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Abstract

We apply the thermodynamic Bethe Ansatz to investigate the high energy
behaviour of a class of scattering matrices which have recently been proposed
to describe the Homogeneous sine-Gordon models related to simply laced Lie
algebras. A characteristic feature is that some elements of the suggested S-
matrices are not parity invariant and contain resonance shifts which allow
for the formation of unstable bound states. From the Lagrangian point of
view these models may be viewed as integrable perturbations of WZNW-coset
models and in our analysis we recover indeed in the deep ultraviolet regime
the effective central charge related to these cosets, supporting therefore the
S-matrix proposal. For the SU(3)k-model we present a detailed numerical
analysis of the scaling function which exhibits the well known staircase pat-
tern for theories involving resonance parameters, indicating the energy scales
of stable and unstable particles. We demonstrate that, as a consequence of
the interplay between the mass scale and the resonance parameter, the ul-
traviolet limit of the HSG-model may be viewed alternatively as a massless
ultraviolet-infrared-flow between different conformal cosets. For k = 2 we
recover as a subsystem the flow between the tricritical Ising and the Ising
model.
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1 Introduction

The thermodynamic Bethe ansatz (TBA) is established as an important method
which serves to investigate “off-shell” properties of 1+1 dimensional quantum field
theories. Originally formulated in the context of the non-relativistic Bose gas by
Yang and Yang [1], it was extended thereafter by Zamolodchikov [2] to relativistic
quantum field theories whose scattering matrices factorize into two-particle ones.
The latter property is always guaranteed when the quantum field theory in question
is integrable. Provided the S-matrix has been determined in some way, for instance
via the bootstrap program [3] or by extrapolating semi-classical results, the TBA
allows to calculate the ground state energy of the integrable model on an infinite
cylinder whose circumference is identified as compactified space direction. When
the circumference is sent to zero the effective central charge of the conformal field
theory (CFT) governing the short distance behaviour can be extracted. In the case
in which the massive integrable field theory is obtained from a conformal model
by adding a perturbative term which breaks the conformal symmetry, the TBA
constitutes therefore an important consistency check for the S-matrix.

The main purpose of this manuscript is to apply this technique to a class of scat-
tering matrices which have recently been proposed [4] to describe the Homogeneous
sine-Gordon models (HSG) [5, 6] related to simply laced Lie algebras. The latter
have been constructed as integrable perturbations of WZNW-coset theories [7] of
the form Gk/H , where G is a compact simple Lie group, H ⊂ G a maximal abelian
torus and k > 1 an integer called the “level”. These models constitute particular
deformations of coset-models [7], where the specific choice of the groups ensures
that these theories possess a mass gap [8]. The defining action of the HSG-models
reads

SHSG[g] = SCFT[g] +
m2

πβ2

∫

d2x
〈

Λ+, g(~x)
−1Λ−g(~x)

〉

. (1)

Here SCFT denotes the coset action, 〈 , 〉 the Killing form of G and g(~x) a group
valued bosonic scalar field. Λ± are arbitrary semi-simple elements of the Cartan
subalgebra associated with H , which have to be chosen not orthogonal to any
root of G and play the role of continuous vector coupling constants. The latter
constraints do not restrict the parameter choice in the quantum case with regard to
the proposed S-matrix which makes sense for every choice of Λ±. They determine
the mass ratios of the particle spectrum as well as the behaviour of the model under
a parity transformation. The parameters m and β2 = 1/k + O(1/k2) are the bare
mass scale and the coupling constant, respectively. The non-perturbative definition
of the theory is achieved by identifying 〈Λ+, g(~x)

−1Λ−g(~x)〉 with a matrix element
of the WZNW-field g(~x) taken in the adjoint representation, which is a spinless
primary field of the coset-CFT and in addition exchanging β2 by 1/k and m by the
renormalised mass [8]. Some of the conformal data of SCFT[g], which are in principle
extractable from the TBA analysis are the Virasoro central charge c of the coset
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and the conformal dimensions ∆, ∆̄ of the perturbing operator in the massless limit

cGk
=
k dimG

k + h
− ℓ =

k − 1

k + h
hℓ , ∆ = ∆̄ =

h

k + h
. (2)

Here ℓ denotes the rank of G and h its Coxeter number. Since we have ∆ <
1 for all allowed values of k, the perturbation is always relevant in the sense of
renormalisation∗.

The simplest example of a HSG theory is the complex sine-Gordon model [6, 9]
associated with the coset SU(2)k/U(1). As we will argue below, more complicated
HSG theories can be viewed as interacting copies of complex sine-Gordon theo-
ries. The classical equations of motion of these models correspond to non-abelian
affine Toda equations [5, 10], which are known to be classically integrable and ad-
mit soliton solutions. Identifying these solutions by a Noether charge allows for a
semi-classical approach to the quantum theory by applying the Bohr-Sommerfeld
quantization rule. The integrability on the quantum level was established in [8] by
the construction of non-trivial conserved charges, which suggests the factorization
of the scattering matrix. Based on the assumption that the semi-classical spectrum
is exact, the S-matrix elements have then been determined in [4] by means of the
bootstrap program for HSG-models related to simply laced Lie algebras.

The proposed scattering matrix consists partially of ℓ copies of minimal su(k)-
affine Toda field theories (ATFT) [11], whose mass scales are free parameters. The
scattering between solitons belonging to different copies is described by an S-matrix
which violates parity [4]. These matrices possess resonance poles and the related
resonance parameters which characterize the formation of unstable bound states
are up to free choice. In the TBA-analysis these resonances lead to the “staircase
patterns” in the scaling function, which have been observed previously for similar
models [12]. However, in comparison with the models studied so far, the HSG
models are distinguished in two aspects. First they break parity invariance and
second some of the resonance poles can be associated directly to unstable particles
via a classical Lagrangian.

One of the main outcomes of our TBA-analysis is that the suggested [4] scatter-
ing matrix leads indeed to the coset central charge (2), which gives strong support
to the proposal.

In addition, we present a detailed numerical analysis for the SU(3)-HSG model,
but expect that many of our findings for that case are generalizable to other Lie
groups. The presence of two parameters, i.e. the mass scale and the resonance
parameter allow, similar as for staircase models studied previously, to describe
the ultraviolet limit of the HSG-model alternatively as the flow between different
conformal field theories in the ultraviolet and infrared regime. We find the following

∗We slightly abuse here the notation and use cGk
instead of cGk/U(1)ℓ . Since we always en-

counter these type of coset in our discussion, we can avoid bulky expressions in this way.
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massless flow

UV ≡ SU(3)k/U(1)2 ↔ SU(2)k/U(1) ⊗ SU(2)k/U(1) ≡ IR . (3)

We also observe the flow (SU(3)k/U(1)2)/(SU(2)k/U(1)) → SU(2)k/U(1) as a
subsystem inside the HSG-model. For k = 2 this subsystem describes the flow
between the tricritical Ising and the Ising model previously studied in [13]. In
terms of the HSG-model we obtain the following physical picture: The resonance
parameter characterizes the mass scale of the unstable particles. Approaching the
extreme ultraviolet regime from the infrared we pass various regions: At first all
solitons are too heavy to contribute to the off-critical central charge, then the two
copies of the minimal ATFT will set in, leading to the central charge corresponding
to IR in (3) and finally the unstable bound states will start to contribute such that
we indeed obtain (2) as the ultraviolet central charge of the HSG-model.

The two values of the resonance parameter 0 and ∞ are special, corresponding
in the classical theory to a choice of the vector couplings in (1) parallel to each other
or orthogonal to a simple root, respectively. In the former case parity is restored on
the classical as well as on the TBA-level and the central charge corresponding to
UV in (3) is also recovered, whereas in the latter case the two copies of the minimal
ATFT are decoupled and unstable bound states may not be produced leading to
the central charge IR in (3).

Our manuscript is organized as follows: In section 2 we briefly recall the main
features of the two-particle HSG S-matrix elements stating them also newly in
form of an integral representation. In particular, we comment on the link between
unstable particles and resonance poles as well as on the loss of parity invariance. In
section 3 we introduce the TBA equations for a parity violating system and carry
out the ultraviolet limit recovering the expected coset central charge. In section 4
we present a detailed study for the SU(3)k−HSG model. We discuss the staircase
pattern of the scaling function and illustrate how the UV limit for the HSG-model
may be viewed as the UV-IR flow between different conformal models. We extract
the ultraviolet central charges of the HSG-models. We study separately the case
when parity is restored, derive universal TBA-equations and Y-systems. In section
5 we present explicit examples for the specific values k = 2, 3, 4,∞. Our conclusions
are stated in section 6.

2 The homogeneous sine-Gordon S-matrix

We shall now briefly recall the main features of the proposed HSG scattering matrix
in a form most suitable for our discussion. Labelling the solitons by two quantum
numbers, we take the two-particle scattering matrix between soliton (a, i) and soli-
ton (b, j), with 1 ≤ a, b ≤ k − 1 and 1 ≤ i, j ≤ ℓ, as a function of the rapidity
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difference θ to be of the general form Sij
ab(θ). The particular structure of the con-

jectured HSG S-matrix makes it suggestive to refer to the lower indices as main
quantum numbers and to the upper ones as colour. In [4] it was proposed to de-
scribe the scattering of solitons which possess the same colour by the S-matrix of
the Zk-Ising model or equivalently the minimal su(k)-ATFT [11]

Sii
ab(θ) = (a+ b)θ (|a− b|)θ

min(a,b)−1
∏

n=1

(a+ b− 2n)2
θ (4)

= exp

∫

dt

t
2 cosh

πt

k

(

2 cosh
πt

k
− I

)−1

ab

e−itθ. (5)

Here we have introduced the abbreviation (x)θ = sinh 1
2
(θ+ iπx

k
)/ sinh 1

2
(θ− iπx

k
) for

the general building blocks and denote the incidence matrix of the su(k)-Dynkin
diagram by I. We re-wrote the above S-matrix from the block form (4) into a form
of an integral representation (5), since the latter is more convenient with respect to
the TBA analysis. This calculation may be performed by specializing an analysis
in [14, 15] to the particular case at hand. The scattering of solitons with different
colour quantum numbers was proposed to be described by

Sij
ab(θ) = (ηij)

ab

min(a,b)−1
∏

n=0

(−|a− b| − 1 − 2n)θ+σij
, Kg

ij 6= 0, 2 (6)

= (ηij)
ab exp−

∫

dt

t

(

2 cosh
πt

k
− I

)−1

ab

e−it(θ+σij), Kg
ij 6= 0, 2 , (7)

with Kg denoting the Cartan matrix of the simply laced Lie algebra g. Here the
ηij = η∗ji are arbitrary k-th roots of −1 taken to the power a times b and the shifts
in the rapidity variables are functions of the vector couplings σij, which are anti-
symmetric in the colour values σij = −σji. Due to the fact that these shifts are
real, the function Sij

ab(θ) for i 6= j will have poles beyond the imaginary axis such
that the parameters σji characterize resonance poles. An important feature is that
(6) is not parity invariant, where parity is broken by the phase factors η as well as
the shifts σ. As a consequence, the usual relations

Sii
ab(θ) = Sii

ba(θ) = Sii
ab(−θ∗)∗ and Sii

ab(θ)S
ii
ab(−θ) = 1 (8)

satisfied by the parity invariant objects (4), are replaced by

Sij
ab(θ) = Sji

ba(−θ∗)∗ and Sij
ab(θ)S

ji
ba(−θ) = 1 (9)

for the scattering between solitons with different colour values. Important to note
is that the first equality in (8) has no analogue in (9). Thus, instead of being real
analytic, as Sii

ab(θ), the parity violation forces Hermitian analyticity of Sij
ab(θ) for
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i 6= j. Anti-particles are constructed in analogy to the ATFT, that is from the
automorphism which leaves the su(k)-Dynkin diagram invariant, such that (a, i) =
(k − a, i). The colour of a particle and its anti-particle is identical. The crossing
relation of the S-matrix then reads

Sij
āb(θ) = Sij

(k−a)b(θ) = Sji
ba(iπ − θ) . (10)

For a general and more detailed discussion of these analyticity issues see [16] and
references therein.

Analyzing the above S-matrix we have the following picture concerning the
formation of bound states: Two solitons with the same colour value may form a
bound state of the same colour, whilst solitons of different colour with Kij 6= 0, 2,
say (a, i) and (b, j), may only form an unstable state, say (c̃, k̃) whose lifetime and
energy scale are characterized by the parameter σ by means of the Breit-Wigner
formula, see e.g. [17], in the form

(M k̃
c̃ )2 − (Γk̃

c̃ )
2

4
= (M i

a)
2 + (M j

b )2 + 2M i
aM

j
b cosh σ cos Θ (11)

M k̃
c̃ Γk̃

c̃ = 2M i
aM

j
b sinh |σ| sin Θ , (12)

where the resonance pole in Sij
ab(θ) is situated at θR = σ − iΘ and Γk̃

c̃ denotes

the decay width of the unstable particle with mass M k̃
c̃ . In the case a = b these

unstable states can be identified with solitons in the semi-classical limit [4, 24].
When σ becomes zero, (12) shows that the unstable particles become stable, but
are still not at the same footing as the other asymptotically stable particles. They
become virtual states characterized by poles on the imaginary axis beyond the
physical sheet.

How many free parameters do we have in our model? Computing mass shifts
from renormalisation, we only accumulate contributions from intermediate states
having the same colour as the two scattering solitons. Thus, making use of the well
known fact that the masses of the minimal su(k)-affine Toda theory all renormalise
with an overall factor [18], i.e. for the solitons (a, i) we have that δM i

a/M
i
a equals a

constant for fixed colour value i and all possible values of the main quantum number
a, we acquire in principle ℓ different mass scales m1, . . . , mℓ in the HSG-model. In
addition there are ℓ−1 independent parameters in the model in form of the possible
phase shifts σij = −σji for each i, j such that Kg

ij 6= 0, 2. This means overall we
have 2ℓ − 1 independent parameters in the quantum theory. There is a precise
correspondence to the free parameters which one obtains from the classical point of
view. In the latter case we have the 2ℓ independent components of Λ± at our free
disposal. This number is reduced by 1 as a result of the symmetry Λ+ → cΛ+ and
Λ− → c−1Λ− which introduces an additional dependence as may be seen from the
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explicit expressions for the classical mass ratios and the classical resonance shifts

mi

mj
=
M i

a

M j
a

=

√

(αi · Λ+)(αi · Λ−)

(αj · Λ−)(αj · Λ+)
, σij = ln

√

(αi · Λ+)(αj · Λ−)

(αi · Λ−)(αj · Λ+)
. (13)

Here the αi are simple roots.
In comparison with other factorizable scattering matrices involving resonance

shifts, studied in the literature so far, the proposed HSG scattering matrices differ
in two aspects. First of all, they are not parity invariant and second they allow to
associate a concrete Lagrangian description. The latter fact can be used to support
the picture outlined for the full quantum field theory by a semi-classical analysis.
In [24] the semi-classical mass for the soliton (a, i) was found to be

M i
a =

mi

πβ2 sin
πa

k
(14)

where β is a coupling constant and the mi are the ℓ different mass scales.

3 TBA with parity violation and resonances

In this section we are going to determine the conformal field theory which governs
the UV regime of the quantum field theory associated with the S-matrix elements
(4) and (6). According to the defining relation (1) and the discussion of the previous
section, we expect to recover the WZNW-coset theory with effective central charge
(2) in the extreme ultraviolet limit. It is a well established fact that such high
energy limits can be performed by means of the TBA. Since up to now such an
analysis has only been carried out for parity invariant S-matrices, a few comments
are due to implement parity violation. The starting point in the derivation of the
key equations are the Bethe ansatz equations, which are the outcome of dragging
one soliton, say of type A = (a, i), along the world line. For the time being we do
not need the distinction between the two quantum numbers. On this trip the formal
wave-function of A picks up the corresponding S-matrix element as a phase factor
when meeting another soliton. Due to the parity violation it matters, whether the
soliton is moved clockwise or counter-clockwise along the world line, such that we
end up with two different sets of Bethe Ansatz equations

eiLMA sinh θA

∏

B 6=A

SAB(θA − θB) = 1 and e−iLMA sinh θA

∏

B 6=A

SBA(θB − θA) = 1 ,

(15)
with L denoting the length of the compactified space direction. These two sets of
equations are of course not entirely independent and may be obtained from each
other by complex conjugation with the help of relation (9). We may carry out the
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thermodynamic limit of (15) in the usual fashion [2] and obtain the following sets
of non-linear integral equations

ǫ+A(θ) +
∑

B

ΦAB ∗ L+
B(θ) = rMA cosh θ (16)

ǫ−A(θ) +
∑

B

ΦBA ∗ L−
B(θ) = rMA cosh θ . (17)

As usual we let the symbol ’∗’ denote the rapidity convolution of two functions
defined by f ∗ g(θ) :=

∫

dθ′/2π f(θ − θ′)g(θ′). Here r = m1T
−1 is the inverse

temperature times the overall mass scale m1 of the lightest particle and we also re-
defined the masses by M i

a → M i
a/m1 keeping, however, the same notation. As very

common in these considerations we also introduced the so-called pseudo-energies
ǫ+A(θ) = ǫ−A(−θ) and the related functions L±

A(θ) = ln(1 + e−ǫ±
A

(θ)). The kernels in
the integrals carry the information of the dynamical interaction of the system and
are given by

ΦAB(θ) = ΦBA(−θ) = −i d
dθ

lnSAB(θ) . (18)

The statistical interaction is chosen to be of fermionic type. Notice that (17) may
be obtained from (16) simply by the parity transformation θ → −θ and the first
equality in (18). The main difference of these equations in comparison with the
parity invariant case is that we have lost the usual symmetry of the pseudo-energies
as a function of the rapidities, such that we have now in general ǫ+A(θ) 6= ǫ−A(θ).
This symmetry may be recovered by restoring parity.

The scaling function, which can also be interpreted as off-critical Casimir energy,
may be computed similar as in the usual way

c(r) =
3 r

π2

∑

A

MA

∞
∫

0

dθ cosh θ (L−
A(θ) + L+

A(θ)) , (19)

once the equations (16) have been solved for the ǫ±A(θ). Of special interest is the
deep UV limit, i.e. r → 0, of this function since then its value coincides with the
effective central charge ceff = c−12(∆0 +∆̄0) of the conformal model governing the
high energy behaviour. Here c is the Virasoro central charge and ∆0, ∆̄0 are the
lowest conformal dimensions related to the two chiral sectors of the model. Since the
WZNW-coset is unitary, we expect that ∆0, ∆̄0 = 0 and ceff = c. This assumption
will turn out to be consistent with the analytical and numerical results.

3.1 Ultraviolet central charge for the HSG model

In this section we follow the usual argumentation of the TBA-analysis which leads
to the effective central charge, paying, however, attention to the parity violation.
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We will recover indeed the value in (2) as the central charge of the HSG-models.
First of all we take the limits r, θ → 0 of (16) and (17). When we assume that
the kernels ΦAB(θ) are strongly peaked† at θ = 0 and develop the characteristic
plateaus one observes for the scaling models, we can take out the L-functions from
the integral in the equations (16), (17) and obtain similar to the usual situation

ǫ±A(0) +
∑

B

NABL
±
B(0) = 0 with NAB =

1

2π

∞
∫

−∞

dθ ΦAB(θ) . (20)

Having the resonance parameter σ present in our theory we may also encounter
a situation in which ΦAB(θ) is peaked at θ = ±σ. This means in order for (20)
to be valid, we have to assume ǫ±A(0) = ǫ±A(±σ) in the limit r → 0 in addition
to accommodate that situation. For the last assumption we will not provide a
rigorous analytical argument, but will justify it instead for particular cases from
the numerical results (see e.g. figure 1). Note that in (20) we have recovered the
parity invariance.

For small values of r we may approximate, in analogy to the parity invariant sit-
uation, rMA cosh θ by r/2MA exp θ, such that taking the derivative of the relations
(16) and (17) thereafter yields

ǫ±A(θ)

dθ
+

1

2π

∑

B

∞
∫

−∞

dθ′
ΦAB(±θ ∓ θ′)

1 + exp(ǫ±B(θ′))

dǫ±B(θ′)

dθ′
≃ r

2
MA exp θ . (21)

The scaling function acquires the form

c(r) ≃ 3 r

2π2

∑

A

MA

∞
∫

0

dθ exp θ (L−
A(θ) + L+

A(θ)) , for r ≃ 0 (22)

in this approximation. Replacing in (22) the term r/2MA exp θ by the l.h.s. of (21)
a few manipulations lead to

lim
r→0

c(r) ≃ 3

2π2

∑

p=+,−

∑

A

ǫp
A

(∞)
∫

ǫp
A

(0)

dǫpA

[

ln(1 + exp(−ǫpA)) +
ǫpA

1 + exp(ǫpA)

]

. (23)

†That this assuption holds for the case at hand is most easily seen by noting that the logarithmic
derivative of a basic building block (x)θ of the S-matrix reads

−i
d

dθ
ln(x)θ = − sin

(

π
k x

)

cosh θ − cos
(

π
k x

) = −2
∞
∑

n=1

sin
(π

k
x
)

e−n|θ| .

From this we can read off directly the decay properties.
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Upon the substitution yp
A = 1/(1 + exp(ǫpA)) we obtain the well known expression

for the effective central charge

ceff =
6

π2

∑

A

L
(

1

1 + exp(ǫ±A(0))

)

. (24)

Here we used the integral representation for Roger’s dilogarithm function L(x) =
1/2

∫ x

0
dy(ln y/(y − 1) − ln(1 − y)/y), and the facts that ǫ+A(0) = ǫ−A(0), y+

A(∞) =
y−A(∞) = 0. This means we end up precisely with the same situation as in the parity
invariant case: Determining at first the phases of the scattering matrices we have
to solve the constant TBA-equation (20) and may compute the effective central
charge in terms of Roger’s dilogarithm thereafter. Notice that in the ultraviolet
limit we have recovered the parity invariance and (24) holds for all finite values of
the resonance parameter.

For the case at hand we read off from the integral representation of the scattering
matrices

N ij
ab = δijδab −Kg

ij (Ksu(k))−1
ab . (25)

With N ij
ab in the form (25) and the identifications Qi

a =
∏k−1

b=1 (1 + exp(−ǫib(0)))K−1

ab

the constant TBA-equations are precisely the equations which occurred before in
the context of the restricted solid-on-solid models [19, 20]. It was noted in there
that (20) may be solved elegantly in terms of Weyl-characters and the reported
effective central charge coincides indeed with the one for the HSG-models (2).

It should be noted that we understand the N -matrix here as defined in (20)
and not as the difference between the phases of the S-matrix. In the latter case we
encounter contributions from the non-trivial constant phase factors η. Also in that
case we may arrive at the same answer by compensating them with a choice of a
non-standard statistical interaction as outlined in [22].

We would like to close this section with a comment which links our analysis to
structures which may be observed directly inside the conformal field theory. When
one carries out a saddle point analysis, see e.g. [21], on a Virasoro character of the
general form

χ(q) =

∞
∑

~m=0

q
1

2
~m(1−N)~mt+~m· ~B

(q)1 . . . (q)(k−1)ℓ

, (26)

with (q)m =
∏m

k=1(1−qk), one recovers the set of coupled equations as (20) and the
corresponding effective central charge is expressible as a sum of Roger’s dilogarithms
as (24). Note that when we choose g ≡ A1 the HSG-model reduces to the minimal
ATFT and (26) reduces to the character formulae in [23]. Thus the equations (20)
and (24) constitute an interface between massive and massless theories, since they
may be obtained on one hand in the ultraviolet limit from a massive model and on
the other hand from a limit inside the conformal field theory. This means we can
guess a new form of the coset character, by substituting (25) into (26). However,
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since the specific form of the vector ~B does not enter in this analysis (it distinguishes
the different highest weight representations) more work needs to be done in order
to make this more than a mere conjecture. We leave this for future investigations.

4 The SU(3)k-HSG model

We shall now focus our discussion on G = SU(3)k. First of all we need to establish
how many free parameters we have at our disposal in this case. According to the
discussion in section 2 we can tune the resonance parameter and the mass ratio

σ := σ21 = −σ12 and m1/m2 . (27)

It will also be useful to exploit a symmetry present in the TBA-equations re-
lated to SU(3)k by noting that the parity transformed equations (17) turn into the
equations (16) when we exchange the masses of the different types of solitons. This
means the system remains invariant under the simultaneous transformations

θ → −θ and m1/m2 → m2/m1 . (28)

For the special case m1/m2 = 1 we deduce therefore that ǫ
(1)
a (θ) = ǫ

(2)
a (−θ), meaning

that a parity transformation then amounts to an interchange of the colours. Fur-
thermore, we see from (17) and the defining relation σ = σ21 = −σ12 that changing
the sign of the rapidity variable is equivalent to σ → −σ. Therefore, we can restrict
ourselves to the choice σ ≥ 0 without loss of generality.

4.1 Staircase behaviour of the scaling function

We will now come to the evaluation of the scaling function (19) for finite and
small scale parameter r. To do this we have to solve first the TBA equations (16)
for the pseudo-energies, which up to now has not been achieved analytically for
systems with a non-trivial dynamical interaction due to the non-linear nature of
the integral equations. Nonetheless, numerically this problem can be controlled
relatively well. In the UV regime for r ≪ 1 one is in a better position and can
set up approximate TBA equations involving formally massless particles‡ for which
various approximation schemes have been developed which depend on the general
form of the L-functions. Since the latter is not known a priori, one may justify
ones assumptions in retrospect by referring to the numerics. In section 5 we present

‡The concept of massless scattering has been introduced originally in [13] as follows: The on-
shell energy of a right and left moving particle is given by E± = M/2e±θ which is formally obtained
from the on-shell energy of a massive particle E = m cosh θ by the replacement θ → θ ± σ/2 and
taking the limit m → 0, σ → ∞ while keeping the expression M = meθ+σ/2 finite. It is these
on-shell energies we will encounter in our analysis.

10



numerical solutions for the equations (16) for various levels k showing that the L-
functions develop at most two (three if m1 and m2 are very different)plateaus in the
range ln r

2
< θ < ln 2

r
and then fall off rapidly (see figure 1). This type of behaviour

is similar to the one known from minimal ATFT [2, 29], and we can therefore adopt
various arguments presented in that context. The main difficulty we have to deal
with here is to find the appropriate “massless” TBA equations accommodating the
dependence of the TBA equations on the resonance shifts σ.

We start by separating the kernel (18) into two parts

φab(θ) = Φii
ab(θ) =

∫

dt
[

δab − 2 cosh πt
k

(

2 cosh πt
k
− I

)−1

ab

]

e−itθ , (29)

ψab(θ) = Φij
ab(θ + σji) =

∫

dt
(

2 cosh πt
k
− I

)−1

ab
e−itθ , i 6= j . (30)

Here φab(θ) is just the TBA kernel of the su(k)-minimal ATFT and in the remaining
kernels ψab(θ) we have removed the resonance shift. Note that φ, ψ do not depend on
the colour values i, j and may therefore be dropped all together in the notation. The
integral representations for these kernels are obtained easily from the expressions
(5) and (7). They are generically valid for all values of the level k. The convolution
term in (16) in terms of φ, ψ is then re-written as

ℓ
∑

j=1

k−1
∑

b=1

Φij
ab ∗ L

j
b(θ) =

k−1
∑

b=1

φab ∗ Li
b(θ) +

ℓ
∑

j=1
j 6=i

k−1
∑

b=1

ψab ∗ Lj
b(θ − σji) . (31)

These equations illustrate that whenever we are in a regime in which the second term
in (31) is negligible we are left with ℓ non-interacting copies of the su(k)-minimal
ATFT.

We will now specialize the discussion on the su(3)k-case for which we can elim-
inate the dependence on σ in the second convolution term by performing the shifts
θ → θ ± σ/2 in the TBA equations. In the UV limit r → 0 with σ ≫ 1 the shifted
functions can be approximated by the solutions of the following sets of integral
equations

ε±a (θ) +
k−1
∑

b=1

φab ∗ L±
b (θ) +

k−1
∑

b=1

ψab ∗ L∓
b (θ) = r′M±

a e±θ (32)

ε̂±a (θ) +

k−1
∑

b=1

φab ∗ L̂±
b (θ) = r′M∓

a e±θ , (33)

where we have introduced the parameter r′ = r e
σ
2 /2 familiar from the discussion of

massless scattering and the masses M
+/−
a = M

(1)/(2)
a . The relationship between the
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solutions of the massless system (32), (33) and those of the original TBA-equations
is given by

ǫ(1)/(2)
a (θ) = ε+/−(θ ∓ σ/2) for ln(r/2) ≪ ±θ ≪ ln(r/2) + σ (34)

ǫ(1)/(2)
a (θ) = ε̂−/+(θ ± σ/2) for ± θ ≪ min[ln(2/r), ln(r/2) + σ)] (35)

where we have assumed m1 = m2. Similar equations may be written down for
the generic case. To derive (35) we have neglected here the convolution terms

(ψab ∗ L(1)
b )(θ + σ) and (ψab ∗ L(2)

b )(θ − σ) which appear in the TBA-equations for

ǫ
(2)
a (θ) and ǫ

(1)
a (θ), respectively. This is justified by the following argument: For

|θ| ≫ ln 2/r the free on-shell energy term is dominant in the TBA equations, i.e.
ǫia(θ) ≈ rMa

i cosh θ and the functions Li
a(θ) are almost zero. The kernels ψab are

centered in a region around the origin θ = 0 outside of which they exponentially
decrease, see footnote in section 3.1. for this. This means that the convolution
terms in question can be neglected safely if θ ≪ ln(r/2) + σ and θ ≫ ln(2/r) − σ,
respectively. Note that the massless system provides a solution for the whole range
of θ for non-vanishing L-function only if the ranges of validity in (34) and (35)
overlap, i.e. if ln(r/2) ≪ min[ln(2/r), ln(r/2) + σ] which is always true in the
limit r → 0 when σ ≫ 0. The solution is uniquely defined in the overlapping region.
These observations are confirmed by our numerical analysis below.

The resulting equations (33) are therefore decoupled and we can determine L̂+

and L̂− individually. In contrast, the equations (32) for L±
a are still coupled to each

other due to the presence of the resonance shift. Formally, the on-shell energies for
massive particles have been replaced by on-shell energies for massless particles in
the sense of [13], such that if we interpret r′ as an independent new scale parameter
the sets of equations (32) and (33) could be identified as massless TBA systems in
their own right.

Introducing then the scaling function associated with the system (32) as

co(r
′) =

3 r′

π2

k−1
∑

a=1

∫

dθ
[

M+
a eθL+

a (θ) + M−
a e−θL−

a (θ)
]

(36)

and analogously the scaling function associated with (33) as

ĉo(r
′) =

3 r′

π2

k−1
∑

a=1

∫

dθ
[

M+
a eθL̂+

a (θ) +M−
a e−θL̂−

a (θ)
]

(37)

we can express the scaling function (19) of the HSG model in the regime r →
0, σ ≫ 1 approximately by

c(r, σ) =
3 r e

σ
2

2π2

∑

i=1,2

k−1
∑

a=1

M i
a

∫

dθ
[

eθLi
a(θ − σ/2) + e−θLi

a(θ + σ/2)
]

≈ co (r′) + ĉo (r′) . (38)
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Thus, we have formally decomposed the massive SU(3)k-HSG model in the UV
regime into two massless TBA systems (32) and (33), reducing therefore the problem
of calculating the scaling function of the HSG model in the UV limit r → 0 to the
problem of evaluating the scaling functions (36) and (37) for the scale parameter
r′. The latter depends on the relative size of ln(2/r) and the resonance shift σ/2.
Keeping now σ ≫ 0 fixed, and letting r vary from finite values to the deep UV
regime, i.e. r = 0, the scale parameter r′ governing the massless TBA systems
will pass different regions. For the regime ln(2/r) < σ/2 we see that the scaling
functions (36) and (37) are evaluated at r′ > 1, whereas for ln(2/r) > σ/2 they
are taken at r′ < 1. Thus, when performing the UV limit of the HSG model the
massless TBA systems pass formally from the “infrared” to the “ultraviolet” regime
with respect to the parameter r′. We emphasize that the scaling parameter r′ has
only a formal meaning and that the physical relevant limit we consider is still the
UV limit r → 0 of the HSG model. However, proceeding this way has the advantage
that we can treat the scaling function of the HSG model by the UV and IR central
charges of the systems (32) and (33) as functions of r′

c(r, σ) ≈ co (r′) + ĉo (r′) ≈
{

cIR + ĉIR , 0 ≪ ln 2
r
≪ σ

2

cUV + ĉUV ,
σ
2
≪ ln 2

r

. (39)

Here we defined the quantities cIR := limr′→∞ co(r
′), cUV := limr′→0 co(r

′) and
ĉIR, ĉUV analogously in terms of ĉo(r

′).
In the case of cIR + ĉIR 6= cUV + ĉUV , we infer from (39) that the scaling func-

tion develops at least two plateaus at different heights. A similar phenomenon was
previously observed for theories discussed in [12], where infinitely many plateaus
occurred which prompted to call them “staircase models”. As a difference, however,
the TBA equations related to these models do not break parity. In the next sub-
section we determine the central charges in (39) by means of standard TBA central
charge calculation, setting up the so-called constant TBA equations.

4.2 Central charges from constant TBA equations

In this subsection we will perform the limits r′ → 0 and r′ → ∞ for the massless
systems (32) and (33) referring to them formally as “UV-” and “IR-limit”, respec-
tively, keeping however in mind that both limits are still linked to the UV limit of
the HSG model in the scale parameter r as discussed in the preceding subsection.
We commence with the discussion of the “UV limit” r′ → 0 for the subsystem
(32). We then have three different rapidity regions in which the pseudo-energies are
approximately given by

ε±a (θ) ≈







r′Ma e
±θ, for ± θ ≫ − ln r′

−
∑

b φab ∗ L±
b (θ) −

∑

b ψab ∗ L∓
b (θ), for ln r′ ≪ θ ≪ − ln r′

−
∑

b φab ∗ L±
b (θ), for ± θ ≪ ln r′

. (40)
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We have only kept here the dominant terms up to exponentially small corrections.
We proceed analogously to the discussion as may be found in [2, 29]. We see that in
the first region the particles become asymptotically free. For the other two regions
the TBA equations can be solved by assuming the L-functions to be constant.
Exploiting once more that the TBA kernels are centered at the origin and decay
exponentially, we can similar as in section 3.1 take the L-functions outside of the
integrals and end up with the sets of equations

x±a =

k−1
∏

b=1

(1 + x±b )N̂ab(1 + x∓b )N ′
ab for ln r′ ≪ θ ≪ − ln r′ (41)

x̂a =
k−1
∏

b=1

(1 + x̂b)
N̂ab for ± θ ≪ ln r′ (42)

for the constants x±a = e−ε±a (0) and x̂a = e−ε±a (∓∞). The N-matrices can be read off
directly from the integral representations (29) and (30)

N̂ :=
1

2π

∫

φ = 1 − 2(Ksu(k))−1 and N ′ :=
1

2π

∫

ψ = (Ksu(k))−1 . (43)

Since the set of equations (42) has already been stated in the context of minimal
ATFT and its solutions may be found in [29], we only need to investigate the
equations (41). These equations are simplified by the following observation. Sending
θ to −θ the constant L-functions must obey the same constant TBA equation (41)
but with the role of L+

a and L−
a interchanged. The difference in the masses m1, m2

has no effect as long as m1 ∼ m2 since the on-shell energies are negligible in the
central region ln r′ ≪ θ ≪ − ln r′. Thus, we deduce x+

a = x−a =: xa and (41) reduces
to

xa =
k−1
∏

b=1

(1 + xb)
Nab with N = 1 − (Ksu(k))−1 . (44)

Remarkably, also these set of equations may be found in the literature in the context
of the restricted solid-on-solid models [20]. Specializing some of the general Weyl-
character formulae in [20] to the su(3)k-case a straightforward calculation leads
to

xa =
sin

(

π (a+1)
k+3

)

sin
(

π (a+2)
k+3

)

sin
(

π a
k+3

)

sin
(

π (a+3)
k+3

) − 1 and x̂a =
sin2

(

π (a+1)
k+2

)

sin
(

π a
k+2

)

sin
(

π (a+2)
k+2

) − 1 . (45)

Having determined the solutions of the constant TBA equations (41) and (44) one
can proceed via the standard TBA calculations along the lines of [2, 13, 29] and
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compute the central charges from (36), (37) and express them in terms of Roger’s
dilogarithm function

cUV = lim
r′→0

co(r
′) =

6

π2

k−1
∑

a=1

[

2L
(

xa

1 + xa

)

−L
(

x̂a

1 + x̂a

)]

, (46)

ĉUV = lim
r′→0

ĉo(r
′) =

6

π2

k−1
∑

a=1

L
(

x̂a

1 + x̂a

)

. (47)

Using the non-trivial identities

6

π2

k−1
∑

a=1

L

(

xa

1 + xa

)

= 3
k − 1

k + 3
and

6

π2

k−1
∑

a=1

L

(

x̂a

1 + x̂a

)

= 2
k − 1

k + 2
(48)

found in [30] and [19], we finally end up with

cUV =
(k − 1) (4k + 6)

(k + 3) (k + 2)
and ĉUV = 2

k − 1

k + 2
. (49)

For the reasons mentioned above ĉUV coincides with the effective central charge
obtained from su(k) minimal ATFT describing parafermions [7] in the conformal
limit. Notice that cUV corresponds to the coset (SU(3)k/U(1)2)/(SU(2)k/U(1)).

The discussion of the infrared limit may be carried out completely analogous to
the one performed for the UV limit. The only difference is that in case of the system
(32) the constant TBA equations (41) drop out because in the central region the
free energy terms becomes dominant when r′ → ∞. Thus in the infrared regime
the central charges of both systems coincide with ĉUV ,

cIR = lim
r′→∞

co(r
′) = ĉIR = lim

r′→∞
ĉo(r

′) = 2
k − 1

k + 2
. (50)

In summary, collecting the results (49) and (50), we can express equation (39)
explicitly in terms of the level k,

c(r,M k̃
c̃ ) ≈

{

4 k−1
k+2

, for 1 ≪ 2
r
≪ M k̃

c̃

6 k−1
k+3

, for M k̃
c̃ ≪ 2

r

. (51)

We have replaced the limits in (39) by mass scales in order to exhibit the underlying

physical picture. Here M k̃
c̃ is the smallest mass of an unstable bound state which

may be formed in the process (a, i) + (b, j) → (c̃, k̃) for Kg
ij 6= 0, 2. We also used

that the Breit-Wigner formula (11) implies that M k̃
c̃ ∼ eσ/2 for large positive σ.

First one should note that in the deep UV limit we obtain the same effective
central charge as in section 3.1, albeit in a quite different manner. On the mathe-
matical side this implies some non-trivial identities for Rogers dilogarithm and on
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the physical (51) exhibits a more detailed behaviour than the analysis in section 3.1.
In the first regime the lower limit indicates the onset of the lightest stable soliton
in the two copies of complex sine-Gordon model. The unstable particles are on an
energy scale much larger than the temperature of the system. Thus, the dynamical
interaction between solitons of different colours is “frozen” and we end up with
two copies of the SU(2)k/U(1) coset which do not interact with each other. As
soon as the parameter r reaches the energy scale of the unstable solitons with mass
M k̃

c̃ , the solitons of different colours start to interact, being now enabled to form
bound states. This interaction breaks parity and forces the system to approach
the SU(3)k/U(1)2 coset model with central charge given by the formula in (2) for
G = SU(3).

The case when σ tends to infinity is special and one needs to pay attention to
the order in which the limits are taken, we have

4
k − 1

k + 2
= lim

r→0
lim

σ→∞
c(r, σ) 6= lim

σ→∞
lim
r→0

c(r, σ) = 6
k − 1

k + 3
. (52)

One might enforce an additional step in the scaling function by exploiting the
fact that the mass ratio m1/m2 is not fixed. So it may be chosen to be very large or
very small. This amounts to decouple the TBA systems for solitons with different
colour by shifting one system to the infrared with respect to the scale parameter
r. The plateau then has an approximate width of ∼ ln |m1/m2| (see figure 2).
However, as soon as r becomes small enough the picture we discussed for m1 ∼ m2

is recovered.

4.3 Restoring parity and eliminating the resonances

In this subsection we are going to investigate the special limit σ → 0 which is
equivalent to choosing the vector couplings Λ± in (1) parallel or anti-parallel. For
the classical theory it was pointed out in [5] that only then the equations of motion
are parity invariant. Also the TBA-equations become parity invariant in the absence
of the resonance shifts, albeit the S-matrix still violates it through the phase factors
η. Since in the UV regime a small difference in the masses m1 and m2 does not
effect the outcome of the analysis, we can restrict ourselves to the special situation
m1 = m2, in which case we obtain two identical copies of the system

ǫa(θ) +

k−1
∑

b=1

(φab + ψab) ∗ Lb(θ) = rMa cosh θ . (53)

Then we have ǫa(θ) = ǫ
(1)
a (θ) = ǫ

(2)
a (θ), Ma = M

(1)
a = M

(2)
a and the scaling function

is given by the expression

c(r, σ = 0) =
6 r

π2

k−1
∑

a=1

Ma

∫

dθ La(θ) cosh θ . (54)
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The factor two in comparison with (19) takes the two copies for i = 1, 2 into account.
The discussion of the high-energy limit follows the standard arguments similar to
the one of the preceding subsection and as may be found in [2, 29]. Instead of
shifting by the resonance parameter σ, one now shifts the TBA equations by ln r/2.
The constant TBA equation which determines the UV central charge then just
coincides with (41). We therefore obtain

lim
r→0

lim
σ→0

c(r, σ) =
12

π2

k−1
∑

a=1

L

(

xa

1 + xa

)

= 6
k − 1

k + 3
. (55)

Thus, again we recover the coset central charge (2) for G = SU(3), but this time
without breaking parity in the TBA equations. This is in agreement with the results
of section 3.1, which showed that we can obtain this limit for any finite value of σ.

4.4 Universal TBA equations and Y-systems

Before we turn to the discussion of specific examples for definite values of the level
k, we would like to comment that there exists an alternative formulation of the
TBA equations (16) in terms of a single integral kernel. This variant of the TBA
equations is of particular advantage when one wants to discuss properties of the
model and keep the level k generic. By means of the convolution theorem and the
Fourier transforms of the TBA kernels φ and ψ, which can be read off directly from
(29) and (30), one derives the set of integral equations

ǫia(θ) + Ωk ∗ Lj
a(θ − σji) =

k−1
∑

b=1

Iab Ωk ∗ (ǫib + Li
b)(θ) . (56)

We recall that I denotes the incidence matrix of su(k) and the kernel Ωk is found
to be

Ωk(θ) =
k/2

cosh(kθ/2)
. (57)

The on-shell energies have dropped out because of the crucial relation [31]

k−1
∑

b=1

IabM
i
b = 2 cos π

k
M i

a , (58)

which is a property of the mass spectrum inherited from affine Toda field theory.
Even though the explicit dependence on the scale parameter has been lost, it is
recovered from the asymptotic condition

ǫia(θ) −→
θ→±∞

rM i
a e

±θ . (59)
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The integral kernel present in (56) has now a very simple form and the k dependence
is easily read off.

Closely related to the TBA equations in the form (56) are the following func-
tional relations also referred to as Y-systems. Using complex continuation (see e.g.
[14] for a similar computation) and defining the quantity Y i

a (θ) = exp(−ǫia(θ)) the
integral equations are replaced by

Y i
a (θ + iπ

k
)Y i

a (θ − iπ
k
) =

[

1 + Y j
a (θ − σji)

]

k−1
∏

b=1

[

1 + Y i
b (θ)−1

]−Iab . (60)

The Y-functions are assumed to be well defined on the whole complex rapidity
plane where they give rise to entire functions. These systems are useful in many
aspects, for instance they may be exploited in order to establish periodicities in the
Y-functions, which in turn can be used to provide approximate analytical solutions
of the TBA-equations. The scaling function can be expanded in integer multiples
of the period which is directly linked to the dimension of the perturbing operator.

Noting that the asymptotic behaviour of the Y-functions is limθ→∞ Y i
a (θ) ∼

e−rM i
a cosh θ, we recover for σ → ∞ the Y-systems of the su(k)-minimal ATFT derived

originally in [28]. In this case the Y-systems were shown to have a period related
to the dimension of the perturbing operator (see (84)). We found some explicit
periods for generic values of the resonance parameter σ as we discuss in the next
section for some concrete examples.

5 Explicit examples

In this section we support our analytical discussion with some numerical results and
in particular justify various assumptions for which we have no rigorous analytical
argument so far. We numerically iterate the TBA-equations (16) and have to choose
specific values for the level k for this purpose. As we pointed out in the introduction,
quantum integrability has only been established for the choice k > h. Since the
perturbation is relevant also for smaller values of k and in addition the S-matrix
makes perfect sense for these values of k, it will be interesting to see whether the
TBA-analysis in the case of su(3)k will exhibit any qualitative differences for k ≤ 3
and k > 3. From our examples for the values k = 2, 3, 4 the answer to this question
is that there is no apparent difference. For all cases we find the staircase pattern of
the scaling function predicted in the preceding section as the values of σ and x sweep
through the different regimes. Besides presenting numerical plots we also discuss
some peculiarities of the systems at hand. We provide the massless TBA equations
(32) with their UV and IR central charges and state the Y-systems together with
their periodicities. Finally, we also comment on the classical or weak coupling limit
k → ∞.
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5.1 The SU(3)2-HSG model

This is the simplest model for the su(3)k case, since it contains only the two self-
conjugate solitons (1,1) and (1,2). The formation of stable particles via fusing is
not possible and the only non-trivial S-matrix elements are those between particles
of different colour

S11
11 = S22

11 = −1, S12
11(θ − σ) = −S21

11(θ + σ) = tanh
1

2

(

θ − i
π

2

)

. (61)

Here we have chosen η12 = −η21 = i. One easily convinces oneself that (61) satisfies
indeed (9) and (10). This scattering matrix may be related to various matrices which
occurred before in the literature. First of all when performing the limit σ → ∞
the scattering involving different colours becomes free and the systems consists of
two free fermions leading to the central charge c = 1. Taking instead the limit
σ → 0 the expressions in (61) coincide precisely with a matrix which describes the
scattering of massless “Goldstone fermions (Goldstinos)” discussed in [13]. Apart
from the factor i, the matrix S21

11(θ)|σ=0 was also proposed to describe the scattering
of a massive particle [33]. Having only one colour available one is not able to set up
the usual crossing and unitarity equations and in [33] the authors therefore resorted
to the concept of “anti-crossing”. As our analysis shows this may be consistently
overcome by breaking the parity invariance. The TBA-analysis is summarized as
follows

unstable particle formation : csu(3)2 =
6

5
= cUV + ĉUV =

7

10
+

1

2

no unstable particle formation : 2csu(2)2 = 1 = cIR + ĉIR =
1

2
+

1

2
.

It is interesting to note that the flow from the tricritical Ising to the Ising model
which was investigated in [13], emerges as a subsystem in the HSG-model in the
form cUV → cIR. This suggests that we could alternatively also view the HSG-
system as consisting out of a massive and a massless fermion, where the former is
described by (36),(32) and the latter by (37),(33), respectively.

Our numerical investigations of the model match the analytical discussion and
justifies various assumptions in retrospect. Figure 1 exhibits various plots of the
L-functions in the different regimes. We observe that for ln(2/r) < σ/2, σ 6= 0
the solutions are symmetric in the rapidity variable, since the contribution of the
ψ kernels responsible for parity violation is negligible. The solution displayed is
just the free fermion L-function, Li(θ) = ln(1+ e−rM i cosh θ). Approaching more and
more the ultraviolet regime, we observe that the solutions Li cease to be symmetric
signaling the violation of parity invariance. The second plateau is then formed,
which will extend beyond θ = 0 for the deep ultraviolet (see figure 1). The staircase
pattern of the scaling function is displayed in figure 2 for the different cases discussed
in the previous section. We observe always the value 6/5 in the deep ultraviolet
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regime, but depending on the value of the resonance parameter and the mass ratio
it may be reached sooner or later. The plateau at 1 corresponds to the situation
when the unstable particles can not be formed yet and we only have two copies of
su(3)2 which do not interact. Choosing the mass ratios in the two copies to be very
different, we can also “switch them on” individually as the plateau at 1/2 indicates.
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Figure 1: Numerical solution for L(1)(θ) of the su(3)2 related TBA-equations at different

values of the scale parameter r and fixed resonance shift and mass ratio.

The Y-systems (60) for k = 2 read

Y i
1

(

θ + i
π

2

)

Y i
1

(

θ − i
π

2

)

= 1 + Y j
1 (θ − σji) i, j = 1, 2, i 6= j . (62)

For σ = 0 they coincide with the ones derived in [13] for the “massless” subsystem.
Shifting the arguments in (62) appropriately, the periodicity

Y i
1

(

θ +
5πi

2
+ σji

)

= Y j
1 (θ) (63)

is obtained after few manipulations. For a vanishing resonance parameter (63)
coincides with the one obtained in [2, 13]. These periods may be exploited in a
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series expansion of the scaling function in terms of the conformal dimension of the
perturbing operator.
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Figure 2: Numerical plots of the scaling function for su(3)k, k = 2, 3, 4 as a function of

the variable log r/2 at different values of the resonance shift and mass ratio.

5.2 The SU(3)3-HSG model

This model consists of two pairs of solitons (1, 1) = (2, 1) and (1, 2) = (2, 2). When
the soliton (1, i) scatters with itself it may form (2, i) for i = 1, 2 as a bound state.
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The two-particle S-matrix elements read

Sii(θ) =

(

(2)θ −(1)θ

−(1)θ (2)θ

)

Sij(θ − σij) =

(

ηij (−1)θ η2
ij (−2)θ

η2
ij (−2)θ ηij (−1)θ

)

. (64)

Since soliton and anti-soliton of the same colour obey the same TBA equations we
can exploit charge conjugation symmetry to identify ǫi(θ) := ǫi1(θ) = ǫi2(θ) leading
to the reduced set of equations

ǫi(θ) + ϕ ∗ Li(θ) − ϕ ∗ Lj(θ − σji) = rM i cosh θ, ϕ(θ) = − 4
√

3 cosh θ

1 + 2 cosh 2θ
. (65)

The corresponding scaling function therefore acquires a factor two,

c(r, σ) =
6 r

π2

∑

i

M i

∫

dθ cosh θ Li(θ) . (66)

This system exhibits remarkable symmetry properties. We consider first the situa-
tion σ = 0 with m1 = m2 and note that the system becomes free in this case

M (1) = M (2) =: M ⇒ ǫ(1)(θ) = ǫ(2)(θ) = rM cosh θ . (67)

meaning that the theory falls apart into four free fermions whose central charges
add up to the expected coset central charge of 2. Also for unequal masses m1 6= m2

the system develops towards the free fermion theory for high energies when the
difference becomes negligible. This is also seen numerically.

For σ 6= 0 the two copies of the minimal A2-ATFT or equivalently the scaling
Potts model start to interact. The outcome of the TBA-analysis in that case is
summarized as

unstable particle formation : csu(3)3 = 2 = cUV + ĉUV =
6

5
+

4

5

no unstable particle formation : 2csu(2)3 =
8

5
= cIR + ĉIR =

4

5
+

4

5
.

As discussed in the previous case for k = 2 the L-functions develop an additional
plateau after passing the point ln(2/r) = σ/2. This plateau lies at ln 2 which is the
free fermion value signaling that the system contains a free fermion contribution
in the UV limit as soon as the interaction between the solitons of different colours
becomes relevant. Figure 2 exhibits the same behaviour as the previous case, we
clearly observe the plateau at 8/5 corresponding to the two non-interacting copies
of the minimal A2-ATFT. As soon as the energy scale of the unstable particles is
reached the scaling function approaches the correct value of 2.

The Y-systems (60) for k = 3 read

Y i
1,2

(

θ + i
π

3

)

Y i
1,2

(

θ − i
π

3

)

= Y i
1,2 (θ)

1 + Y j
1,2(θ + σij)

1 + Y i
1,2 (θ)

i, j = 1, 2, i 6= j . (68)
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Once again we may derive a periodicity

Y i
1,2 (θ + 2πi+ σji) = Y j

1,2(θ) (69)

by making the suitable shifts in (68) and subsequent iteration.

5.3 The SU(3)4-HSG model

This model involves 6 solitons, two of which are self-conjugate (2, 1) = (2, 1),
(2, 2) = (2, 2) and two conjugate pairs (1, 1) = (3, 1), (1, 2) = (3, 2). The cor-
responding two-particle S-matrix elements are obtained from the general formulae
(4) and (6)

Sii(θ) =





(2)θ (3)θ(1)θ −(2)θ

(3)θ(1)θ (2)2
θ (3)θ(1)θ

−(2)θ (3)θ(1)θ (2)θ



 (70)

for soliton-soliton scattering with the same colour values and

Sij(θ − σij) =





ηij(−1)θ η2
ij(−2)θ η3

ij(−3)θ

η2
ij(−2)θ −(−3)θ(−1)θ η2

ij(−2)θ

η3
ij(−3)θ η2

ij(−2)θ ηij(−1)θ



 (71)

for the scattering of solitons of different colours with η12 = ei π
4 . In this case the

numerics becomes more involved but for the special case m1 = m2 one can reduce
the set of six coupled integral equations to only two by exploiting the symmetry
L

(1)
a (θ) = L

(2)
a (−θ) and using charge conjugation symmetry, Li

1(θ) = Li
3(θ). The

numerical outcomes, shown in figure 2 again match, with the analytic expectations
(51) and yield for ln(2/r) > σ/2 the coset central charge of 18/7. In summary we
obtain

unstable particle formation : csu(3)4 =
18

7
= cUV + ĉUV =

11

7
+ 1

no unstable particle formation : 2csu(2)4 = 2 = cIR + ĉIR = 1 + 1 ,

which matches precisely the numerical outcome in figure 2, with the same physical
interpretation as already provided in the previous two subsections.

5.4 The semi-classical limit k → ∞
As last example we carry out the limit k → ∞, which is of special physical interest
since it may be identified with the weak coupling or equivalently the classical limit,
as is seen from the relation ~β2 = 1/k + O(1/k2). To illustrate this equivalence
we have temporarily re-introduced Planck’s constant. It is clear from the TBA-
equations that this limit may not be taken in a straightforward manner. However,
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we can take it in two steps, first for the on-shell energies and the kernels and finally
for the sum over all particle contributions. The on-shell energies are easily computed
by noting that the mass spectrum becomes equally spaced for k → ∞

M i
a = M i

k−a =
mi

πβ2 sin
π a

k
≈ ami , a <

k

2
. (72)

For the TBA-kernels the limit may also be taken easily from their integral repre-
sentations

φab(θ) −→
k→∞

2π δ(θ)

(

δab − 2
(

K
su(k)
ab

)−1
)

and ψab(θ) −→
k→∞

2π δ(θ)
(

K
su(k)
ab

)−1

,

(73)
when employing the usual integral representation of the delta-function. Inserting
these quantities into the TBA-equations yields

ǫia(θ) ≈ r ami cosh θ−
k−1
∑

b=1

(

δab − 2
(

K
su(k)
ab

)−1
)

Li
b(θ)−

k−1
∑

b=1

(

K
su(k)
ab

)−1

Lj
b(θ− σ) .

(74)
We now have to solve these equations for the pseudo-energies. In principle we could
proceed in the same way as in the case for finite k by doing the appropriate shifts
in the rapidity. However, we will be content here to discuss the cases σ → 0 and
σ → ∞, which as follows from our previous discussion correspond to the situation
of restored parity invariance and two non-interacting copies of the minimal ATFT,
respectively. The related constant TBA-equations (42) and (44) become

σ → ∞ : x̂a −→
k→∞

(a+ 1)2

a(a + 2)
− 1 and σ → 0 : xa −→

k→∞

(a+ 1)(a+ 2)

a(a + 3)
− 1 . (75)

The other information we may exploit about the solutions of (74) is that for large
rapidities they tend asymptotically to the free solution, meaning that

σ → 0,∞ : Li
a(θ) −→

θ→±∞
ln(1 + e−r a mi cosh θ) . (76)

We are left with the task to seek functions which interpolate between the properties
(75) and (76). Inspired by the analysis in [32] we take these functions to be

σ → ∞ : Li
a(θ) = ln

[

sinh2
(

a+1
2
rmi cosh θ

)

sinh
(

a
2
rmi cosh θ

)

sinh
(

a+2
2
rmi cosh θ

)

]

(77)

σ → 0 : Li
a(θ) = ln

[

sinh
(

a+1
2
rmi cosh θ

)

sinh
(

a+2
2
rmi cosh θ

)

sinh
(

a
2
rmi cosh θ

)

sinh
(

a+3
2
rmi cosh θ

)

]

. (78)
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The expression (77) coincides with the expressions discussed in the context of the
breather spectrum of the sine-Gordon model [32] and (78) is constructed in analogy.
We are now equipped to compute the scaling function in the limit k → ∞

c(r, σ) = lim
k→∞

3 r

π2

2
∑

i=1

∫

dθ cosh θ

k−1
∑

a=1

M i
aL

i
a(θ) . (79)

Using (72), (77) and (78) the sum over the main quantum number may be computed
directly by expanding the logarithm. We obtain for k → ∞

c(r)|σ=∞ =
−6r

π2

2
∑

i=1

∫

dθmi cosh θ ln
(

1 − e−r mi cosh θ
)

(80)

c(r)|σ=0 =
−6 r

π2

2
∑

i=1

∫

dθ mi cosh θ[ln
(

1 − e−r mi cosh θ
)

+ ln(1 − e−r 2mi cosh θ)]. (81)

Here we have acquired an additional factor of 2, resulting from the identification of
particles and anti-particles which is needed when one linearizes the masses in (72).
Taking now the limit r → 0 we obtain

no unstable particle formation : 2 csu(2)∞ = 4 (82)

unstable particle formation : csu(3)∞ = 6 . (83)

The results (80), (82) and (81), (83) allow a nice physical interpretation. We
notice that for the case σ → ∞ we obtain four times the scaling function of a
free boson. This means in the classical limit we obtain twice the contribution of
the non-interacting copies of SU(2)∞/U(1), whose particle content reduces to two
free bosons each of them contributing 1 to the effective central charge which is in
agreement with (2). For the case σ → 0 we obtain the same contribution, but in
addition the one from the unstable particles, which are two free bosons of mass 2mi.
This is also in agreement with (2).

Finally it is interesting to observe that when taking the resonance poles to be
θR = σ− iπ/k the semi-classical limit taken in the Breit-Wigner formula (11) leads
to m2

k̃
= (mi + mj)

2. On the other hand (81) seems to suggest that mk̃ = 2mi,
which implies that the mass scales should be the same. However, since our analysis
is mainly based on exploiting the asymptotics we have to be cautious about this
conclusion.

6 Conclusions

Our main conclusion is that the TBA-analysis indeed confirms the consistency of
the scattering matrix proposed in [4]. In the deep ultraviolet limit we recover the
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Gk/U(1)ℓ-coset central charge for any value of the 2ℓ− 1 free parameters entering
the S-matrix, including the choice when the resonance parameters vanish and parity
invariance is restored on the level of the TBA-equations. This is in contrast to the
properties of the S-matrix, which is still not parity invariant due to the occurrence
of the phase factors η, which are required to close the bootstrap equations [4].
However, they do not contribute to our TBA-analysis, which means that so far
we can not make any definite statement concerning the necessity of the parity
breaking, since the same value for the central charge is recovered irrespective of the
value of the σ’s. The underlying physical behaviour is, however, quite different as
our numerical analysis demonstrates. For vanishing resonance parameter the deep
ultraviolet coset central charge is reached straight away, whereas for non-trivial
resonance parameter one passes the different regions in the energy scale. Also the
choice of different mass scales leads to a theory with a different physical content,
but still possessing the same central charge. To settle this issue, it would therefore
be highly desirable to carry out the series expansion of the scaling function in r and
determine the dimension ∆ of the perturbing operator. It will be useful for this to
know the periodicities of the Y-functions. We conjecture that they will be

Y i
a

(

θ + iπ(1 − ∆)−1 + σji

)

= Y j
ā (θ), (84)

which is confirmed by our su(N)-examples. For vanishing resonance parameter and
the choice g = su(2), this behaviour coincides with the one obtained in [28]. This
means the form in (84) is of a very universal nature beyond the models discussed
here.

We also observe from our su(N)-example that the different regions, i.e. k > h
and k ≤ h, for which quantum integrability was shown and for which not, respec-
tively, do not show up in our analysis.

It would be very interesting to extend the case-by-case analysis of section 5 to
other algebras. The first challenge in these cases is to incorporate the different
resonance parameters.
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