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Abstract: The paper is concerned with establishing the links between the approximate GCD of a set of 

polynomials and the notion of the pseudo-spectrum defined on a set of polynomials. By examining the 

pseudo-spectrum of the structured matrix we will derive estimates of the area of the approximate roots of 

the initial polynomial set. We will relate the strength of the GCD to the weighted strength of the pseudo-

spectra and we investigate under which conditions the roots of the approximate GCDs are a subset of the 

pseudo-spectra. 
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1. INTRODUCTION 

The computation of the GCD of a set of polynomials is a 

problem representative of the class of nongeneric 

computations (Karcanias & Mitrouli, 1999). In fact, the set of 

polynomials for which there exists a nontrivial GCD 

(different than one) is a subvariety of a projective space and 

this makes the GCD computation a hard problem. The need 

for defining a notion of “almost zero” for a set of 

polynomials has been recognised in (Karcanias et al., 1983) 

where it has been shown that “almost zeros” behave in 

similar way to exact way to exact zeros, as far as solutions of 

polynomial Diophantine equations. Defining an approximate 

GCD has been subsequently considered within the framework 

of GCD computations and amongst the methods considered 

have been the ERES method (Mitrouli & Karcanias, 1993), 

the matrix pencil method (Karcanias & Mitrouli, 1994) and 

the different variants of the Euclid algorithm (Noda & Sasaki, 

1991). 

The essence of the computation of approximate solutions is 

that they are based on the relaxation of exact conditions 

which characterise the GCD. Until recently there has been no 

formal framework that may allow the evaluation of quality of 

the approximation. A novel framework has been introduced 

recently (Karcanias et al., 2003) for defining in a parametric 

way all given order approximate GCDs and evaluate their 

quality of approximation, or strength by solving an 

optimisation problem. This approach is based on recent 

results (Fatouros & Karcanias, 2003) on the representation of 

the GCD of many polynomials in terms of the factorisation of 

the generalised resultant into a reduced resultant and a 

Toeplitz matrix representing the GCD. These results allow 

the parameterisation of all perturbations which are required to 

make a selected approximate GCD, an exact GCD of the 

perturbed set of polynomials. The notion of the approximate 

GCD is introduced by considering polynomial set 

perturbations which result in perturbed sets of polynomials of 

the nominal set and are characterised by the existence of a 

given degree GCD. The new notion is introduced as the 

solution of a distance problem between points and certain 

varieties in an appropriate projective space. The resulting 

optimisation problem is linked to the definition of a given 

order approximate GCD. This problem is reduced to two 

independent and standard form optimisation problems on 

certain functions defined by the original set of polynomials. 

The results allow the derivation of given order optimal 

approximate solutions and permit the evaluation of their 

respective strengths. 

In this paper we establish the links between approximate 

GCD, almost zeros and the pseudo-spectrum (Lancaster & 

Psarrakos, 2005) of a polynomial matrix. By examining the 

pseudo-spectrum of the structured matrix we will derive 

estimates of the area of the approximate roots of the initial 

polynomial set. We will relate the strength of the GCD to the 

weighted strength of the pseudo-spectra and we will 

investigate under which conditions the roots of the 

approximate GCDs are a subset of the pseudo-spectra F. The 

final aim is to build a hybrid algorithm using the pseudo-

spectra and the resultant algorithm for the location and the 

evaluation of the approximate GCD. Issues under 

investigation relate to the area of approximate common roots 

to the pseudo-spectra. The research aims to find a direct 

algorithm for the GCD using the pseudo-spectra algorithm 

and then extend the research to the almost zeroes of the 

polynomial algorithms. 



  

2. DEFINITIONS AND PRELIMINARY RESULTS 

For a set ( ) ( ){ }, [ ],  a s b s s i hi= ∈ ∈�
�

P  of polynomials 

which has 1h +  elements and with the two largest values of 

degrees ( ),n p , which is also denoted as 1,h n+P . Without 

loss of generality we may assume ( )a s  monic and represent 

the polynomials with respect to the n degree as 
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The greatest common divisor (GCD) of P  will be denoted 

by ( )sϕ . For any 1,h n+P  set we define a vector (vr) 

( )
1h

p s
+

 and a matrix (bm) 1hP +  as  
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+ × +
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1, ,..., ,1n n
n

t
e s s s s−  = . The classical 

approaches for the determination of the GCD make use of the 

Sylvester Resultant defined by (Barnett, 1990): 

 

Definition 1: Let 
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where ( ) ( ),a s b s  are described as in (1). Then, we can 

define a ( )p n p× +  matrix 
0

S associated with ( )a s  and a 

( )n pn +×  matrix
 i

S  associated with ( )sbi
 for each 
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and 
( ) ( )

0

1

h

p hn n p

S

S
S

S

+ × += ∈

 
 
 
 
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�
�

P
 is an extended Sylvester 

matrix for the set P .   ■ 

The resultant properties are summarised below (Barnett, 

1990), (Fatouros & Karcanias, 2003).  

 

Theorem 1: For a set of polynomials 
1,h n+P  with resultant 

SP  the following properties hold true: 

(i) Necessary and sufficient condition for a set of 

polynomials to be coprime is that:  

( )S n pρ = +
P

                                  (3) 

(ii) Let ( )sϕ  be the GCD of P  . Then  

( ) ( )degS n p sρ ϕ= + −
P

                       (4) 

If we reduce SP , by using elementary row operations, to its 

row echelon form, the last non vanishing row defines the 

coefficients of the GCD. 

 

Certain properties of extraction of divisors from the set P , 

which are equivalently expressed as factorisation of resultant 

matrices are summarised below (Fatouros & Karcanias, 

2003) and these establish a matrix based representation of the 

GCD, which is equivalent to the standard algebraic 

factorisation of the GCD in the original set of polynomials. 

 

Theorem 2: Let ( ) ( ) ( ){ }
1

, , ,
h

a s b s b s= …P  be a 0-order 

set, ( )deg a s n= , ( )deg
i

b s p n≤ ≤ , 1, ,i h= …  be a 

polynomial set, S
P

 the respective Sylvester matrix, 

( ) 1 0

k

k
s s sϕ λ λ λ= + + +�  be the greatest common divisor of 

the set and let k  be its degree. Then there exists 

transformation matrix 
( ) ( ) n p n p

ϕ
+ × +Φ ∈�  such that: 
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where 
1ˆ

ϕ ϕ
−Φ = Φ  , ˆ

ϕΦ being the Toeplitz  form of ( )sϕ  and 

ˆ
ϕΦ  and 

( )
1, 2, ...,,

k

i
i hS =  the Toeplitz blocks, which 

correspond to the coefficients of the coprime polynomials 

obtained from the original set after the division by the GCD, 

is expressed as 
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and 
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If ( ) ( ) ( )a s a s sϕ′= ,   ( ) ( ) ( )i i
b s b s sϕ′= , 1, ..,i h= , 

( ) ( ) ( ){ }
1

, , ,
h

a s b s b s
∗ ′ ′ ′= …P , and 

( )
,  

k
S S ∗P P

 are the 

generalised resultants of  
∗

P P, , then S ∗
P

 is the (n,p)-

expanded resultant of 
∗
P . 

We shall denote by ( ), ; 1n p h +Π  the set of all polynomial 

sets 
1,h n+P  with the (n,p) the maximal two degrees and h+1 

elements. If 
1, ( , ; 1)h n n p h+ ∈ +ΠP  we can define an (n,p)-

ordered perturbed set 

( ) ( ) ( ) ( ){ } ( ){ }{ }

'

1, 1, 1,

: deg deg

( , ; 1)

i i i i i

h n h n h n

p s p s q s q s p s

n p h+ + +

′= = ≤

= ∈ +P P Q

-

- Π
 

Given a set 
1, ( , ; 1)h n n p h+ ∈ +ΠP  and an ( ) [ ]s sω ∈�  

with ( ){ }deg s pω ≤ , there always exists a family of ( ),n p -

ordered perturbations 1,h n+Q  and for every element of this 

family 
'

1, 1, 1,h n h n h n+ + +=P P Q-  has a GCD divisible by ( )sω . 

If { }1,h nω +Σ = Q  is the set of all ( ),n p -order perturbations 

  

          

'

1, 1, 1, ( , ; 1)
h n h n h n

n p h+ + += ∈ +P P Q- Π              (7) (7) 

 

with the property that ( )sω  is a common factor of the 

elements of 
'

1,h n+P . If 
1,h n

∗
+Q  is the minimal norm element of 

the set ωΣ , then ( )sω  is referred as an r-order almost 

common factor of 1,h n+P , and the norm of 1,h n

∗
+Q , denoted 

by 
∗
Q , as the strength of ( )sω . If ( )sω  is the GCD of 

1, 1, 1,h n h n h n

∗ ∗
+ + +P P Q= -  then ( )sω  will be called an r-order 

almost GCD of 1,h n+P  with strength 
∗
Q . The above 

definition suggests that any polynomial ( )sω  may be 

considered as an approximate GCD, as long as 

( ){ }deg s pω ≤ . Two important problems in this context are 

the evaluation of the strength of approximation of a given 

approximate GCD, ( )sω , and the computation of the given 

order Optimal Almost GCD. These two problems have been 

considered in (Karcanias et al., 2006). This approach is now 

linked to the notion of pseudo-spectrum developed in 

(Tisseur & Higham, 2001), ( Lancaster & Psarrakos, 2005): 

 

Definition 2: We consider the spectra of perturbations of the 

regular polynomial ( )P s  of the form  

( ) ( ) ( )
( ) ( )

1 1 0 0

1

1 1 ...
n n

n n n n
P s s s

s

−
∆ − −Α Α

Α Α

= + ∆ + + ∆ +

+ + ∆ + + ∆
    (8) 

where the matrices 
( 1) ( 1)

0 1
, , ...,

h h

n
C

+ × +∆ ∆ ∆ ∈  are arbitrary. 

For a given 0ε >  and a given set of nonnegative weights 

{ }0 1
, ,  . . . ,

n
w w w w= with at least one nonzero element, 

we define the set of perturbed matrix polynomials 

2
( , , w) { ( ) : ,   0,1,  . . . , }

j j
P e P s w j nε

∆
= ∆ ≤ =B . 

The (weighted) ε-pseudo-spectrum of ( )P s  (Tisseur & 

Higham, 2001) is then defined as 

( ) ( ){ }, ( ) : det 0, ( , , )
w

s P s P s P e wεσ ∆ ∆= ∈ = ∈�P B .   ■ 

 

Theorem 3 (Tisseur & Higham, 2001): If we consider the 

scalar polynomial ( )
1 0

...
m

m
w w w wλ λ λ= + + +  and let 

( )( ) ( )( ) ( )( )
1 2

...
n

s P s P s Pλ λ λ≥ ≥ ≥  be the singular 

values of ( )P λ  then 

( )( ) ( ){ }
,

( ) :
nw

s P wεσ λ λ ε λ= ∈ ≤�P  .   ■ 

Any point 0λ ∈�  that is not on the bounds of the pseudo-

spectrum, i.e. ( )( ) ( )
n

s P wλ ε λ≠ lies in the centre of an 

open disk that does not intersect the boundaries of the 

pseudo-spectrum (Psarrakos, 2007), (Fatouros & Psarrakos, 

2009).  Based on that an algorithm that uses exclusion disks 

is introduced in (Fatouros & Psarrakos, 2009) for the 

computation of the pseudo-spectra. 

3. ESTIMATING THE APPROXIMATE COMMON 

ROOTS OF A SET OF POLYNOMIALS 

For the set of monic polynomials 
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h n h i
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The matrix ( )P s  can also be written in the form: 
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for 1, 2, ..., 1j n= −  and the constant coefficient matrix will 

have the form 
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is constructed in this form in order to have a non-singular 

leading coefficient for the polynomial matrix ( )P s . If we 

select the parameter k outside the investigation area, the 

corresponding eigenvalues lie outside that area and they do 

not interfere with the roots of the polynomials in the last row.  
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The coefficient matrices will have the form 
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and their 2-norms equal 

 
2 2 2

1 22
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j j j jk
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Proposition 1: Let { }
2

max
j

j
Eε = . The roots of the 

approximate GCD of the set of polynomials ,h n
P  lie within 

the pseudo-spectrum 
,1
( )εσ P .

   
■

 

4.  EXAMPLE 

We consider an example to demonstrate the above concepts: 

Example 1: Consider the following set of four polynomials 

with maximum degree equal to 4. 
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The polynomials of the above set are coprime in standard 

double precision floating-point arithmetic. However, since 

the coefficients of the polynomials are given in 4-digits 

precision, we might look for an approximate εt-GCD for 

accuracy
4

10
t
ε −= .  

A recently developed method for estimating approximate 

GCDs of sets of several real univariate polynomials is the 

Hybrid-ERES method (Christou et al., 2010) which in the 

present case, for 
4

10
t
ε −= , it gives the approximate solution: 

2
( ) 8.0119 15.0482s s sϕ = − +                   (15) 

In order to evaluate the quality of this solution, we have to 

compute its ‘strength’. The strength of a GCD is obtained by 

the minimization problem (Fatouros et al., 2006): 



  

( ) ˆmin
F

k
S S ϕ∗

∗
− ⋅Φ

P P
P                       

  (16) 

which is actually non-convex when the GCD is considered 

unknown. However, when an approximation ( )sϕ is given, 

the above problem is equivalent to solving a multiple 

unconstrained linear least-squares (LLS) problem of the form 

 

ˆmin t t
X SϕΦ ⋅ −

P

                           (17) 

Since the above LLS problem being solved is always 

convex, we can find (under certain conditions) a global 

solution which is a measure of the strength of the 

approximation ( )sϕ . For example, the strength of the 

approximation ( )sϕ
 
given in (15) is 0.1120. 

The benefit from the computation of the pseudo-spectrum of 

the matrix ( )P s , which corresponds to the set
4,4
P , is that 

we can estimate areas where the roots of an approximate 

GCD lie. The contour in Figure 1 shows the eigenvalues of 

the matrix ( )P s and the pseudo-spectrum areas around them. 

For accuracy 0.1ε = , there are two distinct areas (inner areas 

in contour plot) around the eigenvalues marked with ‘+’. The 

boundaries on the real axis of these areas (pseudo-spectrum 

intervals) are given in Table 1.  

In Figure 2 we can see how the strength of a simple common 

factor ( )1 s s cϕ = −
 

changes when c runs through the 

pseudo-spectrum intervals J1, J2 with accuracy
4

10
t
ε −= . We 

notice that there are two values of c, 1 2.9969c =  and 

2 5.0001c =  (Table 2), where the strength is much closer to 

zero than other values. The factors ( )
1

2.9969s sϕ = −     and   

( )
2

5.0001s sϕ = −  can be regarded as first degree 

approximate GCDs. However, if we combined them together, 

we get a second degree approximation 

2
ˆ( ) 7.997 14.9848s s sϕ = − +                     (18) 

with strength equal to 0.0375, which can be considered  much 

better approximation than ( )sϕ
 
in (15). 

Table 1. Pseudo-spectrum intervals for ε = 0.1  

Eigenvalue - Root Interval 

2.9983 J1 = [  2.7824   ,   3.4424 ] 

5.0009 J2 = [  4.1563   ,   5.6781 ] 

 

Table 2. Minimum strength of a simple factor φ(s) = s - c 

 
Interval J1 J2 

Root c 2.9969 5.0001 

Strength 0.0010671 0.0044139 
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Fig. 2. Strength of a simple common factor of the form s-c in   

the pseudo-spectrum intervals. 

 

5.  CONCLUSIONS 

The relationship between the approximate GCD and the 

notion of the pseudo-spectrum has been considered and the 

current study demonstrates that the pseudo spectrum provides 

an estimate for the region containing the roots of all 

approximate GCDs. This is a preliminary study aiming to 

extend the property of almost zeros (Karcanias et al., 1983) 

as trapping disks of polynomial combinants  to the case of 

trapping regions related to the roots of the approximate GCD. 

 

REFERENCES 

Barnett, S. (1990). Matrices Methods and Applications.   

        Clarendon Press, Oxford. 

Christou, D., Karcanias, N. and Mitrouli, M. (2010).  The 

ERES method for computing the approximate GCD of 

several polynomials. Appl. Numer. Math., 60, 94–114. 



  

Fatouros, S. and Karcanias, N. (2003). Resultant properties of 

GCD of many polynomials and a factorisation 

representation of GCD. Int. J. Control, 76, 1666–1683. 

Fatouros, S. and Psarrakos, P. (2009). An improved grid 

method for the computation of the pseudospectra of 

matrix polynomials. Math. Computer Modelling, 49, 55–

65. 

Karcanias, N. and Fatouros, S. (2004). The optimal 

Approximate Greatest Common Divisor of polynomials 

and generalised resultant. City University, Control 

Engineering Research Report CERR-2004-1, January 

2004.  

Karcanias, N., Fatouros, S., Mitrouli, M., and Halikias, G. 

(2006). Approximate Greatest Common Divisor of many 

polynomials, generalised resultants and strength of 

approximation. Comp. Math. Appl., 51, 1817–1830. 

Karcanias, N., Giannakopoulos, C. and Hubbard, M. (1983). 

Almost zeros of a set of polynomials of R[s]. Int. J. 

Control, 38(6), 1213–1238. 

Karcanias, N., and Mitrouli, M. (1999). Approximate 

algebraic computations of algebraic invariants - 

Symbolic methods in control systems analysis and 

design. IEE Control Engin. Series, 56, 135–168. 

Karcanias, N. and Mitrouli,  M. (1994). A Matrix Pencil 

based method for computation of the GCD of 

polynomials. IEEE Trans. Autom. Control, 39(5), 977–

981. 

Lancaster, P. and Psarrakos, P. (2005). On the pseudospectra 

of matrix polynomials, SIAM J. Matrix Anal. Appl., 27, 

115–129. 

Mitrouli, M. and Karcanias, N. (1993). Computation of the 

GCD of polynomials using Gaussian transformation and 

shifting. Int. J. Control, 58, 211–228.  

Psarrakos, P. (2007). A distance bound for pseudospectra of 

matrix polynomials. Applied Mathematics Letters, 20, 

499 – 504. 

Tisseur, F. and Higham, N. (2001). Structured pseudospectra 

for polynomial eigenvalue problems with applications. 

SIAM J. Matrix Anal. Appl., 23, 187–208. 
 

 


