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Properties and Classification of Generalized Resultants and

Polynomial Combinants
Nicos Karcanias

Abstract—Polynomial combinants define the linear part of
the Dynamic Determinantal Assignment Problems, which
provides the unifying description of the frequency assignment
problems in Linear Systems. The theory of dynamic polynomial
combinants have been recently developed by examining issues
of their representation, parameterization of dynamic
polynomial combinants according to the notions of order and
degree and spectral assignment. Dynamic combinants are
linked to the theory of “Generalised Resultants”, which provide
the matrix representation of polynomial combinants. We
consider coprime set polynomials for which assignability is
always feasible and provides a complete characterisation of all
assignable combinants with order above and below the
Sylvester order. The complete parameterization of combinants
and coresponding Generalised Resultants is prerequisite to the
characterisation of the minimal degree and order combinant for
which spectrum assignability may be achieved.

I. INTRODUCTION

The study of determinantal type problems (such as pole
zero assignment, stabilisation) has been unified by the
development of a framework referred to as Determinantal
Assignment Problem (DAP) [8]. DAP is a multi-linear nature
problem and thus may be naturally split into a linear and
multi-linear problem (decomposability of multivectors). The
final solution is thus reduced to the solvability of a set of
linear equations coming from the spectrum assignability of
polynomial combinants [7], characterising the linear problem,
together with quadratics characterising the multi-linear
problem of decomposability, which in turn define some
appropriate Grassmann variety [3].

Dynamic compensation problems may also be studied
within the DAP framework, but their linear sub-problem
depends on dynamic polynomial combinants which have
much richer properties and they have been studied recently
[6]. Amongst the open issues in the area of dynamic
frequency assignment problems, is defining the least
complexity compensator, for which we may have solvability
of the arbitrary spectrum assignment of the corresponding
DAP. This is referred to as the minimal design problem of
DAP. The fundamental aspects of the theory of dynamic
polynomial combinants have been examined in [6], where
their representation in terms of Generalized Resultants and
Toeplitz matrices has been established [2]. Dynamic
polynomial combinants have been parameterized in terms of
order and degree [6] and this has introduced the foundations
for the investigation of a number of properties of the family of
dynamic combinants, where the most prominent is that of
spectrum assignability for some value of the degree and order
of the dynamic combinant. Under the conditions of
coprimeness of polynomials defining the combinant, there is
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always an order and degree such that the corresponding
combinant has its spectrum assignable. Parametrising all
dynamic combinants according to order and degree is a
problem that is considered here. We show that all combinants
of degree greater than the Sylvester degree have elements
which are assignable, and there is a set of degrees less than
the Sylvester degree for which we have assignable
combinants for some appropriate order. The latter property
motivates the study for finding the least degree and order
combinant that is spectral assignable. The paper provides an
overview of the theory of dynamic combinants and examines
the solution of the Minimal Design Problem.

Throughout the paper we use the notation: (, =~ denotes

the set of lexicographically ordered, strictly increasing
sequences of k integers from the set 71 £ {1,2,...,n}. If V is

a vector space and {v,,...,v, } are vectors of ) then
-4 %k

VA AV, =V A, @=(i,..,0) denotes their exterior

product and A"V the r—th exterior power of V. If

HeF™" and r<min{m,n}, thenC (H)denotes the
7 — th compound matrix of H [11].

11. Basic Definitions and Properties of Combinants
A. The Determinantal Assignment and Polynomial
Combinants
A large family of problems for Linear Systems involving
Dynamic Compensation [4], may be reduced to a common
formulation represented by the determinantal assignment
problem (DAP) [8]. This deals with the study of the following
equation with respect to polynomial matrix H(s):
det (H(s) M(s)) = f(s) (M
where f(s) is a polynomial of an appropriate degree d.
IfM (s) € R”™[s], r <p, such that rank(M(s)) = r and let
H be a family of full rank 7xp constant matrices having a
certain structure. Solve with respect to /4 € H the equation:
fu (s,H) = det (H M(s)) = f(s) 2)

where f(s) € R[s]with a degree d. If h,(s)' , m,(s),ie7,
are the rows of H(s), columns of M(s) respectively, then

C,(H(S) =h,(s) A .. Ab,(s) =h(s) neR™

C.(M()=m,($)A .. Am,(5)=m(s)AeR[s]

F(p j,then by the Binet-Cauchy theorem[11] we have that [7]

T



fu(s.H) = <h(s) Ams) A>= = D h(5)m,(s) (3)

wean

o = (i1, ..., i)€Qyp , and A,(s), m,(s) are the coordinates of
h(s)», m(s)A respectively. Note that hy(s) is the »xr minor of
H(s), which corresponds to the ® set of columns of H(s) and
thus /,(s), is a multilinear alternating function of the entries
hji(s) of H(s). The study of the zero assignment of fy(s,/7)
may thus be reduced to a linear subproblem and a standard
multilinear algebra problem as it is shown below.

(i) Linear subproblem of DAP: Set m(s)A = p(s) € R7[s].

Determine whether there exists a k(s) € R[s], k(s) #0,:

(s, k() = k) ps) = D_K,()p,(s) =f(s) e R[s]  (3)

(i) Multilinear subproblem of DAP: Assume that K is
the family of solution vectors k(s) of (3). Determine whether

there exists H(s)'= [h;(s), ..., h(s)], H(s) € R”"[s]:
hi(S)A A (s)=h(s)N= k(s)eK (@)

The representation problem of a given order and degree
dynamic combinant is summarised here [6] and this involves
the parameterization of all sets leading to a polynomial
combinant of a given degree p. We assume that the maximal

degree polynomial in IC, k,(s) # 0. If we define P as

P={p(s)elsliem, q=maxideg{p,,}, i=2,...m}

n=degi{p (s)} 2 deg{p,(s)}, 1=2,...,m, (52)
p(s)=s"+a, s"" +..+as+a,, (5.b)
pi(s)=b, " +..+b, s+b, i=2,...m
pi(s) 1
P(s) p( |- [PypPys,] . |=Pe(s) (o)
P, (s) s"

Then the set P will be referred to as an (m,n(g))-ordered
set of R[s]. Consider now the C = {k,(s) €[s],i € m}, set

deg{k.(s)} < d with the resulting d-order polynomial

combinant of P, defined as
L1(8, K, PY =D k() p,(s) = k'(s) p(s)
i=1

where  k'(s) =[k,(5),... K, (5)] =ky+...+ s k!, (6)

The matrix P € R™ " is the basis matrix of P and

generates the representative p(s) € R"[s] of P.

B. Generalised Resultant Representations of Dynamic
Combinants

For the general (m;d) set KC with a representative vector
k(s) =ky+..+ 5"k, =[k,(5), ...k, ()] (7)

then f,(s,/C,’P) may be expressed as
d
s"pi(s)

(s, K PY=D Ty kg Ko ] ®)
i=1

sp;(s)
pi(s)
The above leads to the following representation of dynamic

combinants:

Proposition (1): Every dynamic combinant combinant
f,(s,,P)) defined by an (m;d) set £ is equivalent to
a constant polynomial combinant defined by the (m(d+1),0)
set JC° and generated by the (m(d+1);(n+d)(q+d)) the d-th
power of the (m,;n(g)) set P, defined by

Pé = {sdpl(s),..., pl(s);...;s"pm (s),es P, ()} ©) ]

Ifu=n+d.e(s) =[s"...s,1l.a[p (sN=n+d.
0 [Eid(s)]3q+d for all i=2,...,m, then

1 an—l an—Z al aO O O
0 1 a, a, a a _
pl,d(s) = N Q,(S)
0 0 1 a, a a
=S, (1)2,(5), S, (p) €R" =2, m
0 ..05b6 .. b b 0 .. .. 0
0 ..0 055 ..b b 0 .. 0
P®=. 12
0 ..0 O 0 b . ..b b

=5, (), S, (p) R
The set P? has then a basis matrix representation as shown
in (11) where Sp, € R™ U Gpich is the d-th
Generalised Resultant representation representation [1], [2]
of the set P and Sp’ ; 18 the basis matrix of the P?set. An

alternative expression for the dynamic combinant is obtained
using the basis matrix description of the set P [6], referred
to as the Toeplitz representation.



29| [S.(m)
S
Pfs)= Ez’f’(s) = "’d;(pz) .(5)=5pae,(s) (1)
P, [5a®)

I1l. DEGREE AND ORDER PARAMETERISATION OF KC

The general representation of dynamic combinants based on
the order may lead to combinants of varying degree. An
alternative characterisation based on the fixed degree of

£, (s,]C,’P) but with varying order K provides an explicit
parameterisation of the JC sets. The fixed degree
parameterisation of combinants is summarised below [6]:

Theorem (1): Given the set P and a general proper (m,d)
set /C. Then,

(i)For all proper (m,d) sets K n<0[f,(s,]CP)]<n+d
(i) fpeN_,p>n, then the family {K }for
whicho [f,(s,/KC,P)]=p, satisfies the  conditions

<p- <p- | =
a [kl(S)]—p na a [k;(s)]—p q: 1 25-'-7mwhere at
least one of the first two conditions holds as an equality.
(iii) The fixed degree p family {K } contains n-g+/

subfamilies parameterised by a fixed order d. The possible
values for the order are:

d=p-q>d,=p—q-1>..>d,  =p-n
and the corresponding subfamilies are

{K,"} = {k,(s):0 k()] < p—n, 3 [ky(s)]=d, =
=p—q,0[k(s)]<d,i=3,...,m}

{2} = {k.(s): 0 [k, ()< p—n, 3 [ky(s)]=d, =
= p—q-1,0[k(s)]<d,,i=3,...m}

Gy = th(5):0 [k ()] =0 [ky(9)] =d, .y = p—n,

olk()]<d, ,.,=p—n, i=3,...m}

|
Clearly, the degree of the proper combinants satisfies p > n .
The entire family of proper combinants of 7 may thus be
parameterised by degree and orders. The set of all KC vectors,

is denoted as < /C > and may be partitioned as

<IC >= {IC,,}U{’CV;H}U'“U{’CV;H{—I} (12)

whereas each subset {/C } has the structure defined by the

previous result. Thus, {/Cn} class acts as a generator of all

other classes derived simply by adding the corresponding

increase in the degree. For a class {/de b, < /C;l > denotes

the ordered set of degrees of the {k, (), i € m} polynomials.

Corollary (1): Given an (m;q) set P and a general (m;d)
set IC, then:

(i) The minimal degree family p=n, {K}, is expressed as

(K <K > =(0,0,..,0) ;
Ki= {(Kh<K > =(01,..,1) ; (13)

U< Kt >=(0n =g, —q)}

(ii) The general degree family p=n-+d, {ICP} is then

expressed as
K= {K} <K >=(0,...,0)+(d.d,....d);

(K7 <K >=(0,1,..,)+(d.d,...d); (14)
K <K >=(0,n—q,..on—q)+(d.d,....d)}

(iii) For the general degree p family, p = 7, the values of
possible orders in decreasing order are:

d=p-q>d,=p-q-1>..>d,_,
zp_n+1>dn—q+l :p—n
and they are given as
di=p-q+l-i, i=1,2,.,n-q+1g
Amongst all (m,d) sets C, the set defined by
(Krad =1k (s):0 k()] =q-1,
k(s):0[k(s)]=n—-1,i=2,.,m}

is referred to as the Sylvester set of P . The general p
degree family may be expressed as:

K v= (K, dy=p-—n+i, i=12..n-q+1}=
— p-n.yp-ntl, | gop—q-1. " P—q
T V) VY Gl

The set KCJ™* with the highest order d, = p—g is the

generator of the family and its degrees are
< ICPP_‘I > = (p_nap_Qr"ap_q) (15)

Similarly, the set K™ with thed =p-n lowest

n—q+l
order is the co-generator of the family and its degrees are

<KJ"> =(p-n,p-n,.,p—n) (16)



The above suggests that the entire family< K > may be

expressed in “direct sum” form (U ) as

< IC > = {]Cn } U {Icnﬂ} U U {Kn+q—1} U """
= (" UK 0. 0 (17)

IV. GENERALISED RESULTANTS AND PARAMETRISATIONS

The parameterisation of the sets /C induces a natural
parameterisation of the corresponding Generalized

Resultants. For the (m;d) set JC that leads to combinants of
degree p its structure is explicitly defined by:

G} =tk (5): 0 [k ()] = p—n=d,
k(s):0[k,(s)]=d, d<d<d =p-q,...
k(s):0[k(s)<d,i=3,..m} (18)

The set {/CZ }, p=n and with d taking values as above,

represents the general set generating dynamic combinants of
a given degree d and order p. This representation leads to:

Proposition (2): The dynamic combinant f, (S,/Cj,'P),

generated by the set {/C; } is equivalent to a constant
combinant of degree p that is generated by the polynomial set
PPd, d=p-n, d<d<p-q=d"asin(9).

|
The set 77pd is the (p,d)- power of P and has degree p and

its vector representative is

fZLJ(S)-_ S,a(p)
p, = B | 5P g (5,2,
2, [Sua(Pn)

19)

Proposition (3): The Generalised Resultants corresponding
to the parameterized set {/C;l } are defined by:

(i) Given that P -(s) has degree d+n=p-n+n=p,

then
1 a -1 -2 4 4 0 0
0 1 a, a, a a 0
(P = (202)
0 0 1 a a a

(i) Given that p. d(S) has degree d+q which satisfies the

p—-(n—q)<d+qg<p and thus

inequality

d+q+1< p+1, the structure of S, ,(p,) is defined for
alli=2,..mand Vd : p—n<d < p—q by

0 .. 0 b, b, b, 0 0
o .. 0 0 b , b, b, 0 0 20b
S,.(p)=], o (200)
0 .. 0 0 0 b, b, b,
|

The matrix S, ,(P) eR™" 6=p—n—d+m(d+1)
will be called the (p,d)- Generalised Resultant of the set P
where the possible values of d are: p—n<d<p-—q.
Clearly the S, ,(P) matrix, or S
the (p,d) power of P, 'de .

Remark (1): For the set P we can parameterise all dynamic
combinants by the degree p and the corresponding order d as:
(@ p=n:then 0<d<n-—gq

(b) p=ntl:then 1<d<n—g+1

(c) p>ntl:then p—n<d<p-—q

and their properties are defined by the properties of
corresponding (p,d)- generalised resultants S, , (P) =

p.d » 18 the basis matrix of

The properties of all dynamic combinants are described by
the corresponding family of matrices

S(P)=1{S,,Vpznand Vd: p—n<d<p-q} (21)

referred to as the family of Generalised Resultants of the set
P . We distinguish a special element that corresponds to

p=n+g-1, d=n-1 0 [k (s)]=p-n=q—1,8 (P),

n+gq-1l,n-1
denoted by S'P which is the Sylvester Resultant of the set P

Sy g (P)

Sy.na(P2)

S, = eR™™D r=[g+(m-Dn] (22)

Sq, n—1 (pm)
where Sn,q—l (pl) c qu(mq)’ Sq,n—l (pl_) c Rnx(n+q)’
j=2,..,m and 7 =[q+(m—1)n].

V. SPECTRUM ASSIGNMENT OF DYNAMIC COMBINANTS
AND THE SYLVESTER RESULTANT

We now consider the problem of arbitrary assignment of the
spectrum of dynamic combinants for some appropriate order
and degree. The results in this section follow from the
equivalence of dynamic combinants to constant combinants
We may summarise the results from [8] below:



Lemma (1) [1], [2]: Let P be an (m,n(g)) set with
Sylvester Resultant S‘P .The set P 1is coprime, if and only

if §, has full rank.
u

Theorem (2): Let P be an (m,n(q)) set. There exists a d
such that f;,(s,/C,P) is completely assignable, if and only

if the set P is coprime.
|

Corollary (2): For the (m,n(g)) coprime set P the following
properties hold true:

() There exists a combinant JN‘H_I(S, IC,P) of degree
p=n+gq-1 and order d=n-1 which is completely assignable

(i) All combinants J;n—l (s,)C,P) of order d=n-1 and
degree p:n+q—1< p<2n—1 are completely assignable.

(iii) All combinants fp (5,/C,P) of degree

p>p=n+q-1 have an assignable element by selection of

some appropriate order p—n<d < p—gq.
|

The special combinant of order d=n-/ and degree p=n-+gq-1
is the Sylvester combinant of the set P denoted by

7 (P =Y k()p,(s) @ [k (s)]= g1, and for

i=1
i=2,...,m, 0 [k;(s)]=n—1, and the zero assignment
problem is expressed as making ?n_l(s, KC,P) an arbitrary
polynomial (s) of degree n+q-1.

It is clear that two combinants of the same order d=n-1 and
different degrees may be both assignable. In fact, both

combinants ?n_l(s,/C,P), S (8, KC,P)  of degrees

respectively n+g-1 and 2n-1 are assignable. This raises the
following important questions of investigating the
assignability of all combinants f(s,/KC,P) with d<n-I

and parameterize all combinants j} d(S, IC,P) of order
d,d<n-1 p<n+qg-1

assignable. The family of all resultants of degree less or
equal to p_ is referred to as proper subset and is defined as

S, (P)=4S,,(P):in<p<n+q-l=p,

d=p-q-p, p=0,1,..,n—q}
This family is partitioned by the degrees and the orders:

and degree which are

(23)

Proposition (3): The family of proper generalised resultants
of the (m,n(q)) set P is partitioned into g-1 sets as

S, (P)=1{S, IS, 1 J..U{S,} (24)

where p =n+qg—1 and each subset of a fixed degree is

partitioned by the corresponding order has n-g+1 elements. ™

VI. CONSTRUCTION OF THE FAMILY OF THE PROPER
SYLVESTER RESULTANTS

The construction of the generalised resultants together with
the paramaterisation of the K sets leads:

Proposition (4): The proper combinant of the (m,n(g)) set
P that has p =n+g-1 degree order

d=n—-1-p, p=1,2,...,n—q is defined by the
defined as in (2.12) which is

and

generalised resultant Sps elep

Syg (D)
Op Sq,n—l—p (pZ)

also expressed as

pyn-l-p =

(25)

Op ESq,n—l—p (pm)
Swaa(P)s S, 0 ,(p), i=2,...,m are the

standard Sylvester blocks. Furthermore, any two successive
combinants of degree p_ and order d =n—1-p and

where

d'=n—p—2 arerelated as
S,(p) X...X

S — Op ESq,n—l—p(lyz)

pyn=l-p

(26)

N

. X...X
Op ES’q,n—l—p (pm) Sp“n—p—Z

where = denotes row equivalence on matrices.

Corollary (3):1f S, ,__,,

Sylvester matrices corresponding to combinants of degree

S pon-p Ar€ two generalised

p,andorders d =n—p—1, d'=n—p-2
mnk(Spun_p_]) > rank(Spun_p_z) )
Furthermore, if § p.n—p-1 has full rank then all higher order

respectively, then

generalised resultants are also full rank.
|

The investigation of links between generalised resultants of
different degree is considered next. In the following we will

use the notation S/, (p;)= I:()/J qu,n_l_p(pi)] . With

this notation for the p_ and the p, —1 degrees we have

Sn,q—l (pl)

Sp,n— L(py)
S =| 03

S;,n—p—z (pm)



whered =n—1-p, q-1<d <n-1, p=0,1,2,...n—q.
p,—1 withg—2<d'<n-2,
d=n-2-p', p'=0,1,2,...,n—q we have
Sn,q—Z(pl)
S7wap(D2)

For  the degree

S, (26)

s —Ln-1-p' =
Scf,n—Z—p’ (pm )

Remark (2): The definition of Generalised Resultants
readily establishes the following relationship:

1 X..X

0 S,..P)
Sn,q—] (pl) 2 :
S (p ) X X...X Q X

Sps =1 q‘ﬂ_l: ’ = (—) Sn,qu (pz) =1 X...X

: : g S p.—1,n=2
Sq,nfl (pm ) F ?

X X... X

_(—) Sn,q—z (pm)_
enH =

The above clearly leads to the following result:

Proposition (5):
resultants S, ,, and S, , of degrees p,p_,P,

For the maximal order generalised

etc are related as

I x..x 1, X

S, =0 X |=]0 X
Q Sps—l,n—Z 0 SpA -2,n-3
]ﬂ X
=0 X ,u=0,1,.,q-1 (23)
0 Sp‘r/t,nfﬂfl
and thus

rank(S, , )z 1+rank(S, |, ,)2

22+rank(S, ,,;)2...2q—1+rank(S,, ) (6.7
|

VIL.

The fundamentals of the theory of dynamic polynomial
combinants have been introduced and their representation in
terms of Generalized Resultants has been established. The
parameterization of combinants in terms of order and degree
has been introduced and this lays the foundations for
investigating the properties of the family of Generalised
Resultants. The current framework allows the development
of the theory of dynamic combinants that may answer
questions related to zero distribution of combinants, and its
links to the existence of a nontrivial GCD, as well as

CONCLUSION

“approximate GCD”. The parameterizations in terms of order
and degree and the conditions for existence of spectrum
assignable combinants provide the means for the
investigation of the minimal design problem dealing with
finding the least order and degree for which spectrum
assignability may be guaranteed. The study of this problem
and the proof of the results is given in [14].
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