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ABSTRACT
Magnetic buoyancy, believed to occur in the solar tachocline, is both an important part of
large-scale solar dynamo models and the picture of how sunspots are formed. Given that in the
tachocline region the ratio of magnetic diffusivity to thermal diffusivity is small it is important,
for both the dynamo and sunspot formation pictures, to understand magnetic buoyancy in this
regime. Furthermore, the tachocline is a region of strong shear and such investigations must
involve structures that become buoyant in the double-diffusive regime which are generated
entirely from a shear flow. In a previous study, we have illustrated that shear-generated double-
diffusive magnetic buoyancy instability is possible in the tachocline. However, this study was
severely limited due to the computational requirements of running three-dimensional magne-
tohydrodynamic simulations over diffusive time-scales. A more comprehensive investigation
is required to fully understand the double-diffusive magnetic buoyancy instability and its de-
pendency on a number of key parameters; such an investigation requires the consideration
of a reduced model. Here we consider a quasi-two-dimensional model where all gradients
in the x direction are set to zero. We show how the instability is sensitive to changes in the
thermal diffusivity and also show how different initial configurations of the forced shear flow
affect the behaviour of the instability. Finally, we conclude that if the tachocline is thinner
than currently stated then the double-diffusive magnetic buoyancy instability can more easily
occur.

Key words: instabilities – MHD – Sun: interior – Sun: magnetic fields.

1 IN T RO D U C T I O N

The leading models of the large-scale solar dynamo posit that a
toroidal magnetic field is generated from a poloidal field deep be-
neath the surface of the Sun in the tachocline (see e.g. Silvers
2008; Charbonneau 2010, and references therein). The toroidal
structures then become buoyant and rise towards the surface. The
strongest of these magnetic filaments reach the surface to give rise
to sunspot pairs. The weaker buoyant structures can be twisted
in the solar convection zone, which is an important part of one
large-scale dynamo model, namely, the interface model (Parker
1993). Therefore, given that the process of magnetic buoyancy is
an integral part of both the sunspot formulation picture and mod-
els of the large-scale solar dynamo, it is crucial that it is fully
understood.

Magnetic buoyancy was first discussed by Parker (1955) and
Jensen (1955) and since this time there has been considerable

� E-mail: david.skinner.1@city.ac.uk (DMS); Lara.Silvers.1@city.ac.uk
(LJS)

progress in understanding this process. Early research using lin-
ear stability analysis derived stability criteria for ideal magnetohy-
drodynamics and diffusive magnetohydrodynamics (see e.g. Parker
1966; Thomas & Nye 1975; Acheson 1979).

In the solar tachocline, while diffusivities are small they are
non-negligible. Therefore, the most pertinent of these criteria to
consider for structures in the tachocline is that derived by Acheson
(1979):

−ga2

c2

d

dz
ln B >

η

κ
N2 (1)

where B is the field strength, η is the magnetic diffusivity, κ is the
thermal diffusivity, a is the Alfvén speed, c is the adiabatic sound
speed and N is the Brunt–Väisälä frequency. In the tachocline, κ � η

and it is this regime that we need to explore fully; this paper will
focus on the magnetic buoyancy instability when κ � η. Given
that the magnetic structures in the tachocline are generated by a
shear flow it is important to numerically examine structures that are
generated in this way as opposed to simply examining those that
are unstable at the start of the simulation.

C© 2013 The Authors
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Seeking to understand the formation of shear generated magnetic
buoyant structures is a complex issue because of the dynamic nature
of the problem, which involves a number of different time-scales i.e.
the advective time-scale associated with the generation of a layer of
magnetic field, the time-scale associated with the instability and the
diffusive time-scales. In this particular problem a shear flow will
drag out a layer of magnetic field that is initially perpendicular to
the direction of the large-scale flow. This will create gradients in
the magnetic field, which are necessary to achieve for buoyancy as
can be seen from criterion 1. However, the layer of magnetic field
acts back on the flow, which reduces the shear flow’s effectiveness
to generate gradients of magnetic field. Further, the background
atmosphere will be altered and so the values of the components in
criterion 1 for instability are constantly changing.

Research to date on the interaction between a shear flow and a
magnetic field includes that of Tobias & Hughes (2004) who ex-
amined the stability of an atmosphere where there is a flow aligned
with the magnetic field and concluded that the shear has a sta-
bilizing effect on the magnetic buoyancy instability. However, in
the tachocline the shear is actually responsible for the generation
of an unstable layer of magnetic field aligned with the shear flow
where, in an idealized picture, none exists; this is a very different
proposition. There have been a number of papers to examine shear
generated magnetic buoyancy instabilities when the magnetic field
is not initially in the direction of the shear flow (Cline, Brummell
& Cattaneo 2003; Vasil & Brummell 2008; Silvers et al. 2009).
Silvers et al. (2009) considered if the double-diffusive magnetic
buoyancy instability could occur in the tachocline and were the
first to numerically show that such an instability is plausible. This
work follows earlier calculations and discussions (see Hughes &
Weiss 1995; Schmitt & Rosner 1983, and references there in) re-
garding a magnetic buoyancy instability that presents when the ratio
of magnetic to thermal diffusivity becomes sufficiently small, i.e. a
double-diffusive magnetic buoyancy instability.

While the work of Silvers et al. (2009) was pioneering in the area
of numerical calculations of the double-diffusive instability, their
investigation was inhibited by the computational costs associated
with three-dimensional calculations using small diffusivities. As
such, they were only able to conduct a very limited investigation
into how the instability is affected by the parameters that appear in
the formulation of the problem and, thus, a further investigation is
warranted.

While the investigation of Silvers et al. (2009) was limited, it
was sufficient to show that the initial stages of the instability are
dominated by the rapid growth of two-dimensional modes. This
finding is in agreement with works such as Newcomb (1961) that
suggest that two-dimensional interchange modes will often present
rather than three-dimensional bending modes. That said, modes
that initially onset in a two-dimensional fashion can develop in a
three-dimensional way though interactions with other motion, e.g.
turbulence caused by descending convective plumes, and so are
of interest when we are looking for long-term, three-dimensional
buoyant structures and their evolution.

The work of Silvers et al. (2009) suggests that a useful avenue of
investigation, to explore further how the various parameters affect
the onset of the double-diffusive magnetic buoyancy instability, is
through a reduced model, which will minimize the computational
cost of exploring the parameter space. Such a model will be consid-
ered in this paper where we wish to obtain a greater understanding
of the onset parameters for double-diffusive magnetic buoyancy in-
stabilities, which will be used in later calculations to investigate the
three-dimensional evolution of these structures. The reduced model

that we use in this paper is such that gradients in the x-direction are
neglected. This reduction permits a much fuller exploration of the
parameter space and enables us to determine how certain parameters
affect the onset of the instability and the growth rate.

2 N U M E R I C A L M O D E L

We consider a model similar to those presented in the three-
dimensional work of Silvers et al. (2009) and Vasil & Brummell
(2008) but we form a reduced model by neglecting gradients in one
direction. In this work the x and y coordinates are the latitudinal
and longitudinal directions, and the z-axis points vertically down
and parallel to the constant gravitational acceleration. All lengths
are scaled relative to the depth of the domain, d. The temperature,
T, is scaled relative to T∗, the temperature at the top of the domain.
The density, ρ, is scaled relative to ρ∗ the density at the top of the
layer. The magnetic field, B, is scaled relative to the initial vertical
magnetic field strength, Bz, 0. Time is scaled with the isothermal
sound crossing time at the top of the layer, τ∗ = dρ1/2

∗ /P 1/2
∗ . The

general governing equations are written in the form:

∂ρ

∂t
+ ∇. (ρv) = 0, (2)

ρ

(
∂u
∂t

+ u . ∇u
)

= −∇P + α (B . ∇) B − α∇
(

B2

2

)

+ σCk

(
∇2u + 1

3
∇ (∇ . u)

)
+ ρθ (m + 1) ẑ + F (3)

∂T

∂t
= −u . ∇T − (γ − 1) T ∇ . u + Ckγ

ρ
∇2T

+ Ck (γ − 1)

ρ

(
αζJ 2 + σ

2
S2

)
(4)

∂B
∂t

= ∇ × (u × B) + ζCk∇2 B, (5)

∇ . B = 0 (6)

where

Sij = ∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij (7)

is the stress tensor. Ck = Kτ ∗/ρ∗cpd2 is the dimensionless thermal
diffusivity, α = B2

z,0/P∗μ0 provides a measure of the field strength,
ζ = ηcpρ∗/K is the inverse Roberts number, σ = μcpρ∗/K is the
Prandtl number, θ is the thermal stratification and m is the polytropic
index.

Equation (3) has been augmented to include an extra body force,
G = −σCk∂

2
zU0 (z) x̂ that, in the absence of magnetic effects or

instabilities, balances viscous diffusion and maintains a specified
U0(z), which is chosen to mimic the smooth radial shear transition
believed to occur in the tachocline. The shear profile is given by

U0 (z) = Mtanh

[
1


z

(
z − 1

2

)]
. (8)

Fig. 1 shows the velocity shear profile plotted against depth z for
the initial parameter configuration where M = 0.05 and 
z = 0.1.
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Figure 1. Shear profile, U0(z), versus depth, z, for the case used for the
initial cases where M = 0.05 and 
z = 0.1.

The above set of equations is further simplified by removing all
gradients of quantities in the x-direction, i.e. we set

∂

∂x
f (x, y, z, t) = 0 (9)

for all quantities.
Boundary conditions for the velocity, v, and the magnetic field,

B, are ∂zu = ∂zv = w = 0 and Bx = By = ∂zBz = 0 at the top
and bottom of the domain, z = 0, 1. The boundary conditions
for temperature are T(z = 1) = 1 and ∂Tz (z = 0) = θ . Periodic
boundary conditions are taken in both the x and the y directions.
These simulations are conducted using resolutions up to 256 × 480.

Initially we take a polytropic atmosphere with temperature
T0 = 1 + θ ẑ and density ρ0 = (1 + θ ẑ)m. We also initially set
Bz = 1, ux = U0(z), uy = uz = Bx = By = 0. The system is forced
out of equilibrium state by a small initial random perturbation to
the temperature field. The governing equations are solved using a
mixed finite difference/pseudo-spectral scheme as discussed in, for
example, Bushby & Houghton (2005).

In this investigation we will allow a number of parameters to vary
but there are some parameters that will remain fixed for the entire
paper. For all of the cases that we consider in our investigation we
take F = 1.25 × 10−5, θ = 5 and m = 1.6.

3 R ESULTS

The double-diffusive magnetic buoyancy instability relies on the
ratio between the magnetic and thermal diffusivities being small.
Accordingly, the main focus of this paper is to see how the onset
and growth rate of the instability, not its non-linear evolution, are
affected by changing this ratio. Hence we will begin by examining
the effect on the onset of the instability of varying the dimensionless
thermal diffusivity, Ck. We note here that, for all results presented
in this paper the Richardson number is such that the shear flow is
stable, i.e. there is no secondary instability that can influence the
results.

In this investigation we choose principally to adjust the ratio of
magnetic to thermal diffusivities by varying the thermal diffusiv-
ity (via its dimensionless counterpart Ck). As we vary Ck we also
adjust the Prandtl number, σ , and the inverse Roberts number, ζ ,
so as to maintain σCk = 2.5 × 10−6 and ζCk = 5.0 × 10−6 thus
leaving the form of the induction equation unchanged and chang-
ing the dynamics through the temperature equation. This method
ensures that the magnetic Prandtl number is fixed, which aids

Figure 2. A comparison of the vertical component of velocity at compa-
rable times for a slice of the three-dimensional case (top) and a quasi-two-
dimensional run (middle). The bottom image shows density perturbation
from the horizontal averaged value.

comparison with the work of Silvers et al. (2009). It is also possi-
ble to vary the inverse Roberts number, ζ , effectively varying the
magnetic diffusivity without scalings and so changing the dynamics
directly through the induction equation (5). This would give rise to a
variable magnetic Prandtl number. For brevity we limit the full dis-
cussion here to considering the case where CK is varied but we will
make comment at the end about the effect of varying the magnetic
diffusivity.

Before we commence our investigation, we begin by illus-
trating that this reduced model captures the essential dynamics
of fully three-dimensional calculations, such as those shown in
Silvers (2008). Fig. 2 shows a comparative slice from a fully three-
dimensional and a quasi-two-dimensional calculation after the onset
of the instability for the same set of parameters (case A1 in Table 1).
Both simulations were started from the equilibrium solution with
the same, small amplitude perturbation, to the temperature value
at each point.1 The resolution for the three-dimensional case is

1 Note the image shown in Silvers et al. (2009) was started and evolved
at early times in a slightly different way and found a slightly different
lengthscale for the instability.
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Table 1. Critical values for instability for
different values of 
z.


z Critical value

5.0 × 10−2 6.355 × 10−4

6.67 × 10−2 7.692 × 10−4

1.0 × 10−1 1.137 × 10−3

Figure 3. A scatter plot formed from the data at each point for the vertical
velocity and the density perturbation from the horizontal average.

Figure 4. A volume rendering of vertical velocity taken at the same in-
stance as the slices shown in Fig. 2 for case A1 and shows the initial
two-dimensional nature of the instability.

256×256×480 and the resolution for the quasi-two-dimensional
case is 256×480. Fig. 2 shows that, although the two slices are not
exactly identical for the different calculations, the instability onsets
with the same lengthscale. Fig. 2 also shows the density deviation
from the layer average value and shows that the rising structures
are less dense, as you would expect with structures arising from a
buoyancy instability. The formal correlation between vertical ve-
locity and the density deviation from the layer average at the time
of the images shown in Fig. 2 is given in Fig. 3. This scatter plot
shows a good agreement between the two quantities. Further, Fig. 4
shows that, as discussed in Silvers (2008), the instability onsets
in a two-dimensional form. Thus, our reduced model captures the
essential features of the fully three-dimensional calculation.

We commence our discussion of our findings by varying the ratio
of magnetic to thermal diffusivities via varying Ck. The Richardson
numbers, together with all of the exact parameter combinations for
these cases, are given in a table in the Appendix. The background
magnetic field is initially uniform in the z-direction. During the
initial stages of the simulation there is a build up of the x component
of the magnetic field as the z component is stretched out by the
shear flow. During this period, the y component of the magnetic
field undergoes small fluctuations due to the initial perturbation of

Figure 5. ln B2
y versus time for different values of the dimensionless ther-

mal diffusivity, Ck. The data points correspond to cases A1–A10 shown in
Table A1.

Figure 6. The maximum value of d(ln B2
y )/dt versus the dimensionless

thermal diffusivity Ck for different values of the shear width, 
z. The data
points correspond to cases A1–A10, H1–H11 and I1–I12 in Tables A1
and A3.

the system, before settling back down towards zero, which is shown
in Fig. 5. When the instability occurs large disturbances in By begin
to appear and Fig. 5 shows that the rate of growth of B2

y is noticeably
reduced as Ck decreased from the value set in our reference case,
A1, which is 1.0 × 10−2.

In this investigation we are principally interested in determining
if an instability occurs so we focus our attention to the parts of the
simulation long before boundary effects etc. are seen. For each of
the cases we determine the maximum value of d(ln B2

y )/dt and the
time that it occurs after the initial transient phase. Fig. 6 shows the
maximum value of d(ln B2

y )/dt for cases A1–A10 where the only
parameter that is varied is Ck. It shows that the maximum value of
d(ln B2

y )/dt tends to zero as we reduce Ck when 
z = 1.0 × 10−1

(the figure also shows other 
z cases that will be discussed later). A
negative value for d(ln B2

y )/dt indicates that B2
y is tending to zero,

thus implying that there is no magnetic buoyancy instability. As the
maximum value of d(ln B2

y )/dt approaches zero it becomes difficult
to accurately determine the maximum value due to numerical issues
and so a spline interpolant is used to extrapolate from the values
plotted to determine the value of Ck for which the instability no
longer occurs, which is approximately 1.2 × 10−3. Fig. 6 shows
that by plotting B2

y for case A10, where Ck = 1.25 × 10−3, there
is a small increase of B2

y with time. However, for case A11, where
Ck = 1.0 × 10−3, there is a constant decrease. Thus we conclude
that the instability is dependant on Ck being sufficiently large.
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Magnetic buoyancy instability in quasi-2D 535

There is a criterion proposed to determine when the double-
diffusive magnetic buoyancy instability might be present. Vasil &
Brummell (2009) derived a new form of the criterion for magnetic
buoyancy instability when a background state is constantly evolv-
ing. This is a more realistic model than that originally envisioned
by Acheson who did not try to account for the back-reaction effect
of the magnetic field on to a shear flow. The criterion proposed by
Vasil & Brummell (2009) is expressed in a form where the magnetic
field does not explicitly appear but where, instead, the shear flow
that generates a layer of unstable magnetic field appears though the
Richardson number and the width of the shear region itself. The
analytic criterion derived by Vasil & Brummell (2009) for magnetic
buoyancy in an isothermal process is


z

4γHp

(
1 + 
z

2Hρ

)
� ζRi

(γ − 1) ζ + 1
. (10)

This expression shows that the threshold for instability will be af-
fected not only by the ratio of magnetic to thermal diffusivities but
also by the parameters associated with the shear forcing. While the
double-diffusive magnetic buoyancy instabilities that we are inves-
tigating are not really isothermal they are closer to isothermal than
adiabatic. We, therefore, will consider criteria (10) as a reference
and now turn to examine how well this criterion is satisfied.

Fig. 7 shows, for the cases we are considering here, both the left-
hand and right-hand sides of inequality (10) for different values of
Ck and shows that the inequality is satisfied for the cases that lead
to instability. The region where the inequality is satisfied covers
a larger area for the higher values of Ck where we have already
observed that the strength of the instability is at its greatest. While
the criterion appears useful it should be noted that the inequality
does, also, remain satisfied for small regions for some values of Ck

that do not lead to instability (anything less than Ck ≈ 1.2 × 10−3

is stable.). This is attributed to the fact that the stability criterion
is analytically derived under assumptions for magnetic buoyancy
instability in the isothermal limit so we would not expect complete
agreement with the results. However, our findings show that this
criterion is useful as a guide even when not fully in the isothermal
regime.

Criterion (10) suggests that the regime where the instability will
occur should also depend on a number of other parameters which

Figure 7. The solid black line that sweeps from the top left to the bottom
right plots the left-hand side of inequality (10) versus depth (on the horizontal
axis). The other three lines plot the right hand side for Ck = 1.0 × 10−2

(pale green dashed line), Ck = 2.5 × 10−3 (dark green dash–dotted line)
and Ck = 1.25 × 10−3 (red solid line), all versus depth. The regions where
these lines are below the black line are where the inequality is satisfied for
instability.

include both the width of the shear flow and the magnitude of the
shear flow. From observations, we only have an upper bound on the
width of the tachocline and so it is important to understand how the
width of the shear flow affects our findings. We adjust the width of
the shear flow by varying 
z in equation (8).

Fig. 6, that was discussed earlier for the case when

z = 1.0 × 10−1, also shows the maximum value of d(ln B2

y )/dt

plotted against the dimensionless thermal diffusivity, Ck, when the
shear width is 
z = 6.67 × 10−2, which corresponds to cases
H1–H12, and when 
z = 5.0 × 10−2, which corresponds to cases
I1–I12. The spline interpolant curves through the data points are all
similar in shape and Table 1 shows the critical values for each case.
The critical value for Ck decreases as we reduce 
z; this implies
that the greater the width of the region of shear is in the tachocline,
the smaller the ratio of magnetic to thermal diffusivities must be to
obtain magnetic buoyancy. Also, the maximum value of d(ln B2

y )/dt

for any given Ck is greater as we reduce 
z; this implies that the
width of the shear region affects the strength of the instability. Given
that at this present time we only have an upper bound on the width of
the tachocline the results in this section suggest that if the tachocline
is narrower then the ratio of magnetic to thermal diffusivities would
need to be less extreme for this instability to occur. Further, a nar-
rower tachocline would give rise to a more vigorous formation of
strong structures.

Fig. 8(a) shows ln B2
y plotted against time for different values of


z (corresponding to cases A1, H1, I1, K1, L1 and M1) and shows
that, when all other parameters are fixed, the instability onsets earlier

Figure 8. (a) ln B2
y versus time for different values of the shear width,


z. The data points correspond to cases A1, H1, I1, K1, L1, M1. (b) The
maximum value of d(ln B2

y )/dt versus the shear width, 
z. The data points

for when Ck = 1.0 × 10−2 correspond to cases A1, H1, I1, K1, L1 and M1
and the data points for when Ck = 2.5 × 10−3 correspond to cases A6, H6,
I6, K2, L2 and M2 in Tables A1 and A3.
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Figure 9. ln B2
y versus time for different values of the shear magnitude, M.

The data points correspond to cases A1, B1, C1, D1, E1 and F1 in Tables A1
and A2.

as 
z is decreased. This is because the depth of the vertical region
in which Bx is stretched out is determined by the shear width and,
therefore, becomes narrower as 
z is reduced. The narrowing of
this shear region causes the build up of Bx to happen faster, which
is a result of the fact that Bx is dependent on the velocity gradient
∂zU0(z) (Vasil & Brummell 2009). The faster build up and narrower
shear region cause the gradients in Bx to reach the critical value for
instability earlier and, therefore, the instability to occur sooner. We
also note that the narrowing of the shear region also causes the
instability to occur closer to the centre of the domain, z = 0.5.

The maximum value of d(ln B2
y )/dt plotted against the shear

width for Ck = 2.5 × 10−3 (cases A6, H6, I6, K2, L2, M2) and
Ck = 1.0 × 10−2 (cases A1, H1, I1, K1, L1, M1) is shown in
Fig. 8(b). This plot shows a linear relationship between the maxi-
mum growth rate of the instability and the width of the shear region.
Therefore, this plot suggests that further decreasing the width of the
shear flow region would give rise to a stronger instability but far
greater resolution in z would be required to investigate smaller
values of 
z than are presented here.

In addition to considering how varying the width of the shear
flow affects the instability it is also interesting to also examine how
the strength of the shear flow, governed by our parameter M, affects
the results. This will allow us to comment on what may occur in
other stars with a similar internal structure to the Sun but where the
magnitude of the shear flow is different.

Cases A1, B1, C1, D1, E1 and F1 only differ in the shear mag-
nitude value M. Fig. 9 shows that there is a non-linear relationship
between M and the maximum value of d(ln B2

y )/dt that is obtained
for each of these cases. In Fig. 10, the maximum value of d(ln B2

y )/dt

is plotted against Ck for different values of M. In this figure two dif-
ferent M values, M = 7.5 × 10−2 and M = 1.0 × 10−1, are compared
with the original case where M = 5.0 × 10−2 and shows that the
critical value of CK for the instability to occur becomes smaller as
M is increased.

At the start of this section we commented on the fact that we
wanted to consider the effect that varying the ratio of magnetic to
thermal diffusivities has on the magnetic buoyancy instability and
that there were two possible ways to change this ratio. First, we
chose to maintain the magnetic diffusivity and vary the thermal dif-
fusivity and so change the dynamics via the temperature equation
and not the induction equation that evolves the magnetic field; the
evolution of which is of greatest interest in this work. However,
we could have chosen to vary the ratio via changing the magnetic

Figure 10. The maximum value of d(ln B2
y )/dt versus the dimensionless

thermal diffusivity, Ck, for different values of the shear magnitude, M. The
data points correspond to cases A1–A10, B1–B14 and C1–C15 in Tables A1
and A2.

Figure 11. The maximum value of d(ln B2
y )/dt versus ζ for different values

of the shear width, 
z. The data points correspond to cases A1–A10, H1–
H12 and I1–I12 from Tables A1 and A3.

diffusivity and so directly alter the induction equation. Given that
one approach directly affects the evolution of the magnetic field
and the other indirectly, through the temperature equation, these
two approaches are not equivalent. Therefore, we will now briefly
turn our attention to a discussion of the findings of how our results
change, when 
z is varied, if we had selected the alternative ap-
proach where Ck is fixed and the non-dimensional parameter in our
equations is changed through varying, η.

Fig. 11 shows how the maximum value of d(ln B2
y )/dt varies

as ζ is varied for different values of the shear width, 
z. The
data in this figure corresponds to cases A1–A10 in Table 1 where

z = 1.0 × 10−1, H1–H12 in Table A3 where 
z = 6.67 × 10−2

and I1–I12 in Table A3 where 
z = 5.0 × 10−2. Once again,
we find that Fig. 11 shows that, for each value of 
z, there is a
critical point that bounds the regime where the instability occurs.
The critical point determines the greatest value of ζ for which the
instability occurs. As we vary 
z we find critical values as fol-
lows: for 
z = 5.0 × 10−2 the critical value is approximately
3.599 × 10−2, for 
z = 6.67 × 10−2 the critical value is approxi-
mately 2.89 × 10−2, and for 
z = 1.0 × 10−1 the critical value is
approximately 1.953 × 10−2. Thus, for fixed Ck increasing the shear
width increases the value below which instability occurs. We note
though that for any given value of ζ for this fixed Ck investigation,
decreasing the width of the shear region makes this instability more
likely to occur. Thus, as was stated earlier for the variable Ck case, if
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the tachocline is narrower than the ratio of magnetic to thermal in-
stabilities would need to be less extreme for this instability to occur.
Further, a narrower tachocline would give rise to a more vigorous
formation of strong structures.

4 C O N C L U S I O N S

To obtain a full understanding of how the large-scale solar dynamo
operates it is vital that we understand what conditions lead to buoy-
ant structures being formed in the tachocline. There are still some
unknowns when we are considering the tachocline region and fur-
ther it is currently impossible to conduct full numerical simulations
at the extreme values of some of the parameters. Therefore, it is im-
portant that we seek to explore how varying different quantities in
the problem affect the formation of structures and to obtain scaling
laws where possible.

In this paper we have presented the results from an investigation
into the double-diffusive magnetic buoyancy instability. We chose to
consider a quasi-two-dimensional model to enable a full exploration
of how varying the key parameters associated with the problem
affected the onset and initial phase of the instability. Our investi-
gation primarily explored how varying the dimensionless thermal
diffusivity, which varied the inverse Roberts number, affected the
onset of the instability. The critical value for the thermal diffusivity
translates into an upper bound on the ratio of magnetic to thermal
diffusivity.

While in the tachocline we know that the ratio of magnetic to
thermal diffusivities will be small, though exactly how small is not
fully known, we still only have an upper bound at the present time
on the thickness of the tachocline. Therefore, part of our research
in this paper examined how the critical threshold value of the ther-
mal diffusivity changed as we varied the width of the shear flow.
We showed that varying the width of the shear flow by itself gives
rise to a lower critical thermal diffusivity value for the onset of the
instability. We have shown that the value of Ck for the instability to
exist is dependent on the width of the shear region and the magni-
tude of the shear flow. Further, we have shown that the maximum
value of the growth rate varies linearly with the width of the shear
flow.

One of the principal motivations for undertaking this reduced
study was to ascertain information that would inform later three-
dimensional investigations to examine the evolution of structures
formed by the double-diffusive instability. Our work has provided
crucial information for such investigations as it has determined what
part of the parameter space is unstable when σCk = 2.5 × 10−6 and
ζCk = 5.0 × 10−6. We have shown that for M = 5.00 × 10−2 the
system is unstable for 
z < 0.1 provided Ck > 1.25 × 10−3.
Further, we have shown that for fixed 
z, increasing M leads
to a more unstable system. These results provide a firm foun-
dation on which later three-dimensional investigations can be
undertaken.

In the latter part of this paper, we discussed the effect of taking the
alternative approach to this problem by varying the ratio of magnetic
diffusivity to thermal diffusivity by altering the magnetic diffusivity.
We showed that while the critical value of ζ , which translates into an
effective value of the magnetic diffusivity, increases as you decrease

the shear flow, for any given magnetic diffusivity (with all other
parameters fixed) as you decrease the width of the shear flow it
becomes increasingly likely that instability will occur.

This work has shown, as anticipated from earlier work, that there
is a critical value for which the double-diffusive instability will
occur. While the diffusive parameters that can be considered nu-
merically are much larger than in the solar tachocline there will be
a critical value of thermal diffusivity, at constant magnetic Prandtl
number, for this instability to occur. Further, this work in vary-
ing the width of the shear flow region has shown that, if the
solar tachocline is thinner than currently predicted, then double-
diffusive magnetic buoyancy instability becomes more plausible
as the ratio of magnetic to thermal diffusivities does not need
to be so small for instability to occur. Once the width of the so-
lar tachocline has been precisely determined, and the value of the
transport coefficients obtained, we will be able to discuss fully if
a double-diffusive magnetic buoyancy instability can exist in the
tachocline.

Also, this work has provided a little insight into the magnetic
buoyancy mechanism in other stars where the shear strength and
width may be very different from the Sun. We have shown that
as the strength of the shear is decreased, there appears to be a
value below which the instability does not occur. This can be ex-
plained by the fact that sufficiently large gradients in the magnetic
field are not being created to give rise to an instability and dif-
fusive spreading of the generated magnetic field dominates. This
would suggest that the presence of a tachocline in other stars would
not be sufficient for magnetic buoyancy and, by current thinking
for the solar cases, insufficient for a large-scale dynamo in other
stars.
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APPENDIX A

Table A1. The parameter values for the cases discussed when varying Ck only.

Prandtl Inverse Dimensionless Maximum velocity Parameter controlling Richardson Instability
number Roberts thermal for the the width number

number diffusivity shear of the shear
σ ζ Ck M 
z Ri

A1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A8 1.43 × 10−3 2.86 × 10−3 1.75 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A9 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A10 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes
A11 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 No

Table A2. The parameter values for the additional cases needed when M is varied.

Prandtl Inverse Dimensionless Maximum velocity Parameter Controlling Richardson Instability
number Roberts thermal for the the width Number

number diffusivity Shear of the shear
σ ζ Ck M 
z Ri

B1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B8 1.43 × 10−3 2.86 × 10−3 1.75 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B9 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B10 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B11 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B12 3.13 × 10−3 6.25 × 10−3 8.00 × 10−4 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B13 4.17 × 10−3 8.33 × 10−3 6.00 × 10−4 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B14 5.00 × 10−3 1.00 × 10−2 5.00 × 10−4 7.50 × 10−2 1.00 × 10−1 1.32 Yes
B15 6.25 × 10−3 1.25 × 10−2 4.00 × 10−4 7.50 × 10−2 1.00 × 10−1 1.32 No

C1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C8 1.43 × 10−3 2.86 × 10−3 1.75 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C9 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C10 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C11 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C12 3.13 × 10−3 6.25 × 10−3 8.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C13 4.17 × 10−3 8.33 × 10−3 6.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C14 5.00 × 10−3 1.00 × 10−2 5.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C15 6.25 × 10−3 1.25 × 10−2 4.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 Yes
C16 8.33 × 10−3 1.67 × 10−2 3.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 No

D1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 9.00 × 10−2 1.00 × 10−1 0.92 Yes

E1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 6.00 × 10−2 1.00 × 10−1 2.06 Yes

F1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 4.00 × 10−2 1.00 × 10−1 4.63 Yes

G1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 3.00 × 10−2 1.00 × 10−1 8.24 Yes
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Table A3. The parameter values for the additional cases required when 
z is varied.

Prandtl Inverse Dimensionless Maximum velocity Parameter controlling Richardson Instability
number Roberts thermal for the the width number

number diffusivity shear of the shear
σ ζ Ck M 
z Ri

H1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H8 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H9 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H10 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H11 2.78 × 10−3 5.56 × 10−3 9.00 × 10−4 5.00 × 10−2 6.67 × 10−2 1.32 Yes
H12 3.13 × 10−3 6.25 × 10−3 8.00 × 10−4 5.00 × 10−2 6.67 × 10−2 1.32 No

I1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I8 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I9 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I10 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I11 2.78 × 10−3 5.56 × 10−3 9.00 × 10−4 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I12 3.13 × 10−3 6.25 × 10−3 8.00 × 10−4 5.00 × 10−2 5.00 × 10−2 0.74 Yes
I13 3.57 × 10−3 7.14 × 10−3 7.00 × 10−4 5.00 × 10−2 5.00 × 10−2 0.74 No

J1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 1.20 × 10−1 4.27 Yes
J2 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 1.20 × 10−1 4.27 Yes

K1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 8.00 × 10−2 1.90 Yes
K2 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 8.00 × 10−2 1.90 Yes

L1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 4.00 × 10−2 0.48 Yes
L2 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 4.00 × 10−2 0.48 Yes

M1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 3.33 × 10−2 0.33 Yes
M2 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 3.33 × 10−2 0.33 Yes

This paper has been typeset from a TEX/LATEX file prepared by the author.
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