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A version of Alperin’s weight conjecture for finite category

algebras

Markus Linckelmann

Abstract

Let p be a prime and k an algebraically closed field of characteristic p. We construct
a functor C → OC on the category of finite categories with the property that if G = C

is a finite group, then OC is the orbit category of p-subgroups of G. This leads to an
extension of Alperin’s weight conjecture to any finite category C, stating that the number
of isomorphism classes of simple kC-modules should be equal to that of the weight algebra
W (kOC) of OC . We show that the versions of Alperin’s weight conjecture for finite groups
and for finite categories are in fact equivalent.

1 Introduction

Throughout this paper we fix a prime number p and an algebraically closed field k of character-
istic p. A category C is called finite if its morphism class is a finite set.

Definition 1.1. Let C be a finite category. The p-transporter category of C is the finite category
TC defined as follows. The objects of TC are the pairs (X,Q) consisting of an object X of C and
a not necessarily unitary p-subgroup Q of the monoid EndC(X). For any two objects (X,Q),
(Y,R), the morphism set HomTC

((X,Q), (Y,R)) is the set of all triples (s,Q,R) where s : X → Y
is a morphism in C satisfying s = s◦1Q = 1R◦s and s◦Q ⊆ R◦s. The composition of morphisms
in TC is induced by that in C.

The identity morphism of an object (X,Q) in TC is (1Q, Q,Q). On occasion, and if no
confusion arises, we will denote a morphism (s,Q,R) in TC again by s and simply specify
that s is viewed as a morphism in T rather than C. Allowing for nonunitary subgroups Q of
EndC(X) in the definition of objects of T means that the unit element 1Q of Q need not be
equal to IdX but can be any idempotent endomorphism of X. The condition s = s ◦ 1Q =
1R ◦ s in this definition implies that HomTC

((X,Q), (Y,R)) can be identified to a subset of
1R ◦ HomC(X,Y ) ◦ 1Q. With this identification, the morphism set HomTC

((X,Q), (Y,R)) is an
R-Q-subbiset of 1R ◦ HomC(X,Y ) ◦ 1Q with respect to the actions induced by precomposing
with morphisms in Q and composing with morphisms in R. The condition s ◦Q ⊆ R ◦ s in the
above definition implies that R ◦ s ◦Q = R ◦ s; that is, any R-Q-orbit in HomTC

((X,Q), (Y,R))
is in fact an R-orbit.

Definition 1.2. Let C be a finite category. The p-orbit category of C is the finite category
OC defined as follows. The objects of OC are the same as those of TC . For any two ob-
jects (X,Q), (Y,R) of OC , the morphism set HomOC

((X,Q), (Y,R)) is the set of all R-Q-orbits
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R\HomTC
((X,Q), (Y,R))/Q of morphisms in TC . The composition of morphisms in OC is in-

duced by that in TC .

For a finite-dimensional k-algebra A, denote by ℓ(A) the number of isomorphism classes of
simple A-modules. Following [8] and [9], given a finite category C, the isomorphism classes of
simple kC-modules are parametrised by isomorphism classes of pairs (e, T ), with e an idempotent
endomorphism of some object X in C and T a simple kGe-module, where Ge is the group of
all invertible elements in the monoid e ◦ EndC(X) ◦ e. Such a pair (e, T ) is called a weight if
the simple kGe-module T is in addition projective. The associated weight algebra W (kC) is an
algebra of the form W (kC) = c · kC · c for some idempotent c which acts as the identity on
all simple kC-modules parametrised by a weight and which annihilates all simple modules not
parametrised by a weight; we review this in §2 below. The group-theoretic version of Alperin’s
weight conjecture in [1] is equivalent to the statement that there should be an equality ℓ(kG) =
ℓ(W (kOG)), for any finite group G. This leads to the obvious extension of Alperin’s weight
conjecture to finite categories:

Conjecture 1.3. For any finite category C we have ℓ(kC) = ℓ(W (kOC)) .

Theorem 1.4 below implies that the versions of Alperin’s weight conjecture for finite groups
and for finite categories are in fact equivalent. This equivalence holds more generally for twisted
group algebras and twisted category algebras with a 2-cocycle which is extendible to the orbit
category. There are canonical functors from C to TC and OC sending an object X in C to
(X, {IdX}), and a morphism in C to its obvious images in TC and OC , respectively. In particular,
every 2-cocycle α in Z2(OC ; k×) restricts to a 2-cocycle in Z2(C; k×), again denoted by α.

Theorem 1.4. Let C be a finite category and α ∈ Z2(OC ; k×). If for any idempotent endomor-
phism e in C we have ℓ(kαGe) = ℓ(W (kαOGe

)), then ℓ(kαC) = ℓ(W (kαOC)).

Corollary 1.5. Alperin’s weight conjecture holds for all finite categories if and only if it holds
for all finite groups.

For a fixed finite category C, the converse of Theorem 1.4 could be false in the rather extreme
scenario where C has more than one maximal subgroup for whom Alperin’s weight conjecture
is false, in such a way that the sum total of errors at individual subgroups is zero. Note that
the formulation for twisted category algebras requires the 2-cocycle α to be the restriction to
C of a 2-cocycle of OC along the canonical functor C → OC . It is not clear whether the map
H2(OC ; k×) → H2(C; k×) induced by the canonical functor C → OC is injective or surjective
in general. The corresponding canonical functor C → TC sending X to (X, {IdX}) poses no
problem:

Proposition 1.6. Let C be a finite category. The canonical functor C → TC induces a graded
isomorphism H∗(TC ; k×) ∼= H∗(C; k×).

This will be proved in 4.1 below. It seems less clear what happens under the functor TC →
OC in general. We have the following special case for EI-categories (that is, categories in which
all endomorphisms are isomorphisms):

Proposition 1.7. Let C be a finite EI-category. Then TC and OC are EI-categories, and the
canonical functor C → OC induces a graded isomorphism H∗(OC ; k×) ∼= H∗(C; k×).
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This will be proved at the end of section 4, using some of the properties of regular functors
between EI-categories from [7].

Remarks 1.8. Let C be a finite category.

(1) Aside from the canonical functor C → TC sending an object X in C to (X, {IdX}) and sending
a morphism s : X → Y in C to s viewed as a morphism from (X, {IdX}) to (Y, {IdY }), there is
also a canonical functor TC → OC which is the identity on objects and which sends a morphism
s : (X,Q) → (Y,R) in TC to the R-Q-orbit of s. There is a canonical ‘forgetful’ functor TC →
C which sends an object (X,Q) in TC to X and which sends a morphism (s,Q,R) : (X,Q) →
(Y,R) in TC to the underlying morphism s : X → Y .

(2) If p is coprime to the orders of all subgroups of endomorphism monoids of C, then TC and
OC are both isomorphic to the idempotent completion C′ of C. In that case, W (kOC) ∼= kC′

is Morita equivalent to kC, and hence Alperin’s weight conjecture holds trivially for kC. In
general, the idempotent completion of C is isomorphic to the full subcategories of T and of O,
consisting of the objects of the form (X, {e}), where X is an object in C and e an idempotent
endomorphism of X.

(3) If C is a finite group G, viewed as a category with one object, then T is the transporter
category of p-subgroups of G and O the corresponding orbit category.

(4) The correspondences sending a finite category C to its p-transporter category TC and p-orbit
category OC extend to functors T and O, respectively, on the category cat of finite categories:
if Φ : C → D is a functor between finite categories C, D, then Φ induces a functor TΦ : TC →
TD sending an object (X,Q) in TC to the object (Φ(X),Φ(Q)) in TD, with the obvious maps
induced by Φ on morphism sets. Similarly, Φ induces a functor OΦ : OC → OD sending an
object (X,Q) in OC to the object (Φ(X),Φ(Q)) in OD. The canonical functors C → TC → OC

are natural in C, hence induce natural transformations Idcat → T → O of functors on cat.

(5) The above version of Alperin’s weight conjecture for categories raises the question whether
the reformulation, due to Knörr and Robinson [5], of Alperin’s weight conjecture for blocks in
terms of alternating sums can be extended to twisted category algebras along similar lines.

Examples 1.9. Brauer algebras, Temperley-Lieb algebras, partition algebras, and their cyclo-
tomic analogues can be interpreted as twisted monoid algebras (cf. [12]). The 2-cocycles of the
underlying monoids for these algebras satisfy the hypotheses of 4.6 below; in particular, they
are constant on maximal subgroups (so that their restrictions to maximal subgroups represent
the trivial classes) and they extend to the associated orbit categories. Using the fact, due to
Alperin and Fong [2], that Alperin’s weight conjecture holds for symmetric groups it is easy
to see that the maximal subgroups of the underlying diagram monoids satisfy Alperin’s weight
conjecture, and hence so do these diagram algebras.

Alperin’s weight conjecture for block algebras of finite groups leads to considering twisted
category algebras over (the subcategory of centrics in) fusion systems (see e. g. [6]). It is not
clear, whether there is an analogous extension to block algebras of finite category algebras; for
the sake of completeness, we include a generalisation of fusion systems and their orbit categories
from finite groups to finite categories.

Definition 1.10. Let C be a finite category. The p-fusion category of C is the finite category FC

defined as follows. The objects of FC are the same as those of TC . For any two objects (X,Q),
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(Y,R) of FC , the morphism set HomFC
((X,Q), (Y,R)) is the set of all group homomorphisms

ϕ : Q → R for which there exists an element (s,Q,R) ∈ HomTC
((X,Q), (Y,R)) satisfying s◦u =

ϕ(u)◦s for all u ∈ Q. The composition of morphisms in FC is induced by the usual composition
of group homomorphisms.

The group homomorphism ϕ satisfying s◦u = ϕ(u)◦s for all u ∈ Q is not necessarily uniquely
determined by s. Clearly any inner automorphism of Q is an automorphism of (X,Q) in FC , and
hence HomFC

((X,Q), (Y,R)) is an Inn(R)-Inn(Q)-biset through (pre-)composition with inner
automorphisms of Q and R. If u ∈ Q and s, ϕ are as before, then s ◦ cu = cϕ(u) ◦ s, where cu,
cϕ(u) are the inner automorphisms of Q, R given by conjugation with u, ϕ(u), respectively, and
hence an Inn(R)-Inn(Q)-orbit in HomFC

((X,Q), (Y,R)) is an Inn(R)-orbit.

Definition 1.11. Let C be a finite category. The p-fusion orbit category of C is the finite
category F̄C defined as follows. The objects of FC are the same as those of TC . For any two
objects (X,Q), (Y,R) of FC , the morphism set HomF̄C

((X,Q), (Y,R)) is the set of Inn(R)-
Inn(Q)-orbits in HomFC

((X,Q), (Y,R)). The composition of morphisms in F̄C is induced by
that in FC .

2 Background material

Let C be a finite category. The set of idempotent endomorphisms of objects in C is partially
ordered, with partial order given by e ≤ f whenever e, f are idempotent endomorphisms of an
object X in C satisfying e = e◦f = f ◦e. Two idempotent endomorphisms e, f of objects X, Y ,
respectively, are called isomorphic if there are morphisms s : X → Y and t : Y → X satisfying
t ◦ s = e and s ◦ t = f . In that case, s and t can be chosen such that s = f ◦ s = s ◦ e and t =
e ◦ t = t ◦ f ; indeed, using that e, f are idempotents, we have e = t ◦ s = e ◦ t ◦ s ◦ t ◦ s ◦ e =
(e◦t◦f)◦(f ◦s◦e), and a similar argument yields f = (f ◦s◦e)◦(e◦t◦f). Let α be a 2-cocycle in
Z2(C; k×); that is, α is a map sending any two morphisms s, t in Mor(C) for which t◦s is defined
to an element α(t, s) in k× such that for any three morphisms s, t, u for which the compositions
t◦s and u◦ t are defined, we have the 2-cocycle identity α(u, t◦s)α(t, s) = α(u◦ t, s)α(u, t). The
twisted category algebra kαC is the k-vector space having the morphism set Mor(C) as a k-basis,
with a k-bilinear multiplication given by t · s = α(t, s)(t ◦ s) if t ◦ s is defined, and t · s = 0,
otherwise. The 2-cocycle identity is equivalent to the associativity of this multiplication. The
isomorphism class of kαC depends only on the class of α in H2(C; k×), with k× here understood
as a constant contravariant functor on C. If α represents the trivial class, then kαC ∼= kC, the
ususal category algebra of C over k. For any idempotent endomorphism e of an object X in C we
denote by Ge the group of all invertible elements in the monoid e ◦EndC(X) ◦ e. The restriction
of α to the groups Ge is abusively again denoted by α. Note that the image in kαC of an
idempotent endomorphism e of an object in C is not necessarily an idempotent; more precisely,
the square of e in kαC is equal to e · e = α(e, e)e, and hence ê = α(e, e)−1e is an idempotent
in kαC. For any kαC-module U , the space eU = êU is an êkαCê-module, hence restricts to a
kαGe-module. By [8, 5.2, 5.4], if e, f are isomorphic idempotents in C, then there is an algebra
isomorphism kαGe

∼= kαGf which is uniquely determined up to an inner automorphism. Two
pairs (e, U), (f, V ) consisting of idempotents e ∈ EndC(X), f ∈ EndC(Y ), a kαGe-module U
and a kαGf -module V , are called isomorphic if the idempotents e, f are isomorphic and if the
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isomorphism classes of U , V correspond to each other through the induced isomorphism kαGe
∼=

kαGf . We need the following parametrisation of simple kαC-modules from [8]:

Theorem 2.1 ([8, Theorem 1.2]). Let C be a finite category and let α ∈ Z2(C; k×). The map
sending a simple kαC-module S to the pair (e, eS), where e is an idempotent endomorphism
in C, minimal with respect to eS 6= {0}, induces a bijection between the set of isomorphism
classes of simple kαC-modules and the set of isomorphism classes of pairs (e, T ) consisting of
an idempotent endomorphism e in C and a simple kαGe-module T .

The following terminology from [8] singles out those simple kαC-modules which are parametrised
by isomorphism classes of pairs (e, T ) with T a projective simple kαGe-module:

Definition 2.2 ([8, 1.4]). Let C be a finite category and α ∈ Z2(C; k×). A weight of kαC is a
pair (e, T ) consisting of an idempotent endomorphism e of an object X in C and a projective
simple kαGe-module T . A weight algebra W (kαC) of kαC is a k-algebra of the form W (kαC) =
c · kαC · c, where c is an idempotent in kαC with the property that cS = S for every simple
kαC-module S parametrised by a weight, and cS′ = {0} for every simple kαC-module S′ which
is not parametrised by a weight.

The idempotent c is unique up to conjugacy in kαC, and the number ℓ(W (kαC)) of isomor-
phism classes of simple W (kαC)-modules is equal to the number of isomorphism classes of weights
of kαC. See [9, Theorem 1.11] for a sufficient criterion for weight algebras to be quasi-hereditary.

3 Simple modules and weight algebras of p-orbit categories

Let C be a finite category, with p-transporter category T = TC and associated p-orbit category
O = OC . The canonical functor T → O is the identity on objects, and surjective on morphisms
between any pair of objects in T . For any object (X,Q) in T , the kernel of the canonical monoid
homomorphism EndT ((X,Q)) → EndO((X,Q)) can be identified with Q. For any two objects
(X,Q), (Y,R) in T , the canonical map HomT ((X,Q), (Y,R)) → HomO((X,Q), (Y,R)) induces
a bijection of sets R\HomT ((X,Q), (Y,R)) ∼= HomO((X,Q), (Y,R)). The results of this section
can be formulated for any functor between finite categories with the above properties, but in
view of the intended application - the proof of Theorem 1.4 at the end of this section - we have
chosen to formulate them for the canonical functor from T to O.

Lemma 3.1. Let (X,Q) be an object in T and (e,Q,Q) an idempotent in EndT ((X,Q)). The
following hold.

(i) We have e ≤ 1Q and e ◦Q = e ◦Q ◦ e.

(ii) The set e ◦Q is a p-subgroup of EndC(X) with unit element e, and the map sending u ∈ Q
to e ◦ u is a surjective group homomorphism Q → e ◦Q.

(iii) Let u ∈ Q. Then u ◦ e is an idempotent in EndC(X) if and only if e ◦ u = e. In that case
the idempotents u ◦ e and e in EndC(X) are isomorphic, and the idempotent endomorphisms
(e,Q,Q) and (u ◦ e,Q,Q) in EndT ((X,Q)) are isomorphic.

(iv) The idempotent endomorphism (e,Q,Q) of the object (X,Q) in T is isomorphic to the
identity morphism (e, e ◦Q, e ◦Q) of the object (X, e ◦Q) in T . In particular, the category T is
idempotent complete.
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Proof. Since (e,Q,Q) is an endomorphism of (X,Q) in T , we have e = 1Q ◦ e = e ◦ 1Q and
e ◦Q ⊆ Q ◦ e. The first condition is equivalent to e ≤ 1Q. The second condition implies that for
any u ∈ Q we have e ◦ u = e ◦ u ◦ e, where we use that e is an idempotent. Thus, for u, v ∈ Q
we have (e ◦ u) ◦ (e ◦ v) = (e ◦ u ◦ e) ◦ v = e ◦ u ◦ v. This shows (i) and (ii). Let u ∈ Q. If e ◦ u =
e, then (u ◦ e) ◦ (u ◦ e) = u ◦ e. Conversely, if (u ◦ e) ◦ (u ◦ e) = u ◦ e, then composing with e
implies that e◦u◦ e is an idempotent. By (i) we have e◦u◦ e = e◦u, which is an element of the
finite group e ◦Q, so this is an idempotent if and only if e ◦ u = e. Thus the morphisms e and
u ◦ e define in this case isomorphisms between the idempotents as stated in (iii). The equality
e ◦ Q ◦ e = e ◦ Q implies that e defines a morphism (e,Q, e ◦ Q) : (X,Q) → (X, e ◦ Q) in T as
well as a morphism (e, e ◦Q,Q) : (X, e ◦Q) → (X,Q) in T . Statement (iv) follows.

Idempotents in O lift to idempotents in T (this is a special cases of the well-known fact that
idempotents lift through surjective homomorphisms between finite monoids):

Lemma 3.2. Let (X,Q) be an object in T . Identify endomorphisms of (X,Q) in T and in O
with their canonical images in EndC(X) and Q\EndC(X)/Q, respectively. Let f be an idempotent
in EndO((X,Q)). There is an idempotent e in EndT ((X,Q)) such that f = Q ◦ e ◦Q.

Proof. Let s ∈ EndT ((X,Q)) such that f = Q ◦ s ◦Q. Since EndT ((X,Q)) is a finite monoid,
there is a positive integer n such that e = sn is an idempotent. Since f is an idempotent, we
have f = fn = Q ◦ e ◦Q, as required.

Isomorphic idempotents in O lift to isomorphic idempotents in T :

Lemma 3.3. Let (X,Q) and (Y,R) be objects in T . Identify morphisms in T between these
objects with their images in the morphism set of C. Let e ∈ EndT ((X,Q)) and f ∈ EndT ((Y,R))
be idempotent endomorphisms. Denote by ē = Q ◦ e ◦ Q = Q ◦ e and f̄ = R ◦ f ◦ R = R ◦ f
the canonical images of e and f in EndO((X,Q)) and EndO((Y,R)), respectively. Then e and
f are isomorphic idempotents in T if and only if ē and f̄ are isomorphic idempotents in O.

Proof. Suppose that ē and f̄ are isomorphic in O. That is, there are morphisms s : (X,Q) →
(Y,R) and t : (Y,R) → (X,Q) in T such that ē = t̄ ◦ s̄ and f̄ = s̄ ◦ t̄, where s̄, t̄ are the images
of s, t in O. Thus there are u ∈ Q and v ∈ R such that t ◦ s = u ◦ e, and s ◦ t = v ◦ f in C. Since
s, t are morphisms in T , we have s ◦ Q ⊆ R ◦ s and t ◦ R ⊆ Q ◦ t. Let n be a positive integer
such that both (t ◦ s)n and (s ◦ t)n are idempotents in C, hence in T . Set t′ = (t ◦ s)n−1 ◦ t.
Then (t ◦ s)n = t′ ◦ s and (s ◦ t)n = s ◦ t′. Write (u ◦ e)n = u′ ◦ e for some u′ ∈ Q and (v ◦ f)n =
v′ ◦ f for some v′ ∈ R. Then t′ ◦ s = u′ ◦ e and s ◦ t′ = v′ ◦ f are isomorphic idempotents in
T . By Lemma 3.1 (iii), the idempotent u′ ◦ e is isomorphic to e, and the idempotent v′ ◦ f is
isomorphic to f in T . Together it follows that e and f are isomorphic idempotents in T . The
converse is trivial.

Maximal subgroups of endomorphism monoids in O lift to T :

Lemma 3.4. Let (X,Q) be an object in T . Identify EndT ((X,Q)) with its canonical image in
EndC(X). Let e be an idempotent in EndT ((X,Q)). Denote by ē = Q ◦ e ◦Q the image of e in
EndO((X,Q)) and by Ge the group of invertible elements in the monoid e ◦ EndC(X) ◦ e.

(i) The group of invertible elements in the monoid e ◦ EndT ((X,Q)) ◦ e is equal to NGe
(e ◦Q).

(ii) The group of invertible elements in the monoid ē ◦ EndO((X,Q)) ◦ ē is equal to NGe
(e ◦

Q)/e ◦Q.

6



Proof. Let s, t be endomorphisms of (X,Q) in e ◦ EndT ((X,Q)) ◦ e which are inverse to each
other. Then s, t are in particular inverse to each other when considered as elements of the
monoid e◦EndC(X)◦e, hence in Ge. Moreover we have s◦Q ⊆ Q◦s and t◦Q ⊆ Q◦ t. The first
inclusion precomposed with t and composed with e yields s ◦Q ◦ t ⊆ e ◦Q ◦ e = e ◦Q, where the
last equality uses Lemma 3.1 (i). The second inclusion composed with s yields e ◦Q ⊆ s ◦Q ◦ t.
Together we get s ◦Q ◦ t = e ◦Q. Since s = s ◦ e, this equality is equivalent to s ◦ (e ◦Q) ◦ t =
e ◦ Q, whence (i). Let now s, t be endomorphisms of (X,Q) in e ◦ EndT ((X,Q)) ◦ e whose
images s̄, t̄ in ē ◦ EndO((X,Q)) ◦ ē are inverse to each other. Then t ◦ s = u ◦ e for some u ∈
Q. Since t = e ◦ t, this implies t ◦ s = e ◦ u ◦ e = e ◦ u. Thus e ◦ u−1 ◦ t is the inverse of s in
e ◦ EndT ((X,Q)) ◦ e, and hence s and t are in NGe

(e ◦Q) by (i). Statement (ii) follows.

Lemma 3.5. Let E be a set of representatives of the isomorphism classes of idempotents in
C. For any e ∈ E, denote by Xe the object in C of which e is an idempotent endomorphism,
by Ge the subgroup of invertible elements of the monoid e ◦ EndC(Xe) ◦ e and by Xe a set of
representatives of the Ge-conjugacy classes of p-subgroups of Ge. Then the following hold.

(i) The set {(Xe, Q) | e ∈ E , Q ∈ Xe} is a set of representatives of the isomorphism classes of
objects in T .

(ii) The set {(e,Q,Q) | e ∈ E , Q ∈ Xe} is a set of representatives of the isomorphism classes
of idempotents in T .

Proof. Suppose that (X,Q) and (Y,R) are isomorphic objects in T . This is equivalent to the
existence of morphisms s : X → Y and t : Y → X in C satisfying s ◦ 1Q = 1R ◦ s = s, t ◦ 1R =
1Q ◦ t = t, s ◦Q ⊆ R ◦ s, t ◦R ⊆ Q ◦ t, t ◦ s = 1Q, and s ◦ t = 1R. In particular, the idempotents
e = 1Q and f = 1R are isomorphic in C. Moreover, we have Q = t ◦ s ◦Q ⊆ t ◦R ◦ s ⊆ Q ◦ t ◦ s =
Q, and hence these inclusions are all equalities. Thus Q = t ◦R ◦ s, and precomposition with t
yields Q◦ t = t◦R. Similarly, s◦R = Q◦ s. Applied to e = f this shows that (Xe, Q) ∼= (Xe, R)
in T if and only if Q, R are conjugate in Ge. This shows that the objects in the set described
in (i) are pairwise nonisomorphic, and one easily checks that every object of T is isomorphic to
an object in this set, whence (i). If Q ∈ Xe, then e = 1Q, and hence (e,Q,Q) is the identity
morphism of the object (Xe, Q) in T . Thus (ii) follows from (i) combined with the fact that
every idempotent endomorphism in T is isomorphic to the identity morphism of some object in
T by Lemma 3.1 (iv).

Proof of Theorem 1.4. The parametrisation of the isomorphism classes of simple kαC-modules
in [8] implies that

ℓ(kαC) =
∑

e∈E

ℓ(kαGe) .

If Alperin’s weight conjecture holds for the twisted finite group algebras kαGe, then this sum is
equal to the sum ∑

e∈E

∑

Q∈Xe

z(kαNGe
(Q)/Q) ,

where z(kαNGe
(Q)/Q) is the number of isomorphism classes of projective simple kαNGe

(Q)/Q-
modules. It remains to show that this is also the number of isomorphism classes of weights of
kαO. In this double sum, e runs over E and Q over Xe. By Lemma 3.5, this implies that the
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triples (e,Q,Q) run over a set of representatives of the isomorphism classes of idempotents in
T . Lemma 3.3 implies that the images of the triples (e,Q,Q) in the morphism set of O run over
a set of representatives of the isomorphism classes of idempotents in O. By Lemma 3.4, the
maximal subgroup determined by the image of any such (e,Q,Q) in O is NGe

(Q)/Q, and hence
z(kαNGe

(Q)/Q) is equal to the number of isomorphism classes of weights of O associated with
the image of (e,Q,Q) in O. Thus the above double sum is equal to the number of isomorphism
classes of weights of kαO, hence equal to ℓ(W (kαO)) as stated.

4 On the cohomology of p-transporter categories

Proposition 4.1. Let C be a finite category, and set T = TC. The canonical functor Φ : C →
T induces a graded isomorphism H∗(T ; k×) ∼= H∗(C; k×).

Proof. This follows from combining the Lemmas 4.2 and 4.3 below.

Lemma 4.2. Let C be a finite category, and set T = TC. Denote by T1 the full subcategory of
T whose objects are of the form (X, {e}), where X is an object in C and e is an idempotent in
EndC(X). The following hold.

(i) The inclusion functor T1 → T has a right adjoint Φ : T → T1 sending an object (X,Q) in
T to (X, {1Q}).

(ii) For any functor F : T op
1 → Ab, the functor Φ induces an isomorphism H∗(T1;F) ∼=

H∗(T ;F ◦ Φ).

(iii) The inclusion functor T1 → T induces an isomorphism H∗(T ; k×) ∼= H∗(T1; k×).

Proof. The map sending an object (X,Q) in T to (X, {1Q}) extends in an obvious way to a
functor Φ : T → T1. Let (X, e) be an object in T1 and let (Y,R) be an object in T . Both
HomT1

((X, {e}),Φ(Y,R)) and HomT ((X, {e}), (Y,R)) correspond bijectively to the set 1R ◦
HomC(X,Y ) ◦ e. It follows that Φ is right adjoint to the inclusion functor T1 → T . This shows
(i). Statement (ii) is a special case of more general base change properties of functor cohomology;
see [3, 3.1], [4, 5.1]. The inclusion T1 → T composed with the functor Φ : T → T1 is the identity
functor on T1, hence induces the identity on H∗(T1; k×). It follows from (ii) applied to the
constant functor k× that Φ induces an isomorphism H∗(T1; k×) ∼= H∗(T ; k×), and hence the
inclusion functor T1 → T induces the inverse of this isomorphism, implying (iii).

The category T1 is canonically isomorphic to the idempotent completion of C. The next
observation is a restatement of the well-known fact that a finite category and its idempotent
completion have Morita equivalent category algebras (we leave the proof to the reader).

Lemma 4.3. With the notation as in the previous lemma, for any functor F : T op
1 → Ab, the

canonical functor Ψ : C → T1 sending an object X in C to the object (X, {IdX}) in T1 induces an
isomorphism H∗(T1;F) ∼= H∗(C; Ψ◦F). In particular, Ψ induces an isomorphism H∗(T1; k×) ∼=
H∗(C; k×).

An EI-category is a small category C with the property that any endomorphism of an object
is an isomorphism; this concept is due to Lück [10]. The set [C] of isomorphism classes of an
EI-category C is partially ordered via [X] ≤ [Y ] whenever HomC(X,Y ) is nonempty, where
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[X], [Y ] are the isomorphism classes of objects X, Y in C. Following some terminology in [6],
an EI-category C is called regular if for any two objects X, Y in C such that HomC(X,Y ) is
nonempty, the group AutC(X) acts regularly (that is, transitively and freely) on HomC(X,Y ).
Let C, D be EI-categories and Φ : C → D a functor. Following [7, 5.1], the functor Φ is called
regular if Φ induces an isomorphism of partially ordered sets [C] ∼= [D], for any two objects
X, Y in C the map HomC(X,Y ) → HomD(Φ(X),Φ(Y )) induced by Φ is surjective, and for
any two objects X, Y in C such that the set HomC(X,Y ) is nonempty, the group K(X) =
ker(AutC(X) → AutD(Φ(X)) acts freely on HomC(X,Y ) through composition of morphisms
and induces a bijection

HomC(X,Y )/K(X) ∼= HomD(Φ(X),Φ(Y )) .

An EI-category C is regular if and only if the canonical functor C → [C] is regular. By a result of
S lomińska [11, 1.5], the cohomology of an EI-category C with constant coefficients is invariant
under passage to its subdivision S(C), which is a category defined as follows. The objects of
S(C) are faithful functors σ : [m] → C, where m is a nonnegative integer and the totally ordered
set [m] = {0 < 1 < .. < m} is viewed as category in the obvious way; a morphism in S(C) from
σ to another object τ : [n] → C is a pair (α, µ) consisting of an injective order preserving map
α : [m] → [n] and an isomorphism of functors µ : σ ∼= τ ◦ α. The composition of (α, µ) with
another morphism (β, ν) from τ to ρ : [r] → C is defined by (β, ν) ◦ (α, µ) = (β ◦ α, (να) ◦ µ),
where να : τ ◦ α ∼= ρ ◦ β ◦ α is induced by precomposing ν with α. The pair (α, µ) induces a
group homomorphism AutS(C)(τ) → AutS(C)(σ) mapping (Id[n], γ) to (Id[m], µ

−1 ◦ (γα) ◦µ), for
any automorphism γ of the functor τ , where γα is the induced automorphism of τ ◦ α. Clearly
S(C) is again an EI-category. Moreover, S(C) is regular, and every morphism in S(C) is a
monomorphism. The proof of the following result is similar to that of Proposition [7, 6.2].

Proposition 4.4. Let C be a finite EI-category. Set T = TC and O = OC. The canonical
functor T → O induces a regular functor Ψ : S(T ) → S(O), and for any object σ ∈ S(T ), the
kernel K(σ) = ker(AutS(T )(σ) → AutS(O)(Ψ(σ))) is a finite p-group.

Proof. The canonical functor T → O preserves nonisomorphisms, hence induces a functor Ψ :
S(T ) → S(O) which in turn induces an isomorphism of partially ordered sets [S(T )] ∼= [S(O)].
Let σ : [m] → T and τ : [n] → T be objects in S(T ) and denote by σ̄, τ̄ their images in S(O)
under Ψ. That is, σ(i) = σ̄(i) = (Xi, Qi) for some object Xi in C and a p-subgroup Qi of
AutC(Xi), where 0 ≤ i ≤ m. Similarly, τ(j) = τ̄(j) = (Yj , Rj) for some object Yj in C and some
p-subgroup Rj of AutC(Yj), where 0 ≤ j ≤ n. Let (α, µ̄) : σ̄ → τ̄ be a morphism in S(O); that is,
α : [m] → [n] is an order preserving map and µ̄ : σ̄ ∼= τ̄ ◦α is a natural isomorphism. Explicitly,
µ̄ consists of a compatible family of isomorphisms µ̄i : σ̄(i) = (Xi, Qi) ∼= τ̄(α(i)) = (Yα(i), Rα(i));
that is, for 0 ≤ i < m we have µ̄i+1 ◦ σ̄(i < i + 1) = τ̄(α(i) < α(i + 1)) ◦ µ̄i. Since the functor
T → O is surjective on morphisms, there are isomorphisms µi : σ(i) → τ(α(i)) in T which lift
the µ̄i, but this family need not be a natural transformation. More precisely, for 0 ≤ i < m
there is an element vi ∈ Rα(i) such that vi+1 ◦ µi+1 ◦ σ(i < i + 1) = τ(α(i) < α(i + 1)) ◦ µi.
An easy inductive argument shows that after replacing µi+1 by vi+1 ◦ µi+1 we get a natural
isomorphism µ : σ ∼= τ ◦ α lifting µ̄, which shows that the functor S(T ) → S(Ō) is surjective
on morphisms. If µ, µ′ are two morphisms in S(T ) from σ to τ then by the regularity of S(T )
there is a unique automorphism β of σ such that µ′ = µ ◦ β. Thus, if in addition the images
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µ̄, µ̄′ of µ, µ′ in S(O) are equal then the image β̄ in S(O) satisfies µ̄ = µ̄ ◦ β̄. Since every
morphism in S(O) is a monomorphism this implies that β̄ = Idσ̄, and hence β belongs to the
kernel K(σ) of the canonical map from AutS(T )(σ) to AutS(O)(σ̄), which shows that indeed the
functor S(T ) → S(O) is regular. The statement on K(σ) being a finite p-group follows from
the fact that for any object (X,Q) in T , the canonical map AutT ((X,Q)) → AutO((X,Q)) has
as kernel the p-group Q.

Proof of Proposition 1.7. Set T = TC and O = OC . The fact that T and O are EI-categories
is a trivial verification. It follows from Proposition 4.1 that in order to prove Proposition 1.7,
it suffices to show that the canonical functor T → O induces an isomorphism H∗(O; k×) ∼=
H∗(T ; k×). As mentioned earlier, by [11, 1.5], we may replace T and O by their subdivisions.
Since Hq(Q; k×) is trivial for any positive integer q and any finite p-group Q, it follows from
Proposition 4.4 that the hypotheses of Theorem [7, 5.6] are satisfied with S(T ), S(O), k×

instead of C, D, A, respectively. The conclusion of Theorem [7, 5.6] yields H∗(S(T ); k×) ∼=
H∗(S(O); k×), and hence H∗(T ; k×) ∼= H∗(O; k×) as stated.

Lemma 4.5 ([8, 4.2]). Let C be a finite category, α ∈ Z2(C; k×), s : X → Y a morphism,
e ∈ EndC(X) and f ∈ EndC(Y ) idempotent endomorphisms satisfying s = s ◦ e = f ◦ s. Then
α(s, e) = α(e, e) and α(f, s) = α(f, f).

Proposition 4.6. Let C be a finite category and α ∈ Z2(C; k×). Suppose that for any two
any idempotent endomorphisms e, f of objects X, Y , respectively, any morphism s ∈ f ◦
HomC(X,Y ) ◦ e and any x ∈ Ge, y ∈ Gy we have α(s, x) = α(s, e) and α(y, s) = α(f, s).
Then α extends to a 2-cocycle of OC through the canonical functor C → OC.

Proof. Let s : (X,Q) → (Y,R) and t : (Y,R) → (Z, S) be two morphisms in TC . In order to show
that α induces a 2-cocycle on OC , it suffices to show that α(t, s) depends only on the R-orbit of
s and the S-orbit of t; that is, it suffices to show that for any v ∈ R and any w ∈ S we have

α(t, s) = α(t, v ◦ s) = α(w ◦ t, s)

Let w ∈ S. Applying the 2-cocycle identity to w, t, s yields

α(w ◦ t, s)α(w, t) = α(w, t ◦ s)α(t, s) .

By the assumptions and Lemma 4.5 we have α(w, t) = α(1S , t) = α(1S , 1S) = α(w, t ◦ s), so
that cancelling α(1S , 1S) yields α(w ◦ t, s) = α(t, s). Let v ∈ R. Applying the 2-cocycle identity
to t, v, s yields

α(t, v ◦ s)α(v, s) = α(t ◦ v, s)α(t, v) .

As before, we have α(v, s) = α(1R, 1R) = α(t, v), hence α(t, v ◦ s) = α(t ◦ v, s). Since t defines
a morphism from (Y,R) to (Z, S), there is w ∈ S such that t ◦ v = w ◦ t. Thus α(t, v ◦ s) =
α(t ◦ v, s) = α(w ◦ t, s) = α(t, s), completing the proof.
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[5] R. Knörr and G. R. Robinson, Some remarks on a conjecture of Alperin, J. London
Math. Soc. 39 (1989), 48–60.

[6] M. Linckelmann, Alperin’s weight conjecture in terms of equivariant Bredon cohomol-
ogy. Math. Z. 250 (2005), 495–513.

[7] M. Linckelmann, On H∗(C; k×) for fusion systems. Homology, Homotopy and Appl.
bf 11 (2009), 203–218.

[8] M. Linckelmann and M. Stolorz, On simple modules over twisted finite category alge-
bras, Proc. Amer. Math. Soc. 140 (2012), 3725–3737.

[9] M. Linckelmann and M. Stolorz, Quasi-hereditary twisted finite category algebras,
preprint 2012, to appear.

[10] W. Lück, Transformation Groups and Algebraic K-Theory, Springer Lecture Notes
Math. 1408 (1989).
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