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ABSTRACT  

Artificial intelligence has become a fundamental component 

of modern computer games as developers are producing 

ever more realistic experiences. This is particularly true of 

the racing game genre in which AI plays a fundamental role. 

Reinforcement learning (RL) techniques, notably Q-

Learning (QL), have been growing as feasible methods for 

implementing AI in racing games in recent years. The focus 

of this research is on implementing QL to create a policy 

which the AI agents to utilise in a racing game using the 

Unity 3D game engine. QL is used (offline) to teach the 

agent appropriate throttle values around each part of the 

circuit whilst the steering is handled using a predefined 

racing line. Two variations of the QL algorithm were 

implemented to examine their effectiveness. The agents also 

make use of Steering Behaviours (including obstacle 

avoidance) to ensure that they can adapt their movements in 

real-time against other agents and players. Initial 

experiments showed that both types performed well and 

produced competitive lap times when compared to a player.  

INTRODUCTION 

Reinforcement learning (RL) techniques such as Q-Learning 

(QL, Watkins 1989) have grown in popularity in games in 

recent years. The drive for more realistic artificial 

intelligence (AI) has increased commensurably alongside 

the high fidelity of experience which is now possible with 

modern hardware. RL can produce an effective AI controller 

whilst removing the need for a programmer to hard-code the 

behaviour of the agent.  

The racing game used for performing the QL experiments 

was built using the Unity game engine. The game was built 

as a side-project in conjunction with this research. The cars 

in the game were created so that the throttle and steering 

values could be easily manipulated to control the car.  

The biggest challenge when considering implementing RL 

is to determine how to represent and simplify the agent’s 

state representation of the game world in an effective way to 

use as input for the algorithm. The information needs to be 

abstracted to a high level in order to ensure that only 

necessary details are provided. Two versions of the QL 

algorithm were implemented; an iterative approach and a 

traditional RL approach.  

The results from the experiments demonstrate that when 

combined with steering behaviours both QL 

implementations produced an effective AI controller that 

could complete competitive lap times.  

BACKGROUND 

Reinforcement Learning and Steering Behaviours 

RL is the method for teaching an AI agent to take actions in 

a given scenario. The goal is to maximise the cumulative 

reward, known as the utility (Sutton and Barto, 1988). The 

result of the RL process is a policy which provides the agent 

a roadmap of how to perform optimally. The RL process can 

be performed online or offline.  

Online learning is the process of teaching the AI agent in 

real-time. Offline learning involves teaching the agent 

before releasing the game. Both methods have their merits 

and issues. For several reasons the offline version is most 

commonly used when RL is applied to games (and is used 

in this research). Primarily, it ensures that the agent will 

behave as expected when the game is finished. It also means 

there is less computational expense in real-time as the AI is 

behaving based on a saved policy and does not need to 

perform as many calculations in real-time. The offline RL 

process works by performing a large number of iterations 

(episodes) of a simulation in order to build up a data store of 

learned Q values relative to their state-action combination.  

 



 
 

The concept of steering behaviours (SBs) was first 

introduced by Craig Reynolds (1999). SBs provide a 

mechanism of control for autonomous game agents. 

Reynolds proposed myriad behaviours which could be used 

independently of one another or holistically to achieve 

different behaviours. 

There were three relevant SBs for this project; seek, 

obstacle avoidance and wall avoidance. Whilst SBs are not 

the focus of this paper, they were used to perform real-time 

avoidance techniques during the game when multiple agents 

were in the scene.  

Q-Learning 

Q-Learning is one of the most commonly used forms of RL 

and is a type of temporal difference learning (Sutton and 

Barto, 1988). QL is used to find the best action-selection 

policy for a finite number of states. It assigns utility values 

to state-action pairs based on previous actions which have 

led to a goal state. As the number of episodes increases, the 

utility estimates and predictions improve and become more 

reliable.  

A state can comprise of any piece of information from the 

agent’s environment. An action is the operation that the 

agent can perform at each state. The action selection policy 

is a key component to the learning process. The two 

common types of action selection are greedy and ε-greedy 

(Sutton and Barto, 1988). Greedy always chooses the 

optimal available action according to the current utility 

estimates. In contrast, ε-greedy has a small probability of 

selecting a random action to explore instead of choosing the 

greedy option.  

The QL formula (1) is performed upon reaching a state. The 

QL formula is defined as follows: 

Q(s, a) = (1 - α)Q(s, a) + α(r + γ maxa’(Q(s', a' ) ) )     (1) 

Where: 

 Q(s, a) – Q value of the current state-action pair 

 Q(s’, a’) – Q value of the next state-action pair 

 r – reward value associated with next state 

 α – learning rate parameter 

 γ – discount value parameter 

The learning rate and discount value parameters are crucial 

in defining the learning process. The learning rate 

determines to what extent newly acquired information will 

override the previously stored information. A learning rate 

value of 0 will mean that the agent will not learn anything 

whilst a rate of 1 means that the agent will only consider the 

most recently acquired data. The discount parameter defines 

the importance of future rewards to the agent. A factor of 0 

creates a short-sighted agent which only considers current 

rewards, whilst a factor of 1 ensures the agent will aim for 

the highest possible long-term reward.  

Q-Learning in Games 

Patel et al (2011) used QL to create an AI agent for the 

popular first-person shooter game Counter-Strike. They 

used QL to train a simple AI agent in order to teach it how 

to fight and plant a bomb. A higher reward value was 

assigned to the AI if it accomplished the goal of the game. 

For example planting the bomb produced a higher reward 

than killing an enemy. Their results showed that the QL bots 

performed competitively against the traditionally 

programmed bots. However, they did note that this was not 

tested against players. This could identify further issues that 

would need to be resolved in the learning process 

A popular commercial racing game that makes heavy use of 

RL is the Forza series (Drivatars). The development team 

created a database of pre-generated racing lines for every 

corner on a race track (several slightly different lines per 

corner). For example, some racing lines will be optimal 

whilst others may go wide and miss the apex of the corner. 

The agent uses QL (offline) to learn the appropriate throttle 

values to follow each racing line as fast as possible. The 

cars also learn various overtaking manoeuvres at each part 

of the track. During a race, the racing lines at each corner 

are switched to vary the behaviour. This approach meant 

that the programmers were not required to hard-code the 

values for each track and corner and produced a reusable 

and effective tool for creating AI agents for each type of 

vehicle. This technique has resulted in the Forza series 

having one of the most realistic AI systems in the racing 

game market today. 

IMPLEMENTING Q-LEARNING 

Game World Representation 

The first challenge was converting the three dimensional 

game world into a series of states for the algorithm to 

interpret. Firstly, a racing line was generated by positioning 

waypoints along the race track and creating a Catmull-Rom 

spline by interpolating between these points.  

The states were then defined as track segments (points along 

the racing line). The region was implemented by placing a 

box collider at each of these points. The collider width was 

equal to that of the race track width and rotated based on the 



 
 

direction of the spline. The quality of the state is evaluated 

based on the agent’s proximity to the centre of the racing 

line and time taken to reach the state.  

Discrete Action Space 

It was decided to focus the QL on learning the cars throttle 

values whilst using the racing line to generate the 

appropriate steering values. This helped to reduce the action 

space to an appropriate size in order to minimise the number 

of iterations required to perform the learning process. The 

action space was set to nine evenly spaced throttle values 

ranging from +1.0 to -1.0 (where +1.0 represents full 

throttle and -1.0 represents full braking or reversing). 

Q-Store Data Structure 

A data structure (the Q-Store) was implemented to store all 

of the data required by the learning algorithm. The Q-Store 

maintained a two-dimensional array of doubles. The first 

dimension in the array represented the state values whilst 

the second dimension represented the action values. This 

allowed for the Q value for each state-action pair to be 

easily stored and accessed. 

Q-Learning Algorithm 

As previously mentioned two versions of the QL algorithm 

were implemented. Both versions are very similar in nature 

but with some key differences as highlighted in the 

following sections. The algorithm works by applying each 

action (throttle values) at each state on the track. A reward 

was calculated if the car reached or did not reach the next 

state and the QL formula was calculated and stored. Both 

versions used the greedy action selection policy.  

The action policy generated from each version of the 

algorithm was stored in a text file. This allowed the policy 

to be retrieved and utilised without having to re-perform the 

learning process each time.  

First (Iterative) Version 

The first version of the algorithm was based on an iterative 

approach. The learning agent was designed to evaluate each 

possible action for a state before moving on to the next 

state. The agent would continually reset to the starting state 

after each evaluation. This meant that the agent would 

gradually make its way along the racing line and during the 

process the agent would ultimately evaluate the actions 

between the penultimate state and the goal state. This 

iterative approach meant that the number of episodes could 

be predetermined (number of states * number of actions).  

Second (Traditional) Version 

The second version was based on a more traditional RL 

approach. Unlike the first version the learning process did 

not continually reset in an iterative manner. It gradually 

developed a policy over a number of episodes (ranging from 

10 to 5000 in testing). Theoretically, an increased number of 

episodes will make the policy more likely to allow the agent 

to reach the goal in an effective way. 

Reward Function 

The reward function used for the agents produced a reward 

value based on the quality of the action performed at the 

current state. The value returned by the function was based 

on whether the action performed was good or bad. A good 

move would return a positive scaling reward value based on 

two key factors (proximity to the racing line and time taken 

between the two states). A final large multiplier would be 

added to the reward value if the car reached the goal state 

(the final point on the racing line). A bad move (eg 

crashing) would result in the function returning a negative 

reward value. 

Execute Policy 

The policy was stored in a text file that consisted of a single 

value (representing the action number) per line (the state). 

The agent would identify its current state and apply the 

corresponding action as specified in the file until reaching 

the next state. 

TESTING AND RESULTS 

This initial aim of this research was to investigate whether 

QL could be used to create a high quality controller for a 

racing game. Subsequent to this goal, the two versions of 

the QL algorithm suggested a further area of research in 

order to determine how they differed and which performed 

to a higher level. Each version of the agent was taught using 

the same racing line, race track and car properties. The two 

agents were taught using the same number of episodes 

(1,000) for the first two experiments. The third experiment 

involved varying the number of episodes for the second 

version of the algorithm.  

State-Action Tables (Q Tables) 

The first area of comparison was between the Q Tables 

produced by each version of the algorithm. These tables 

were produced after the learning process was completed by 

retrieving the data from the QStore. Tables 1 and 2 show 

that there was a difference in action selection at state 93 

whilst the same action was picked at state 94.  



 
 

Table 1: State-Action Table (Version 1) 

State Action Q Value 

93 6 2805597255.12183 

94 0 2920734984.09786 

Table 2: State-Action Table (Version 2) 

State Action Q Value 

93 0 730021813 

94 0 531860033 

Lap Times 

The overall goal of this research was to produce a high 

quality AI controller for a racing game using the two 

variations of the QL algorithm. As a result the most tangible 

measurement of performance provided by the project was in 

terms of lap-times.  

The same race track and racing line was used for each 

version and they both started from the same position at the 

beginning of each lap. Ten laps times were recorded for 

each version The average lap times are shown in Table 3. 

The lap times were performed with the obstacle avoidance 

and wall avoidance behaviours disabled as there were no 

obstacles present in the scene to check for in real-time.  

Table 3: Average Lap Time Comparison 

Lap Number Version 1  Version 2 

Average 42.73594 42.65832 

Standard Deviation 0.52378007 1.597068 

Whilst the lap times were very similar, the first version 

appeared to produce more consistent results. 

Episode Variation 

Unlike the first version of the implementation, the second 

version could be taught using an indefinite number of 

episodes. This raised the question of what effect would 

varying numbers of episodes have on the lap-time produced 

by the agent. Up to this point, the results produced for the 

second version was taught using the same number of 

episodes as the first version of the algorithm (approximately 

1,000).  

Table 4: Episode Variation Table 

Episodes Lap Time / Result 

10 44.33456 (crashed into wall) 

100 44.96534 (crashed into wall) 

1000 42.65832 

1500 41.74825 

2500 40.95938 

5000 41.46755 

The policies which caused the car to crash still managed to 

complete their laps as the car was built with a reset function 

to reset the car after 2.5 seconds to a point slightly further 

long the racing line. Table 4 shows that the fastest lap time 

was produced by the 2500 iteration version whilst similar 

lap times were produced by the 1000, 1500 and 5000 

versions.  

EVALUATION 

State-Action Tables (Q Tables) 

The state-action tables showed that the learning agents took 

a different approach entering the corner. The states chosen 

(93 and 94) were located before the tightest corner on the 

track. It is interesting to note the different actions selected 

for state 93. The first version selected a braking action 

whilst the second version selected the full throttle action. 

This was because the first version was focused on one 

individual state at a time. This meant it often braked at the 

latest possible state as it didn’t keep track of the reward 

based on the final end goal state. The second version had a 

more long-term view and as a result performed the braking 

action earlier (during states 89, 90 and 92) in order to 

achieve a better speed through the corner. This is because 

the QL function is aimed at achieving the highest possible 

long-term reward which is provided upon reaching the goal 

state. It would have been interesting to see the effect of 

different action-selection policies on the Q values produced.  

Lap Times 

The lap time comparison produced an interesting set of 

results. Table 3 shows the average and standard deviation 

between lap times for each version. The average lap time 

between the two algorithms was extremely close. The 

standard deviation, however, was very different. The first 

version appeared to produce very consistent lap times and 

results, whilst the second produced a wider range of very 

fast and relatively slow lap times. The slow lap times were 

often a result of going off track or hitting a wall. This would 

indicate that the number of episodes used to teach the 

second version was too low.  

Episode Variation 

This experiment was inspired by the standard deviation 

result in the lap-time test. The question raised was at what 

point was it that the number of episodes used cease to have 

an effect. Lap-times produced by the car were recorded for 

10 laps. Table 5 highlights the average lap times produced 

and the standard deviation between them.  

Table 5: Average and Standard Deviation for Episode Variation of 

Lap Times (Version 2 only) 

Episodes Lap Time / Result 

Average 42.6889 

Standard Deviation 1.62844 



 
 

The results show that for 100 episodes or less, the car 

crashed or had an incident causing the lap-time to be 

increased. This was to be expected given the number of 

possible actions for the number of states in the game world. 

Interestingly, it also shows that the fastest lap time was 

produced from a policy created by 2500 episodes. In 

contrast the policies produced by 1500 and 5000 episodes 

produced relatively similar lap times. 

One would have imagined that the lap time for 5000 

episodes would have been at least as quick if not faster than 

the controller produced from 2500 episodes. This result is 

possibly due to the algorithm performing further learning 

and discovering that a policy for this type of lap-time would 

result in a crash in the tighter parts of the racetrack. 

Therefore it made safer choices whilst still maintaining a 

good overall speed.  

Results Discussion 

The lap-times produced by both versions are relatively 

competitive compared to player lap-times (with times 

ranging between 39 and 42 seconds on average depending 

on the type of player). The overall performance of the 

algorithm in terms of lap-time is restricted by the optimality 

of the racing line. The line was generated from waypoints 

that were implemented by hand and based on what appeared 

to be the best line around each corner. Better lap times 

would possibly have been achieved if this line was produced 

algorithmically to create a minimum-curvature line around 

the race track. It was also surprising to note that both 

versions produced relatively similar lap times despite the 

differing approach to the QL process.  

CONCLUSIONS AND FUTURE WORK 

This paper has presented the use of QL to produce an AI 

controller in a racing game. The results have shown that the 

controller produces reasonable lap-times and performance 

compared to a player. The QL formula used in this project 

was the standard QL approach. Other versions could have 

been used (eg SARSA) which may have produced differing 

or even improved policies for the AI controller.  

There are several other areas that are open to investigation 

in the future. The most pertinent of these would be to utilise 

alternative reward functions. This could be used to create 

different types of AI controllers (ie varying difficulties or 

driving styles). A further development could have been to 

use multiple racing lines with differing lines into and out of 

corners. These lines could have been learnt and switched in 

real-time to produce more realistic and seemingly human 

behaviour. Another modification would be to increase the 

state-space of the game world. This would increase the size 

of the QStore but in turn increase the number of possible 

actions that can be taken around the race track. This could 

result in enhanced behaviour, in particular through tight or 

twisting corners. The state space could be expanded further 

by taking other factors into account such as the car velocity.  

This project has shown that QL produces a reasonable 

controller without hard-coding a complex AI system. The 

racing line is the principle requirement to be implemented 

into the game world. In the future QL could be used to teach 

the agent how to steer based on its current position on the 

track and what lies ahead. This would then allow AI 

developers to focus their efforts on improving the agent’s 

steering behaviours to create more realistic real-time 

interactions.  
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