou
solar dynamo (see Silvers 2008, and references thereiny: Hayqy the latter one is of greater interest because it is kribat,
 ever, in spite of the evidence of the existence of the taam@clyyhile the KH instability is suppressed by stratificatiore thore

() and its importance, there is still a considerable amount@kw gjowly growing Holmboe modes become dominantwith increas-
(O to be undertaken to understand this region using mathm\aqﬁg stratification/(Peltier & Smyth 1989).

modelling techniques. . _ To study any kind of instability it is convenient to start -

«— Velocity measurements suggest that the tachocline regiby-i yestigating the stability threshold of the system. For thiere-

= drodynamically stable against vertical shear flow (Mies@8d. sjvely studied KH instability, the necessary criterion $tability
.— However, helioseismology is restricted to large-scaletaver- (equires the Richardson number to be greater thanelery-

aged measurements (Christensen-Dalsgaard & Thompsol 2Qf}{ere in the domair_(Milés 1961). This criterion was derived

— a_md so turbulent mqti_ons can be st_iII presenton small_leagdw for simplifying assumpitions, where the fluid is incomprbisi
time scales. Thus it is very plausible for the tachoclinefe ajnyiscid and non-dfusive. However, dropping these simplifica-
pear to be stable, using current helioseismology techsidué tions may alter the stability criterion such that in a systenere
actually to be hydrodynamically or magnetohydrodynaniycaknermal difusion becomes important, and acts on a smaller time
unstable. Though it is widely assumed that the tachoclisesis scale than buoyancy, the stability criterion requires aifigant
ble (see Tobias 2004). Schatzman etlal. (2000) have shown fgdification| Dudis|(1974) arid Zahin (1974) have shown that in
shear turbulence can appear in a narrow part of the tacleocligy,ch systems the product of the Richardson number with the Pé
An unstable tachocline would be significantlyferentin its dy- clet number is the quantity that indicates stability. Tifeet of
namical interactions from a stable region and so, if we atét0 thermal difusion on shear instabilities was only studied in the
derstand the role of this region, for example in the solaratiya  Boyssinesq approximation by Jones (1977), Dudis (1974) and
we must first understand unstable shear flows in a polytrdpic gore recently by Ligniéres etlal. (1999), such that it is niet d
mosphere. ) _ ) _ rectly applicable for stellar interiors where large pressyradi-
Shear flows occurina wide variety of natural settings as x_er €ents have to be considered. In a general fully compressibéein
ample in oceanic flows, planetary atmospheres, stars aadt@al here is the potential for the stability criterion to be edbas the
discs. Therefore, there have been a number of previoustinves
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Mach number is varied. In most stellar regions the Mach numhegherem is the polytropic index. Note, this relation is not valid
is assumed to be small but it can still be potentially sigaific for the perturbed quantities derived in the next sectione B
One example are coronal mass ejections where shear flow intftie Schwarzschild criterion the fluid is stable against eation
bilities were observed recently by Ofman & Thompson (2011)f the inequalitym > 1/(y — 1) holds, which is the case for a
Miczek (2013) considers a fully compressible fluid in an adigolytropic index ofm > 1.5. Only stable stratified atmospheres
batic atmosphere, but thdéfect of varying all, especially ther- will be considered throughout the paper.

mal, transport ca@icients was not studied. Therefore, this studBoundary conditions, at the top and bottom of the of the damai
does not capture all relevanfiects present in stellar interiors.are impermeable and stress-free velocity i.e.

Although, considerable work has been undertaken to examine

shear flows in a variety of ffierent contexts, no work to exam-;, _ 9Ux _ Uy
ine shear flows in a polytropic atmosphere has been carried 0~ 9z ~ 4z
and thus will be what we investigate here.

In this paper we conduct a linear stability analysis to exeami
both the &ect of high thermal dfusion and the fect of com- — _ _ _ _

pressibility on the onset of shear flow instabilities in absta T=1at z=0 and T=1+6 at z=1 ©)
stratified polytropic atmosphere. While the main focus iXéh  To include thermal #ects it is necessary to choose the back-
instabilities the appearance and consequences of a Holllkboeground temperature in such a way, that it is a stationarytisolu
instability is investigated. The governing equations avemyin of the heat equation or remains quasi-stationary on timesca
Sect[2 along with the numerical method used. Our results gfyer than the thermalflision time scale. This results in a tem-

=0 at z=0 and z=1 (5)

and fixed temperature at the top and bottom:

presented in Sedi] 3 followed by a discussion in $éct. 4. perature and density profile of the form:
T2 = Ty (1 + 6z 7
2. Model @ = Ti( ) (@)
2.1. Governing equations, boundary conditions and
backgrougd gtate. g P2 =pe(1+62)" (8)

We consider a compressible fluid in a Cartesian domain bcdmt%hereg Is the dlmen5|onlgss temperaturﬁdence betwee_n the
atz = 0 andz = 1 and periodic in x and y directions. The ﬂuidupperand lower boundaries of the domain. These equatioms fo

is assumed to be an ideal gas with constant dynamic viscos%gr?/ean ?Sfé'“?ﬂgrgaséﬁt%mf\gfczf atr:)?‘ﬁ:e?zril\(nessct?]usﬁuolr@
1, constant thermal conductivity, constant heat capacitiegat glgibie. 9 yp

constant pressure amy at constant volume. The equations we 7-05
consider, in non-dimensional form, are u(2 = Uotanh( ) 9)
u
% = =V-(ou) (1) with a shear amplitud&)o and a scaling factor /L, that con-
trols the width of the shear profile. The boundary conditions
M = oCy (Vzu + }V(V-u)) — V- (puu) introduced in equatior 15) andl(6) restrict the shear pradile
ot 3 values ofL, which will result in a small enough value of the z-
-Vp + 6(m+1)pz (2) derivative at the boundaries. For the static state the testyre
oT Cwo(y-1) »  ¥Crkeo and density profiles are taken as !n equatn (7 a.nd equation
i TITI + —VT @), respectively. Then, the equilibrium state is chanaste by
P uo(2 = (u(2),0,0)T, To(2), po(2) andpe(2). Selected background
=V (Tu) - (y-2)TV-u (3) profiles for temperature, density and velocity are shownign F

wherep is the densityu the velocity field,T the temperature, @

6 denotes the temperature gradient, gni$ the pressure. The

dimensionless Prandtl number= ncp/«, is the ratio of viscos- 2.2, Formulation of the Eigenvalue problem

ity to thermal conductivity, the thermal dissipation paeder is o ) ]

defined a<, = Kf/(pondz) andy = c,/c, denotes the adiabatic!n a diffusive model there are a number offdrent time scales

index. The strain rate tensor has the form including the time scale associated with the shear dynamics
ts = Ly/(Up), the time scale for buoyandy = 1/N(2), where
= % + o 2% N(2)? is the Brunt-Vaisala frequency, and the time scale for ther-
U7ox o ax 3o mal diffusiont, = L2/Cy. In this paper, we focus on the regime

. . . where the viscous time scalg, = L2/y, is much greater than
In the dimensionless equations above, all lengths have begyy other time scales. This allows us to neglect viscous-heat
scaled with the domain’s depth Recasting the temperature anghg, which corresponds to the first term on the right hand side
density in units ofT; andpy, the temperature and density at th@quation[(B). In addition, the shear flow given by equaiidrig9
top of the layer, and taking the sound-crossing time, which jh equilibrium only ift, is much greater than the instability time
given ast = d/[(c, - ¢,)Ti] "%, as the fundamental time it fol- scale, which we verifya posteriori. Whent, becomes compara-
lows that the pressurp is given in units ofpr = (¢p — ¢)ptTt  ble with other relevant time scales, the background sheariflo
and the velocity field is given in units of acoustic wave véloc not in equilibrium and our analysis would be inappropriate f
For the background state we assume a polytropic relation gs case.
tween pressure and density such that the pressure is adanciife perturb each quantity that appears in equations [1) u(3) s
of density only i.e. thatf = fy + 6f and

(o) o p(t+7) (4) st(xy,zt) = f(2) exp(ikx +ily + £t), (10)

Article number, page 2 ¢fi8
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set of equations
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, where a similar set of equations was derived for a problem in-
cluding magnetic fields by Tobias & Hughes (2004). Our system
is characterised by six parametersd, o, Cy, Ug andL,. Equa-
tions [I3) - [I5) are numerically solved on a one dimensional
grid in z-direction that is discretised uniformly, this method is
adapted from the method used by Favier et al. (2012). Regasti
the set of diferential equations into the form

Fig. 1. PI_ots of the typical backgrpund der_lsity, temperature ardish f = Af (16)

flow profiles. a) Temperature profiles forfidirentd, that were used. b) ’

Dﬁa_ns(;t_y pmﬁt'ﬁs fot'g = Zhb“t t_hre(ta ?)ilferetnt t%?'%tro?ig;”dicﬁm For i vhere the matriA contains the finite dierence coficients ap-

all Indicesm the atmosphere IS sta stratified. € ear 1ow prorti : : : : : T

with the smallest and IeFI)rgest charact)éristic lerigtlused are showpn. ?L:igstotggep?f&reeﬁsg d;'%%?:&”ggggﬁogp_}g’ Xnv(\jl the) éi:;ee-nval-
ues and vectors the Schur factorisation is used (Andersalh et

) 1999). For the computation of the relevant fimgents in A,

wherek € R andl € R are the horizontal wave numbers, ang central fourth-order finite fierences scheme was used. We

{ = ¢ +idi € C, where(; gives the growth rate of the linearsearch for the eigenvector solutions with the greatestpatl

instability. of the eigenvalug and where the vertical velocity eigenvector,

Note, the equations for the perturbed quantities that wailbtyy, vanishes at the boundaries. Ultimately, we aim at undengak

do not inherit the same symmetry properties as the well knowBn-linear simulations with a pseudo-spectral code armbsity

Taylor-Goldstein equation (e.g., Miles (1961)), wherengkhe will be mandatory in that case. Therefore, most of the comput
complex conjugate of the eigenfunction and eigenvaluesléad tions will consider a viscous fluid.

the same equation. This symmetry is broken in our set of equa-

tions, because there are still terms lineakiandl. Therefore,

for our eigenvalue problem there do not necessarily exist tvd. Results
complex conjugated solutions where one is decaying andson
a growing solution.

For our initial set of equations a Squire transformatiorsexi
to transform the three-dimensional problem to a corresimond
two-dimensional one. The transformation can be written as:

f this section we focus on a number of key areas of interest.
First, we present the change of the stability threshold evttie
Mach number is varied, which correspond to a continuous tran
sition between an incompressible and a compressible fltid. T
effect of compressibility is separately investigated in a vigak
thermally stratified and a strongly thermally stratified atm

kK = K+l? kst = KSu + 16V SW = Sw sphere Secf_3.1. Later in S€ct.]3.2, the growth rates ofirthe |

. ko(m+ 1) ear shear instability together with the critical Ri foffdrent Pé-

Up = Up = p=—=————0p clet numbers are compared and tlfieet on the stability against
. . ko(m+1) buoyancy is discussed. In Sdct. 312.1 thea of diferent poly-

5T = k6T T kz_l_ tropic indices on the instability is addressed and the pdigi

Tk 0= k2’0 of a Holmboe like instability is investigated in Selct.]3.3.
~ k Ck . kpo
PO = gcre o = k poép (11) 3.1. The effect of varying the Mach number on the instability

threshold

Having also checked numerically that indeed for a certaimewaAs the Richardson criterion is based on simple energetig-arg
numberk the growth rate; decreases with increasihgwe can ments and does not take compressibility into account,fidari
setl = 0 without loss of generality for our following computa-ion is needed to determine whether compressibilitgas the
tions. Denotingsu = (u, v, w), we obtain this linearised coupledstability of a shear flow. Therefore, in this section we foouas

Article number, page 3 ¢fi8
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the stability threshold for dierent Mach numbers in a viscous

(we considerr = 1.0 andCy = 10°%) and stably stratified fluid 0.26 w w w \ \ \ — 1
with m = 1.6. Although stellar interiors have typically low Mach ? TR T . R
numbers, especially at the base of the convection zoneygel «
ally moderate to high Mach numbers can appear at the surfi e O . * &
and in other astrophysical objects. Thus, investigatiegthnse- *
guences of moderate Mach numbers on a shear flow is of gen
interest. In the following we refer to the Mach number, M&, & 08/ . 1 =

Uo
. 17 | - i
V1+ 06z (17) o, Ri, 10.2

* kmax u

10.8

10.6

M(2) =

This is the consequence of our previous definition, wherecrel
ity is given in units of the sound speed that is computed at t 0100z o004 006 o008 o1 o1z o1z °
top of our domain. As the inflexion point of our shear flow is € M

z = 0.5, and the sound speed varies with temperature, it is n

essary to compute the actual Mach number, M, a0.5.

According to_Schochet (1994) and Guillard & Murrone (2004 b) 0.26 ‘ ‘ ‘ ‘ ‘ ‘ — 1
the solutions of the compressible Euler equations redutiesto =~ [~ L LT
solutions of the incompressible Euler equations in the losacM "a ey los
number limit. Thus, varying the Mach number allows to inirest — 022[ .y ssrpespprsr TR ing
gate the validity of the Richardson criterion for low to moate
Mach numbers (02 < M < 0.15).

10.6

We make use of the general definition of the Brunt-Vaisala fr %28f 1=
guency given by 0.4

g 6-]: 0.141 . Ric :02
N’ = = —, 18

( ) T az ( ) % kmax
whereT = (P,/P)"1/ is the potential temperature, to define th %l 002 o004 o006 008 01 01z 014 °
local Richardson number as M
o)\
Riin = min N(z)2 /(_) Fig. 2. In both plots the critical Richardson number is found in &ois
0sz<1 0z fluid for different Mach numbers, M. The corresponding wave numbers

krax Of the most unstable mode at the onset of instability aragdothe
. wave number is normalised by the inverse of the charadtetesigth
n a2 (19)  1/L,. The horizontal line in both plots correspondRb = 0.25. In a)
N (1+62) (L—u) the atmosphere is weakly stratified with= 2 whereas in by = 10
which corresponds to a strongly stratified atmosphere.

6>(m+ 1)(””7l - m)

where the derivative of the background velocity profile with

spect toz corresponds to a local turnover rate of the shear.

To find the critical Richardson numbégi., we solve the eigen-

value problem for a smaRi, while varying the wave number,gravity, for high Mach numbers revealed similar results. &o

k, between 0 and/L, to find the most unstable modtgax. For ample Blumen et all (1975) and Drazin & Davey (1977) showed
large, but finite, Reynolds number the system is assumed tothat forM — 2 the system becomes stable. In this system two
stable if the growth rate;, is zero for all wave numbers or thetypes of unstable modes are present for Mach numbers greater
time scale for the instability, = 1/£;, compared to the viscousthan 094, which are stationary modes and travelling modes.
time scalef,, is of the same order. In the case of KH like instabilities one explanation for tla-s

A detailed survey fow = 2, a weakly stratified atmospherebilising effect for Mach numbers greater thar08 is as fol-

and forg = 10, a strongly stratified atmosphere, reveals that tl@mvs. The Richardson criterion uses simple energetic aegisn
critical Richardson number decreases for Mach numbersegreavhere two neighbouring fluid parcels are exchanged. The den-
than 008, which can be seen in Figl 2. For the majority of insity of these parcels remains constant for an incompressibl
compressible, and weakly compressible Mach numbers the difuid such that only the change in velocity (affdrent heights)

ical Richardson number does not significantly deviate from tchanges the kinetic energy§E.in, and changes in the potential
well known 1/4 threshold for stability. In the case of a weaklyenergy,AE,q, are solely due to the changes in position of the
stratified atmosphere the critical Richardson number dee® fluid parcel. While for a compressible fluid the density wid-d
rapidly below 01 for M ~ 0.14. In a strongly stratified fluid crease to a certain amount when a fluid parcel is moved up adia-
we find qualitatively the same behaviour as for the weakBtistr batically, such that a part of the kinetic energy is convkbiethe

fied case but the critical Richardson number does not drambelprocess of expansion. Therefore, to reach the instabiiitysh-

0.2 for M ~ 0.14. The shift of the stability threshold, in both aold more kinetic energy is needed which requires a greater ve
strong and a weakly stratified fluid, towards smaller Richartbcity gradient.

son numbers for moderate Mach numbers indicates a stabilisfferent temperature gradients have a non-trividéet on

ing effect of compressibility on the KH instability. Though nothe dfective Mach number throughout our domain, whéfe
only focusing on KH like instabilities, previous investtgms of changes according to equati@nl(17). In the limit of weakntiedr
compressible shear flows with uniform temperature, andowith stratificationM remains almost constant whereas in a strongly
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Fig. 3. Eigenfunctions for a fixedM = 0.114 and a fixed characteristic 0.05  -.° S 1
length scald, = 0.09 are found for two dferentd, whered = 2 for e Mo
the plots d, e, f and = 10 for top plots a, b, c. In both cases the ol P il SR
eigenfunctions for the most unstable mode are shown. 0 0.2 0.4 0.6 0.8 1
k

i ; i Fig. 4. Both plots show the growth ratesin an inviscid weakly ther-
stratified atmosphere it changes significantly and gereiatte mally stratified atmosphere with = 0.5 for a Richardson number of

asymmetry between the regions above and below the shear flgw.: 0.22. In a) the fiuid is compressible withl = 0.09 and in b)
The observed asymmetry changes the eigenfunctions foundI\P: 0.009, which corresponds to a incompressible fluid. The Péclet

a fixedM(z = 0.5) andL,, which are shown in Fid.13. Note nymper is varied among three orders of magnitude.
that becaus®(z = 0.5) andL, are fixed, increasing is equiv-

alent to increasing the Richardson number (see equafidih (19

The asymmetry with respect to the mid-plane is clearly ésib i i

in the temperature and vertical velocity eigenfunctionstfe becomesimportantin a system where tg, such that buoyancy
strongly-stratified case = 10 (see Figl13 a and b) whereas th& much slower than thermalfilision. Astg has to be smaller
same eigenfunctions are much more symmetriogfer 2 (see than the system’s dynamic time scade the Péclet number has
Fig.[@ d and e). This asymmetry has impact on the observed iebecome smaller than unity to satisfy these requirements.
viation between the change of the critical Richardson nurfdse !N Fig.[4 the growth rates for fierent Péclet numbers in a com-
6 = 2 andd = 10. In fact, in a stratified atmosphere exchangdtfessible and a weakly compressible fluid are illustraternC
fluid parcels, where one is shifted downwards form the middR&ring instability growth rates for a set up witke < 1 and
planez = 0.5 and the other upwards, move at the same sped@> 1 shows that; increases with decreasitig, where a sig-
in opposite directions, but haveftiirent Mach numbers. With nificant jump can be observed whée becomes smaller than
an increasing temperature gradient tifie@tive Mach number Unity. We find that the overall growth rate is smaller for aahe
in the lower half of our domain has a steeper drop such that Vv With Mach number equal t0.09, this demonstrates a sta-
stabilising dfect of compressibility vanishes. Therefore, the st&ilising effect of moderate Mach numbers as discussed in Sect.

bilising effect of greater Mach numbers in a strongly stratifie€-1). However, an increase in the instability growth rates
atmosphere is weaker. not necessary indicates a shift of the stability thresholgreater

Richardson numbers.

3.2. Small Péclet number regime Focusing on the stability threshold it is necessary to seethe
critical Richardson numbers infiierent Péclet number regimes.
For previous calculations of the growth rates, the fluid was a
sumed to be inviscid to simplify the problem and to avoid the
issue of the initial state being actually not an equilibristate.

UoLy Here, it is more convenient to include viscosity as it is ntme
Pe = C (20)  cally easier to obtain results for the limit of small visdgghan

for an inviscid fluid.

wherelL, is the characteristic length of the shear width &hd For a shear flow the onset of instability does not change for
correspond to the Mach number at the top of the domain as #mall enougltk, if large enough Reynolds numbers are consid-
velocity is normalised with respect to the sound speed. e red. However, including viscosity may have non-trivifibets
clet number is associated with the ratio of advective trartdp on the stability if the fluid has large thermatidisivity (see Jones
thermal difusion. 1977).lJones (1977) derived a criterion for instability @bd
Varying the Péclet number in an inviscid compressible fluidavelength of the fornkPeRi < 0.086 in an inviscid fluid. For
enhances the results found by Ligniéeres etlal. (1999) whera &iscous fluid it can be rewritten &-ReRi < 0.086 such that
higher thermal dtusion destabilises the system as fiee- for reasonably small wave numbers, the system can be still un
tively weakens the stable stratification, i.e. the systepobees stable if the Reynolds number is nottBciently large. It can be
more unstable against buoyancy. Therefore, therm@ligsion partly seen when investigating equationl(14) (15), ehbér

In the following we focus on the impact of thermatfidision in
a stably stratified fluid. For non-negligible thermaffdsion the
non-dimensional Péclet number is given as

Article number, page 5 ¢fi8
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most all terms include the wave number, while one of the thr 10° ‘

viscous terms does not. Therefore, for small wave numbésst 2 ——Pe=001
viscous term, which is proportional to the second derieativ ) ---Pe=01
zdirection, becomes relatively more important for the dyitam 0 ¢ —-pe=1 |}
of the system. To make sure that the results obtained camesp

to a regime where viscosity does ndtext the stability thresh-
old, several computations were repeated with a smalleosigc
and a greater viscosity than used in the actual computations
In Fig.[3 curves of marginal stability for four fierent Péclet
numbers in a polytropic atmosphere are displayedfer 0.5
andé = 2.0. As expected the domain for an unstable shear flc
increases as the Péclet number is decreased. It shows thai
only is the growth rate of the instability altered but thebiita
ity threshold also changes for small Péclet numbers. Tliealri
Richardson numbers féte < 1 reveal a destabilisation for small
k. [Ligniéres et al.|(1999) explained this behaviour by tffeat
of the anisotropy of the buoyancy force. The stabilisifipet
of stratification becomes iffiécient for predominant horizontal
motion compared to the thermalfiilision. Indeed, by comput-
ing the ratio of the vertical to horizontal kinetic Energythg
unstable mode for a certaki.e.

1 2
Ew _ o W(@’dz (21)

= fol u(2)2dz’

wherewy(2) anduk(2) are the eigenfunctions for the vertical ant
horizontal velocity disturbances at a cert&imespectively, we
are able to investigate the nature of the instability. Corimga ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
this ratio for a mode wittk = 0.1 andk = 0.7 for Pe = 0.1, 0 or 02 03 04 05 06 07 08 09 1

it turns out that the ratio for the largkrmode is of two orders

of magnitude greater than for the smakemode. Thus the hor- i 5. pjots of critical Richardson numbers for all k in a viscousdflu
izontal motion associated with larger wave lengths in lwrtal  ith a Mach numberv = 0.009, a) = 0.5 and b)p = 2.0 and viscosity
direction is predominant at very sméll (0Cy) of order 107. The Péclet number is varied from 10 to 0.01.

The results carried out for a greater temperature gradienf

shown in Fig[h b, reveal a qualitativelyftérent behaviour for

the small Péclet numbers than it is the caseffer0.5 shown in  per of Q1 in Fig.[6 b) where the same tendency of an increas-
Fig.[5 a. They = 0.5 case has an overall greater critical Richardng growth rate with increasing polytropic index is obsetve
son number, but has a gradual increase towards a smalleatritTo exclude that this behaviour is due to th&eet of thermal
Richardson number in the smallimit. This indicates a more diffusion the growth rate for two flerentm is computed for a
efficient destabilisation for most of the wave numbers and a lg&d Ri smaller 74 for much greatePe than unity, where the
efficient destabilisation for smak same tendency is found. However, the critiBaincreases as
Looking again at the ratio of kinetic energy in vertical ara-h s varied upwards. Therefore, a system with larger polytrop
izontal motions reveals that for loweithe ratio of vertical mo- dex, m, is less stable such that for the saRiethe system with
tions to horizontal motions remains significantly smallert for g largerm is further away from the stability threshold and has
the higher stratificatio® = 2, which indicates that buoyancya higher growth rate. Non-linear direct numerical compatet
force is more #icient in a strongly stratified atmosphere againsf two cases approved the results obtained with the linear EV
the destabilising féect of thermal dfusion. A weakly stratified splver. For this purpose equatiohs (1 (3) were solved bygus
atmosphere can be destabilised quicker by therntialsion. a hybrid finite-diferencgpseudo-spectral code (see for exam-
plelMatthews et al. 199%; Silvers et al. 2009a,b, and refeen
therein).

While increasing the polytropic index requires a greateyash
flow amplitude to obtain the same ratio between the buoyancy
The destabilising mechanism of thermafdsion can be traced force and the turnover rate, the available kinetic energthef

back to the fact that thermalftiision weakens the stable stratisystem is increased. Consequently, as soon as the system can
fication against buoyancy. To investigate if, and how, tliisat overcome the stabilisingfect of density stratification the insta-
changes if the system is further away from the onset of convédity has more available kinetic energy from which it caogr

tion the polytropic index is varied between 1.6, which isselo more rapidly.

to the threshold, and 2.07 which is far from the onset of cotr the two plots at the bottom of Figl 6 the growth rates for dif
vection. In Fig[® a) the growth raté;, is plotted for diferent ferent polytropic indices are shown while all other paranate
polytropic indices while the Richardson number is fixed te ttheld. The solid lines in Fid.]6 c) and d) correspond to thedsoli
valueRi = 0.22 and the Péclet number is unity. The growtlines in Fig.[6 a) and b) respectively. As expected the inktab
rate is given in units of the speed sound, such that a resdbi-growth rate decreases with increasing density stratifi

ing is necessary while the amplitude of the shear flow is adrd greateRi. While for a Péclet number of unity the instability
justed to keefRi constant. The same is done for a Péclet nurshuts down rapidly, which is displayed in Fig. 6 c), fée < 1

3.2.1. Effect of the distance to the onset of convection on the
instability
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Fig. 6. For an inviscid fluid with thermal stratificatiagh= 2.0 and a flow of low Mach number of order ¥Qthe growth rate of the linear instability
is plotted for several parameters. In a) and c) the Péclebeuiis equal to unity and in b) and 8 = 0.1. Ri is varied at the two bottom plots c)
and d) but it is fixed tdRi = 0.22 for the top plots a) and b).

the same behaviour is observed, but the instability fortgrea the Holmboe instability, where two counter propagating exd
is still present for small wave numbers. As discussed in.8e8t one in the upper and one in the lower half plane, are present.
this is explained by the anisotropy of the buoyancy force. Fig.[@ b) shows the form of the vertical velocity eigenfunati
that is propagating in the lower half plane, the correspogdi
mode with the opposite phase velocity shows the oscillatinn
3.3. Subdominant shear instability the upper half plane. Investigating all possible eigenfions at
the overlap region between the two arches, reveals that btzém
For certain configurations where the shear width i§isiently modes are present but have a smaller growth rate as the KH in-
small the velocity profile is similar to two counter flows. The stability orvice versa.
for a stable stratification and Péclet numbers much greafdre observed Holmboe like instability only appears for ¢eifg-
than unity a Holmboe like instability is found. The Holm-<let numbers while for smafPe the range for the KH instabil-
boe instability, which was introduced by Holmboe (1962}, réty is enlarged to smaller wave numbers, such that even in the
sults from interacting waves, that propagate in oppositecdi presents of the Holmboe like instability the KH instability the
tions [Baines & Mitsudera 1994). The Holmboe instabilitf- di Same wave numbers dominates. This can be seen inlFig. 6 a) and
fers from the KH instability in several ways (see the review ab), where a small shoulder is present in the rangé @ k < 0.5
ticle by[Peltier & Caulfield 2003). First, the KH instabilitg in a) for Pe = 1 is dominated by the KH instability in b) for
stationary in a frame of reference, but the Holmboe instgbil Pe = 0.1.
has counter propagating unstable modes, which both have Thenake sure that these modes are physical and not a numeri-
same growth rate. One mode occupies the upper plane andadeartifact we checked that they remain for a system where we
other the lower plane, such that a superposition of botttisplsi  assume an inviscid nonftlisive incompressible fluid. In a sec-
form a standing wave solution. Second, the Holmboe instabiind check, we consider a non-uniform grid distribution ia zh
ity is favoured in stable stratified atmospheres and can datai direction, with more resolution where the largest gradieare
the Kelvin-Helmholtz instability when the stratificatiotabil- 0observed. With both approaches a second instability, wiéh t
ity is increased, such that a KH instability disappear dutheo same properties, was found at slightly smaller wave numbers
Richardson criterion (Peltier & Smyth 1989). k, than the KH instability. Using non-linear computationgtbo
In Fig.[7 a) there are two arches present. The one with theggrednstabilities are found during the linear growth regimehwatm-
maximum growth rate appears at gredteand corresponds to ilar growth rates and eigenfunctions, as predicted frontitiear
the KH instability, where only one unstable mode is present fcomputations.
a certain wave number and its phase velocity corresponti&to t
mean flow velocity. The eigenfunction for the vertical vetpof ;
these modes is shown in F[g. 7 c), which reveals that the-ins‘tla Conclusions
bility is localised at the center of the shear flow. Unstabéeles Shear flow instabilities, that may lead to turbulent motjcare
with k corresponding to the smaller arch exhibit all properties ohportant for the understanding of dynamics in stellar riiotes

Article number, page 7 ¢fi8



A&A proofs:manuscript no. Shear_instability

as the perturbation’s amplitude can be finite in the tachecli

0.015 . X L e
a) [—Ri=030 m=1.960] (seeMichaud & Zahin 1998) the assumption of infinitesimal per
turbations made in the stability analysis might lead tdedéent
0.01f i results. To clarify the second issue it is necessary to tigess
~ the stability properties of such flows by means of direct nume
ical computations, where the initial state is perturbed &styr-
0.005 8 . ; > ; " .
bations with a finite amplitude. In addition to finite ampdg
effects, the non-linear behaviour of unstable shear flows after
0 ‘ saturation is crucially important for the understandingiafing
0 0> ! Ls 2 23 ® i stellar interiors regardless of the nature of the initistabil-
x10”° ity. _ _ _
p ©04 g9 O Having established an understanding of the hydrodynamical
0 problem, further non-linear investigations are underwaph-
0.02 tain a full picture.
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