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1 Introduction

Renormalization group (RG) methods have been developed [1] to carry out qualitative
studies of regions of quantum field theories which are not accessible to perturbation theory
in the coupling constant. For theories in 1+1 space-time dimensions these methods admit
particularly powerful realizations in form of explicit constructions of scaling functions.
Such functions may be obtained either from the thermodynamic Bethe ansatz (TBA) [2],
from correlations functions involving various components of the energy-momentum tensor
[3, 4] or from semi-classical studies [5]. In general the functions obtained from different
approaches differ quantitatively, but nonetheless possess the same qualitative features
characterized as follows:

We consider a quantum field theory which contains asymptotically stable particles
of mass mi and unstable particles with mass Mi. In addition we assume that there are
no particles associated to asymptotic massless states in the spectrum. Then the scaling
function c(r) parameterized by a dimensionless renormalization group parameter r has
the properties: It

i) coincides with the Virasoro central charge c of the ultraviolet conformal field theory
for vanishing r

lim
r→0

c(r) = c, (1)

ii) is non-increasing along the RG flow,

iii) is stationary at RG fixed points and acquires at these points the Virasoro central
charge of specific conformal field theories

c(r) = cij = const mi,Mi ≪
2

r
≪ mj,Mj , (2)

iv) vanishes in the infrared

c(r) = 0
2

r
≪ mi,Mi . (3)

There is yet another proposal to construct such type of functions, namely as “Bailey
flow” [6] between different series of Virasoro characters. However, so far it has neither
been established whether the functions constructed in this fashion satisfy the properties
i)-iv) nor has it been clarified in which way they are related to a massive quantum field
theory.

In the following we shall be constructing a scaling function which also flows between
certain Virasoro characters. In addition to the flows provided in [6], we will not only pro-
pose a flow between several distinct series, such as for instance from N=2 superconformal
theories to N=1 superconformal theories, but also realize the flows within a particular
series itself. Our flows are manifested by means of q-deformed Cartan matrices which
simulate a control of the energy scales of unstable particles. We establish that the pro-
posed function indeed satisfies the properties i)-iv) and in addition relate it to a concrete
massive quantum field theory with an explicitly known scattering matrix.
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Our manuscript is organized as follows: In section 2 we recall how certain recurrence
relations emerge from a saddle point analysis of fermionic versions of Virasoro characters,
which involve data of the massive theory, namely the phase of the scattering matrix,
and how their solutions are related to the effective central charge. We show that various
series may be realized in terms of the HSG-models. In section 3 we present a q-deformed
version of the analysis in section 2 and demonstrate how the HSG-realization allows for a
flow amongst various models governed by the mass scales of the unstable particles. The
analysis in this section is mainly carried out numerically. Section 4 is devoted to the
explicit analytic solutions at the plateaux in terms of Weyl characters. We present here
various cases which have not been considered before. In section 5 we demonstrate how the
q-deformed characters may be associated to particle spectra, which involve also unstable
pseudo-particles. Our conclusions are stated in section 6.

2 The TBA from the massive and massless side

Let us first recall some well-known facts in order to assemble the relevant equations and
to establish our notations. We consider a Virasoro character in the so-called “fermionic
version”∗[7]

χ(q) =

∞
∑

~m∈S

q ~mM ~mt/2+~m· ~B
l
∏

i=1

[

(~m(1 − M))i + B′
i

mi

]

q

. (4)

Here we employ the standard abbreviation for Euler’s function (q)m with (q)0 = 1 and the
Gaußian polynomial (q-binomial), see e.g. [8], for the integers n and m with 0 ≤ m ≤ n

(q)m :=

m
∏

k=1

(1 − qk) and
[ n

m

]

q
:=

(q)n
(q)m(q)n−m

. (5)

The main characteristics of the expression (4) for the character χ(q) are the real symmetric
(l × l)-matrix M and the vector ~B′ with B′

i = ∞ for 1 ≤ i ≤ l − l′, B′
i = 0 for l − l′ <

i ≤ l, with l′ being a non-negative integer smaller l. The specific form of the vector ~B
distinguishes between different highest weight representations, which share of course the
same Virasoro central charge c. There might be restrictions on the set S in which ~m
takes its values, which usually reflect some of the symmetries in the model.

The important thing for us to note is that once χ(q) is of the generic form (4), one
may employ the techniques originally pursuit in [9] and carry out a saddle point analysis
to extract the leading order behaviour. As a result of this, the effective central charge,
i.e. ceff = c−24h′ with h′ being the smallest conformal dimension occurring in the theory
(h′ = 0 in unitary models), is expressed in a rather non-obvious way. For the character of
the particular form (4), this analysis was performed first in [7], leading, after a suitable

∗In fact this terminology is slightly misleading, since they are not intrinsically fermionic. This name
originated from the construction of fermionic pseudo-particle spectra. However, it is also possible to
construct from (4) pseudo-particle spectra related to all kinds of general statistics.
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variable transformation, to the saddle point conditions

1 − xA =
l
∏

B=1

(xB)MAB and 1 − yA =
l
∏

B=1+l−l′

(yB)M
′
AB . (6)

At this stage the xA and yA are just the integration variables occurring in this context
(for details see e.g. [9, 7]). The matrix M ′ is a submatrix of M of dimension (l′ × l′).
The remaining y’s which do not occur in these equations are taken to be one, i.e. yA = 1
for 1 ≤ A ≤ l − l′. One should also note that, since in this analysis sums are converted
into integrals, the specific structure of the set S does not effect the outcome of the
computation and may therefore be ignored for our purposes. The leading order behaviour
at the extremum point yields the effective central charge

ceff =
6

π2

l
∑

A=1

(L (1 − xA) − L (1 − yA)) (7)

in terms of Rogers dilogarithm L(x) =
∑∞

n=1 xn/n2+lnx ln(1−x)/2 (for properties see e.g.
[10]). Once ceff is rational, the system (6) and (7) is referred to as “accessible” dilogarithms
(for a review see e.g. [11] and references therein), which from the mathematical point of
view is a rather exceptional situation.

The important point to note here is that the saddle point analysis does not rely upon
the fact that the matrices M and M ′ are constant. It is this feature which we shall exploit
below.

2.1 g|g̃-theories

Intriguingly the same set of equations (6) and (7) may also be obtained when we commence
with the massive instead of the conformal side. We start from a scattering matrix SAB(θ),
as a function of the rapidity θ, between particles of type 1 ≤ A,B ≤ l. Performing
then a thermodynamic Bethe ansatz analysis [2] one ends up with a set of non-linear
integral equations in the pseudo-energies as functions of the rapidities, the so-called TBA-
equations. We then assume that the S-matrix is such that it leads to regions in the TBA-
equations in which the pseudo-energies are constant. In general this happens when the
scattering matrix does not depend on the effective coupling constant. In that situation,
the thermodynamic Bethe Ansatz leads to a set of coupled equations coinciding precisely
with the ones in x in (6). All y’s may be thought of as being 1 in this case. The matrix
M in (4) is now directly related to the massive models containing the information about
the scattering matrix

MAB = δAB − 1

2πi
lim

θ→∞
ln(SAB(θ)SBA(θ)) . (8)

Reversing the argument, the relation (8) means that one has identified a quantity within
the conformal field theory which carries the data of the phase of the S-matrix.

In the following we will consider theories in which MAB is related to a Lie algebraic
structure. For this purpose we give the quantum numbers A,B, which describe the particle

3



type, an additional substructure. We identify each particle by two quantum numbers, i.e.
A = (a, i), such that the scattering matrices are of the general form Sij

ab(θ). We associate
the main quantum numbers a, b to the vertices of the Dynkin diagram of a simply laced
Lie algebra g of rank ℓ and the so-called colour quantum numbers i, j to the vertices of
the Dynkin diagram of a simply laced Lie algebra g̃ of rank ℓ̃. We refer to these theories
as g|g̃. The S-matrices constructed in [12] are of this type

Sij
ab(θ) = eiπεijK−1

āb exp

∞
∫

−∞

dt

t

(

2 cosh
πt

h
− Ĩ

)

ij

(

2 cosh
πt

h
− I

)−1

ab

e−it(θ+σij), (9)

with I, Ĩ being the incidence matrix of g, g̃, respectively. Here εij is the Levi-Civita
pseudotensor, h the Coxeter number of g and σij = −σij the resonance parameters. As
special cases of this S-matrix we have the g|A1 and An|g̃ theories which correspond to
the minimal affine Toda theories and the g̃n+1-homogeneous Sine-Gordon (HSG) models
[13]. As may be seen [12] easily from (9) the M-matrix for these models is

M ij
ab = K−1

ab K̃ij , (10)

with K, K̃ being the Cartan matrix of g, g̃, respectively. The special case g|A1 was first
treated in [14]. S-matrices for g̃ also to be non-simply laced were proposed in [15]. It
remains an open question, apart from g|A1, how to allow also g to be non-simply laced.

2.2 g|g̃–coset theories

The full system (6) and (7), involving a non-trivial M ′-matrix, can be associated in
general with a non-diagonal scattering matrix on the massive side. A straightforward
identification between M and the scattering matrix such as in (8) is not possible in
this case. However, within the thermodynamic Bethe ansatz analysis the equations are
diagonalized and decoupled, such that at the fixed points they acquire precisely the form
(6). In many prominent cases the M and M ′ matrices involve Lie algebraic quantities in
the form of (10). Noting this point, many models can be realized formally in terms of
g|g̃-cosets.

2.2.1 Unitary minimal models

The series of unitary minimal models, usually denoted by M(k, k + 1) [16], constitute an
extremely well studied and prominent class of conformal field theories. It is well-known
[17] that they may for instance be realized by the cosets SU(2)k ⊗ U(1)/SU(2)k+1 or
SU(k + 1)2/SU(k)2 ⊗ U(1), which are related to each other by level-rank duality [18].
Recalling the fact [17] that each extended simple Lie algebra g, a Kac-Moody algebra
ĝ of level k, contributes positively or negatively k dim g/(k + h) (h being the Coxeter
number of g) to the total central charge, depending on whether it is part of the algebra
or subalgebra, respectively, one obtains the famous sequence

c = 1 − 6

(k + 2)(k + 3)
k = 1, 2, 3, . . . (11)
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Including now the relevant U(1)-factors, we may also obtain the series (11) from a coset
of two g|g̃–theories

Ak−1|A1/Ak|A1 ⇔ A1|Ak/A1|Ak−1 (12)

in the ultraviolet limit. The relation (12) allows for various interpretations with regard
to the realizations of several RG-flows. We note that both theories on the l.h.s. do not
contain any unstable particle. A flow between cosets parameterized by different k’s may
then be achieved in the so-called massless way as roaming trajectories in the spirit of
[19]. On the other hand, the realizations in form of the r.h.s. of (12) constitute theories
which contain unstable particles. Therefore a flow between cosets related to different k’s
is achievable in a well controllable fashion over the different energy scales of the unstable
particles as observed in [20, 21, 22, 4, 23] for the HSG-models. For vanishing resonance
parameters σij the system on the r.h.s. of (12) leads to the same constant TBA-equations
as found for the RSOS-models [24]. In addition following the RG-flow of the scaling
function of the TBA one observes that at the fixed points, the set of equations (6) is also
obtained for finite values of the resonance parameters.

Of course these coset realizations are not unique and one may for instance also obtain
(11) from the quaternionic projective space HP k [17] or use various exceptional Lie alge-
bras to construct particular theories. This ambiguity allows for various other realizations
in terms of different combinations of HSG-models.

2.2.2 Unitary N=1 super conformal field theories

The series of N = 1 unitary minimal models MN=1(k, k+1) has played an important role
in the construction of certain string theories. It may be realized for instance by the cosets
SU(2)k ⊗ SU(2)2/SU(2)k+1 or SU(k + 2)2/SU(k)2 ⊗ SU(2)2 [17]. The corresponding
series for the Virasoro central charge is

c =
3

2
− 12

(k + 2)(k + 4)
k = 1, 2, 3, . . . (13)

Once again we may include the relevant U(1)-factors and also construct the MN=1(k, k+
1) models from several g|g̃–theories, for instance

Ak−1|A1 ⊗ A1|A1 ⊗ A1|A1/Ak+1|A1 ⇔ A1|Ak+1/A1|Ak−1 ⊗ A1|A1 . (14)

In the ultraviolet limit they posses central charges of the form (13). Once again we note
that there is a realization which involves unstable particles, i.e. the r.h.s. of (14), and
one which does not, that is the l.h.s. of (14).

2.2.3 Unitary N=2 super conformal field theories

The series of N = 2 unitary minimal models MN=2(k, k + 1) is omnipresent in string
theory [25] (for a recent review see e.g. [26]). It may be realized by the cosets SU(2)k ⊗
U(1)/U(1)k or SO(2k)2/SU(k)2 with the corresponding series of the Virasoro central
charge

c =
3k

2 + k
k = 1, 2, 3, . . . (15)
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Including the relevant U(1)-factors, we construct from several g|g̃–theories the realizations

Ak−1|A1 ⊗ A3|A1 ⇔ A1|Dk+1/A1|Ak−1 . (16)

In the ultraviolet limit they also lead to (15). A further possibility, which we shall exploit
in section 3.4., to obtain (15), is to use the coset A1|Dk+2/A1|Ak−1⊗A1|A⊗2

1 . Once again
we note that there is a realization which involves unstable particles, i.e. the r.h.s. of (16),
and one which does not, that is the l.h.s. of (16).

2.2.4 Gk ⊗ Gl/Gk+l-cosets

The Gk ⊗ Gl/Gk+l-cosets are more general theories which encompass various models.
For instance taking G = SU(2) and setting l = 2 or l = k − 2, k = 1 one obtains the
MN=1(k, k+1) or M(k, k+1)-models, respectively. Massless flows related to these models
where investigated in [19]. Once again there exists a realization in terms of HSG-models

Ak−1|G ⊗ Al−1|G ⊗ A1|A⊗2ℓ
1 /Ak+l−1|G, (17)

such that we may also reproduce these flows by means of a variation of the energy scales
of the unstable particles. Here ℓ is still the rank of the Lie algebra g. We will not
perform a detailed investigation of these theories which go beyond the MN=1(k, k + 1)
or M(k, k + 1)-models, but from the following analysis it will become apparent that the
existence of the realization (17) allows for an analogue treatment.

3 RG-flow from q-deformed Virasoro characters

We now wish to introduce a mass scale. Recalling [27, 28] that the recurrence relations
(6) may be solved by means of Weyl characters a natural conjecture is to suspect that a
deformation of these expressions leads to a correct description of the massive theories in
the sense of the full TBA-equations. To make this concrete seems a rather difficult task
and we therefore construct a scaling function in a different way, but nonetheless in the
spirit of the renormalization group ideas. Instead of using a different parameterization
for the Weyl characters, we deform the Virasoro characters (4) in a very natural way. As
was already pointed out in the previous section, the saddle point analysis which leads to
the equations (6) and (7), does not depend on the fact whether the matrix M is constant
or variable. We can exploit this by introducing mass scales in a rather suggestive fashion.
Restricting ourselves to the large class of simply laced g|g̃-theories and cosets constructed
from these theories as in section 2.2, we replace now the M -matrix by a q-deformed version

[

M ij
ab

]

q
:= [Kab]

−1
q [K̃ij ]q̃ij

, (18)

with

[Kab]q : = Kabq = αa · αb q = αa · αb exp(−mr/2 ) (19)

[K̃ij ]q̃ij
: = 2δij − [Ĩij ]q̃ij

= α̃i · α̃j q̃ij = α̃i · α̃j exp(−mr/2 (1 − δij)e
|σij |/2) . (20)
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Here the αi, α̃i are the simple roots of g, g̃, respectively. In other words we re-defined
the usual scalar product between the simple roots or equivalently q-deformed the roots
themselves. The bracket [ ]q is not to be confused with the usual notation of q-deformed
integers. Q-deformations of a different nature have recently played an important role in
the context of the formulation of consistent expressions for scattering matrices of affine
Toda field theories related to non simply laced Lie algebras [29]. For the case at hand
the q-deformation is mainly inspired by the physics of the unstable particles. The natural
mass scale of the unstable particle mc̃ ∼ mr/2 e|σij |/2, with σij playing the role of a
resonance parameter and m of an overall mass scale, is introduced in K̃ in such a way
that for σij → ∞, the Cartan matrix of g̃ decouples according to the “cutting rule”
analyzed in [23]. Notice that for mr/2 eσij/2 ≪ 1 we have [K̃ij ]q̃ij

≈ K̃ij , such that the
decoupling takes place at the same scale as in the massive models (see e.g. equation (51)
in [20] and also [4, 23]). In addition we would like the particles to be massless in the
infrared. Recalling that the masses of the affine Toda field theories can be organized in
form of the Perron-Frobenius vector of the Cartan matrix, the deformation (19) achieves
this goal. In the limit r → 0 we recover the usual Cartan matrix.

Of course the deformations of the type (19) and (20) are not unique and one could
try to find different realizations in order to construct scaling functions. However, from
the arguments just outlined they appear to be the most natural ones.

3.1 g|g̃-theories

Equipped with the matrices (19) and (20), the q-deformed version of (4) acquires the form

χ(q, r, ~m,~σ) =
∞
∑

~k=0

q
1
2
~k[M ]{r,~m,~σ}

~kt+~k· ~B

(q)k1 . . . (q)kn

. (21)

For simplicity we took here l′ to be zero. We collect the ℓ̃ − 1 linearly independent
resonance parameters in the vector ~σ and the ℓ independent mass scales in ~m. The RG
scaling parameter is denoted by r. To obtain the recurrence relations in a more symmetric
way it is convenient to introduce the variables xi

a =
∏ℓ

b=1(Q
i
b)

−Kab. In terms of the q-

deformed analogues to these variables, [xi
a]q =

∏ℓ
b=1(Q

i
b)

−[Kab]q , the saddle point analysis
of (21) leads to

ℓ
∏

b=1

Qi
b(r, ~m,~σ)−[Kab]q +

ℓ̃
∏

j=1

Qj
a(r, ~m,~σ)

−[K̃ij ]q̃ij = 1 (22)

together with the associated scaling function

cg|g̃(r, ~m,~σ) =
6

π2

ℓ
∑

a=1

ℓ̃
∑

i=1

L





ℓ̃
∏

j=1

Qj
a(r, ~m,~σ)

−[K̃ij]qij



 . (23)

The recurrence relations (22) play now an analogous role to the TBA-equations. In
order to make our main point, namely that (23) indeed constitutes a scaling function
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which reproduces the characteristic features of the theory, like the ones obtainable from
the conventional TBA, the scaled version of the c-theorem or a semi-classical analysis, we
have to establish that cg|g̃(r, ~m,~σ) satisfies indeed the properties i)-iv) in the introduction.

Most straightforward to prove are the properties related to the extremal limits. Prop-
erty i) is easily established since by construction cg|g̃(0, ~m,~σ) is the ultraviolet Virasoro
central charge. Property iv) follows from the following argument: Let us first assume in
(22) that the Qi

a’s are finite for r → ∞. Taking then this limit leads to 1 + (Qi
a)

−2 = 1,
such that our initial assumption can not hold and we deduce that limr→∞ Qi

a ∼ ∞. When
we want to avoid that the scaling function (23) becomes complex we have to assume that
the Q’s are real. Additional support for this assumption will be provided below just based
on the structure of (22) and a possible physical interpretation. Thus taking now Q ∈ R

each term on the l.h.s. of (22) has to be smaller than 1, such that we deduce for the
infrared asymptotics of the first term

lim
r→∞

e−mr/2
∑

b

Kab ln Qi
b = 0 . (24)

Excluding the exotic case
∑

b Kab ln Qi
b = 0, we demand the behaviour (24) for each term

in the sum and conclude that the second term in (22) is zero such that with L(0) = 0 we
finally conclude that property iv) holds.

The other properties are less straightforward to prove in complete generality and we
will be content to establish them on the base of explicit case-by-case examples.

3.2 A1|g̃ ≡ g̃2-HSG

The A1|g̃-theories are good theories to start with, since they do not involve any stable
particle fusing structure. In addition several scaling functions have been obtained by a
TBA analysis [20] and also from the scaled version of the c-theorem [4, 23], such that
we have already data available to compare with. The equations (22) become in this case
simply

Qi(r,m,~σ)2 = Qi(r,m,~σ)2−2q +
ℓ̃
∏

j=1

Qj(r,m,~σ)
[Ĩij]qij . (25)

It is useful to treat the case g̃ = A1 separately, since it corresponds to the free fermion.

3.2.1 The free fermion

The free fermion is analytically solvable in several approaches and is therefore an ideal
example to illustrate that the various scaling functions are quantitatively different but
contain qualitatively the same information. Equation (25) becomes in this case simply
Q2 = Q2−2q+1. It is not possible to solve this relation analytically, but near the ultraviolet
we may approximate q ≈ 1 such that its solution becomes Q ∼

√
2 for rm/2 ≪ 1, and

therefore

cA1|A1(rm) ∼ 6

π2
L (1/2) =

1

2
for rm/2 ≪ 1. (26)
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We can compare this with the scaling function obtained as exact solution of the full TBA
analysis

cTBA(rm) =
6rm

π2

∞
∑

n=1

(−1)n
K1(nrm)

n
∼ 1

2
for rm/2 ≪ 1, (27)

where K1 is a modified Bessel function. The latter estimate follows from K1(rm) ∼ 1/rm
for rm/2 ≪ 1 and the fact that L (−1) = −12/π2. This means in the main region of
interest these two functions coincide. It is also clear that for large rm that both functions
vanish.

In addition we may compare with the scaling function obtained from the c-theorem

cc-th(rm) =
3

2

∫ ∞

rm
ds s3

(

K1(s)
2 − K0(s)

2
)

∼ 1

2
for rm/2 ≪ 1 (28)

which shows a similar behaviour. Note that despite the fact that we use rm in (26)-(28)
the meaning of this parameter is different in each context. For our purposes it is simply
a dimensionless variable.

Let us now establish property ii) for this case. This illustrates at the same time the
general procedure which works in principle for all other situations. Since we know that
Q(r = 0) =

√
2 and limr→∞ Q → ∞ we just have to establish that Q(r) does not posses a

minimum or maximum in order to establish its monotonic behaviour. We compute from
(25) the derivative Q′ = q lnQ/(2Q2q−1 − Q−1(2 − 2q)). Obviously, for finite values of
Q, this is only vanishing for Q = 1, which is however not a solution of (25). Therefore
Q does not have an extremum and property ii) holds. Property iii) holds trivially in this
case.

3.2.2 g̃ 6= A1

For the other cases one may in principle proceed in a similar fashion, but already for
the case A1|A2 the analysis becomes rather messy. For instance computing the deriva-
tive in that case, we find that it only vanishes for Q = (1/2 exp(mr/2(1 − exp(σ/2) +
σ/2)))1/(2−2q−q̃). Substituting this back into (25) we find for a fixed value of σ a specific
value of r such that the equation is satisfied. We may then compute the second derivative
and establish that this value corresponds to a saddle point, which, in comparison with
our numerical solution exhibited in figure 1, is indeed situated on the second plateau.

Since an analytic solution of (25) is eluded from our analysis so far, we will now resort
to a numerical analysis. For this purpose we discretize the equation

Qi
(n+1)(r,m,~σ) =



Qi
(n)(r,m,~σ)2−2 exp(−m r/2) +

ℓ̃
∏

j=1

Qj
(n)(r,m,~σ)

[Ĩij]qij





1/2

(29)

and solve it iteratively in the usual fashion. Assuming convergence of this procedure the
value n → ∞ is identified with the exact solution of the recurrence relations (25). We
start with r = 0 and set the initial value Qj

0 to be the analytically known (see section
4) solutions of the constant TBA-equations. Once we have achieved convergence for a
particular value of r, we may increase this value by an amount δr and we take always as a
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starting value the previous solution of (29). It turns out that this procedure is extremely
fast convergent even when the particle number involved is very high. In comparison with
the full TBA equations, (29) are by far easier to solve since they do not involve the
complication of a convolution and correspond technically at each value of r to a constant
TBA equation.

Figure 1: RG flow from q-deformed Virasoro characters.

Figure 1 shows the numerical solution of (29) for various algebras and different choices
of the relative order of magnitude of the resonance parameters. We reproduce precisely the
same qualitative behaviour for the scaling function as obtained in the full TBA analysis
[20] and from the c-theorem [4, 23]. We recover all plateaux in the expected positions. In
addition we have the important property, as is seen in figure 1 for the SU(3)2-case, that
a shift in σ by x may by compensated by a shift in t with the same amount.

3.3 A1|E6 ≡ (E6)2-HSG

The approach presented in this section even allows to tackle more complicated algebras
with relatively little effort, which in the full TBA analysis or the form factor approach
constitutes a considerable computational problem. We illustrate this by considering the
A1|E6-theory. In figure 2 we present the decoupling of this theory and report the Virasoro
central charges which are taken up along the flow as superscripts. In figure 3 we report
the corresponding numerical results of (22) and (23) for this theory for various different
choices of the relative order of magnitude of the resonance parameters. Our results
precisely reproduce the central charges of figure 2.
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Figure 2: The decoupling of the A1|E6-theory.

Figure 3: RG flow from q-deformed Virasoro characters.
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3.4 g|g̃–coset theories

Recalling now from section 2.2 the various ways in which we can represent the unitary
series, we may construct the flows between different cosets in a similar way as in the
preceding subsection for a single homogeneous sine-Gordon theory. Figure 4 exhibits the
flow along the unitary series of the N = 0, 1, 2 superconformal minimal models.

From the realizations of the various cosets in terms of HSG-models it is also clear
that we may produce flows between the different series as suggested in [6] by alternative
means. By controlling the energy scale of the unstable particle we obtain

MN=2(k, k + 1) ≡ A1|Dk+2/A1|Ak−1 ⊗ A1|A⊗2
1 −→

σk+1,k+2→∞

MN=1(k, k + 1) ≡ A1|Ak+1/A1|Ak−1 ⊗ A1|A1 −→
σk,k+1→∞

M(k, k + 1) ≡ A1|Ak/A1|Ak−1 .

Our numerical results which reproduce these flows are presented in figure 5. It is this
type of flow which in [6] was realized as so-called “Bailey flow”.

Figure 4: Internal RG flow for the N = 0, 1, 2 unitary minimal models.
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Figure 5: RG flow between N = 0, 1, 2 unitary minimal models.

4 The fixed point solutions

As we have mentioned, we do not have a general solution of (22) so far for the entire
range of r, but at each fixed point such expressions may be found. In [27, 28] it was
noted, that the recurrence relations (6) admit closed analytical solutions in terms of some
very distinct mathematical objects, namely Weyl characters. Since the proofs of these
identities are very often missing or only indicated in the literature, we find it instructive
to present various transparent proofs in this section. In addition we present numerous
new solutions for theories treated before and for some hitherto not considered at all. We
start by assembling several properties of the characters which we utilize later to solve the
recurrence relations (6) or equivalently (22) in the range of r characterized by property
iii) in the introduction.

4.1 Properties of Weyl Characters

The characters for the representation of a simple Lie algebra g with rank ℓ are well-known
to be expressible in terms of the famous Weyl character formula, see e.g. [30]. From all
the equivalent formulations of this formula the version

χλ(q) =
∏

α∈∆+

qα·(λ+ρ) − q−α·(λ+ρ)

qα·ρ − q−α·ρ
(30)

is most convenient for our purposes. Here λ denotes an arbitrary weight, ∆+ the set
of positive roots and ρ = 1/2

∑

α∈∆+
α =

∑ℓ
i=1 λi the Weyl vector with λi denoting

13



the fundamental weights. Needless to say that like (4) the χλ(q)’s constitute generating
functions in the formal parameter q which is unrelated to the deformation parameter of
section 3. We will be particularly interested in the form of (30) evaluated at the special
value q = eiπτ

χλ(τ) =
∏

α∈∆+

sin (α · (λ + ρ)πτ)

sin (α · ρπτ)
. (31)

When considering λ to be a fundamental weight λi, it is useful to employ the conventions
χλ0

= χλℓ+1
= 1 and set χλ−n

= 0 for a positive integer n. When τ approaches 0, we
obtain the well-known formula for the dimension of the particular representation of the
weight λ

dimλ =
∏

α∈∆+

α · (λ + ρ)

α · ρ . (32)

We now wish to establish various properties for the character χλ(τ). It appears difficult
to carry out these studies on the generic expression (31) and we shall therefore resort to a
case-by-case analysis. Denoting by ε1, . . . , εn the standard orthonormal basis of R

n with
εi · εj = δij , it is well-known that it is possible to represent the entire root system as
vectors on a suitably chosen lattice in R

n with one (simply laced) or two (non-simply
laced) prescribed lengths. We adopt the conventions of Bourbaki [31], which resulted
historically from an investigation of the adjoint representation of simple Lie algebras,
which is the reason why they appear not always entirely obvious.

4.1.1 Aℓ

αℓ−2 αℓ−1 αℓα3α2α1
v v vv v v

We represent the roots of Aℓ in R
ℓ+1. According to [31] all positive roots are given by

εi − εj = α ∈ ∆+ for 1 ≤ i < j ≤ ℓ + 1 . (33)

The fundamental weights and the Weyl vector are realized as

λk =
k
∑

i=1

εi −
k

ℓ + 1

ℓ+1
∑

i=1

εi and ρ =
ℓ+1
∑

i=1

(ℓ/2 + 1 − i) εi . (34)

Equipped with these quantities we can evaluate (31) and obtain more explicit formulae

χaλk
(τ) =

∏

1≤i<j≤ℓ+1

sin[(εi − εj) · (aλk + ρ)πτ ]

sin[(εi − εj) · ρπτ ]
=

k
∏

i=1

ℓ
∏

j=k

sin[(a + 1 + j − i)πτ ]

sin[(1 + j − i)πτ ]
. (35)

The last expression in (35) is best suited to establish various properties of the Aℓ related
characters

χaλk
(τ ) = χaλk

(τ + 2) (36)

14



χaλk
(τ ) = χaλℓ+1−k

(τ ) (37)

χ(a+1)λk
(τ ) = χaλk

(τ)

k
∏

j=1

sin[(a + ℓ + 2 − j)πτ ]

sin[(a + k + 1 − j)πτ ]
(38)

χaλk+1
(τ ) = χaλk

(τ)
ℓ
∏

j=1+k

sin[(a + j)πτ ]

sin[jπτ ]

k
∏

i=1

sin[(ℓ + 1 − j)πτ ]

sin[(a + ℓ + 1 − j)πτ ]
(39)

χaλk
(τ)χaλk

(τ ) = χ(a+1)λk
(τ)χ(a−1)λk

(τ ) + χaλk+1
(τ)χaλk−1

(τ) . (40)

Here (36) is obvious and (37), (38), (39) follow from simple shifts in (35). With the help
of (38) and (39) we can verify (40). Note that (36)-(40) hold for generic values of τ . We
now also want to identify χaλk

and χ(l̃+1−a)λk
for some integer l̃. This is, however, not

true for generic values of τ . Expressing χaλk
and χ(l̃+1−a)λk

in the form (35) and denoting
the variables over which the products are taken in the former by i, j and the latter by
i′, j′ the two characters obviously coincide if (a + j − i)τ = 1 + (a − l̃ − 1 − j′ + i′)τ .
From the available values of i, j, i′, j′ the combination j + j′ − i− i′ = ℓ + 1 constitutes a
consistent solution of this equation such that we have

χaλk
(τ = 1

ℓ+ℓ̃+2
) = χ(l̃+1−a)λk

(τ = 1
ℓ+ℓ̃+2

) . (41)

This means it is the symmetry of the Dynkin diagram which fixes the value of τ .

4.1.2 Dℓ

αℓ

αℓ−1

αℓ−2

αℓ−3α2α1

@
@

�
�

v

v

vvv v

We represent the roots of Dℓ in R
ℓ. According to [31] all positive roots are expressible as

εi ± εj = α ∈ ∆+ for 1 ≤ i < j ≤ ℓ . (42)

The fundamental weights are given by

λℓ−1 =

ℓ−1
∑

i=1

εi − εℓ

2
, λℓ =

1

2

ℓ
∑

i=1

εi , λk =

k
∑

i=1

εi for 1 ≤ k ≤ ℓ − 2, (43)

such that the Weyl vector reads

ρ =

ℓ−1
∑

i=1

(ℓ − i)εi . (44)

Substituting these quantities into (31) yields

χaλk
(τ) =

∏

1≤i<j≤ℓ

sin[(εi − εj) · (aλk + ρ)πτ ]

sin[(εi − εj) · ρπτ ]

sin[(εi + εj) · (aλk + ρ)πτ ]

sin[(εi + εj) · ρπτ ]
(45)
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from which we derive

χaλk
(τ ) =

∏

1≤i<j≤k

sin[(2a+2ℓ−i−j)πτ ]
sin[(2ℓ−i−j)πτ ]

k
∏

i=1

ℓ
∏

j=k+1

sin[(a+j−i)πτ ]
sin[(j−i)πτ ]

sin[(2ℓ+a−j−i)πτ ]
sin[(2ℓ−j−i)πτ ] , 1 ≤ k ≤ ℓ − 2(46)

χaλℓ
(τ) = χaλℓ−1

(τ ) =
∏

1≤i<j≤ℓ

sin[(2ℓ+a−i−j)πτ ]
sin[(2ℓ−i−j)πτ ] . (47)

From (46) and (47) we can now deduce various properties of the Dℓ related characters

χaλk
(τ ) = χaλk

(τ + 2), (48)

χaλℓ
(τ ) = χaλℓ−1

(τ), (49)

χaλ1
(τ ′) =

∞
∑

k=0

(−1)kχλa−2k
(τ ′), a ≤ ℓ − 2, (50)

χλn+1
(τ ′) = χ(n+1)λ1

(τ ′) + χ(n−1)λ1
(τ ′), (51)

χλ1
(τ ′)χλ1

(τ ′) = 2χλ2
(τ ′), (52)

χλℓ
(τ ′)χλℓ

(τ ′) = 2

∞
∑

k=0

χλℓ−2−4k
(τ ′). (53)

Here we have set τ ′ = 1/(4ℓ − 4).

4.1.3 E6

α6α5α4

α2

α3α1

v

v v vvv

Following still [31] the roots and weights of E6 may be represented in R
8, where we

label the roots as depicted in the preceding Dynkin diagram. Since these expressions
are rather cumbersome, we refer the reader to the literature and report here only the
final expressions for the characters. Noting that all characters are of the general form
∏

1≤x<h sin(πτ(a + x))/ sin(πτx), with h being the Coxeter number, it is convenient to
use the following notation

{ax1,1

1,1 , . . . a
x1,b1
1,b1

; . . . ; a
xi,1

i,1 , a
xi,2

i,2 . . . , a
xi,bi

i,bi
, . . .} :=

h−1
∏

i=1

bi
∏

j=1

(

sin πτ(ai,j + i)

sin πτi

)xi,j

. (54)

Note that all expressions we find have at least one xi,j 6= 0 for each i ∈ [1, h − 1]. We
compute

χaλ1
= {a; a; a; a2; a2; a2; a2; a2; a; a; a} (55)

χaλ2
= {a; a; a2; a3; a3; a3; a3; a2; a; a; 2a} (56)

χaλ3
= {a; a2; a3; a4; a4; a3; a2, 2a; a, 2a; 2a; 2a; 2a} (57)

χaλ4
= {a; a3; a5; a5; a3, 2a; a, 2a2; 2a3; 2a2; 2a; 3a; 3a} . (58)

Here and in the following we suppress the τ -dependence of χ, i.e. we read χaλi = χaλi
(τ).
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4.1.4 E7

α7α6α5α4

α2

α3α1

v

v v v vvv

Our convention for naming the roots are the same as in [31] according to which we
represent the roots of E7 in R

8. We then compute

χaλ1
= {a; a; a; a2; a2; a3; a3; a3; a3; a3; a3; a2; a2; a; a; a; 2a} (59)

χaλ2
= {a; a; a2; a3; a4; a4; a5; a4; a4; a3; a2, 2a; a, 2a; a, 2a; 2a; 2a; 2a; 2a} (60)

χaλ3
= {a; a2; a3; a4; a5; a5; a4, 2a; a3, 2a; a2, 2a2; a, 2a2; 2a3; 2a2; 2a2; 2a; 2a; 3a; 3a} (61)

χaλ4
= {a; a3; a5; a6; a5, 2a; a3, 2a2; a, 2a4; 2a4; 2a4; 2a2, 3a; 2a, 3a2; 3a2; 3a2; 3a; 4a;

4a; 4a} (62)

χaλ5
= {a; a2; a4; a5; a6; a5; a4, 2a; a2, 2a2; a, 2a3; 2a3; 2a3; 2a2; 2a, 3a; 3a; 3a; 3a; 3a} (63)

χaλ6
= {a; a2; a2; a3; a4; a4; a4; a4; a3, 2a; a2, 2a; a2, 2a; a, 2a; 2a2 ; 2a; 2a; 2a; 2a} (64)

χaλ7
= {a; a; a; a; a2; a2; a2; a2; a3; a2; a2; a2; a2; a; a; a; a} (65)

4.1.5 E8

α8α7α6α5α4

α2

α3α1

v

v v v v vvv

Our convention for naming the roots are as in [31] according to which we represent the
roots of E8 in R

8. We compute

χaλ1
= {a; a; a; a2; a2; a3; a4; a4; a4; a5; a5; a5; a5; a4; a4; a4; a3, 2a; a2, 2a; a2, 2a;

a, 2a; a, 2a; a, 2a; 2a2 ; 2a; 2a; 2a; 2a; 2a; 2a} (66)

χaλ2
= {a; a; a2; a3; a4; a5; a6; a6; a6; a6; a5, 2a; a4, 2a; a3, 2a2; a2, 2a2; a, 2a3;

a, 2a3; 2a4; 2a3; 2a3; 2a2; 2a2, 2a; 3a; 2a; 3a; 3a; 3a; 3a; 3a; 3a; 3a} (67)

χaλ3
= {a; a2; a3; a4; a5; a6; a6, 2a; a5, 2a; a4, 2a2; a3, 2a3; a2, 2a4; a, 2a4; 2a5; 2a4;

2a4; 2a3, 3a; 2a2, 3a; 2a, 3a2; 2a, 3a2; 3a2; 3a2; 3a2; 3a, 4a; 4a; 4a; 4a; 4a;

4a; 4a} (68)

χaλ4
= {a; a3; a5; a6; a6, 2a; a5, 2a2; a3, 2a4; a, 2a5; 2a6; 2a5, 3a; 2a4, 3a2; 2a2,

3a3; 2a, 3a4; 3a4; 3a3, 4a; 3a2, 4a2; 3a, 4a3; 4a3; 4a3; 4a2; 4a, 5a; 5a2 ; 5a2;

5a; 6a; 6a; 6a; 6a; 6a} (69)

χaλ5
= {a; a2; a4; a6; a7; a7; a6, 2a; a4, 2a2; a2, 2a4; a, 2a5; 2a6; 2a5; 2a4, 3a; 2a2,
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3a2; 2a2, 3a3; 3a4; 3a4; 3a3; 3a2, 4a; 3a, 4a; 4a2 ; 4a2; 4a2; 4a; 5a; 5a; 5a; 5a}(70)
χaλ6

= {a; a2; a3; a4; a5; a6; a6; a6; a5, 2a; a4, 2a2; a3, 2a3; a2, 2a3; a, 2a4; 2a4;

2a4; 2a3, 3a; 2a3, 3a; 2a2, 3a; 2a, 3a2 ; 3a2; 3a2; 3a2; 3a2; 3a; 3a; 3a; 4a;

4a, ; 4a} (71)

χaλ7
= {a; a2; a2; a2; a3; a4; a4; a4; a5; a5; a4, 2a; a4, 2a; a4, 2a; a3, 2a; a2, 2a2;

a2, 2a2; a2, 2a2; a, 2a2; 2a3; 2a2; 2a2; 2a2; 2a2; 2a; 2a; 2a; 2a; 3a; 3a} (72)

χaλ8
= {a; a; a; a; a; a2; a2; a2; a2; a3; a3; a3; a3; a3; a3; a3; a3; a3; a3; a2; a2; a2; a2;

a; a; a; a; a; a} (73)

4.2 Solution for the g|g̃–theories

As already indicated in section 3, when introducing the variables xi
a =

∏ℓ
b=1(Q

i
b)

−Kab the
constant TBA-equations (6), or equivalently (22) at certain fixed points, acquire the more
symmetric form

(

Qi
a

)2
=

ℓ
∏

b=1

(

Qi
b

)Iab +
ℓ̃
∏

j=1

(

Qj
a

)Ĩij . (74)

It is convenient to take here Q0
a = Qi

0 = 1. We will now identify the Q’s with various
combinations of Weyl characters (74) either of the algebra g or g̃ such that the relations
(74) are solved. One should note here that in (74) the two algebras are on the same
footing, despite the fact that on the level of the scattering matrix, i.e. the data which
enter the Virasoro characters (4) and in (23) they play quite distinct roles. We always
choose

τ =
1

h + h̃
(75)

in (31), with h, h̃ being the Coxeter numbers of g, g̃, respectively. It will be sufficient
to concentrate on the g|g̃-theories, since the coset models reported on in section 3.4 may
be constructed simply by means of a system of the type (6). Having solved (74) we
also compute the (effective) central charge according to (23). In many cases this can be
done analytically by reducing the expression to some well-known (see e.g. [11]) numerical
relations for Rogers dilogarithm, such as L (1/2) = π2/12, L

(

(
√

5 − 1)/2
)

= π2/10, etc.,
by a successive application of the five term relation

L (x) + L (y) = L (xy) + L
(

x(1 − y)

1 − xy

)

+ L
(

y(1 − x)

1 − xy

)

. (76)

In several cases we do not attempt to be entirely rigorous and only verify the relations
numerically. Especially when a generic rank is involved we only compute a large part of
the beginning of the sequence and do not attempt to perform inductive proofs.

We proceed case-by-case.
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4.2.1 Aℓ|Aℓ̃

In this case the recurrence relations (74) are explicitly

(

Qk
a

)2
= Qk

a+1Q
k
a−1 + Qk+1

a Qk−1
a (77)

for 1 ≤ a ≤ ℓ, 1 ≤ k ≤ ℓ̃. As was first pointed out in [27], by identifying the Q’s with Weyl
characters these relations may be solved explicitly. We may either use the characters χ, χ̃
of Aℓ, Aℓ̃, respectively, with τ = 1/(ℓ + ℓ̃ + 2)

Qk
a = χkλa

(τ ) = χ̃aλk
(τ). (78)

This follows now immediately by noting that (77) coincides precisely with equation (40).
Using these solutions, the central charges according to (23) turn out to be

c =
6

π2

ℓ
∑

a=1

ℓ̃
∑

k=1

L
(

χ̃aλk−1
(τ )χ̃aλk+1

(τ)

χ̃aλk
(τ )2

)

=
ℓℓ̃(ℓ̃ + 1)

ℓ + ℓ̃ + 2
. (79)

4.2.2 A1|g̃–theories

For the reasons mentioned in the previous section these particular HSG-models are inter-
esting to investigate. Exploiting the symmetry in the equations (74), they may be solved
by appealing to the solutions which correspond to the ones of minimal affine Toda field
theories, i.e. g|A1. These solutions in terms of the characters of g may be extracted
from the general formulae provided in [27, 28]. The corresponding values were also stated
thereafter in the first reference in [14] without proof. We demonstrate that alternatively
one may simply use combinations of the characters of A1

χkλ(τ) =
sin(π(1 + k)τ)

sin(πτ)
(80)

in order to solve the recurrence relations.

A1|Aℓ̃ As a special case of (78) we obtain

Qi = χ̃λi
(1/(ℓ̃ + 3)) = χiλ(1/(ℓ̃ + 3)) . (81)

Translating to the x-variables we recover the values quoted in [14]. The particularization
of (23) yields the central charges

c =
6

π2

ℓ̃
∑

k=1

L
(

1 − χ̃λk
(1/(ℓ̃ + 3))

)

=
ℓ̃(ℓ̃ + 1)

ℓ̃ + 3
. (82)
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A1|Dℓ̃ We may express the solutions for this case either in terms of the Dℓ̃- or the

A1-Weyl characters. Taking τ = 1/2ℓ̃ we obtain

Qi =

i+1
2
∑

k=1

χ̃λ2k−1
(τ) = (i + 1)χλ2ℓ̃−2

(τ ) = i + 1 i odd, i ≤ ℓ̃ − 2, (83)

Qi = 1 +

i
2
∑

k=1

χ̃λ2k
(τ) = (i + 1)χλ2ℓ̃−2

(τ) = i + 1 i even, i ≤ ℓ̃ − 2, (84)

Qℓ̃−1 = χ̃λ
ℓ̃−1

(τ) = Qℓ̃ = χ̃λ
ℓ̃
(τ) =

√

ℓ̃ =
ℓ̃−1
∏

k=1

χ(2k−1)λ/χ(ℓ̃+k−1)λ . (85)

From the explicit expressions in section 4.1.2. follows that χ̃λk(τ) = 2 for k ≤ ℓ̃ − 2
and the last relation in (85). Therefore we may trivially evaluate the sums in (83) and
(84), whose result we can employ to convince ourselves that (74) is indeed satisfied. Once
again translating to the x-variables yields the values quoted in [14]. According to (23)
the central charges are then computed to

c =
6

π2





ℓ̃−3
∑

k=1

L
(

k(k + 2)

(k + 1)2

)

+ L
(

ℓ̃(ℓ̃ − 2)

(ℓ̃ − 1)2

)

+ 2L
(

1 − ℓ̃−1
)



 = ℓ̃ − 1 . (86)

A1|E6 Using the conventions of section 4.1.3. the recurrence relations (74) read in this
case

(Q1)2 = 1 + Q3, (Q2)2 = 1 + Q4, (Q3)2 = 1 + Q4Q1, (Q4)2 = 1 + Q2(Q3)2, (87)

where we have already exploited Q1 = Q6, Q3 = Q5, which is a consequence of the
symmetry of the Dynkin diagram. For a = 1 and τ = 1/14 the expressions (55)-(58) for
the E6-characters reduce to

χ̃λ1
= (2 sin

π

14
)−1, χ̃λ2

= χ̃λ3
= 2cos

π

7
, χ̃λ4

= 0 , (88)

such that we can identify them with combinations of A1-characters and vice versa

χ̃λ1
= 1 + χ4λ − χ2λ, χ̃λ2

= χ̃λ3
= χ2λ − 1 . (89)

With these simple expressions for the characters, we may easily check that the expressions

Q1 = 1 + χ4λ − χ2λ, Q2 = χ2λ, Q3 = χ4λ, Q4 = χ4λ + χ2λ, (90)

indeed satisfy the relations (87). Of course with the help of (89) it is also possible to
express the Q’s in terms of the χ̃’s instead of the χ’s. Making then use of the symme-
try between the two algebras in (74) and translating to the x-variables we recover the
numerical values quoted in [14]. Assembling this, the central charge according to (23) is
computed to

c =
6

π2

(

2L
(

Q3

(Q1)2

)

+ L
(

Q4

(Q2)2

)

+ 2L
(

Q1Q4

(Q3)2

)

+ L
(

(Q3)2Q2

(Q4)2

))

=
36

7
. (91)
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A1|E7 With the conventions of section 4.1.4. the recurrence relations (74) read in this
case

(Q1)2 = 1 + Q3, (Q2)2 = 1 + Q4, (Q3)2 = 1 + Q4Q1, (Q4)2 = 1 + Q3Q5Q2, (92)

(Q5)2 = 1 + Q4Q6, (Q6)2 = 1 + Q7Q5, (Q7)2 = 1 + Q6. (93)

For a = 1 and τ = 1/20 the expressions (59)-(65) for the E7-characters simplify to

χ̃λ1
= χ̃λ6

=
sin 3π

5

sin π
5

χ̃λ2
=

√
2, χ̃λ3

= χ̃λ4
= χ̃λ5

= 0, χ̃λ7
=

√
2

4 sin π
20 sin 9π

20

, (94)

such that by recalling (80) we can identify them with combinations of A1-characters and
vice versa

χ̃λ1
= χ̃λ6

= χ4λ − χ2λ, χ̃λ2
= χ5λ − χ3λ, χ̃λ7

= χ9λ + χλ − χ7λ. (95)

With these simple expressions for the characters, we may once again verify after exploiting
the symmetry of (74) or by direct analysis with the A1-characters, that the expressions
proposed in [28]

Q1 = 1 + χ̃λ1
, Q2 = χ̃λ7

+ χ̃λ2
, Q3 = 1 + 3χ̃λ1

, Q4 = 3 + 6χ̃λ1
, (96)

Q5 = 2χ̃λ7
+ 2χ̃λ2

, Q6 = 1 + 2χ̃λ1
, Q7 = χ̃λ7

, (97)

indeed satisfy (92)-(93)† . Renaming our roots and translating to the x-variables, we
recover the numerical values quoted in [14]. The central charge (23) is in this case

c =
6

π2

(

L
(

3
√

5 − 5

2

)

+ L
(

3
√

5 − 3)

4

)

+ L
(

3
√

5 + 3)

10

)

+ L
(

4
√

5

9

)

+L
(

3(3 +
√

5)

16

)

+ L
(

1 +
√

5

4

)

+ L
(

4(
√

5 − 4)
)

)

=
63

10
. (98)

A1|E8 The recurrence relations (74) read now

(Q1)2 = 1 + Q3, (Q2)2 = 1 + Q4, (Q3)2 = 1 + Q1Q4, (Q4)2 = 1 + Q3Q2Q5, (99)

(Q5)2 = 1 + Q4Q6, (Q6)2 = 1 + Q5Q7, (Q7)2 = 1 + Q6Q8, (Q8)2 = 1 + Q7. (100)

When setting a = 1 and τ = 1/32, the E8-characters (66)-(73) reduce to

χ̃λ1
= 1, χ̃λ8

=
√

2, χ̃λ2
= χ̃λ3

= χ̃λ4
= χ̃λ5

= χ̃λ6
= χ̃λ7

= 0 . (101)

We may then identify them with combinations of A1-characters

χ̃λ1
= χ30λ, χ̃λ8

= χ8λ − χλ . (102)

†There appears to be a small typo in Eq. (A.11.c) of [28], which reads when translated to our conven-
tions, i.e. 6→ 7, Q7 = χλ1

instead of (97).
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With these numerical values we can express the solutions of (99) and (100) in terms of
the E8/A1-characters

Q1 = 2 + χ̃λ8
, Q2 = 3 + 2χ̃λ8

, Q3 = 5 + 4χ̃λ8
, Q4 = 4(4 + 3χ̃λ8

), (103)

Q5 = 3(3 + 2χ̃λ8
), Q6 = 5 + 3χ̃λ8

, Q7 = 2 + 2χ̃λ8
, Q8 = χ̃λ1

+ χ̃λ8
. (104)

In [28] only the values for Q1 and Q8 were presented. As in the previous case, after
relabeling our roots and translating to the x-variables we recover the numbers quoted in
[14]. In this case the central charge (23) equals

c =
6

π2

(

L
(√

2 − 1

2

)

+ L
(

12
√

2 − 16
)

+ L
(

40
√

2 − 8

49

)

+ L
(

12
√

2 + 15

32

)

+L
(

12
√

2 − 8

9

)

+ L
(

30
√

2 + 6

49

)

+ L
(

1

4
+

1√
2

)

+ L
(

2
√

2 − 2
)

)

=
15

2
.(105)

4.2.3 Dℓ|Aℓ̃

In this case the recurrence relations (74) read
(

Qk
a

)2
= Qk

a+1Q
k
a−1 + Qk+1

a Qk−1
a , 1 ≤ a ≤ ℓ − 3 (106)

(

Qk
ℓ−2

)2
= Qk−1

ℓ−2Qk+1
ℓ−2 + Qk

ℓ Q
k
ℓ−1Q

k
ℓ−3 (107)

(

Qk
p

)2
= Qk

ℓ−2 + Qk+1
p Qk−1

p , p = ℓ, ℓ − 1 (108)

for 1 ≤ k ≤ ℓ̃. Also in this case we may exploit the symmetry of equations (74) in the
two algebras. We simply have to exchange their roles in order to obtain a solution for the
Dℓ|Aℓ̃-theory from the one for the Aℓ̃|Dℓ reported in [27, 28]. Taking τ = 1/(2ℓ + ℓ̃− 1),
we can express, following [27, 28], the Q’s in terms of the Weyl characters of Dℓ.

Qk
s =

k
∑

l1=0

. . .

k
∑

ls−2=0

χkλs+l1(λ1−λs)+...+ls−2(λs−2−λs)(τ), (109)

Qk
p =

k
∑

ã=0

ã
∑

l2=0

. . .
ã
∑

lp−2=0

χãλp+l2(λ2−λp)+...+lp−2(λp−2−λp)(τ), (110)

Qk
ℓ−1 = χkλℓ−1

(τ), Qk
ℓ = χkλℓ

(τ ) . (111)

Here s and p are odd and even integers smaller ℓ− 1, respectively. Alternatively we may
also express the Q’s in terms of the Aℓ̃-characters. For instance for Dℓ|A2 we find

Q1
2k = Q2

2k = 1 +
k
∑

i=1

(

χ̃iλ − χ̃(i−2)λ + χ̃(ℓ−i)λ − χ̃(ℓ−i−2)λ

)

, 2k < ℓ − 1, (112)

Q1
2k−1 = Q2

2k−1 =

k−1
∑

i=0

(

χ̃iλ − χ̃(i−2)λ

)

+

k
∑

i=1

(

χ̃(ℓ−i)λ − χ̃(ℓ−i−2)λ

)

, 2k < ℓ, (113)

Q1
ℓ = Q1

ℓ−1 = Q2
ℓ = Q2

ℓ−1 = χ̃ℓλ − χ̃(ℓ−2)λ . (114)
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We suppressed the τ -dependence, denote λ = λ1 = λ2 and recall that we take χ̃iλ = 1 for
i = 0, χ̃iλ = 0 for i < 0.

Let us now consider some theories which may not be obtained from others previously
studied, by exploiting the symmetry properties of the recurrence relations (74).

4.2.4 Dℓ|Dℓ̃

The recurrence relations (74) are now constructed from the symmetric Dl-incidence ma-
trix, whose non-vanishing entries are

Ît,t+1 = 1 1 ≤ t ≤ l − 2, Ît,t−1 = 1 2 ≤ t ≤ l − 1, Îl,l−2 = 1 , (115)

such that I = Î with l = ℓ and Ĩ = Î with l = ℓ̃.

D4|D4 For the choice τ = 1/12 the D4-characters (46) and (47) become

χλ1
= 3 +

√
3, χ2λ1

= 5 + 3
√

3, χ3λ1
= 6 + 4

√
3, χλ2

= 6 + 3
√

3, (116)

χ2λ2
= 15 + 9

√
3, χ3λ2

= 10 + 6
√

3, χλ3
= χλ1

, χ2λ3
= χ2λ1

, χ3λ3
= χ3λ1

.(117)

The recurrence relations (74) are solved by

Q1
1 = Q3

1 = Q4
1 = Q1

3 = Q1
4 = Q3

3 = Q3
4 = Q4

3 = Q4
4 = 4χλ1

− χ3λ1
= 6, (118)

Q2
1 = Q2

3 = Q2
4 = Q3

2 = Q1
2 = Q4

2 = 18, Q2
2 = 108. (119)

The central charge (23) is in this case simply

c =
6

π2

(

10L
(

1

2

)

+ 3L
(

2

3

)

+ 3L
(

1

3

))

= 8 . (120)

D4|D5 We take now τ = 1/14 such that some of the D4-characters (46) and (47) read,

χλ1
=

sin 2π
7 sin 3π

7

sin π
14 sin 3π

14

, χ2λ1
= 2χλ1

cos
π

7
sin

5π

14
= χ4λ1

/2, χ3λ1
=

χ4λ1
cos2 3π

7

sin 5π
14

,(121)

χλ2
= χ2λ1

= χ4λ2
/4, χ2λ2

=
χ2λ1

sin2 5π
14 sin 2π

7

sin 3π
14 sin2 π

7

, χ3λ2
=

χ2λ2
sin2 3π

7

sin 5π
14 sin2 2π

7

, (122)

and the ones for D5

χ̃λ1
=

sin 5π
14 sin 3π

7

sin π
14 sin 2π

7

, χ̃2λ1
= χ̃λ1

sin 3π
7

sin π
7

, χ̃3λ1
= χ2λ1

, (123)

χ̃λ2
= χ̃λ1

sin 5π
14 sin 2π

7

sin 3π
14 sin π

7

, χ̃2λ2
= 2χ̃2λ1

cos 3π
14

sin π
7

, χ̃3λ2
= (χ̃λ2

)2/χ̃λ1
, (124)

χ̃λ3
= 2χ̃λ2

cos
π

7
, χ̃2λ3

= χ̃3λ2
/2, χ̃3λ3

= χ̃2λ1
/2, (125)

χ̃λ4
=

sin2 3π
7

sin π
14 sin 3π

14

, χ̃2λ4
= χ̃2λ1

1

sin(3π
14 )

, χ̃3λ4
= χ3λ1

. (126)
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We may then express the characters of D5 in terms of characters of D4

χ̃λ1
= (χ3λ1

− χλ2
)/2, χ̃2λ1

= (χ3λ1
− 2)/2, χ̃3λ1

= χ2λ1
, (127)

χ̃λ2
= (χ3λ1

+ χλ2
− 2χλ1

− 2)/2, χ̃2λ2
= (χ3λ2

− χ3λ1
)/2, (128)

χ̃3λ2
= (−10χλ1

+ 9(χ2λ1
− 1) + 6χ3λ1

− χ2λ2
)/2, (129)

χ̃λ3
= χ3λ1

− 1, χ̃2λ3
= 2χ4λ1

, χ̃3λ3
= (χ3λ1

− 2)/2, (130)

χ̃λ4
= (χ3λ1

− 2χλ1
)/2, χ̃2λ4

= χ3λ1
− χλ1

− 1, χ̃3λ4
= χ3λ1

. (131)

In terms of these quantities we may then solve the recurrence relations by

Q1
1 = 1 + χλ1

, (132)

Q2
1 = 6(χ3λ1

+ χ3λ2
+ 1) − 10(χλ1

+ χ2λ1
+ χ4λ1

) + 4χ2λ2
− 9χ4λ2

, (133)

Q3
1 = 2(2 − χλ1

+ χ2λ1
+ χ2λ2

− χ3λ2
+ χ4λ2

), (134)

Q4
1 = 10(χ2λ2

− χ3λ1
− χ4λ1

− χ4λ2
) − 8χλ1

− 5χ2λ1
+ 6χ3λ2

− 7, (135)

Q1
2 = 8(χ2λ2

− χλ1
− χ4λ1

− χ4λ2
+ 1) + 5(χ3λ1

− χ2λ1
) + 2χ3λ2

, (136)

Q2
2 = 8(χ3λ2

+ χ3λ1
− χλ1

− χ4λ2
) − 5χ4λ1

− 4χ2λ2
+ 2, (137)

Q3
2 = 6(χλ1

+ χ4λ1
+ χ4λ2

) + 4χ2λ1
− 2χ3λ1

+ 1, (138)

Q4
2 = Q5

2 = 6(χ4λ2
− χ2λ2

) + 4(χλ1
+ χ4λ1

) − χ3λ2
+ χ3λ1

, (139)

Q1
3 = Q1

4 = Q1
1, Q2

3 = Q2
4 = Q2

1, Q4
3 = Q5

3 = Q4
1 = Q4

4 = Q5
4, (140)

Q3
3 = Q3

4 = Q3
1. (141)

Using these values we compute numerically the central charge to c = 80/7.

D5|D5 For τ = 1/16 and ℓ = 5 the D5-characters (46) and (47) become

χλ1
=

√
2

sin 5π
16

sin π
16

, χ2λ1
= 4 + 3

√
2 + 2

√

10 + 7
√

2, (142)

χ3λ1
= 8 + 5

√
2 +

√

2(58 + 41
√

2), χ4λ1
= 2χ2λ1

, (143)

χλ2
= χ2λ1

+ 1, χ2λ2
= 22 + 17

√
2 + 2

√

274 + 193
√

2, (144)

χ3λ2
= 46 + 32

√
2 + 6

√

116 + 82
√

2, χ4λ2
= 4 + 6χ2λ1

, (145)

χλ3
= 2 + 2χλ2

, χ2λ3
= 61 + 41

√
2 + 6

√

194 + 137
√

2, (146)

χ3λ3
= 100 + 69

√
2 + 13

√

116 + 82
√

2, χ4λ3
= χ4λ2

, (147)

χλ4
= 2(1 +

√
2 +

√

2 +
√

2), χ2λ4
= χ3λ1

, χ3λ4
= 2χ3λ1

, (148)

χ4λ4
= 18 + 14

√
2 + 6

√

20 + 14
√

2 . (149)

Noting the symmetry Qi
a = Qa

i , we may now express the Q’s in terms of D5-characters

Q1
1 = 2(χλ2

− χλ1
− χλ4

), (150)
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Q2
1 = 2(χ2λ3

+ χλ4
− χλ1

− χ2λ1
− χ3λ1

− χ2λ2
) − χ4λ1

− χ3λ4
− χ4λ4

, (151)

Q3
1 = 2(χ3λ3

− χλ1
− χ2λ1

− χ3λ1
− χ4λ1

− χ2λ2
− χλ4

− χ4λ4
)

+χ3λ4
− χλ2

− χ2λ3
, (152)

Q4
1 = Q5

1 = χ4λ1
+ χ3λ2

+ χ2λ3
− χλ1

− χ2λ1
− χλ2

− χ3λ3
− χλ4

, (153)

Q2
2 = 2(χ4λ1

+ χ2λ2
+ χ2λ3

+ χλ4
+ χ4λ4

− χλ1
− χ2λ1

− χ3λ1
− χ4λ2

− χ3λ4
)

+χ3λ2
− χλ2

− χ3λ3
, (154)

Q3
2 = 2(χ3λ2

+ χ3λ3
+ χ3λ4

− χλ1
− χ2λ1

− χ4λ1
− χ2λ2

− χλ4
− χ4λ4

) + χ2λ3

−χ3λ1
− χλ2

− 1, (155)

Q4
2 = Q5

2 = 1 + χλ1
+ χ4λ1

+ χ3λ2
+ χ2λ3

+ χ4λ4
− χ2λ2

− χ3λ3
, (156)

Q3
3 = 8(χ2λ3

+ χ3λ3
+ χ4λ4

− χλ1
− χ2λ1

− χ3λ1
− χ4λ1

− χλ2
− χ2λ2

) (157)

+7(χ3λ2
+ χ4λ2

+ χ3λ4
) − 5χλ4

+ 4, (158)

Q4
3 = Q5

3 = χ4λ1
+ χ3λ2

+ χ2λ3
− χ2λ1

− χλ2
− χ2λ2

− χ4λ2
− χ4λ4

, (159)

Q5
5 = Q4

4 = Q5
4 = 1 + χλ1

+ χ4λ1
+ χλ2

+ χ2λ2
+ χ4λ4

− χ3λ1
− χ3λ2

. (160)

Using these values we compute numerically the central charge to c = 25/2.

4.2.5 D4|E6

In this case recurrence relations (74) read

(Q1
1)

2 = Q1
2 + Q2

1, (Q2
1)

2 = Q2
2 + Q4

1, (Q3
1)

2 = Q3
2 + Q4

1Q
1
1, (161)

(Q4
1)

2 = Q4
2 + Q2

1(Q
3
1)

2, (Q1
2)

2 = Q1
4 + Q2

2, (Q2
2)

2 = Q2
4 + Q4

2, (162)

(Q3
2)

2 = Q3
4 + Q4

2Q
1
2, (Q4

2)
2 = Q4

4 + Q2
2(Q

3
2)

2. (163)

We already took the relations

Q1
a = Q6

a, Q3
a = Q5

a, Qi
1 = Qi

3 = Qi
4, 1 ≤ a ≤ 4, 1 ≤ i ≤ 6 (164)

into account which arise as a consequence of the symmetries of the D4 and E6 Dynkin
diagrams. Taking now τ = 1/18, ℓ = 4 and ℓ̃ = 6 the D4-characters turn out to be

χλ1
=

√
3

sin 2π
9

sin π
18

, χ2λ1
=

√
3

sin 5π
18 sin 7π

18

sin π
18 sin π

9

, χ3λ1
=

√
3 χ2λ1

sin 4π
9

sin 5π
18

, (165)

χ4λ1
=

2√
3

χ3λ1

sin 7π
18

sin 2π
9

, χ5λ1
= χ4λ1

sin2 4π
9

sin 7π
18 sin 5π

18

, χ6λ1
=

2√
3

χ5λ1

sin 7π
18

sin 4π
9

, (166)

χλ2
=

1

6
χ3λ1

tan 2π
9

sin π
9

, χ2λ2
=

2

3
χ3λ2

sin2 2π
9

sin2 7π
18

, χ3λ2
=

√
3 χ2

2λ1

sin π
18

sin π
9

, (167)

χ4λ2
=

√
3

2
χ4λ1

χ2λ1

sin π
18

sin π
9

, χ5λ2
=

2

3
χ4λ2

sin2 4π
9

sin2 5π
18

, χ6λ2
=

4√
3

χ5λ2

sin 4π
9 sin π

18

sin2 7π
18

, (168)

and the E6-characters are

χ̃λ1
=

√
3

2 sin 2π
9 sin π

18

, χ̃λ2
=

4√
3

χ̃λ1
sin

5π

18
sin

4π

9
, χ̃λ3

=
3

4
χ̃λ2

cos π
9

cos 2π
9

, (169)
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χ̃λ4
=

8

3
χ̃λ2

χ̃λ3

sin π
18 cos π

9

sin 7π
18

, χ̃2λ1
= 4 χ̃λ1

cos
2π

9
cos

π

9
, χ̃2λ2

= 2χ̃2λ1
(170)

χ̃2λ3
= 2

√
3 χ̃3λ1

cos 2π
9

sin 5π
18

, χ̃2λ4
= 36 χ̃2

3λ2
cos2

2π

9
, χ̃3λ1

= 2
sin 4π

9 sin 7π
18

sin π
18 sin π

9

, (171)

χ̃3λ2
= χ̃3λ3

= χ̃3λ1
+ 2 =

sin 5π
18 sin 7π

18

sin 4π
9 sin π

9

, χ̃3λ4
= χ̃2λ4

, (172)

such that we find the following relations amongst them

χ̃λ1
= 2(1 − χ2λ1

− χ3λ1
− χ6λ2

) + χ4λ1
+ χ5λ2

, (173)

χ̃λ2
= 2(χ5λ1

− χ2λ1
− χ2λ2

− χ6λ2
) + χ5λ2

, (174)

χ̃λ3
= 2(χλ1

− χ2λ1
+ χ5λ1

− χ2λ2
− χ3λ2

+ χ5λ2
− χ6λ2

+ 1), (175)

χ̃λ4
= 2(1 − χλ1

− χ2λ1
− χ3λ1

+ χ4λ1
+ χ5λ1

+ χλ2
− χ2λ2

+ χ3λ2
− χ6λ2

), (176)

χ̃2λ1
= 2(χ5λ1

− χλ1
− χ2λ1

− χ3λ1
) + χ4λ1

− χ2λ2
, (177)

χ̃2λ3
= 2(χ5λ1

− χλ1
− χ2λ1

− χ3λ1
) − χ4λ1

+ χ2λ2
, (178)

χ̃2λ4
= 2(1 − χλ1

− χ2λ1
) − χ3λ1

+ χ4λ1
+ χ6λ1

, (179)

χ̃3λ1
= 2(χ4λ1

+ χ6λ1
− χλ1

− χ2λ1
− χ3λ1

− χ5λ1
), (180)

χ̃3λ2
= χ̃3λ3

= 2 + χ̃3λ1
. (181)

The recurrence relations (161)-(163) are then solved by

Q1
1 = 2χλ2

− χλ1
− χ2λ1

, (182)

Q2
1 = χ5λ1

+ χλ2
+ χ6λ2

− χλ1
− χ2λ1

− χ3λ1
− χ3λ2

, (183)

Q3
1 = χλ1

+ χ2λ1
+ χ6λ1

+ χ4λ2
− χ5λ2

− 1, (184)

Q4
1 = 1 − χ4λ2

− 2(χλ1
+ χ2λ1

+ χ3λ1
+ χ4λ1

+ χ5λ1
− χ6λ1

+ χ2λ2
− χ5λ2

), (185)

Q1
2 = 1 + χλ1

+ χ2λ1
+ χ4λ1

− χ5λ1
+ χ2λ2

+ χ4λ2
− χ5λ2

, (186)

Q2
2 = χλ1

+ χ2λ1
− χ3λ1

− χ4λ1
+ χ5λ1

+ χ6λ1
+ χλ2

+ χ3λ2
− χ4λ2

+ χ6λ2
− 1, (187)

Q3
2 = 2(χ3λ2

+ χ5λ2
− χλ1

− χ2λ1
− χ3λ1

− χ4λ1
− χ6λ2

) − χ5λ1
− χ6λ1

− χ2λ2, (188)

Q4
2 = 8(χ3λ2

+ χ4λ2
+ χ5λ2

− χλ1
− χ2λ1

− χ3λ1
− χ4λ1

− χ5λ1
− χλ2

− 1)

−7χ6λ1
+ 6χ6λ1

. (189)

Using these values we compute numerically the central charge to c = 16.

5 Unstable quasi-particles

Once a character can be expressed in the generic form (4), it does not only allow a
derivation of the constant TBA equations, but also, when interpreted as partition function,
one may construct quasi-particle spectra of different statistical nature. We proceed in the
usual fashion, but we will now introduce as the main novelty also unstable quasi-particles
inside the spectrum. As usual [7] we parameterize the partition function χ(q = e2πv/ktL)
by Boltzmann’s constant k, the temperature T , the size of the quantizing system L, and
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the speed of sound v. We then equate it with
∑∞

n=0 P (En) exp(−En/kT ), where P (En)
denotes the degeneracy of the particular energy level En = En(pA) as a function of the
single particle contributions of type A. It is the aim in this analysis to identify the
spectrum expressed in terms of the pA. Technically this can be achieved by making use of
the expressions for the number of partitions Qs(n,m) (Ps(n,m)) of the positive integer
n into m non-negative (distinct) integers smaller or equal to s (see e.g. [8])

∞
∑

n=0

Ps(n,m)qn = qm(m−1)

[

s + 1

m

]

q

,

∞
∑

n=0

Qs(n,m)qn =

[

s + m

m

]

q

. (190)

Introducing in the standard way [7] some internal quantum numbers we construct for
instance (in units of 2π/L) a purely fermionic

pa
Na

(~k) =
1

2
([Mab]q − δab)kb +

1

2
+ Ba + Na (191)

or purely bosonic

pa
Na

(~k) =
1

2
[Mab]qkb + Ba + N̂a (192)

quasi-particle spectrum. The positive integers Na and N̂a are constrained from above as
Na <Int((1 − [Mab]q) kb + B′

a ) and N̂a ≤Int((1 − [Mab]q) kb + ma + B′
a), with Int(x) to

be the integer part of x. Like in the non-deformed case, it is of course also possible to
construct spectra related to more exotic or even with mixed statistics.

We expect now that at a certain energy scale some unstable particles vanish from
the spectrum. The mechanisms for this is that the upper bounds Na, N̂a involved in the
expressions for the possible momenta pa

Na
(~k), pa

N̂a
(~k) decrease. We illustrate this with

some examples. Denoting the character for the vacuum sector of the minimal model
M(k, k + 1) by χk(q) [34], we compute for instance

χ2(q) − χ1(q) = q6 + q7 + 2 q8 + 3 q9 + 5 q10 + 6 q11 + 9 q12 + 11 q13 + 16 q14 +

20 q15 + 27 q16 + 33 q17 + 44 q18 + 54 q19 + 70 q20 + O(q21), (193)

This means for example comparing χ1(q) and χ2(q) one particle should vanish from
the spectrum of M(2, 3) at level 6 when we vary the value of the resonance parameter
such that it flows to M(1, 2). Indeed in the purely fermionic spectrum we have the
possibility of a six particle contribution involving four of type 1 and two particles of type
2 with N2 <Int(2[(1 − exp(−r/2m2)) + exp(−r/2e|σ12|/2)]). This means for rm2/2 ≪ 1
and r/2e|σ12|/2 ≪ 1 the state

∣

∣p1
0(4, 2), p

1
1(4, 2), p

1
2(4, 2), p

1
3(4, 2), p

2
0(4, 2), p

2
1(4, 2)

〉

(194)

is allowed. It is then clear that when we increase σ12, this state disappears from the
spectrum. At the same time the state

∣

∣p1
0(4, 2), p

1
1(4, 2), p

1
2(4, 2), p

1
4(4, 2), p

2
0(4, 2), p

2
1(4, 2)

〉

(195)

at level 7 and the two states
∣

∣p1
0(4, 2), p

1
1(4, 2), p

1
2(4, 2), p

1
5(4, 2), p

2
0(4, 2), p

2
1(4, 2)

〉

(196)
∣

∣p1
0(4, 2), p

1
1(4, 2), p

1
3(4, 2), p

1
4(4, 2), p

2
0(4, 2), p

2
1(4, 2)

〉

(197)

at level 8, etc. vanish for the same reason.
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6 Conclusions

We have demonstrated that it is possible to construct scaling functions which reproduce
the renormalization group flow by q-deforming fermionic versions of Virasoro characters
in a very natural way. We investigated a fairly generic class of theories related to a pair
of simple simply laced Lie algebras g and g̃ or associated coset models. The construction
procedure relies on the fact that the characters, quantities of the massless theory, involve
data of the massive theory, i.e. the phases of the S-matrices. At the fixed points of these
flows we solved the relevant recurrence relations analytically in terms of Weyl characters.
We provided here various new solutions for particular choices of the algebras involved. It
would be extremely interesting to answer the question whether it is possible to solve these
relations in a completely generic, i.e. case-independent fashion. One should note that our
solutions admit various ambiguities, i.e. the sums are not unique since there are numerous
character identities involved or they might be expressed in terms of direct products of
characters in a Clebsch-Gordan sense. This arbitrariness might be eliminated when one
possible finds a deeper interpretation of the recurrence relation in terms of representation
theory.

Furthermore, it would be interesting to investigate whether it is possible to modify
the Weyl characters, for instance by a specific choice of the τ ’s, in such a way that
they solve the full r-dependent recurrence relations (22) exactly. Noting that our scaling
functions only coincide qualitatively with those obtained from the full TBA analysis, in
the sense that they have the plateaux precisely in the same position, including their size
in the r-direction, one may ask a stronger question: Is it possible to find versions of Weyl
characters such that the full TBA equations, this would be their formulation in terms of
so-called Y-systems (see e.g. [33]), is reproduced?

The functions we constructed allow for a far easier investigation of the RG-behaviour
than the full TBA-system [2], the scaled c-theorem [3, 4] or the semi-classical analysis
[5]. This allows to investigate systems of more complex nature such as A1|E6 or flows
between different supersymmetric series. It would be interesting to investigate the latter
flow in the other approaches.

The level-rank duality of the type (12) gives a hint why it is possible to obtain the
same flow by means of a theory involving unstable particles and alternatively as massless
flows in the sense of [19]. The concrete link, however, i.e. the question of how this duality
is reflected in the massive models, that is the scattering matrix, is still eluded from our
analysis.

We have also shown that our q-deformed characters allow for the construction of
spectra, which involve also unstable quasi-particles. The “decay” of these particles from
the spectrum is governed by a variable bound on the momenta depending on the resonance
parameter.

Concerning the specific theories investigated, it would be of interest to extend the
analysis to models which involve also non-simply laced algebras, albeit for g non-simply
laced consistent S-matrices have not been constructed at present.
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