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Abstract: The paper is concerned with defining and parametrising the families of all degenerate compen-
sators (feedback, squaring down etc) in a variety of linear control problems. Such compensators indicate 
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of the Determinantal Assignment Problems, which provide the unifying description for all frequency as-
signment problems (pole, zero) under static and dynamic compensation schemes. 
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                       EXTENDED ABSTRACT 

Introduction 

The Determinantal Assignment Problem (DAP) has emerged 
as the abstract problem to which the study of pole, zero 
assignment of linear systems may be reduced (Karcanias & 
Giannakopoulos, (1984), Leventides & Karcanias (1995)). 
This approach unifies the study of frequency assignment 
problems (pole, zero) of multivariable systems under constant, 
dynamic centralised, or decentralised control structure, has been 
developed. The Determinantal Assignment Problem (DAP) 
demonstrates the significance of exterior algebra and classical 
algebraic geometry for control problems.  The importance of 
tools and techniques of algebraic geometry for control theory 
problems has been demonstrated by the work in (Brockett & 
Byrnes (1981) etc.). The multi-linear nature of DAP suggests 
that the natural framework for its study is that of exterior 
algebra [1]. The study of DAP [7] may be reduced to a linear 
problem of zero assignment of polynomial combinants and a 
standard problem of multi-linear algebra, the decomposability 
of multivectors (Marcus, (1973)). The solution of the linear 
sub-problem, whenever it exists, defines a linear space in a 
projective space ,tP  whereas decomposability is 
characterised by the set of Quadratic Plücker Relations (QPR), 
which define the Grassmann variety of tP (Hodge & Pedoe, 
(1952)). Thus, solvability of DAP is reduced to a problem of 
finding real intersections between the linear variety and the 
Grassmann variety of tP . This novel Exterior Algebra-
Algebraic Geometry method, has provided new invariants 
(Plucher Matrices and the Grassmann vectors) for the 
characterisation of rational vector spaces, solvability of control 
problems, ability to discuss both generic and nongeneric cases 
and it is flexible as far as handling dynamic schemes, as well as 
structurally constrained compensation schemes. The multi-

linear nature of DAP has been recently handled by a "blow 
up" type methodology, using the notion of degenerate solution 
and known as "Global Linearisation" (Leventides & Karcanias 
(1995), (1996)). Under certain conditions, this methodology 
allows the computation of solutions of the DAP problem.  
 
There are many challenging issues in the development of the 
DAP framework and amongst them are its ability to provide 
solutions even for non-generic cases, as well as providing 
approximate solutions to the cases where generically there is 
no solution of the exact problem. The development of such 
solutions requires development of the methodology "Global 
Linearisation" (Leventides & Karcanias (1995), (1996)) and 
an essential part of this is the parameterisation of the 
degenerate solutions, which have been defined in (Brockett 
& Byrnes (1981)) as the compensation solutions where the 
feedback configuration sieges to exist. Although such 
solutions are prohibited from the systems viewpoint, they 
have the significant property that linearise asymptotically the 
multi-linear nature of DAP and thus they become key 
instruments for developing Global Linearisations. The 
classification of degenerate controllers and parameterization 
of Global Linearization Solutions play an integral role to the 
application of the Global Linearization methodology to 
special structure problems such as decentralized control etc. 
This paper deals with the parameterization of the degenerate 
solutions of the general DAP using the algebraic theory of 
minimal bases of rational vector spaces (Forney, (1975)). 

 

Families of Determinantal Assignment Problems 
 
We consider linear systems described by S(A,B,C,D) state 
space descriptions with n states, p inputs and m outputs, 
where (A,B) is controllable, (A,C) is observable, or by the 
transfer function matrix G(s) = C(sI - A) -1  B + D, where the 
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rank is min{m,p}. In terms of left, right coprime matrix frac-
tion descriptions G(s) may be represented as G(s)=            
=Dl (s)-1 Nl (s) = Nr (s) Dr (s)-1, where Nl (s), Nr 

pm×ℜ∈
(s) 

[s],  Dl ∈ℜ ×m m (s) [s] and Dr ∈ℜ ×p p(s)  [s].  The 
following frequency assignment problems are defined (Kar-
canias & Giannakopoulos, (1984)): 
 
(i) Pole assignment by state feedback: Consider L∈ℜn×p

~L
, 

where L is a state feedback. If B(s)=[sI -A, -B] and = 
[In, Lt ] t , the closed loop characteristic polynomial is then 
given by pL(s)=det{sI-A-BL} = . A similar 
expression is derived for the observer design. 
  
(ii) Pole assignment by constant output feedback: Under an 
output feedback K∈ℜm×p, the closed loop characteristic poly-
nomial   pK(s) is given by  pK(s)= det{Dl (s)+Nl (s)K } = 
det { Dr (s) + K Nr 

 
(s) }. By defining the matrices 

Tl (s) = [Dl (s), Nl (s)] ∈ℜm×( m+p ) [s] ,                          

Tr
D (s)
N (s)

r

r









(s) = ∈ℜ ( m+p ) ×p 

and by setting

[s]                           (1) 

~K l=[Im,Kt]t∈ℜ(m+p)×m ~K, r=[Il, K] 
∈ℜp×( m+p), ,pK(s) = det { Tl

~K (s) l 
~K} =det { r,Tr

 
(s)}. 

(iii) Zero assignment by squaring down: For a system with 
m>p the squaring down problem is defined as finding 
H∈ℜp×m, a squaring down post-compensator, such that 
G′(s)=HG(s) is the squared down transfer function matrix . 
Using a right MFD for G′(s), G′(s)=H Nr(s) Dr (s)-1 where 
G(s)=Nr(s)Dr(s)-1 the squaring down is reduced to finding H 
such that G′(s) has assigned zeros in the zero polynomial of 
S(A,B,HC,HD) given by zK(s)=det { HNr
  

(s)}. 

(iv) Dynamic Compensation Problems: For the standard 
feedback configuration of Figure (1) and with 
G(s)∈ℜpr(s)m×p, C(s)∈ ℜ(s)p×m, with coprime MFD’s 
where C(s) = Al(s)-1 Bl(s) = Br(s) Ar(s)-1 the closed loop 
characteristic polynomial may be expressed as  

 

 (2)               

if p ≤ m, then C(s) may be interpreted as Feedback Compen-
sator and if p ≥ m, the C(s) may be interpreted as Pre-
compensator. The above general dynamic formulation covers 
a number of important families of C(s) compensators as: (a) 
Constant, (b) PI, (c) PD, (d) PID, (e) Bounded degree. In fact: 
 

(a) Constant Controllers: If p ≤ m, Al = Ip, Bl = K∈ℜp×m, 
then the above expresses the constant output feedback case, 
whereas if p ≥ m , Ar = Im, Br =K∈ℜp×m 

               

expresses the con-
stant pre-compensation formulation of the problem. 

 (b) PID Controllers: These controllers are expressed as C(s) 
= K0 + 1/sK1 + sK2 = [sIp]-1 [s2K2 + sK0 +K1] where 
K0, K1, K2 ∈ ℜp×m and the left MFD is coprime with                    
the only exception possibly at s=0, s=∞ (coprimeness at s=0 is 
guaranteed by rank(K1)=p and at s=∞ by rank(K2

r2
p 2 0 1

r

D (s)
f(s)=det [sI , s K +sK +K ] = 

N (s)
   
  
   

)=p). This 
scheme clearly covers also the case of PI and PD controllers. 
The determinantal output PID feedback is expressed as: 

 

r

r
p 0 1 2

r
2

r

sD (s)
sN (s)

=det{[I , K , K , K ] }
N (s)

s N (s)

 
 
 
 
 
 

              (3) 

(c) Observability Index Bounded Dynamics (OBD) Con-
trollers: These are defined by the property that their 
McMillan degree is equal to pk, where k is the observability 
index of the controller. Such controllers are expressed as  
[Al(s), Bl(s)] = Tksk + .... + T0 where Tk, Tk-1,...,T0 ∈ 
ℜp×(p×m) and Tk = [Ip

 

, X]. Note that the above representation 
is not always coprime, and coprimeness has to be guaranteed 
first for McMillan degree to be pk; otherwise, the McMillan 
degree is less than pk. The dynamic determinantal OBD out-
put feedback problem is expressed as 

         k
k 0f(s)=det { (T s  + ... +T ) M(s) } =   

             

k

k-1

k k-1 0

s M(s)
s M(s)

=det {[T , T , ..., T ] }.
.

M(s)

 
 
 
 
 
 
  

    (4)                                              

The above formulation is based on the assumption that p≤m 
and thus output feedback configuration is used. If p≥m, we 
can similarly formulate the corresponding problems as deter-
minantal dynamic pre-compensation problems and use right 
coprime MFDs for C(s).  

 

The General Determinantal Assignment Problem and  
Degeneracy 
 
 All the problems above belong to the same problem family 
i.e. the determinantal assignment problem (DAP) and the dy-
namic problems are reduced to equivalent constant DAP. This 
involves the study of solution with respect to constant matrix 
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H of the equation based on M(s) ∈ ℜ[s]p×r 

                             det (H M (s)) = f(s)              (5) 

[s], r≤p, such that 
rank(M(s)) = r 

 
where f(s) is the polynomial of an appropriate degree. Clearly, 
M (s) is the matrix defined by the system and the particular 
control problems and its invariant structure is essential to the 
solution of the corresponding DAP. The Frequency Assign-
ment Map associated with the problem is the map assigning H 
to the coefficient vector f of f(s) ie.                      

1:  :  ( )  r p dF R R F H f× +→ = . The solution of DAP is to 

find H such that F(H)=  f for a given  f . Clearly, a system 
has the arbitrary zero assignment property if F is onto. An 
important family of compensators, which is crucial for the 
problem, is the family of the so called degenerate solution. A 
solution H  is degenerate, iff ( ) 0F H = or equivalently 
det(H M(s))≡0. This concept was introduced for the case of 
output feedback in (Brockett & Byrnes (1981) and has been 
used in (Leventides & Karcanias (1995)) to develop a lineari-
zation methodology for DAP. The following result shows the 
importance of degenerate compensators: 

 
Lemma (1) [12]: If there exists a degenerate matrix 0H  such 
that the differential 

0KDF  is onto, then any polynomial of 

degree d can be assigned via some static compensator.                                                                                                                                                                          
� 
The above result suggests a sufficient approach for studying 
zero assignment using special forms of squaring down 
determined by degenerate solutions; such an approach is 
known as Global Linearisation methodology (Leventides & 
Karcanias (1995), (1996)). The role of degenerate solutions in 
the solvability of DAP motivates the study of their 
parameterization. In the following, we denote by 

{ }[ ] ( )R scolsp M s= the R[s]-module generated by the 

columns of M(s).  
.                     

Theorem (1): For the system described by M(s), a p-
dimensional space  =row span [H] corresponds to a de-
generate gain, iff either of the following equivalent conditions 
holds true: 
(i) There exists an px1  polynomial vector  ( )t s ∈  such 
that  sstH ∀=  0)(][ . 

(ii) There exists an  px1  polynomial vector   ∈)(st    
with coefficient matrix  P(t)  such that the rank P(t) ≤  p.      

☐  

Note that in the characterisation of H we consider all possible 
gains (bounded and unbounded) and we may classify them as 
finite degenerate if dim = r and as infinite degenerate if  
dim < r. Every degenerate gain rowspan [H] can be ap-
proached via a sequence of spaces: 

          ' ([ ] [ ])rowspan H Hε ε= + as ε → 0 ,  

where ][ 'H  is an rxp  matrix and can be seen as the direction  
via which we approach the degenerate gain  rowspan [H]. The 
degenerate points can be viewed as the points of the Grass-
mannian where the frequency map cannot be continuously 
extended. In fact, degenerate points possess a very important 
property, that is, they scatter the sequences of gains approach-
ing them; this implies that we may have two sequences of 
gains converging to a degenerate point, as  ε → 0  , and yet 
the corresponding sequences of polynomials to converge into 
two different limits.            

Theorem (1) clearly suggests that the parameterization of all 
degenerate gains, finite and infinite is related to the properties 
of the module   and in particular to the properties of the 
minimal bases of    (Forney, (1975)) as these are defined 
by the corresponding minimal indices and the associated real 
invariant spaces of  (Karcanias, (1994) (1996))). The 
properties of such spaces are then used to characterise finite 
and infinite degenerate solutions. We consider first the general 
M(s) and we then specialise to the specific cases as defined by 
the corresponding control problems formulations (1)-(4). 

 
 The current investigation is the algebraic part of the 
development of the theory of Global Linearization that aims to 
parameterize all degenerate compensators and then identify 
those with the desired properties as far as spectrum 
assignment. The results reveal new structural invariants linked 
to the invariant real vector spaces of the   module. This 
work is required as an essential step in the further 
development of the methodology by using Homotopic 
methods.   
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                                      Fig.1. Standard feedback configuration 
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