

City, University of London Institutional Repository

Citation: Child, C. H. T. & Trusler, B. P. (2014). Implementing Racing AI using Q-Learning

and Steering Behaviours. Paper presented at the GAMEON 2014 (15th annual European
Conference on Simulation and AI in Computer Games), 09-09-2014 - 11-09-2014, University
of Lincoln, Lincoln, UK.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/7123/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Implementing Racing AI using Q-Learning and Steering Behaviours

Blair Peter Trusler and Dr Christopher Child

School of Informatics

City University London

Northampton Square, London, UK

Email: btrusler@gmail.com / C.Child@city.ac.uk

KEYWORDS

Q-Learning, Reinforcement Learning, Steering Behaviours,

Artificial Intelligence, Computer Games, Racing Game,

Unity.

ABSTRACT

Artificial intelligence has become a fundamental component

of modern computer games as developers are producing

ever more realistic experiences. This is particularly true of

the racing game genre in which AI plays a fundamental role.

Reinforcement learning (RL) techniques, notably Q-

Learning (QL), have been growing as feasible methods for

implementing AI in racing games in recent years. The focus

of this research is on implementing QL to create a policy

which the AI agents to utilise in a racing game using the

Unity 3D game engine. QL is used (offline) to teach the

agent appropriate throttle values around each part of the

circuit whilst the steering is handled using a predefined

racing line. Two variations of the QL algorithm were

implemented to examine their effectiveness. The agents also

make use of Steering Behaviours (including obstacle

avoidance) to ensure that they can adapt their movements in

real-time against other agents and players. Initial

experiments showed that both types performed well and

produced competitive lap times when compared to a player.

INTRODUCTION

Reinforcement learning (RL) techniques such as Q-Learning

(QL, Watkins 1989) have grown in popularity in games in

recent years. The drive for more realistic artificial

intelligence (AI) has increased commensurably alongside

the high fidelity of experience which is now possible with

modern hardware. RL can produce an effective AI controller

whilst removing the need for a programmer to hard-code the

behaviour of the agent.

The racing game used for performing the QL experiments

was built using the Unity game engine. The game was built

as a side-project in conjunction with this research. The cars

in the game were created so that the throttle and steering

values could be easily manipulated to control the car.

The biggest challenge when considering implementing RL

is to determine how to represent and simplify the agent’s

state representation of the game world in an effective way to

use as input for the algorithm. The information needs to be

abstracted to a high level in order to ensure that only

necessary details are provided. Two versions of the QL

algorithm were implemented; an iterative approach and a

traditional RL approach.

The results from the experiments demonstrate that when

combined with steering behaviours both QL

implementations produced an effective AI controller that

could complete competitive lap times.

BACKGROUND

Reinforcement Learning and Steering Behaviours

RL is the method for teaching an AI agent to take actions in

a given scenario. The goal is to maximise the cumulative

reward, known as the utility (Sutton and Barto, 1988). The

result of the RL process is a policy which provides the agent

a roadmap of how to perform optimally. The RL process can

be performed online or offline.

Online learning is the process of teaching the AI agent in

real-time. Offline learning involves teaching the agent

before releasing the game. Both methods have their merits

and issues. For several reasons the offline version is most

commonly used when RL is applied to games (and is used

in this research). Primarily, it ensures that the agent will

behave as expected when the game is finished. It also means

there is less computational expense in real-time as the AI is

behaving based on a saved policy and does not need to

perform as many calculations in real-time. The offline RL

process works by performing a large number of iterations

(episodes) of a simulation in order to build up a data store of

learned Q values relative to their state-action combination.

The concept of steering behaviours (SBs) was first

introduced by Craig Reynolds (1999). SBs provide a

mechanism of control for autonomous game agents.

Reynolds proposed myriad behaviours which could be used

independently of one another or holistically to achieve

different behaviours.

There were three relevant SBs for this project; seek,

obstacle avoidance and wall avoidance. Whilst SBs are not

the focus of this paper, they were used to perform real-time

avoidance techniques during the game when multiple agents

were in the scene.

Q-Learning

Q-Learning is one of the most commonly used forms of RL

and is a type of temporal difference learning (Sutton and

Barto, 1988). QL is used to find the best action-selection

policy for a finite number of states. It assigns utility values

to state-action pairs based on previous actions which have

led to a goal state. As the number of episodes increases, the

utility estimates and predictions improve and become more

reliable.

A state can comprise of any piece of information from the

agent’s environment. An action is the operation that the

agent can perform at each state. The action selection policy

is a key component to the learning process. The two

common types of action selection are greedy and ε-greedy

(Sutton and Barto, 1988). Greedy always chooses the

optimal available action according to the current utility

estimates. In contrast, ε-greedy has a small probability of

selecting a random action to explore instead of choosing the

greedy option.

The QL formula (1) is performed upon reaching a state. The

QL formula is defined as follows:

Q(s, a) = (1 - α)Q(s, a) + α(r + γ maxa’(Q(s', a'))) (1)

Where:

 Q(s, a) – Q value of the current state-action pair

 Q(s’, a’) – Q value of the next state-action pair

 r – reward value associated with next state

 α – learning rate parameter

 γ – discount value parameter

The learning rate and discount value parameters are crucial

in defining the learning process. The learning rate

determines to what extent newly acquired information will

override the previously stored information. A learning rate

value of 0 will mean that the agent will not learn anything

whilst a rate of 1 means that the agent will only consider the

most recently acquired data. The discount parameter defines

the importance of future rewards to the agent. A factor of 0

creates a short-sighted agent which only considers current

rewards, whilst a factor of 1 ensures the agent will aim for

the highest possible long-term reward.

Q-Learning in Games

Patel et al (2011) used QL to create an AI agent for the

popular first-person shooter game Counter-Strike. They

used QL to train a simple AI agent in order to teach it how

to fight and plant a bomb. A higher reward value was

assigned to the AI if it accomplished the goal of the game.

For example planting the bomb produced a higher reward

than killing an enemy. Their results showed that the QL bots

performed competitively against the traditionally

programmed bots. However, they did note that this was not

tested against players. This could identify further issues that

would need to be resolved in the learning process

A popular commercial racing game that makes heavy use of

RL is the Forza series (Drivatars). The development team

created a database of pre-generated racing lines for every

corner on a race track (several slightly different lines per

corner). For example, some racing lines will be optimal

whilst others may go wide and miss the apex of the corner.

The agent uses QL (offline) to learn the appropriate throttle

values to follow each racing line as fast as possible. The

cars also learn various overtaking manoeuvres at each part

of the track. During a race, the racing lines at each corner

are switched to vary the behaviour. This approach meant

that the programmers were not required to hard-code the

values for each track and corner and produced a reusable

and effective tool for creating AI agents for each type of

vehicle. This technique has resulted in the Forza series

having one of the most realistic AI systems in the racing

game market today.

IMPLEMENTING Q-LEARNING

Game World Representation

The first challenge was converting the three dimensional

game world into a series of states for the algorithm to

interpret. Firstly, a racing line was generated by positioning

waypoints along the race track and creating a Catmull-Rom

spline by interpolating between these points.

The states were then defined as track segments (points along

the racing line). The region was implemented by placing a

box collider at each of these points. The collider width was

equal to that of the race track width and rotated based on the

direction of the spline. The quality of the state is evaluated

based on the agent’s proximity to the centre of the racing

line and time taken to reach the state.

Discrete Action Space

It was decided to focus the QL on learning the cars throttle

values whilst using the racing line to generate the

appropriate steering values. This helped to reduce the action

space to an appropriate size in order to minimise the number

of iterations required to perform the learning process. The

action space was set to nine evenly spaced throttle values

ranging from +1.0 to -1.0 (where +1.0 represents full

throttle and -1.0 represents full braking or reversing).

Q-Store Data Structure

A data structure (the Q-Store) was implemented to store all

of the data required by the learning algorithm. The Q-Store

maintained a two-dimensional array of doubles. The first

dimension in the array represented the state values whilst

the second dimension represented the action values. This

allowed for the Q value for each state-action pair to be

easily stored and accessed.

Q-Learning Algorithm

As previously mentioned two versions of the QL algorithm

were implemented. Both versions are very similar in nature

but with some key differences as highlighted in the

following sections. The algorithm works by applying each

action (throttle values) at each state on the track. A reward

was calculated if the car reached or did not reach the next

state and the QL formula was calculated and stored. Both

versions used the greedy action selection policy.

The action policy generated from each version of the

algorithm was stored in a text file. This allowed the policy

to be retrieved and utilised without having to re-perform the

learning process each time.

First (Iterative) Version

The first version of the algorithm was based on an iterative

approach. The learning agent was designed to evaluate each

possible action for a state before moving on to the next

state. The agent would continually reset to the starting state

after each evaluation. This meant that the agent would

gradually make its way along the racing line and during the

process the agent would ultimately evaluate the actions

between the penultimate state and the goal state. This

iterative approach meant that the number of episodes could

be predetermined (number of states * number of actions).

Second (Traditional) Version

The second version was based on a more traditional RL

approach. Unlike the first version the learning process did

not continually reset in an iterative manner. It gradually

developed a policy over a number of episodes (ranging from

10 to 5000 in testing). Theoretically, an increased number of

episodes will make the policy more likely to allow the agent

to reach the goal in an effective way.

Reward Function

The reward function used for the agents produced a reward

value based on the quality of the action performed at the

current state. The value returned by the function was based

on whether the action performed was good or bad. A good

move would return a positive scaling reward value based on

two key factors (proximity to the racing line and time taken

between the two states). A final large multiplier would be

added to the reward value if the car reached the goal state

(the final point on the racing line). A bad move (eg

crashing) would result in the function returning a negative

reward value.

Execute Policy

The policy was stored in a text file that consisted of a single

value (representing the action number) per line (the state).

The agent would identify its current state and apply the

corresponding action as specified in the file until reaching

the next state.

TESTING AND RESULTS

This initial aim of this research was to investigate whether

QL could be used to create a high quality controller for a

racing game. Subsequent to this goal, the two versions of

the QL algorithm suggested a further area of research in

order to determine how they differed and which performed

to a higher level. Each version of the agent was taught using

the same racing line, race track and car properties. The two

agents were taught using the same number of episodes

(1,000) for the first two experiments. The third experiment

involved varying the number of episodes for the second

version of the algorithm.

State-Action Tables (Q Tables)

The first area of comparison was between the Q Tables

produced by each version of the algorithm. These tables

were produced after the learning process was completed by

retrieving the data from the QStore. Tables 1 and 2 show

that there was a difference in action selection at state 93

whilst the same action was picked at state 94.

Table 1: State-Action Table (Version 1)

State Action Q Value

93 6 2805597255.12183

94 0 2920734984.09786

Table 2: State-Action Table (Version 2)

State Action Q Value

93 0 730021813

94 0 531860033

Lap Times

The overall goal of this research was to produce a high

quality AI controller for a racing game using the two

variations of the QL algorithm. As a result the most tangible

measurement of performance provided by the project was in

terms of lap-times.

The same race track and racing line was used for each

version and they both started from the same position at the

beginning of each lap. Ten laps times were recorded for

each version The average lap times are shown in Table 3.

The lap times were performed with the obstacle avoidance

and wall avoidance behaviours disabled as there were no

obstacles present in the scene to check for in real-time.

Table 3: Average Lap Time Comparison

Lap Number Version 1 Version 2

Average 42.73594 42.65832

Standard Deviation 0.52378007 1.597068

Whilst the lap times were very similar, the first version

appeared to produce more consistent results.

Episode Variation

Unlike the first version of the implementation, the second

version could be taught using an indefinite number of

episodes. This raised the question of what effect would

varying numbers of episodes have on the lap-time produced

by the agent. Up to this point, the results produced for the

second version was taught using the same number of

episodes as the first version of the algorithm (approximately

1,000).

Table 4: Episode Variation Table

Episodes Lap Time / Result

10 44.33456 (crashed into wall)

100 44.96534 (crashed into wall)

1000 42.65832

1500 41.74825

2500 40.95938

5000 41.46755

The policies which caused the car to crash still managed to

complete their laps as the car was built with a reset function

to reset the car after 2.5 seconds to a point slightly further

long the racing line. Table 4 shows that the fastest lap time

was produced by the 2500 iteration version whilst similar

lap times were produced by the 1000, 1500 and 5000

versions.

EVALUATION

State-Action Tables (Q Tables)

The state-action tables showed that the learning agents took

a different approach entering the corner. The states chosen

(93 and 94) were located before the tightest corner on the

track. It is interesting to note the different actions selected

for state 93. The first version selected a braking action

whilst the second version selected the full throttle action.

This was because the first version was focused on one

individual state at a time. This meant it often braked at the

latest possible state as it didn’t keep track of the reward

based on the final end goal state. The second version had a

more long-term view and as a result performed the braking

action earlier (during states 89, 90 and 92) in order to

achieve a better speed through the corner. This is because

the QL function is aimed at achieving the highest possible

long-term reward which is provided upon reaching the goal

state. It would have been interesting to see the effect of

different action-selection policies on the Q values produced.

Lap Times

The lap time comparison produced an interesting set of

results. Table 3 shows the average and standard deviation

between lap times for each version. The average lap time

between the two algorithms was extremely close. The

standard deviation, however, was very different. The first

version appeared to produce very consistent lap times and

results, whilst the second produced a wider range of very

fast and relatively slow lap times. The slow lap times were

often a result of going off track or hitting a wall. This would

indicate that the number of episodes used to teach the

second version was too low.

Episode Variation

This experiment was inspired by the standard deviation

result in the lap-time test. The question raised was at what

point was it that the number of episodes used cease to have

an effect. Lap-times produced by the car were recorded for

10 laps. Table 5 highlights the average lap times produced

and the standard deviation between them.

Table 5: Average and Standard Deviation for Episode Variation of

Lap Times (Version 2 only)

Episodes Lap Time / Result

Average 42.6889

Standard Deviation 1.62844

The results show that for 100 episodes or less, the car

crashed or had an incident causing the lap-time to be

increased. This was to be expected given the number of

possible actions for the number of states in the game world.

Interestingly, it also shows that the fastest lap time was

produced from a policy created by 2500 episodes. In

contrast the policies produced by 1500 and 5000 episodes

produced relatively similar lap times.

One would have imagined that the lap time for 5000

episodes would have been at least as quick if not faster than

the controller produced from 2500 episodes. This result is

possibly due to the algorithm performing further learning

and discovering that a policy for this type of lap-time would

result in a crash in the tighter parts of the racetrack.

Therefore it made safer choices whilst still maintaining a

good overall speed.

Results Discussion

The lap-times produced by both versions are relatively

competitive compared to player lap-times (with times

ranging between 39 and 42 seconds on average depending

on the type of player). The overall performance of the

algorithm in terms of lap-time is restricted by the optimality

of the racing line. The line was generated from waypoints

that were implemented by hand and based on what appeared

to be the best line around each corner. Better lap times

would possibly have been achieved if this line was produced

algorithmically to create a minimum-curvature line around

the race track. It was also surprising to note that both

versions produced relatively similar lap times despite the

differing approach to the QL process.

CONCLUSIONS AND FUTURE WORK

This paper has presented the use of QL to produce an AI

controller in a racing game. The results have shown that the

controller produces reasonable lap-times and performance

compared to a player. The QL formula used in this project

was the standard QL approach. Other versions could have

been used (eg SARSA) which may have produced differing

or even improved policies for the AI controller.

There are several other areas that are open to investigation

in the future. The most pertinent of these would be to utilise

alternative reward functions. This could be used to create

different types of AI controllers (ie varying difficulties or

driving styles). A further development could have been to

use multiple racing lines with differing lines into and out of

corners. These lines could have been learnt and switched in

real-time to produce more realistic and seemingly human

behaviour. Another modification would be to increase the

state-space of the game world. This would increase the size

of the QStore but in turn increase the number of possible

actions that can be taken around the race track. This could

result in enhanced behaviour, in particular through tight or

twisting corners. The state space could be expanded further

by taking other factors into account such as the car velocity.

This project has shown that QL produces a reasonable

controller without hard-coding a complex AI system. The

racing line is the principle requirement to be implemented

into the game world. In the future QL could be used to teach

the agent how to steer based on its current position on the

track and what lies ahead. This would then allow AI

developers to focus their efforts on improving the agent’s

steering behaviours to create more realistic real-time

interactions.

REFERENCES

Lucas, S, Togelius, J. 2007. Point-to-Point Car Racing: an Initial

Study of Evolution Versus Temporal Difference Learning.

Symposium on Computational Intelligence and Games. 1 (1),

p260-267.

Moreton, H. 1983. Minimum Curvature Variation Curves,

Networks, and Surfaces for Fair Free-Form Shape Design.

United States: Berkeley. p1-213.

Patel, P, Carver, N, Rahimi, S. 2011. Tuning Computer Gaming

Agents using Q-Learning. Proceedings of the Federated

Conference on Computer Science and Information Systems. 1

(1), p581-588.

Reynolds, C. 1999. Steering Behaviors For Autonomous

Characters. Game Developers Conference. 1 (1), p763-782.

Sutton, R and Barto, A. 1998. Reinforcement Learning:An

Introduction. United States: MIT Press. p324-332.

Watkins, C. 1989. Learning from Delayed Rewards. London:

King's College.

WEB REFERENCES

FIAS. 2010. Reinforcement Learning. Available:

http://www.cs.utexas.edu/~dana/RL08.pdf. Last accessed 20th

September 2013.

Microsoft. 2004. Drivatar. Available:

http://research.microsoft.com/en-us/projects/drivatar/. Last

accessed 16th September 2013.

Candela, J, Herbrich, R, Graepel, T. 2011. Machine Learning in

Games. Available: http://research.microsoft.com/en-

us/events/2011summerschool/jqcandela2011.pdf. Last

accessed 16th September 2013.

Thirwell, E. 2013. Forza 5's AI is "much more engaging than

anything you'll see in another racing game". Available:

http://www.oxm.co.uk/62293/forza-5s-ai-is-much-more-

engaging-than-anything-youll-see-in-another-racing-game/.

Last accessed 20th September 2013.

