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Abstract 

The paper is concerned with the approximation of the destributional behaviour of linear, 

time-invariant (LTI) systems. First, we review the different types of approximations of 

distributions by smooth functions and explain their significance in characterizing sys-

tem properties. Secondly, for controllable LTI differential systems, we establish an inte-

resting relation between the time and volatility parameters of the Gaussian function and 

its derivatives in the approximation of distributional solutions. An algorithm is then 

proposed for calculating the distributional input and its smooth approximation which 

minimizes the distance to an arbitrary target state. The optimal choice of the volatility 

parameter for the state transition is also derived. Finally, some complementary distance 

problems are also considered. The main results of the paper are illustrated by numerous 

examples. 
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1. Introduction 

The use of distributions in the study of LTI differential system problems is a well-

established subject going back to [3, 4-6, 8, 10, 12, 14-21] and references therein. The 

work so far has dealt with the characterisation of basic system properties such as infinite 

poles and zeros [17, 18] for regular and singular (implicit) systems, as well as the study 

of fundamental control problems where the solution is expressed in terms of distribu-

tions. Typical problems are those dealing with the notions of almost  ,A B -invariance 

and almost controllability subspaces [12], [20].  

Indeed, the study of distributional solutions plays a key role in many areas in sys-

tems and control such as: 

(i) Controllability, Observability. 

(ii) Infinite zero characteristic behaviour. 

(iii) Almost invariant subspaces, almost controllability spaces. 

(iv) Dynamics of singular systems etc. 

The distributional characterization is also linked to the solution of a number of con-

trol problems. The solution of these problems has only theoretical significance, given 

that distributions cannot be constructed and only smooth functions can be implemented. 

The idea of approximating distributional inputs with smooth functions that achieve a 

similar control objective was first introduced by Gupta and Hasdorff [10] (see also 

[11]).  

In the present paper, which actually extends and provides a rigorous reformulation 

of the early ideas presented in [10], we consider the problem of approximating Dirac 

distributions with smooth functions of infinite support, and more specifically using the 

Gaussian distribution and its derivatives. Analytically, in Section 2 we present the prob-

lem formulation for a LTI differential system. In Section 3 we provide a brief review of 

the different types of approximations of distributions by smooth functions and explain 

their significance in characterizing system properties. In Section 4 we assume that the 
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system is controllable, and under this assumption we establish an interesting connection 

between a time-parameter t  and a volatility parameter   of the Gaussian density func-

tion used in the approximation. It turns out that the fraction /t   can be fixed (to a suf-

ficiently large value) and in this case parameter t  (or  ) controls the state-transition 

time and the accuracy of the approximation (which can be interpreted probabilistically). 

A new algorithm is proposed for calculating the smooth input signal that approximates 

the distributional input which transfers the origin of the state-space to an arbitrary target 

point (subject to a controllability assumption) and the distance (Euclidean norm) be-

tween the actual terminal state and the target state; this distance is subsequently mini-

mized subject to magnitude constraints imposed on the coefficients of the control signal. 

Finally, in Section 5 we define the distance from the origin using the Euclidean norm. 

Moreover, we consider the problem of maximising the distance from the origin with 

constrained input. Section 6 concludes the paper.     

 

2. Problem Definition 

We consider the linear time invariant (LTI) system 

     ox t Ax t bu t   ,                                          (2.1) 

where     , 1;x t n     (smooth function over the field    or  , whose 

elements belong to the algebra  1;n  ), and   1o nu t   (where 1n  is the space 

of Dirac distribution having derivatives up to an order 1n  ) are the state vector, and the 

impulsive input, respectively and  ;A n n R  ,  1;b n R  . Following also 

[10], we assume that A  is simple and expressed as 

 1 2, ,..., nA diag    ,                                           (2.2) 

where 0i j    for every i n


 (  : 1, 2, ,n n 


). This assumption can be relaxed, see 

for more details Remark 4.1.  
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It is assumed that the input to the LTI is a linear combination of Dirac  -function 

and its first 1n   derivatives, i.e. 

     
1

0

n
k

o k
k

u t a t




 ,                                             (2.3) 

where  k  or 
k

k
d
dt
  is the thk  derivative of the Dirac  -function, and ka  for oi n


 

( : {0,1, 1}on n 


) are the magnitudes of the delta function and its derivatives. We 

shall denote the initial state of the system at time 0t   as  0x   and the final state de-

fined at time 0t   as  0x  . It is assumed that    0 0 0 0 Tx     and  0x    

 1 2
T

nx x x . Furthermore, it is assumed that the system is controllable and thus 

any (0 ) nx    can be achieved. In general, the existence of an input that transfers the 

state of the system (2.1) from  0 0x    to  0x   requires that the vector  0x   be-

longs to the controllable subspace of the pair ( , )A b , i.e.    0 |x A b  � . In this case, 

the necessary and sufficient condition for transferring the state of the system (1) from 

 0 0x    to  0x   by the action of the control input defined in (2.3) is that 

     
1

0

n
k

k
k

x t t 




  where the coefficients k , ok n


, are the components of  0x   

along the directions 2 1{ , , , , }nb Ab A b A b , respectively, defined according to some 

projections law.  

In the next section, some background results as a brief review on the approximation 

of Dirac delta function are presented. 

 

3. Approximations of Dirac Delta Function 

The approximation of distributions by smooth functions is a problem which has 

been considered in the literature. In this section, we review the main results in this area 

and suggest a systematic and rigorous procedure for approximating distributions and 
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their derivatives. If the standard approximating technique of the Dirac  -function is 

followed, (see e.g. [7-8, 11-13, 22]), the change of the state in some minimum practical 

time depends mainly on the accuracy of the approximations that have been generated. 

The relation between the type of approximation used and the duration of the resulting 

state-transition is one of the important issues considered in this section. 

The Dirac  -function can be viewed as the limit of a sequence of functions 

   
0

lim aa
t t 


 ,                                                  (3.1) 

where  a t  is referred to as a nascent delta function. The limit is in the sense that 

     
0

lim 0aa
t f t dt f






 .                     (3.2) 

These properties can be approximately enforced by using a smooth, finite approxi-

mation of the Dirac distribution. Such approximations have additional advantages. Ap-

proximating the Dirac distribution by a smooth function may actually be a better repre-

sentation of the solution sought in a particular problem, especially if the effective width 

of the approximation function can be coupled to the physics of the problem. Following 

Cohen and Kirschner [7], a suitable approximating function, which is convenient for 

computations, should satisfy the following properties everywhere on the domain under 

consideration: 

1. Its limit with some defining parameter is the Dirac distribution (see eq. (3.1)). 

2. It is positive, decreases monotonically from a finite maximum at a source point (for 

instance 0), and tends to zero at the domain’s extremes. 

3. Its derivative exists and is a continuous function. 

4. It is symmetric about the source point, for instance 0 (see eq. (3.1) and (3.2)). 

5. It can be represented by a reasonably simple Fourier integral (for infinite domains) or 

Fourier series (for finite domains). 
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Next, we discuss the approximation of the Dirac delta function by functions having 

infinite support. 

 

3.1. Infinite Time-support approximations  

The choice of the “best” nascent delta function depends on the particular applica-

tion. Choices which have proved useful in applications are listed below and include the 

Gaussian and Cauchy distributions, the rectangular function, the derivative of the sig-

moid (or Fermi-Dirac) function, the Airy function, etc, see for instance [8, 11, 13, 22]; 

for approximations based on finite difference methods see [2]:  

● The Cauchy distribution: 

  2 2

1 1 ikt ak
a

at e dk
a t


 

 


 

  , 

● The rectangular function: 

   / 1 sin
2 2

ikt
a

rect t a akt c e dk
a


 





    
  , 

where 

 
1, 1 1

.
0,          1

t
rect t

t
    

 

● The partial derivative of the sigmoid (or Fermi-Dirac) function, 

  / /

1 1
1 1a t tt a t at

e e
    

 
,  

● The Airy function 

  1
a i

tt A
a a

    
 

. 
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The finite difference formulae may be easily converted into sequences that ap-

proximate the derivatives of the Dirac delta function in one dimension [2]. Recall the 

definition of the rectangular function  

 
1 ,

2 2

0,          
2

a

a at
at

at


    
 


 ,          (3.3) 

which approaches  t  as 0a  . An expression for the derivatives of  t  is given 

by  

       
0 00

1lim ,
kk k

j a jk a jh

d x a x b h
dx h

 




        
                      (3.4) 

where ox t t  , the ja  are appropriate constants defining the finite differences [2], and  

     | 1 |
o

k k
k

t t xk k
d du u
du du

    . 

Expression (3.4) is exactly what we would obtain by making the substitution 

   af t t  in the following finite difference approximation for the thk  derivative of 

a smooth test function f  evaluated at ot  :  

   
0

1|
o

kk k

t t j o jk
j

d f t a f t b h
dt h



   
 

 .                                 (3.5) 

Note that ja  and jb  are suitably chosen constants and (3.5) becomes exact in the 

limit 0h  . Note also that 

     
0 0

1| lim
o

kk k

t t j o jk h j

d f t a t t b h f t dt
dt h




 
 

       
   

  .  (3.6) 

since f  is sampled at discrete points. 
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In our case the Gaussian distribution may be considered as a good approximation of 

the Dirac distribution on an infinite domain.  

 

3.2 Input signal structure 

Since our time-domain is infinite, the Gaussian distribution, i.e. 

  2 2/2

0 0

1 1lim lim
2

t tt e 

 


  


 

    
 

  where   2 / 21:
2

xx e


     (3.8) 

is considered. Hence, the approximate expression for the input signal (2.3) is given by  

                          
1

1
0

1 ,
n

k
k k

k

tu t a  






    
 

                        (3.9) 

where  

 

( / )

i
i

i

t d t
d t  

          
    

. 

The impulsive response of the system is recovered in the limit:     

   
0

limou t u t
 .                                           (3.10) 

A natural question arising in the context of the zero-time state-transition problem 

considered in this work is why attention is restricted to impulsive control signals ex-

pressed as a sum of Dirac delta functions (and its derivatives). The answer to this ques-

tion involves the idea of single-layer distributions [8, 13, 22] which is briefly intro-

duced in the next few paragraphs: 

Lemma 3.1 [22] If   is a bounded closed set in   and   is a neighbourhood of  , 

then there exists a function such that 1n   on  , 0n   outside  , and 0 1n   over 

 .                                                                                                          
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Definition 3.1 Let   be a piecewise regular curve in   and   is a locally integrable 

function defined on  . The linear continuous functional S  on the space   of infi-

nitely differentiable complex-valued functions on   with compact support is defined as 

   , ,S S
S         

    and is called single (or simple) layer on   with density  .                             

Note that      S S
x x S       .  

Definition 3.2 Let   be a piecewise regular curve in   and S . The linear continu-

ous functional  / Sd dt   on the space   of infinitely differentiable complex-valued 

functions on   with bounded support is defined as 

     / ,S S

d x
d dt S

dt
 

    


       .                

It can be shown that every distribution  S x  that has compact support is of finite 

order, see [8, 22]. Thus, every distribution  S x  whose support is the point x   has 

the form    1

0

n k
kk

c t 



 , i.e. it can be expressed as a linear combination of the Dirac 

 -function and its first 1n  derivatives.  

Thus, the zero-time state transfer problem considered on this work, involving the 

state transfer of system (2.1) from  0x   to  0x  , corresponds to a single support 

point 0   and hence (2.3) is appropriate.  

 

4. Design of Approximate Input Signal  

In this section, we attempt to answer the following question: “What are the coeffi-

cients ka  , k n


, and what is the optimal  volatility parameter 
 
such that the input 
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signal defined in equation (2.3) transfers the state from  0x   to  0x  ?” In attempt-

ing to answer this question the following standard result is significant.  

Lemma 4.1 [11] The solution of system (2.1) is given by  

    ,
t

At A
ox t e e bu d  



   (4.1) 

where  ou   is defined in equations (3.9) and (3.10).                                                      

Remark 4.1 Recall that for simplicity it is assumed that matrix A is diagonal with dis-

tinct eigenvalues. This reduces the complexity of various mathematical expressions 

and the number of technicalities involved, without introducing any real loss of general-

ity. The general case can be tackled by defining a n n  non-singular similarity trans-

formation    1 2, , , ;nQ v v v n n      that takes A into the Jordan canonical form. 

The solution of system (2.1) to the input defined in equations (3.9) and (3.10) is 

   
0

lim , 
t

At Ax t e e bu d

 




 
  

 
   

or equivalently  

   
1

10
0

1lim .
t n

kAt A
k k

k
x t e e b a d






 







     
  


          

(4.2)
 

As 0  , the energy of the input signal “concentrates” around 0  . Hence the 

zero-time state-transition problem involves setting 0t   and selecting the coefficients 

ka  so that (an arbitrary) (0 ) nx    is reached (recall that controllability of the pair 

( , )A b
 
is assumed).  

Remark 4.2 To reduce the complexity of the solution (due to the large number of terms 

involved) we exploit the fact that  
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 
21

21/  ,
2

t

t e 


       

and its derivatives tend to zero very strongly with /t   . Define  / ,t K t   

and assume that t is fixed to a positive value, so that  ,K t    as 0  . Then, 

    
 ,

/ , 0,
K t

t K t


 


    

and its derivatives   

        
 ,

/ , 0
K t

k kt K t


 


   ,   ok n


. 

where      0 / /t t   .  

A suitable choice of  ,K t   depends on the choice of the transition time-variable 

t  and the volatility-parameter  . In practice, t  can be fixed, since we can pre-define 

the duration of the (almost zero) transition between the initial and final (target) state of 

the system when solving the (almost) zero-time state transition problem (e.g., we can 

select t to be of the order of 610t  seconds, say). This is the approximate version of 

the exact problem and can be formulated as follows:  

For a fixed value of the time parameter *t t  and a fixed 0   determine 

    * * *ˆsup : ,R x t x t     
        

(4.3) 

where  *x t  is the target state and  *x̂ t  is the actual terminal state resulting from the 

approximation of the input signal, see equation (4.1).   

This is in the form of a distance-approximation problem. Roughly, for a fixed state-

transition time-duration, we seek the “smoothest” input signal for which the error toler-

ance of the distance between the target and actual terminal state is kept within a pre-

defined level  . Note, that since this distance tends to zero as 0   and the only 

source of error arises from the approximation of the Dirac delta function and its deriva-
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tives, an alternative equivalent formulation of the problem is to determine (for a fixed 

value *t t ), 

     * *sup : , , ,k
k oR K t k n       


 

where the k  are suitable positive constants.  

The following lemma is required for subsequent developments. The objective is to 

develop approximation bounds for the terminal state when the impulsive inputs in equa-

tion (4.1) are substituted by their smooth approximations. 

Lemma 4.2 Consider ( )u t  defined in equations (3.9). Then 

   
2 2111

12
1

0 1
,i i

t m kn k
k mt ki

k i ik m
k m

t te u d a e e   



   

  

 
  

 
 

               
      

 
 
(4.4) 

where    (0) x x  ,      ( 1) 12 erf 2 1
x

x y dy x 


    ,  0,1 .x   

Proof Substituting expression (3.9) into the integral  i
t

e u d
  

 , we obtain  

   
   1 1

1 1
0 0

/
/ .i i

kt tn n
kk

kk k
k k

ae d a e d   
   

 

 
 

 
  


     

Consider first the term corresponding to 0k  ,  

 
2

2 2 2 211 1
122 2

/ 1 .
2

i
i

t t

i
te d e e d e 

       
  

  

     

 

      
  

  
Consider next the term corresponding to 1k  . Integration by parts and using the equa-

tion above gives 

      
2

/ /1 /i i i

t t
t

ie d e e d     
    

  
  


 

 
   
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 
2 21

121                               / .it
i i

te t e     
 

        
   

Similarly,   

     

   
2 2

3 2 2

1
2 12

2

/ /1 /

1 1                              / / .

i i i

i

t t
t

i

t
i i i

e d e e d

te t t e 

  

 

   
    

  

    
  

  


 

 

  
  

              

 

 

A recursive application of this procedure gives 

     
2 21

1 12
1 1

1

/ 1 ,i i

kt k
k mt m k k

i i ik k m
m

t te d e e    
   

   
    

  


           
   

  

from which the result follows.        

Choose  0 / 0 ,K    sufficiently large so that         0 / 0 ,k k K     

0 , ok n


. Then the following approximation is valid 

      
2 20 1

12
1

/
0 , .i

k
k
i ike d e K   

   




  





    

Combining expressions (4.2) and (4.4) then gives 

       
2 21 10 , 12

0

0 , 0 , ,i i
nK k

i i i k i
k

x K b e K a
    

    
   



           (4.5) 

for 1, 2, ,i n  . The approximate almost zero-time state-transfer problem can now be 

defined as follows: Suppose that parameters (0 , )  have been chosen so that 

        0 / 0 , 0k k K     , ok n


. Then, given   0 nx    determine real sca-

lars ,ka  ok n


 such that (4.5) are satisfied with equality for all {1,2, , }i n  . Note that 

the impulsive response is recovered as 0   in which case the approximation in the 
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above equation becomes exact; in this case we also have that ˆ(0 ) (0 )i ix x  , 

  1 0 , 1iK      , and 
 

 
1

0

0

ˆ 0 , 1, 2, ,i

n
k

i i k i
k

x b e a i n 







  
 

so that 

      
2 21

12 ˆ0 0 , 0 , 1, 2, , .i

i i ix e K x i n
 

          

The following Theorem now follows. 

Theorem 4.1 Let  1 2, , nA diag      with i j   for i j ,  1 2
T

nb b b b   

and assume that the pair ( , )A b  is controllable. Let also  1 2
ˆ 1/ ,1/ , ,1/ nB diag b b b   

and denote by  1 2, ,..., nV V     the Vandermonde matrix 

 

2 1
1 1 1

2 1
2 2 2

1 2

2 1

1
1

, ,..., .

1

n

n

n

n
n n n

V V

  
  

  

  







 
 
 
 
 
  








 

Then the coefficient vector  1 1
T

o na a a a    of the input signal defined in (3.9) 

which solves the almost zero-time state-transfer problem is given by  

 1 0 1ˆ ˆ 0Aa V e B x
     ,                                          (4.6) 

 where  

    
  

2 21
12

0 ,
ˆ 0

0 ,i

i
i

i

x K
x

e K
 

 

 





  
  , .i n

        (4.7)  

Proof Expression (4.4) can be re-written as 
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2 2

1
0

/2 1
0

(0 )ˆ (0 )
(0 )

i

i

n
k i

i i k
k i

xx be a
e


 









 


 
 

 for i n


.  

Thus we can write   0ˆˆ 0 Ax Be Va
   or equivalently (4.6).  Note that the indicated in-

verses 1V   and 1B̂  exist due the assumption that the eigenvalues of A are distinct, and 

the assumed controllability of ( , )A b , respectively.                                 

Ideally the parameters * 0t   and   should be chosen so that the distance 

         
2

* *
12

ˆ ˆ, ,

               

n
i ii

x t x t x K t x K t   

      

is “small”. Clearly the distance is zero provided that  ,K t   is selected so that  

  
2 21

1 2, 0i

iK t e
 

 
   

      
(4.8) 

for all i which requires 0  , in which case (4.8) implies that 

     ,1
0 0lim , 1 lim 1 ( , ) .

K t
K t x dx K t



  
  
               

(4.9) 

In probability theory and statistics, the normal or Gaussian distribution  x  is 

widely used. The graph of  x  is bell-shaped and is known as the Gaussian function 

or bell curve. Actually, in this case we are interested in  

  ,K t
x dx




 , 

which is the cumulative distribution function (cdf) of a random variable ~ (0,1)X N  

evaluated at the upper limit of the integral  ,K t  , denoting the probability that 

 ,X K t  . In practice, if | | 1i   for all i, we can assume that equation (4.8) is ap-

proximately satisfied if  0 , 3.9K K t    (in which case  1 4
0 1 10K    ). Thus, a 

reasonable choice for the volatility parameter is * 1 * *
0 0.256K t t   .  
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The results of the section are summarised in the following algorithm. 

Algorithm TIAZT (Transfer In Almost Zero Time) 

1st Step: Define the terminal (target) state of the transition  0x  . 

2nd Step: Using the required transition time  * 0t   define the optimal volatility 

parameter * *0.256t  . 

3rd Step: Finally, the coefficients if the input signal  1 1
T

o na a a a    de-

fined in equation (3.9) are obtained by (4.6), i.e.  1 0 1ˆ ˆ 0Aa V e B x
      where all 

variables are defined in Theorem 4.1.  

Remark 4.4 From the control viewpoint it is important to choose an appropriate time 

duration for the state transition. This ultimately depends on the type of application, e.g. 

due to control signal magnitude or “slew-rate” limitations. It is clear from the imposed 

proportionality * 1 *
0K t   that increasing the duration of the state-transition results is 

“smoother” input signals, which is often desirable. For example, if the system operates 

in a feedback loop (in which case the input signal is generated by a feedback controller), 

highly discontinuous signals typically correspond to system overdesign (e.g. excessive 

closed-loop bandwidth) and may have detrimental effects on the stability and perform-

ance characteristics, e.g. in terms of reduced robust stability margins and sensor noise 

amplification.  

Example 4.1 (See Gupta, 1966) Consider the system 

 
 

 
   1 1

2 2

2 0 1
0 3 2 o

x t x t
u t

x t x t
      

              
 

where  x t  and  ou t  are the state and the input signals, respectively. Suppose we wish 

to transfer the state of the system from    0 0 0 Tx 
 
to    0 3 4 Tx  

 
at time 

0 1 s   (1 microsecond). Application of the TIAZT algorithm gives 
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1st Step: Here the desired state is    0 3 4 Tx   . 

2nd Step: The transition duration has been pre-determined as 60 10  s, so the opti-

mal volatility parameter is * 72.56 10    (taking 0 3.9K  ). 

3rd Step: Here,    6 6
1 1ˆ 10 10 3x x    and    6 6

2 2ˆ 10 10 4x x   . The inverse of 

the Vandermonde matrix is: 

 
1

1 1 1 2 3 2
2, 3 .

1 3 1 1
V V



      
           

 

Thus, the coefficient vector  0 1
Ta a a  is calculated as: 

1-6

-6
1

3 -2 1 0 3 5exp(2 10 ) 0
 

1 -1 0 2 4 10 exp(3 10 )
oa

a
a


          

                      
. 

 

5. Distance Problems 

5.1. Distance from the origin in state-space 

In this section, we define the distance from the origin corresponding to a state tran-

sition of the system (2.1) from the zero (or ground) state,    0 0 0 0 Tx    . Us-

ing the Euclidean norm this is defined as  

         22 2
1

0 0 0 0 0nT
ii

r x x x x x    


    ,                   (5.1) 

(see Fig 1). The time interval of the transition has been defined in previous sections as 

0  ( *t ) and the target state is  ˆ 0x  . 
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However, if the Dirac delta function and its derivatives are replaced by smooth sig-

nals (Gaussian distribution function and its derivatives), this target state will not be 

reached exactly, in general. The distance in terms of the target state  ˆ 0x   is defined as 

    
  2 2

2
2 2

21 1 1

0 ,
ˆ ˆ 0 ,

0 ,i

in n
ii i

i

x K
r x

e K 

 

 




   


   

   

where (4.7) has been used. Note that fixing  ,K t   and taking 0  , we get r̂ r .  

Example 5.1 Consider the system:  

 
 

 
   1 1

2 2

2 0 1
,

0 3 2 o

x t x t
u t

x t x t
      

              
 

where     , 2 1;x t R R    and  ou t  are the state vector and the input, respec-

tively. Let  0 0x    and    0 3 4 Tx   . Then 

      
    

2 2

2
2

2 2 21
1 210 , 12

0 , 9 16ˆ ˆ 0 0 .

0 ,i i

i

i

i

K

i

x K
r x x

e K
    



 

 

 




 


  

    
 
   
  





 

As 1 2, 1   , ˆ 5r r  .  

 

 

Fig. 1: 2-ball with centre  0x 

 and radius r̂  

 0x 

S  

r  

 0x 
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5.2 Maximum distance from the origin with constrained input 

Here we assume that the system (2.1) starts from the zero state at time 0t   and 

consider the problem of maximising the distance to the terminal state in an (almost) 

zero-time state transition. This problem of course makes sense if the input signal is con-

strained in some sense. Here we impose constraints on the coefficient vector of the input 

signal  0 1 1
T

na a a a   in terms of the Euclidian and the infinity norms.  

Lemma 5.1 Let 0i  , 1,2, ,i n  . Then  1 1

1 1
max ,

p nn n
i ii i

n 
 

 
   for all 

1,2, ,p n  .  

Proof Define function 1

1
( ) n x

ii
f x  


  which can be written as ( 1)

1
( ) i

n m x
i

f x e 


 by 

setting lni im  . Since ( 1)2
1

( ) 0i
n m x

ii
f x m e 


    for all x , function is convex 

for all x  and specifically in the interval 1 x n  . Thus ( )f x  attains its maximum 

at an edge of the interval 1 x n  , i.e. 

   1 1

11 1
max ( ) max (1), ( ) max , ,

p nn n
i x n ii i

f x f f n n 
 

  
     

for every 1,2, ,p n   as required.             

Theorem 5.1 Let  1 2, , nA diag     ,  1 2
T

nb b b b   and assume that the pair 

( , )A b  is controllable. Define  1 2
ˆ 1/ ,1/ , ,1/ nB diag b b b   and denote by V   

 1 2, ,..., nV     the Vandermonde matrix 

 

2 1
1 1 1

2 1
2 2 2

1 2

2 1

1
1

, ,..., .

1

n

n

n

n
n n n

V V

  
  

  

  







 
 
  
 
 
  






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Let  1 1
T

o na a a a    be the coefficient vector of the input signal ( )ou t   

   1

0

n i
ii

a t


  defined in (3.9). Then, if  ˆ 0x   denotes the terminal state of the zero-

time state-transition problem with  ˆ 0 0x   ,   

 1
0

1 1

( )ˆmax ( ) max , ,
min | |

nnA
ia i

i n i

t A nx t Be V n
b





 

 
 



                    (5.2) 

where the indicated matrix norm denotes the largest singular value (spectral norm) and 

( )A  denotes the spectral radius of A.  

Proof In the notation of Theorem 4.1 the terminal state of the transition is 

  0ˆˆ 0 Ax Be Va
  . Thus   0

1
ˆˆmax 0 A

a x Be V
 

  , while the maximizing coefficient 

vector a  is the (normalised) singular vector of 0ˆ ABe V
  corresponding to the largest 

singular value. (If the largest singular value is repeated we can choose any linear com-

bination of unit length of the singular vectors corresponding to the repeated largest sin-

gular value). Note also that  

* *
0 0 max | ( ) | ( )ˆ ˆ .

min | | min | |
A A i n i

i n i i n i

t A t ABe V B e V V V
b b
    

 

                   (5.3) 

Now, 

 1 1

1,2, ,1 1 1
max max , ,

p nn nT
p n i ii i

V n V n V n n n 
 

  
        (5.4) 

see Lemma 5.1 and [9], where 1  and 


  denote the induced 1 and  -matrix norms, 

respectively. Equation (5.2) follows by combining (5.3) and (5.4).               

Remark 5.1 Consider the almost zero-time state transition problem in which 

 , /K t t    has been fixed and   has been chosen sufficiently small so that 

1i   for all i and approximation [9] is valid. Then we have   00 Ax Be Va
   ,  

where   2 2 1 (0 , ) / 2i idiag K        . 
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It follows that in this case 

  00 2 1
1max (0 ) ( ) max e (0 , ) ,iA

i n i i ia x Be V n b K   
  

       

where  

 2 1

1
( ) max , ,

2
nn

ii

nn n
 




   

while the maximizing coefficient vector a  is the (normalised) singular vector of 0ABe V


  

corresponding to the largest singular value.

 

Next, we impose magnitude constraints on the coefficients defining the distribu-

tional input signal. Again we assume that  ˆ 0 (0 ) 0x x    and seek to maximize 

 ˆ 0x   using the impulsive input 0 ( )u t  in equation (3.10) (or  0x   using its smooth 

approximation ( )u t  in (3.9)) subject to the constraint:  

i ia c , 0ic  , for i n


         (5.5) 

(see also [9]). Geometrically, we seek constants ia  for i n


 in the ranges defined by 

(5.5) such as the radius r̂  depicted in fig. 2 is maximised, (starting from  ˆ 0 0x   ) 

where 

   2 2 02 2 2 2
1 11 1 1 1

ˆ ˆ ˆ0 0 i
n n n n j s

i i i j si i j s
r x x b e a a 

   
    

               (5.6) 

 

 

 

 

 

Fig. 2: n-ball with centre  0x 

 and radius r  

 0x 

S  

r  

 0x 
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Again, if the smooth approximation signal ( )u t  
is applied, equation (4.6) should 

be used; substitution into equation (5.6) shows that in this case we seek to maximise:  

      
2 2

21
2 2 2 12

1 1
ˆ0 0 0 , .in n

i i ii i
r x x e K

 
    

 

 
    

 
   

Next note that equation (4.5) gives: 

  0 1
11

ˆ 0 i
n j

i i i jj
x b e a   


  ,  

and hence 

  2 02 2 2
1 11 1

ˆ 0 i
n n j s

i i i j sj s
x b e a a   

  
   ,   i n


                (5.7) 

Substituting, (5.7) into (5.6), gives  

    
2 2

212 02 1 22
1 11 1 1

0 0 , .i in n n j s
i i i j si j s

r x b e K a a
  

  
     

   

 
    

 
     (5.8) 

Define the symmetric matrix 

  
2 2102 12( ) ( ) , 0 , .i iT

i iQ V D V D diag b e K
  

   
    

    
 

 

Note that due to the assumed controllability of ( , )A b
 
(which implies that 0,ib 

 
i n


) and the assumption that the eigenvalues of A are distinct (which implies that 

det( ) 0V  ), we have that ( ) ( ) 0TQ Q   . The two distance maximisation problems 

now have the form 

  22max 0 ( ) . . ,T
i i ir x a Q a s t c a c i n     


 

and 

  22ˆ ˆmax 0 (0) . . , ,T
i i ir x a Q a s t c a c i n     


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which are Quadratic Programming optimization problems with “box” constraints. Since 

the cost function ( ( ) ( )Tf a a Q a
 
) which is maximized is convex, the constrained 

maximum is achieved in a vertex of a hyper-cube ,i ia c i n  . 

Thus, we obtain 

  2
1 1sgn sgn 0j s

i j sa a  
    for all j  and k . 

This can be easily derived if we assume that 

  1
1sgn 1 j

ja 
    and   1

1sgn 1 s
sa 
   ,  

so we obtain  

     1 1 2
1 1sgn sgn 1 1 1 .j s j s

j sa a    
        

So, the maximum distance is given by 

    
2 2

210 ,2 12
1 11 1 1

0 , .i iKn n n j s
i j s ii j s

r c c e K
    

  
    

   

 
  

 
    (5.9) 

Finally, again if we assume that  * * * *, 0t K t    , and  * *,K t   to be equal or 

greater to 3.90, we obtain   

    2 2*
1 11 1 1

0 .n n n j s
i j si j s

r x t x c c  
   

   

       

(5.10) 

The following numerical example illustrates some of the results of this section. 

Example 5.2 Consider the (almost) zero state transition problem for the system defined 

in example 5.1 with  0 0x   . Suppose that the following constraints are imposed on 

the coefficients of the input signal 

0 0 1a c  , and 1 1 2a c  . 
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Subject to these constraints, the maximum distance from the zero state is: 

     
    

    

2 2

2 2
1 1

1

2 2 2
1

210 ,2 2 2 2 12
1 11 1 1

2

10 ,2 2 2 12
1 1 1 11 1

2
2

0 0 0

0 , .

0 ,

                     

i i

ii

Kj s
i j s ii j s

Kj s
j sj s

j s

x x x

c c e K

c c e K

c

    

    



  

  







  


   
   

   
  

 

 

 
   

 

 
    
  





  

  

    

     

2 2
2 2

2

2

10 ,2 2 12
1 1 21 1

2 2 2 21 12 2 2 2
1 0 1 1 1 1 1 1 2 0 1 2 2 1 1 21 1 1 1

2 22 2 2 2 2 2
1 2 0 0 1 1 2 2 0 1 1 1 2 1 1 1

0 , .

2 2

K

j sj s

s s s s
s s s ss s s s

c e K

c c c c c c c c

c c c c c c

    



  

       

         

   
  

 
      

 
   
  

   

     

 

   



 

In this example, 0 1c  , 1 2c   and 1 2  , 2 3  . 

So, the maximum radius is given by  

         2 2 2 2 2 2 2 2
1 2 1 2 1 1 1 20 0 4 4 2 3 2 4 9 20 34r x x                  . 

Now, for the case that  * * * *, 0t K t    , we have 2 2
1 2, 1    and  

       * 0 4 4 2 3 2 4 9 54 7.35.r x t x        
 

 

6. Conclusions  

In this paper, a novel methodology has been proposed for approximating the distri-

butional trajectory that transfers the state of a LTI differential system in (almost) zero 

time by using an impulsive input. It has been shown that no loss of generality is intro-

duced if the impulsive input signal is chosen as a linear combination of the Dirac  -

function and its first 1n   derivatives, where n  is the order of the system. Approxima-

tions of the impulsive input signal were considered using the Gaussian (Normal) func-
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tion, and the resulting response of the system was analysed. The work has addressed the 

following three distinct problems:  

(i) We have determined the (unique) impulsive input signal (and its smooth approxima-

tion) which transfers the state of the system from the origin to an arbitrary point in state 

space in zero (almost-zero) time, subject to appropriate controllability assumptions. To 

simplify our presentation, the simplest set of assumptions has been selected (full system 

controllability, single control input, distinct set of eigenvalues in the system matrix); 

however, extension to the general case is straightforward at the expense of possible loss 

of uniqueness and considerable additional complexity in the resulting mathematical ex-

pressions. 

(ii) A Euclidean metric has been defined to quantify the approximation error in the 

state-trajectories of the system resulting from substituting impulsive input signals by 

smooth signals. The optimal choice of two parameters (time and volatility) characteris-

ing the family of all smooth approximating functions has been obtained, along with an 

interesting probabilistic interpretation.   

(iii) The solution of two state-space maximum-distance problems in the context of (al-

most) zero-time state-transition has been presented. These correspond to two different 

types of constraints on the coefficients of the impulsive input signal and its smooth ap-

proximation, involving the Euclidian and infinity norms of the vector of coefficients. 

Both problems are tractable and can be solved via an SVD and the solution of a quad-

ratic programming problem with box constraints, respectively.  

Future work will attempt to: (i) extend the results of this paper to more general classes 

of systems (e.g. descriptor, singular), (ii) investigate the numerical properties of simu-

lating impulsive trajectories and their smooth approximation, and (iii) develop alterna-

tive energy-based approximation techniques of impulsive behaviour especially in the 

context of large-scale systems and model reduction.  
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