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Rational sequences for the conductance
PROCEEDINGS

Rational sequences for the conductance in quantum

wires from affine Toda field theories

O.A. Castro-Alvaredo and A. Fring

Institut für Theoretische Physik, Freie Universität Berlin,

Arnimallee 14, D-14195 Berlin, Germany

E-mail:olalla/fring@physik.fu-berlin.de

Abstract: We analyse the expression for the conductance of a quantum wire which is

decribed by an integrable quantum field theory. In the high temperature regime we derive

a simple formula for the filling fraction. This expression involves only the inverse of a

matrix which contains the information of the asymptotic phases of the scattering matrix

and the solutions of the constant thermodynamic Bethe ansatz equations. Evaluating

these expressions for minimal affine Toda field theory we recover several sequences of

rational numbers, which are multiples of the famous Jain sequence for the filling fraction

occurring in the context of the fractional quantum Hall effect. For instance we obtain

ν = 4m/(2m+1) for A4m−1-minimal affine Toda field theory. The matrices involved have

in general non-rational entries and are not part of previous classification schemes based

on integral lattices.

1. Introduction

The quantum [1] and in particular the fractional [2] quantum Hall effect have attracted

an enormous amount of attention both from theorist [3] and experimentalists (for some

very recent experiments see e.g. [4]). The key observation is that when subjecting an

electron gas confined to two space dimensions to a strong uniform magnetic field, the

transverse (Hall) conductance takes on preferably certain characteristic values G = e2/hν,

whereas the longitudinal conductance vanishes at these plateaux in complete analogy to

the classical Hall effect [5]. The filling fractions ν are distinct universal, in the sense that

they are independent of the geometry or type of the material, rational numbers, which can

be determined experimentally to an extremely high precision. Many, but not all, of the

experimentally observed filling fractions are part of Jain’s famous sequence (see [6] and

references therein)

ν =
m

mp ± 1
m, p/2 = 1, 2, 3, . . . (1.1)

which results as a theoretical prediction from a composite Fermion theory.

http://arXiv.org/abs/cond-mat/0212235v2
mailto:olalla/fring@physik.fu-berlin.de


Rational sequences for the conductance

In the following we will show that remarkably multiples of these universal numbers also

quantize the conductance of quantum wires when described by minimal affine Toda field

theories (ATFT) [7]. However, no claims are made here that the systems studied actually

correspond to any concrete description of the real quantum Hall effect. Nonetheless, one

may speculate as there is a well defined way to reduce from a Chern-Simons type theory

(an established description of the quantum Hall effect) to ATFT, see e.g. [8].

2. Conductance in the high temperature regime

Let us briefly recall [9] how to compute the conductance G within the framework of the

Landauer-Büttiker transport theory [10] as a function of the temperature T and elab-

orate on that expression. Let us consider a one dimensional quantum wire within the

Landauer-Büttiker transport theory. In order to compute G we simply have to determine

the difference of the static charge distribution at the left and right constriction of the wire,

which we assume to be at the potentials µl
i and µr

i , respectively. Then, to obtain the di-

rect current Ii for each particle of type i with charge qi, we have to integrate the density

distribution functions ρr
i (θ, T, µi) of occupied states over the full range of the rapidities θ

and the total conductance simply reads

G(1/T ) =
∑

i

Gi =
∑

i

lim
∆µi→0

1

∆µi

Ii(1/T,∆µi = µl
i − µr

i ) (2.1)

=
∑

i

lim
∆µi→0

qi

2∆µi

∞
∫

−∞

dθ
[

ρr
i (θ, T, µl

i) − ρr
i (θ, T, µr

i )
]

. (2.2)

where Gi denotes the contribution to the conductance of each particle i, and the sums

above run both over particles and antiparticles. That explains the factor of 1/2 in (2.2)

wich accounts for the double counting. Hence, the main task in this approach is to de-

termine the density distribution functions ρr
i (θ, T, µi) of occupied states. It is remarkable

that in the context of integrable models, despite the fact that these functions are neither

Fermi-Dirac nor Bose-Einstein, there exist approaches in which they can be computed

non-perturbatively, i.e. the thermodynamic Bethe ansatz (TBA) [11].

We briefly recall how this is possible. The central equations of the TBA relate the

total density of available states ρi(θ, r) for particles of type i with mass mi as a function

of the inverse temperature r = 1/T to the density of occupied states ρr
i (θ, r)

ρi(θ, r) =
mi

2π
cosh θ +

∑

j

[ϕij ∗ ρr
j ](θ) . (2.3)

By (f ∗ g) (θ) := 1/(2π)
∫

dθ′f(θ − θ′)g(θ′) we denote as usual the convolution of two

functions. There are only two inputs into the entire TBA analysis: first the dynamical

interaction, which enters via the logarithmic derivative of the scattering matrix ϕij(θ) =

−id ln Sij(θ)/dθ and an assumption on the statistical interaction gij amongst the particles

i and j on which we comment further below. For the moment we chose this interaction to

– 2 –
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be of fermionic type. The mutual ratio of the two types of densities serves as the definition

of the so-called pseudo-energies εi(θ, r)

ρr
i (θ, r)

ρi(θ, r)
=

e−εi(θ,r)

1 + e−εi(θ,r)
, (2.4)

which have to be positive and real. At thermodynamic equilibrium they can be computed

from the non-linear integral equations

rmi cosh θ = εi(θ, r, µi) + rµi +
∑

j

[ϕij ∗ ln(1 + e−εj )](θ) , (2.5)

where r = m/T , ml → ml/m, µi → µi/m, with m being the mass of the lightest particle

in the model and chemical potential µi < 1. As pointed out already in [11] (here just with

the small modification of a chemical potential), the comparison between (2.5) and (2.3)

leads to the useful relation

ρi(θ, r, µi) =
1

2π

(

dεi(θ, r, µi)

dr
+ µi

)

∼ 1

2πr
ǫ(θ)

dεi(θ, r, µi)

dθ
. (2.6)

Here ǫ(θ) = Θ(θ)−Θ(−θ) is the unit step function, i.e. ǫ(θ) = 1 for θ > 0 and ǫ(θ) = −1 for

θ < 0. In equation (2.4), we assume that in the large rapidity regime the density ρr
i (θ, r, µi)

is dominated by the last expression in (2.6) and in the small rapidity regime by the Fermi

distribution function. Therefore, from (2.4) follows

ρr
i (θ, r, µi) =

e−εi(θ,r,µi)

1 + e−εi(θ,r,µi)
ρi(θ, r, µi) (2.7)

∼ 1

2πr
ǫ(θ)

d

dθ
ln [1 + exp(−εi(θ, r, µi))] . (2.8)

Using this expression in equation (2.2), we can approximate the direct current in the

ultraviolet by

lim
r→0

Ii(r,∆µi) ∼
qi

4πr

∞
∫

−∞

dθ ln

[

1 + exp(−εi(θ, r, µl
i))

1 + exp(−εi(θ, r, µr
i ))

]

dǫ(θ)

dθ
, (2.9)

after a partial integration. Taking now the potentials at the end of the wire to be µr
i =

−µl
i = µi/2 we carry out the limit ∆µi → 0 in (2.2) with the help l’Hôpital rule and the

conductance becomes

lim
r→0

Gi(r) ∼
qi

2πr

∞
∫

−∞

dθ
1

1 + exp[εi(θ, r, 0)]

dεi(θ, r, µi/2)

dµi

∣

∣

∣

∣

µi=0

dǫ(θ)

dθ
. (2.10)

Noting that dǫ(θ)/dθ = 2δ(θ), we obtain

lim
r→0

Gi(r) ∼
qi

πr

1

1 + exp εi(0, r, 0)

dεi(0, r, µi/2)

dµi

∣

∣

∣

∣

µi=0

. (2.11)
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The derivative dεi(0, r, µi/2)/dµi can be obtained by solving

dεi(0, r, µi/2)

dµk

= −r

2
δik +

∑

j

Nij
1

1 + exp εj(0, r, µi/2)]

dεj(0, r, µj/2)

dµk

, (2.12)

which results from performing a constant TBA analysis on the µk-derivative of (2.5) in the

spirit of [11]. At this point only the asymptotic phases of the scattering matrix enter via

Nij =
1

2πi
lim

θ→∞
[ln[Sij(−θ)/Sij(θ)]] . (2.13)

In principle we have now all quantities needed to compute the conductance, but to solve

(2.12) for the derivatives of the pseudo-energies is somewhat cumbersome, see [9] for such

a computation. Nonetheless, we can elaborate more on equation (2.12) and simplify the

procedure further. For this purpose we introduce the quantity

Yij :=
1

r(1 + eεi)

dεi

dµj

, (2.14)

such that we can re-write equation (2.12) equivalently as

MijYjk =
δik

2
with Mij := Nij − (1 + eεi)δij (2.15)

where the pseudoenergies satisfy the constant TBA equations

e−εi =
∏

j

(1 + e−εj)Nij . (2.16)

Returning now to dimensionful variables, i.e. replacing 1/2π → e2/h, the conductance at

high temperature in terms of the filling fraction ν then simply results to

G(0) =
e2

h
ν with ν = 2

∑

i,j

qi(M
−1)ij . (2.17)

This means we have reduced the entire problem to compute filling fractions simply to the

task of finding and inverting the matrix M . This is done in two steps: First from the

asymptotic phases of the scattering matrix we compute Nij and subsequently we solve the

constant TBA equations (2.16). Then it is a simple matter of inverting the matrix (2.15)

and performing the sums in (2.17).

In the context of the fractional quantum Hall effect one encounters very often particles

which obey some exotic (anyonic) statistics. So far we have assumed our particles to obey

fermionic type statistics as this choice is most natural for the investigated theories [11].

However, one can easily implement more general statistics by adding a matrix gij to the

N -matrix [12].

The formula (2.17) reminds of course on the well-known expressions for the conduc-

tance as may be found for instance in [13, 14]. In that context it was found [13, 15] that

Jain’s sequence (1.1) can be obtained simply from the (m × m)-matrix

Mij = p ± δij . (2.18)

– 4 –
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For this we have to take qi = 1/2 ∀ i in our expression (2.17). We will now demonstrate

that a sequence closely related to (1.1) can also be obtained in a more surprising way from

fairly complicated matrices, even with non-rational entries, which result directly in the

way indicated above, namely from a TBA analysis of minimal affine Toda field theories [7].

Each Toda theory is associated to a Lie algebra g of rank ℓ and it is well known [16] that

in that case N is an (ℓ × ℓ)-matrix which is of the general form

Nij = δij − 2(K−1
g

)ij , (2.19)

where Kg is the Cartan matrix related to g (see e.g. [17]). The solutions to the constant

TBA equations are also known [18, 16] for most cases. In the ultraviolet limit these theories

possess Virasoro central charge c = 2ℓ/(H + 2), with H being the Coxeter number of the

Lie algebra g.

3. Fractional filling fractions from minimal affine Toda field theory

3.1 The 4m/(2m + 1)-sequence

Let us start with some concrete examples to illustrate the working of our formulae. Spe-

cializing the general expression (2.19) to the A3-case, the solutions to the constant TBA

equations (2.16) are simply

eε1 = eε3 = 2, eε2 = 3 . (3.1)

Then, the inverse of the M -matrix

Mij = δij − 2(K−1
A3

)ij − δij(1 + eεi) (3.2)

is computed to

M−1 =
1

36







11 −2 −1

−2 8 −2

−1 −2 11






. (3.3)

From the fact that the Aℓ-minimal affine Toda field theories can also be viewed as complex

sine-Gordon models [19], we know [20] that the charges in this theory are q1 = q3 = 1,

q2 = 2, such that (2.17) yields

νA3
= 4/3 . (3.4)

The next example, i.e. A5-minimal affine Toda field theory, yields a less expected answer,

even more since the M -matrix contains non-rational entries. With (2.19) for A5 the solu-

tions to the constant TBA equations are [18, 16]

eε1 = eε5 = 1 +
√

2, eε2 = eε4 = 2 + 2
√

2, eε3 = 3 + 2
√

2 . (3.5)

Assembling this into the M -matrix, it is clear that it will contain non-rational entries.

Evidently this matrix is not of the form (2.18) and certainly falls out of the classification
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scheme based on integral lattices [21]. Nonetheless, it will lead to a distinct rational value

for ν. We compute the inverse of M to

M−1 =























(

35
4 − 6

√
2
)

(

31
2
√

2
− 11

) (

7−5
√

2
4

) (

6 − 17
2
√

2

)

(

3
√

2 − 17
4

)

(

31
2
√

2
− 11

) (

15 − 21√
2

) (

7
√

2−10
4

)

(

6
√

2 − 17
2

)

(

6 − 17
2
√

2

)

(

7−5
√

2
4

) (

7
√

2−10
4

) (

9
4 − 3√

2

) (

7
√

2−10
4

) (

7−5
√

2
4

)

(

6 − 17
2
√

2

)

(

6
√

2 − 17
2

)

(

7
√

2−10
4

) (

15 − 21√
2

) (

31
2
√

2
− 11

)

(

3
√

2 − 17
4

)

(

6 − 17
2
√

2

) (

7−5
√

2
4

) (

31
2
√

2
− 11

)

(

35
4 − 6

√
2
)























. (3.6)

Remarkably when taking into account that [20] q1 = q5 = 1, q2 = q4 = 2, q3 = 3, we obtain

by evaluating (2.17) for the matrix (3.6) the simple ratio

νA5
= 3/2 . (3.7)

We will now turn to the generic case. Taking the general solutions of the constant TBA

equations into account [18, 16] and using a generic expression for the inverse of the Cartan

matrix K−1
Aℓ

= min(i, j) − ij/(ℓ + 1) in (2.19), the M-matrix for an A2ℓ+1-minimal affine

Toda field theory can be written generically as

Mij =
ij

ℓ + 1
− 2min(i, j) − δij

sin
(

iπ
2ℓ+4

)

sin
(

(i+2)π
2ℓ+4

)

sin2
(

π
2ℓ+4

) . (3.8)

As already indicated by the previous example this matrix is not of the form (2.18) and

does not fit into the classification scheme proposed in [21]. According to [20] we have the

charges

qi = q2ℓ+2−i and qi = i for i ≤ ℓ + 1 . (3.9)

As can be guessed from (3.6), it is not evident how to express the inverse in terms of a

simple closed expression. We can, however, invert (3.8) case-by-case up to very high rank

and we obtain from (2.17) together with (3.9) the sequence

νA2ℓ+1
=

2ℓ + 2

ℓ + 2
. (3.10)

In view of (3.8), it is remarkable that the outcome is rational. Note for ℓ = 0, that is A1

we recover the free case with ν = 1. Taking now ℓ = 2m − 1, we obtain as a subsequence

of this four times the most stable part of Jain’s sequence (1.1) with p = 2

νA4m−1
=

4m

2m + 1
. (3.11)

In summary: The conductance of a quantum wire which is described by a massive A2ℓ+1-

minimal affine Toda field theory possesses in the high temperature regime, in which the

model turns into a conformal field theory with Virasoro central c = (2ℓ + 1)/(ℓ + 2), a

filling fraction equal to (3.10). In particular for ℓ = 2m−1, we obtain the sequence (3.11).

– 6 –
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3.2 The 2m/(2m + 1)-sequence

We proceed now similarly as in the preceding section, but now for the D2ℓ+1-minimal affine

Toda field theories, which all possess Virasoro central charge c = 1 in the ultraviolet limit.

We label the particles in consecutive order along the Dynkin diagram (see e.g. [17] for more

properties), starting from the not splitted end. Taking in (2.19) g=D2ℓ+1 the solutions to

the constant TBA equations are simply [18, 16]

eεi = i(i + 2) 1 ≤ i ≤ 2ℓ − 1 (3.12)

eε2ℓ+1 = eε2ℓ = 2ℓ . (3.13)

Since these entries are all integer valued, we are not very surprised when we obtain rational

values for the filling fraction, but what is not obvious is that the outcome is one of Jain’s

sequences. The M -matrix is computed to

Mij = −2(K−1
D2ℓ+1

)ij − δije
εi , (3.14)

with the values (3.12) and (3.13). From these data we evaluate a simple expression for the

determinant

det M =
(2ℓ + 1)2 (2ℓ + 1)! (2ℓ)!

2
, (3.15)

and the inverse of this matrix

(M−1)ij = (M−1)ji =
2

3j(1 + j)(2 + j)
2 ≤ i < j ≤ 2ℓ − 1 (3.16)

(M−1)ii =
−(3i + 1)

3i(1 + i)(2 + i)
1 ≤ i ≤ 2ℓ − 1 (3.17)

(M−1)i(2ℓ+1) = (M−1)i(2ℓ) =
1

6ℓ(2ℓ + 1)
1 ≤ i ≤ 2ℓ − 1 (3.18)

(M−1)(2ℓ+1)i = (M−1)(2ℓ)i =
1

6ℓ(2ℓ + 1)
1 ≤ i ≤ 2ℓ − 1 (3.19)

(M−1)(2ℓ+1)(2ℓ+1) = (M−1)(2ℓ)(2ℓ) = − 10ℓ + 1

12ℓ(2ℓ + 1)
(3.20)

(M−1)(2ℓ+1)(2ℓ) = (M−1)(2ℓ)(2ℓ+1) =
2ℓ − 1

12ℓ(2ℓ + 1)
(3.21)

Taking then the charges of the particles to be

q2ℓ+1 = q2ℓ = ℓ/2 and qi = i for i ≤ 2ℓ − 1 , (3.22)

the computation of (2.17) yields

νD2ℓ+1
=

2ℓ

2ℓ + 1
. (3.23)

Similarly as in the previous subsection, the sequence (3.23) gives twice the Jain sequence

(1.1) with p = 2.

In summary: The conductance of a quantum wire which is described by a massive

D2ℓ+1-minimal affine Toda field theory possesses in the high temperature regime, in which

all models turn into conformal field theories with Virasoro central charge c = 1, a filling

fraction equal to (3.23) which is twice the principal Jain sequence (1.1).

– 7 –
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3.3 The 4m/(6m + 1)-sequence

This sequence can be obtained similarly just by altering the values of the two charges at

the very end of the Dynkin diagram. Considering now the D6m+2-minimal affine Toda field

theories we can employ the same M -matrix as in the previous subsection, but we take the

charges of the particles to be

q6m+2 = q6m+1 = m/(2m + 1) and qi = i for i ≤ 6m . (3.24)

Evaluating then the expression for the filling fractions (2.17) gives

νD6m+2
=

4m

6m + 1
, (3.25)

which is four times the Jain’s sequence (1.1) with p = 6.

4. Conclusions

Within a Landauer-Büttiker transport theory picture we have analyzed the expression for

the conductance of a quantum wire which is described by an integrable quantum field

theory. The final expression for the conductance in the high temperature regime is very

simple (2.17) and involves the sum over the entries of the inverse of a certain matrix M as

defined in (2.15). This matrix is constructed from the knowledge of the asymptotic phases

of the scattering matrix and the solutions of the constant TBA equations (2.16).

When evaluating this matrix for some concrete minimal affine Toda field theories, we

obtain values for the filling fraction which coincide with multiples of several subsequences

of Jain’s series (1.1) and are therefore rational numbers. The fact that we obtain this

special rational values is extremely surprising, in particular as for the A2ℓ+1-minimal affine

Toda theories the related M -matrix has non-rational entries. One should note, however,

that one does not always get these nice rational values. We did not report all examples

here which we have computed, but for instance in general the A2ℓ and the D2ℓ-minimal

affine Toda theories lead to non-rational values for ν.

Our findings pose several interesting questions: As it is clear that the M -matrices

obtained are beyond the classification scheme carried out in [21] on the basis of integral

lattices, one may attempt a new type of classification based on the Lie algebraic systematics

which underlies the formulation of integrable quantum field theories. In order to do this we

have to enlarge our considerations [22] to other algebras such as the E-series, non-simply

laced Lie algebras and also to theories which are related to a pair of Lie algebras. It would

also be interesting to perform an analysis based on a different expression from (2.2) for the

conductance, such as the Kubo formula, and compare the findings similar as in [9].

Acknowledgments: We are grateful to the Deutsche Forschungsgemeinschaft (Sfb288),
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