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Disturbance and Input — Output Decoupling of Singular
Systems

Dimitris Vafiadis ® Nicos Karcanias ?

& Control Engineering Centre, City University, London EC1V 0HB, England

Abstract

The disturbance decoupling and the simulteneous disturbance and input — output decoupling problems for singular systems
are considered in the context of the matrix fraction description (MFD) of the system. Solvability conditions are obtained in
terms of the composite matrix of a column reduced MFD of the system, a characterisation of the fixed poles of both problems
is given and it is shown that the remaining poles can be arbitrarily assigned.
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1 Introduction

Disturbance decoupling is one of the most studied prob-
lems in control. For the class of state space systems with
proper or strictly proper transfer functions numerous
papers were published over the last decades and several
aspects of disturbance decoupled systems have been in-
vestigated (see for example [4] , [22] where the problem
was tackled by using geometric control theory, [6] where
a structural approach was followed for the solution of di-
agonal and disturbance decoupling of a state space sys-
tem). In [17] the problem of fixed poles of disturbance
decoupling was solved by using the geometric approach.
In [14] the disturbance decoupling problem with input -
output decoupling was solved in the frequency domain.
The fixed poles of the latter problem were also consid-
ered in [5]. Disturbance decoupling for singular or im-
plicit systems has attracted the attention of researchers
and several papers have been published: [7] was the first
paper to tackle the problem. Other papers where impor-
tant work was done are [2], [1] solved the problem and
studied the stabilizability of the closed loop system by
using arguments and tools based on the state space sys-
tems. In [3] and [15] the disturbance decoupling problem
has been considered for the case of implicit systems.

The aim of the present paper is to provide a frequency
domain approach to the disturbance and input — output
decoupling for singular systems. The approach used fol-
lows along the lines of [21] where the block decoupling
problem was considered. Although block decoupling and
disturbance decoupling are different design goals, they
have a major similarity when they are defined in the con-
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text of matrix fraction description (MFD) of the trans-
fer function of the system: in both problems the desired
resulting system has the property that certain rows of
the numerator matrix lie in the rational vector space
spanned by certain rows of the denominator matrix. This
similarity naturally leads to similar methodologies for
the solution of the above problems, individually and in
combination. Frequency domain approach allows the use
of common tools for problems of different nature. This
is an advantage, comparing to dominant state space ap-
proaches used.

The MFD representations of nonproper systems have
the characteristic that some of the pivot indices [8], [9]
of a column reduced composite matrix of the MFD ap-
pear in the numerator matrix in contrast to the class
of strictly proper (state space) systems where all pivot
indices appear in the denominator matrix. In this way
we have a classification of the pivot indices into proper
and nonproper [20]. When nonproper pivot indices exist
(i.e. the transfer function of the system is non proper),
state feedback can alter the “denominator matrix” of the
system in such that its column (row in the case of left
MFD) highest order coefficient matrix can change. This
is a consequence of the fact that for the case of singular
systems feedback can change the stucture at infinity.

The treatment of the problem and the methodology fol-
lowed in the present paper is based on the above prop-
erty of singular systems and the existence of non - proper
controllability indices [12], [16] when the system is singu-
lar. Necessary and sufficient conditions are obtained for
the existence of a solution to the disturbance decoupling
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and simultaneous disturbance and input — output decou-
pling problems. The conditions are easily testable and
can be derived from the MFD of the disturbed system.
The proof of the sufficiency of the solvability conditions
provides a constructive way for selecting the feedback
matrices solving the problem. For both disturbance de-
coupling and simultaneous disturbance and input — out-
put decoupling problems the set of fixed poles is char-
acterised in terms of the MFD of the system in a way
analogous to that of state space systems (see [14], [5]).

In what follows the disturbance decoupling problem for
singular systems will be referred to as DDSS while the
combined disturbance and input — outout decoupling as
DDDSS. The following notation will be used: The row
(column) high order coefficient matrix [9] of a polyno-
mial matrix P(s) will be denoted by [P]n ([P]nc). The
row span over R (R(s)) of a matrix P will be denoted
by spang{P} (spang){P}). The notation (N(s), D(s))
will be used when we refer to a system with composite
matrix T(s) = [N (s), DT (s)]T. A singular system with
matrices E, A, B, C will be denoted by (E, 4, B, C) and
the feedback law ©v = Fa 4+ Gv will be referred to as
feedback pair (F,G). The matrix [T, will be written
as [N, DI )T, Ny, € R™*¢) Dy, € REXE

2 DDSS Problem Statement and Preliminaries

Consider the singular system
Ei=Ax+ Bu+Z¢, y=Cuz, det(sE—A)#0 (1)

where £ € R™*" A € R™*" B € R"*¢ C € R™*" and
Z € R™*? i.e. the system has n states, £ inputs, m out-
puts and d disturbance inputs. Matrix £ may be singu-
lar. Our goal is the determination of the necessary and
sufficient conditions for the elimination of the influence
of the disturbance £(t) on the output y(¢) by means of
state feedback of the type

u=Fz+ Gu, det(G) #0, det(sE — A— BF) #0 (2)

and the method of construction of such feedback laws.
Throughout the paper it will be assumed that the system
(1) is reachable, i.e. [sE — A, B, =] has no finite zeros
and [E, B, E] has full row rank. It will also be assumed
that B is monic and m < £ . From (1) and (2) it follows

[é] =15+ [T 7] [¢] @
(€] =Farcg] @

Notice that G is invertible as long as G is invertible. Let

H(s) = N(s)D~"(s) ()

be a coprime and column reduced MFD of the transfer
function of (1). Then we have (see [20], [21]) that the
closed loop MFD has “numerator” and “denominator”

N(s) = CS(s), De(s) =G '[D(s) — FS(s)] (6)
where S(s) =diag{[l,s,---,s" 1T}, with r;, i =

1, -+, £+d being the reachability indices of (E, A, [B Z]).
Then from (3)

~1
D.(s) =[G 9] [P - [ §] 5] (7)
Now partitioning D(s) conformably to the block parti-
tioning of G, F i.e. if
D,
D)= [ Def3) ] Dute) e mexcay
D§<5> € RIx(£+d) [s]

(8)

it follows from (7) that

Dus) = [G‘l D)= FS(S)]} a [gzgﬂ 9)

The meaning of the above is that state feedback of type
(2) on system (1) affects only the top £ rows of the closed
loop system denominator matrix.

Definition 1 The row span (overR) of the row high or-
der coefficient matriz [Plp, of a row reduced polynomial
matrixz [9] P(s) is referred to as the highest degree char-
acteristic space of the rational vector space spanned by
the rows of P(s) and is denoted by Z{P(s)}. O

Some useful properties of the highest degree character-
istic space are given below

Lemma 2 [13], [11], [10] (i) All row reduced bases of a
rational vector space have the same highest degree char-
acteristic space. (ii) If [P)p, is the high order coefficient
matriz of P(s) then spang{[Pln-} C Z{P(s)}. (iii) If
Py (s) and Pa(s) are two polynomial matrices such that
spang(){P1(s)} C spangs{Pa(s)} then L{Pi(s)} C
ZL{Pa(s)}. O

A consequence of the above lemma is

Proposition 3 If (1) under feedback (2) is disturbance
decoupled, then

Z{N(s)} € L{Dy(s)} (10)
that is, when the system is disturbance decoupled, the

rows of the numerator matriz N (s) are spanned only by
the rows of the matiz D, (s) in (9).



The pivot indices (p.i.) of a column reduced basis of a
rational vector space play an important role in the paper.
Their definition is the following

Definition 4 [8] Let V' be a column reduced basis of
a vector space over R(s) with ordered column degrees
v1 < -+ <wy The pivotindices qy - - - q¢ are defined as fol-
lows: Let V have be ny columns with degree vi. Find the
first (lowest index) ny rows of Vi such that the ny x nq
submatriz of Vi so defined is nonsingular. The indices
of these rows, in order, form the first nq pivot indices
q1 -+ qn,- Delete these ny columns and ny rows from V
and repeat the above procedure to find the next group of
pivot indices, corresponding to the columns with the next
distinct index value; and so forth. O

Pivot indices of T'(s) = [N (s), DT (s)]T can be classi-
fied into two types [20]:

Definition 5 Let q1,-- -, g + d denote the pivot indices
of [NT(s), DT (s)]. Then q; is called proper if ¢; > m
and nonproper if ¢; < m. O

The entries (g;, 1) of T'(s) will be referred to as pivot ele-
ments and are classified into proper and nonproper pivot
elements according to the above definition. Furthermore
the rows of T'(s) that contain pivot elements will be re-
ferred to as pivot rows. The matrix T'(s) is a basis of the
vector space spanned by its columns. Throughout the
rest of the paper it will be assumed that the given sys-
tem has 7 nonproper p.i.

Definition 6 The integers p;, p;, T are defined as fol-
lows:

(i) p; are the column indices of T(s) such that the corre-
sponding p.i. qp, are proper.
(ii) p; are the column indices of T'(s) such that the corre-
sponding p.i. qp, are nonproper.
(iii) T is the number of the rows of N(s) containing non-
proper pivot elements of T'(s). O

Proposition 7 The DDSS is solvable if and only
if there exist sate feedback of type (2) such that
N(s) = H,(s)G7[Dy(s) — FS(s)] or

N(s) = Hy(s)Dy(s) (11)

Proof: Let the system be disturbance decoupled by the
pair (F, G). Then, for the the closed loop system we have

o1s) = [, (o | £ (12)

In the above we must have He(s) = 0 because otherwise
there is no guarantee that £(s) has no influence on the
output of the system for any u(s), i.e. the system is not

disturbance decoupled. Thus, for a given system (1) the
transfer function of the closed loop system is

= [Ho(5), 0mxay] » Ho(s) € R™¥(s)(13)

N(s) = Hy(s)Dy(s) (14)

Conversely let feedback of type (2) be such that (14)
holds true. The closed loop numerator is

N(s) = Hy(s)Dy(s) + He(s)De(s) (15)

The regularity requirement imposed by (2) means that
the matrix [D] (s) Df(s)]" is invertible and therefore
H¢(s) = 0 in (15) which means that the system is dis-
turbance decoupled. O

Proposition 8 If system (1) is disturbance decoupled,
then D, (s) contains at least as many nonpivot rows of
T(s) as the number of pivot rows of T(s) contained in
N(s).

Proof: Let 7 and 8 be the numbers of pivot rows of N(s)
and nonpivot rows of D, (s) respectively. Since the sys-
tem is disturbance decoupled and D, (s) has full row rank
(because of the invertibilty of D(s)) it follows from (14)
that rank[NT (s) DI(s)]T = ¢. The pivot rows form a
linearly independent set of rational vectors and

>+l -p)=p>T
O

Remark 9 All the rows of D¢ (s) contain pivot rows of
T'(s) when the system is disturbance decoupled. O

3 Solvability condition of DDSS

In this section the necessary and sufficient solvabil-
ity condition of the disturbance decoupling problem
is obtained. The proof of the sufficiency of the con-
dition provides a constructive method for the choice
of the disturbance decoupling feedback law. Let
the composite matrix of the closed loop system be
T.(s) = [NT(s), DT (s)]T and define the matrices

U(s) = N(S)ﬁag(sa_”i)y U(s) = M(s)U(s) (16)

where M (s) is a unimodular matrix such that M (s)U(s)
is row reduced. Let N, be the row high order coefficient



matrix of U(s) in (16). Note that N, is a feedback in-
variant of the system and therefore is the same for open
and closed loop systems. Also define

D)= ] v = || (17)

where DP(s) and N™P(s) consist of these rows of D, (s)
and N(s) respectively, containing pivot elements of
T.(s) (note that the nonproper pivot elements of the
closed loop system are those of the uncompensated).
From proposition 8 it follows that D™ (s) has 7 rows.
Now let the rows of [T¢]p. corresponding to D, (s) be
written (upon row reordering) , according to the parti-
tioning of (17), as

Dl = |l (15)

The following is needed for the main result:

Proposition 10 The systems with composite matrices

(3] mo-[5g] oo

where the rows of N(s) and N(s), span the same vector
space over R(s), yield the same set of solutions to the
disturbance decoupling problem.

Proof: A solution for the first system will have a closed
loop denominator matrix of the form (9). This means
that the rows of N(s) lie in the span of of D,(s) and
therefore the rows of N(s) = M(s)N(s) also lie in the
span of of D,(s). Thus a solution for the first system is
also a solution of the second one and vice-versa. O

Let r; and 05,7 =1, -- -, £+ d be the reachability indices
(r.i.) the controllability indices (c.i.) respectively [16], of
the triple (E, A, [B Z]).

Proposition 11 [20] Let H.(s) = N.(s)D;'(s) be the
closed loop transfer function (t.f.) of the system (1)
under the law (2). Then N¢(s) = N(s), and D.(s) =
GYD(s)—FS(s)], where S(s) =diag{[1,s,---,s" 1T},
i =1,---,£+d, i.e. the degrees of the columns v;(s) of
the matriz V(s) = FS(s) are

_ o; — 1 if o; is proper
deg vi(s) < { 10—1 of éi is monproper (20)

O

For the classification of c.i. into proper and nonproper
see [12], [16]. Note that in the case where some r.i. are
zero then the corresponding column of S(s) is the zero
vector of dimension equal to the sum of the nonzero r.i.

Theorem 12 Necessary and sufficient condition for the
solvability of the disturbance decoupling problem is that
D™ (s) in (17) has T rows and

spang{Ny,} C spang{ [ [Di]hc } } (21)

Where J is the matriz formed by the p,, Tows (the non
proper pivot rows) of [T)pe.

Proof: Necessity will be proven first. The requirement
that D™(s) in (17) has 7 rows readily follows from

Proposition 8. Matrix J is the row high order coefficient
of the g5, rows of U(s). Thus, from Lemma 2

ZL{U(s)} 2 spang{J} (22)

Consider the matrix [J7 (s), 7,7 (s)]” formed by the pivot
rows of T'(s), where J(s) and T,(s) contain the non-
proper pivot and proper rows respectively. Its high order
coefficient matrix has the form

] 23

where T}, is formed by the proper pivot rows of Tj,.. From
the definition of the pivot rows it follows that this matrix
is square and invertible. Observe that the rows of [D?].
defined in (18) are also rows of T},. Then [DP], has full

row rank and

spang{[D”]nc} N spang{J} = {0} (24)
Further, we have

spang{[D"],,.} = spang{[DPdiag(s”~ )], } (25)

Now, since the system is disturbance decoupled it follows
from (14) and Lemma 2 that

ZL{U(s)} € L{Dy(s)diag(s” ")} (26)
Then, from (22), (24) and Proposition 8 it follows that
2{D,(s)diag(s”=)} = spane{ [ | pi), |} @2)
and, since Z{U(s)} = spanp{Na}, we have

spanz{Na}  spanz{ || Di}hc i (28)

which proves the necessity.

Sufficiency will be proven by constructing a feedback
pair (F,G) that disturbance decouples (N(s),D(s))



which has the same set of solutions of the distur-
bance decoupling problem with the original system (see
Proposition 10). As a first step, we apply a preliminary
feedback pair (F1,G1) such that the matrix [D]s. (see
(18)) of the resulting system has full row rank and is
equal to [JT, [DP]T ]7. Note that this is always possible
because D™P(s) has 7 rows and Proposition 11. From
(21) it follows that there exists constant full row rank
matrix G1; such that N, = GH[JT,[DP]{C]T. Then
there exists matrix Y such that [NZ, YT]7 has full row
rank. Then we can write

V=@, 20 [wn,] @

We use G as further input transformation. The result-
ing system has D/ (s) = G5 *G7'[Dy(s) + F1S(s)] with
[Dlhe = [(No)™,YT]T which is epic. Let D/ (s) be par-
titioned as

Dute) = Bﬁéﬁ; ] (30)

D/1 (s) € Rmx(£+d) [s], Dé(s) c R(Z—m)x(Hd) [s}

Next we are going to apply state feedback on the sys-

tem (N (s), D, (s)) such that the resulting system is dis-
tubance decoupled. Consider the equation

D' (s) 4+ F'S(s) = H '(s)N(s) (31)

where H~!(s) = diag{l’f?((j))}, j=1,-,m with u;(s),
vj(s) monic polynomials. Equation (31) describes a di-
agonally decoupled square system, since H(s) is diago-
nal matrix. The solvability of this equation with respect
to F' was considered in [20] where it was shown that (31)

is solvable with respect to F” only if the following hold

deg{p;(s)} — deg{v;(s)} = fj, vi(s)lw;(s) if f; # 0(32)

deg{e;(s)}, ni(s)le;(s)if fj =0

where ¢;(s) is the g.c.d. of the entries of the i~th row of
N(s) and f;, i = 1,---,m are the orders of the infinite
zeros of ' (s)diag(s=%), j = 1,---, £ with B*(s) is the
i~th row of N(s). From (30), (31) it follows that

[H6), Omom] | POLEESO | =) 0

If F"' = [(F’))T,Oz;fm)xe]T7 we have that [(D'(s) +
F"S(s))diag{s* %} nr= [(Na)T,YT]T is epic. Further-
more from (29) and Remark 9 it follows that the collumn

high order coefficient matrix of the denominator matrix
D, (s) of the overall system (see (9)) has full rank. Thus

the regularity reguirement for s — A — BF is fulfilled.
The t.f. of the closed loop system T'(s) is

ﬁc(s) = [H(S)a Omx(éfm)aomxd] (35)

which clearly means that the pair (G1Ga, —G1GoF" —
Fy) disturbance decouples system (1). The t.f. of the
system obtained by applying this feedback pair to to (1)
is H.(s) = M~1(s)H.(s). O

Remark 13 If, in the construction of the above de-
coupling pair, we choose p;(s) = ¢;(s) and v;(s) such
that deg{v;(s)} = deg{pi(s)}, we obtain elimination
of the infinite poles since in that case, deg{det(D'(s) +
F"S(s))} = S0, oi=rankE. O

4 Fixed poles of DDSS

In the previous section, the solution of the problem i.e.
the pair (F,G) is constrained in order to meet the re-
quirement of disturbance decoupling. This means that
some of the system poles may not be assignable and re-
main fixed for any solution of the disturbance decou-
pling. Here, the issue of fixed poles is investigated, a
characterisation of these poles is given and it is shown
that the rest of the poles can be arbitrarily assigned.
The following Proposition is necessary for the proof of
the main result of this section.

Lemma 14 [19] If a singular system (E, A, B) is reach-
able with nonzero r.i., then it can always be transformed
by restricted system equivalence transformations [18],
such that the pencil [sE — A, B] has the form

[sE — A, B] = [Sé(f)A o] (36)

where L(s) = diag{Ly,-1(8)}, Lr;—1(8) = s[Lr;—1,0r,—1x1]—

[0r,—1x1,Ir,—1], 2 = 1,--- L. Furthermore, the numera-
tor and denominator of the MFD of the t.f. of the system
are CS(s) and (sK — N)S(s) respectively. O

Let Q(s) be the greatest common left divisor (g.c.l.d.)
of the entries of the columns of N(s) and write

N(s) = Q(s)N(s) (37)
The fixed poles are given by the following result:

Theorem 15 Let system (1) be disturbance decoupled
by state feedback and regular input transformation (2).

Then the fixed poles of the system are the zeros of the
matrix

D)) 3%)



where D¢ (s) is defined in (8).

Proof: Since the system is disturbance decoupled it fol-
lows from (14) that

Hy(s)Dy(s) = N(s) = Q(s)N(s) (39)

The rows of N(s) have no finite zeros. Now, since H,(s)
has full row rank and ¢ > m, it follows that there exists
unimodular matrix R(s) such that

H,(s)R(s) = [H(s),0] (40)

where H (s) is square and invertible rational matrix.
Then

[M%WVMW=N@=Q@M@ (11)

where [DT(S),ﬁT(s)]T = R7(s)D,(s). The matrix
D(s) has full row rank because N(s) has full row rank.
Furthermore, (41) yields

D(s) = H™}(s)Q(s)N(s) = 2(s)N(s) (42)

Matrix ®(s) is polynomial because N(s) has no finite
zeros (its Smith form is [I 0]). Then the denominator
of the closed loop disturbance decoupled system can be
written as

®(s)N(s) D(s)
Dc(s) =| D(s) | =1 D(s) (43)
De(s) De(s)

which clearly means that the zeros of [N7(s), Dg(s)]T
are poles of the closed loop disturbance decoupled sys-
tem. Let (N (s), D'(s)) be MFD pair of the system which
is disturbance decoupled according to the constuctive
proof of the sufficiency part of Theorem 12. In what fol-
lows, the complete feedback law (3) is going to be used.
The state feedback used so far was of the form

[ 9

Let (N(s),D'(s)) have a generalised state space rep-

resentation (E, A, B,Z,C). On this system apply state
feedback of the form

4

Then the poles of the resulting system are the zeros of
the pencil

i 0 .
sE—A—[B; B, g [%B] —sE—A—By,Fg  (46)

where B = [B; Bs|. Thus the pole placement of properies
(E, A, B) under feedback (45) are those of (E, A, Bs)
under full state feedback F'p. Since the system has no
zero r.i. we can assume according to Lemma 14 that

KL(SA 900

A n = — | sK1— 00

[sE— A, B,E] = sK;—A;OIO (47)
SN3 — 300]

where (sK; — A1)S(s) = D(s) (sKy — A3)S(s) = D(s)
and (sK3 — A3)S(s) = D¢(s). In this coordinate frame

L(s) O
[sE— 4,By] = | $K1 ~ 1 0 (48)
SKg - A3 0

The above has the same zero structure to

L(s)
SKl — Al (49)
SK3 — Ag

The uncontrollable poles of (E, A, By) are the zeros of
pencil (49). Consider the unimodular matrix S(s) =

[S(s) S(s)] where

S(s) = diag{Si(s)}

0 0--- 0
— 0 --- 0
. -5 -1 0--- 0 (50)
Si(s) = : ST :
_STifé _Sri74. .. _1 O
—g"iT2 g g ]
Then
L(s) . 0 I _
5K1 — Al S(s) = D(S) (SKl — A1)§(8) (51)
sK3 — A3 D¢ (s) (sK3 —As3)S(s)

From the above it is clear that the poles of (E, A, Bs)
that cannot be shifted by state feedback Fp are the
zeros of [DT(s),Dg(s)]T which, in turn are the poles
of (E, A, B) which cannot be shifted by feedback (45).
From (43) it follows

0]- 02

Equation (43) yields that the zeros of ®(s) are zeros of
D(s). If the disturbance decoupling pair is selected as
described in and Remark 13, all the poles of the closed
loop system are finite and the feedback pair can be cho-
sen such that the poles of H(s), i.e. the zeros of ®(s)
in (52), are assigned by appropriate choice of p;(s) and



v;(s) in (32), (33). Thus, all the poles of the original sys-
tem, except the poles given by the zeros of the matrix
(38) can be arbitrarily assigned by a state feedback of
the form

ki

Since feedback for disturbance decoupling has to be as
above (i.e. the lower submatrix of the above must be zero
matrix), the result follows. O

Remark 16 In the above theorem it was assumed that
all the r.i. of the system are nonzero. This assumption
does not affect the generality since in the case where some
r.i. are zero and, under the assumption that B is monic,
we have (upon reordering of the disturbance variables)
that

L&), 0000

f ime | sKi A 100E

sE—ABE = | (5, A3 0105, (53)
sK3—A3 001 0

which means that the above pencil has the same Smith
zeros with (47). Therefore the aruments following (47)
are identical for the case of zero r.i.

5 The DDDSS problem

In this section the combined problem of simultaneous
disturbance and input —output decoupling is considered.
The problem is stated as follows: Given system (1) find
state feedback and regular input transformation (2) such
that the closed loop system has transfer function.

N(S)Dil(s) = [A(S)a O(mxd)]

(54)
A(s) = diag{Ai(s)} € R™“(s)

k k
where A;(s) € R™*bi(s), St = £, Sm; = m,
i=1 i=1
i=1,---,k. Let N(s) be partitioned according to the
above into k blocks i.e. N(s) = bl{N;(s)}, i =1,--- k.
Then the corresponding partitioning of D,(s) is
D, (s) = bl{D!(s)}. Next define the matrices

U(s) = bi{Ti(s)} = bI{Ni(s) }diag(s” ") (55)
U(s) = bl{Us(s)} = bI{ M;(s)Us(s)} = M(s)U(s) ~(56)
Nf(s) = M(s)N(s) = bI{N] (5)} (57)
Ny = bl{Ni} (58)

where M;(s) are unimodular matrices such that
M;(s)Ui(s), i = 1,---,k, are row reduced and N/ =

[Ui(s)]nr- Also denote by [D:]p. the corresponding
blocks of the column high order coefficient [D]j. of
D,(s) in the sense it is defined in (18). The solvability
conditions of the combined problem are given below:

Theorem 17 Necessary and sufficient conditions for
the solvability of DDDSS is that D™ (s) in (17) has T
rows and the following hold true

rank(Ny) = m (59)

span]R{Na} C spang{ [ [D}{]hc } } (60)

Proof: By using arguments similar to those of Theorem
12 we are going to consider the system (NT(s), D(s))
which is equivalent to the original system as far as
the solvability of DDDP is concerned. First the ne-
cessity is proven. Since the row span (over R(s)) of
Nt(s)diag(s°~7") is a subspace of the row span of
Di (s)diag(s®~°%) it follows from Lemma 2 that the

row span over R of N i is a subspace of the row span
of [D:]he. The rows of [D]pe = bl{[D.]nc} are lineraly
independent over R and the necessity of (59) and (60)
follows.

The sufficiency can be proven in a way similar to that
of the sufficiency part of Theorem 12 where N(s) is
replaced by NT(s) (see [21] for details). The resulting
transfer function of the closed loop system will be

HC(S) = Mﬁl(s)ﬁ(s)v Omx(é—m)aomxd (61)
where H(s) = diag{H;(s)}, Hi(s) = diag{ Zjii)}, i=
1,---,k, j = 1,---,m; with p;(s) monic polynomials

derived from (32), (33) with NT(s) in place of N(s),
which completes the proof. O

Since input - output decoupling is an additional con-
straint to the disturbance decoupling in the system of
this section, it is expected that the set of fixed poles is
different. Let

N(s) = diag{Qu(s)} bI{Ni(s)} = QN (s), i = 1,---, k(62)

where Q;(s) is a greatest common left divisor (g.c.l.d.)
of the columns of N;(s). Note that Q(s) and N(s) are
different from those in (37) but the same notation is used
for the sake of simplicity. Write

N(s) =T(s)N(s) (63)

where T'(s) is a g.c.l.d. of the columns of N(s). The fol-
lowing theorem gives the characterisation of the fixed
poles of the DDDSS:



Theorem 18 The fized poles of DDDSS are:

(i) The zeros of F(f)

(i3) The zeros of [ l])\; ((ss)) }

Proof: Since the system is input - output decoupled it
follows from (62) that

A;(s)Dj(s) = Ni(s) = Qi(s)Ni(s) (64)
Notice that N;(s) has no finite zeros. Now, since A;(s)

has full row rank and ¢; > m;, it follows that there exist
unimodular matrices R;(s) such that

Ai(s)Ri(s) = [Ai(s), 0] (65)

where Ai(s), i = 1,---,k are square and invertible ra-
tional matrices. Then

Ay(s),0] [Di@ ] — Ni(s) = Qu(s)Nis) (66)

Di(s) = A7 (s)Qi(8)Ni(s) = @4(s)Ni(s) (67)

Matrix Nj(s) has full row rank and no finite zeros and
therefore its Smith form is [/ 0] which means that, ®;(s)
is polynomial. Then

I K bL{N;(s)}
[Dg; _ | diag{®,(s)} b{Ni(s)} | _

D
D(s)
L De(s)

where D(s) = bl{®;(s)} bl{N;(s)} and D(s) =
bl{D;(s)}. From (68), (63) it follows that

N(s
D(s
De(s)

~

det(D(s)) = det(P(s))det((T'(s))det( ) (69)

where ®(s) = diag{®;(s)} which proves (i). The proof of
(ii) can be carried out by working similarly to Theorem
15 and Theorem 4 of [21]. O

Remark 19 The results on fixed poles of DDP and
DDDRP for singular systems obtained are consistent with
the results of [14] and [5] for disturbance rejection of
state — space systems.

Example 20 Consider the system with

T(s) = [%8” - [é{%] )

r o s2—1 s4+1 s+1 —2s5—2 0 7
1 s24+s+1 1 S s+2 s2—s
0 3 -1 347 s2-2 0
1 s s—1 52 S —s
0 0 2+1 s+2 s—3 1
s 3 1 2 1 -

s+ 6 21 1 -5 -3 30
0 s—1 1 1 1 st—s—2
L O 3 -1 s—53 s3+78 0 i

For this system 01 = 1, 09 = 03 = 2, 04 = 05 = 3,
06 :47T:15p1 :17p2 :3ap3:57p4:67ﬁ1 :17
792:47(]p1 :67qp2:5aqp3:97(h)4:87q§1 :17
qp, = 3. We are going to consider disturbance and input
- output decoupling with m; = 2 and mo = 1. We have

N(s) = Q(s)N(s) =

0]1
0 s-—1 1 1 —2 0
1s2+s+1 1 S s+2 s2—s
0 3 —1s347s2-2 0

-1 1|0
Ni(s) = M(s)N(s) = [@1 X

0 01

1 s+2 -—s -1 3s+4 s2—s
0s2—1s+1 s+1 —2s—2 0
0 3 -1 247 s2-2 0

N(s)=T(s)N(s) = [ %) | 8 }x

—10s+2
0 s—1 1 1 -2 0
1s24s+11 S s+2s%>—s
0 1 0s2—2s+4s—2 0

fi=1,f2=0,f3=0,p1=1,p2=5+1,p3=1and

010000

11-1000
L0000} 5 l010000]
001000]|" "¢
100000 00 0 100
From the above matrices it follows that the system is
diturbance and input-output decouplable. If the desired
transfer function is

(s+6)"" 0 ]ooloo
H(s) = 0 =1100/00
o “0'l1oloo




i.e
0  =100/00
He(s)=M"(s)H(s)= | (s+6)~" L]0 0o 0
0 0 (10/00

we and up with the following feedback matrices:

001 1 0598898
_17 — _
Gio=1010 o -5 =|g00s00
000 1 000000
1070 0
-1 _
Gy =1010 0
00 0 1
and
F
Frs(s) = [ £t ] s(s) =
1 9—-7s —1+7s s2—1
1 7—5s5 -8 —T—s5+s>
6 —21 1 0 /
0 0 0 0
—24—-9225—-35229+55—55% — g3
14+ 3s —s
6 — 52 —32
0 0

Matrix [NT(S),DgT(s)]T has a zero at s = —4, which is
fixed a pole of the closed loop system. The poles of the
c.l. system are {—2, —4, —5, —6, —7,0.989,1.699, 2.345 +

3.7124,0.2557994100+1.74, —0.1124+0.7874, —0.653, —2.022}.

Poles {—6,—7,} are the poles of the transfer function
and are selected as described in Theorem 12. The zero
of I'(s) at s = —2 is also a fixed pole of the system.
All remaining poles can be shifted to the desired loca-
tions by appropriate selection of Fp (see (45)). If the
desired location of these poles is at s = —1 i.e. the
characteristic polynomial of the closed loop system is
(s+2)(s+4)(s+6)(s+ 7)(s + 1) we can choose Fp
such that

FBS(S) =
- 26122 _4564943 &2 46606469 5 17198631
529 ’ 5290 2645 1058 °
_4361913 . 17636897 2072613 5 38413009
5290 1058 7 5290 5290
62734 &3 203587 5 141329]
" 1587 1587 1587

6 Conclusions

The problems of disturbance decoupling and simultane-
ous disturbance and input — output decoupling for sin-

gular systems have been solved by using an approach
based on the matrix fraction description of the disturbed
system. The treatment of the problems is based on the
additional feature of the existence of non proper pivot
indices when the system is nonproper. Necessary and
sufficent conditions for the solvability of the problems
by means of state feedback have been derived. The proof
of the sufficiency part of the solvability conditions pro-
vides a constuctive way for selecting the disturbance de-
coupling feedback pair. The characterisation of the fixed
poles of the decoupled system has been given and is has
been shown that it is consistent to the one given for the
state — space systems. The MFD based algebraic ap-
proach of the paper provides a unification of the formu-
lation of different problems, which are usually tackled by
pure state-space methodologies and tools, and the abil-
ity of using detailed invariants, the pivot indices, which
are very natural within the algebraic framework.
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