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ABSTRACT 

In recent years an increase in the groundwater level in the basal aquifer 
beneath London has been observed. The result of this water level rise, 
if it were to reach equilibrium levels of two centuries ago, would be to 
cause a reduction in effective stress levels in the founding strata 
beneath London. The effect that such an increase in pore pressure would 
have on foundations in overconsolidated clay was investigated. 

The performance of foundations in stiff clay during a rising ground water 
event was investigated by means of centrifuge model tests. The model 
tests included comparisons of the behaviour of bored piles with different 
factors of safety on load, piles with different length to base diameter 
ratios, comparison of shallow and deep foundation behaviour and the 
effect of different initial pore pressure distributions. In two tests 
piezocone tests were carried out in low and high pore water pressure 
regimes. Triaxial testing and numerical analyses were used to provide 
information for use in analysis of the centrifuge test results. 

The main findings of the project were: 

The geometry of a pile foundation (slender or under-reamed) and the 
manner by which load is transferred from pile to soil were seen to effect 
pile settlement relative to the ground surface during a rising 
groundwater event. Piles which require mobilisation of end bearing 
resistance at working loads will typically settle more than predominantly 
friction piles of the same length. 

For similar geometry piles the initial factor of safety will effect 
settlement during a rising groundwater event. Piles with lower initial 
factors of safety settle more than those with higher initial factors of 
safety during a rising groundwater event. 

Differential settlements between shallow and deep foundations were almost 
entirely due to the deep foundation settlement relative to the heaving 
ground surface where there was a surface perched water table. Where 
there was no perched surface water both shallow and deep foundations 
settled relative to the surface. Soil heave, in this latter case, was 
largely due to the high percentage loss in vertical effective stress near 
the surface compared to the case where a perched water table existed. 

Piled foundation load capacity was seen to reduce as a result of a rising 
groundwater event. Base capacity, measured under largely drained 
conditions, was seen to be linearly related to the mean normal effective 
stress in the ground as was cone end resistance of piezocone tests 
carried out a slow penetration rates. The piezocone tests also showed 
that the percentage loss in drained end bearing resistance was larger 
that the loss in undrained resistance. 

Finite element analyses investigated pile installation effects for model 
and prototype piles and the effect that they have on pile behaviour 
during a rising groundwater event. The results have shown that, on a 
smooth pile surface, the prototype piles will suffer a larger percentage 
reduction in shaft capacity than the model piles. The analyses were 
valuable for assessing the applicability of the centrifuge model data to 
prototype situations. 

17 



LIST OF SYMBOLS Units 

a Centrifuge acceleration m/s2 

a Piezocone area ratio - 

co True cohesion kN/m2 

db Pile base diameter mm or m 

g Earth's gravitational acceleration m/s2 

k Coefficient of permeability m/s 

1 Length mm or m 

n Centrifuge model scale factor 

p' Mean normal effective stress kN/m2 

Pb Pile base load N 

P., Intercept of state boundary surface with p' axis in 

q- p' space kN/m2 

pi Pile shaft - soil interface load N 

pN Foundation working load N 

q Deviator stress kN/m2 

qb Pile base stress kN/m2 

qc Measured cone resistance kN/m2 

qn Corrected cone resistance (qt - at) kN/m2 

q. Pile shaft - soil interface stress kN/m2 

qt Cone resistance corrected for ppt cavity kN/m2 

r Centrifuge model radius m 

rm Radius from pile shaft at which settlements 

become negligible mm or m 

ro Pile shaft radius mm or m 

u Pore water pressure kN/m2 

v Specific volume - 

A Area 

Bq Pore pressure coefficient 
E Young's modulus 
FOS Factor of safety on ultimate load 

G Shear modulus 

Go Shear modulus at very small strain 

H Depth 

Ir Influence factor in pile settlement calculation 

mm2 or m2 

kN/mz 

kN/m2 

kN/m2 

m 

18 



K Factor in pile settlement calculation 

K' Drained bulk modulus 

K. Earth pressure coefficient at rest- 

Krnc Earth pressure coefficient at rest in normally 

consolidated state 

Kor Earth pressure coefficient at rest during reloading 

Kn'ý Earth pressure coefficient at rest during unloading 

Kp Earth pressure coefficient at passive failure 

K, Earth pressure coefficient at pile shaft (a=/a, ) 

M Stress ratio at critical state (q/p') 

M. Flexibility factor in pile shaft settlement calculation 

Nc Bearing capacity factor on cohesion 
Nk Cone factor on undrained strength 

No Specific volume intercept of one dimensional compression 

line at p'-lkN/m2 

Nq Bearing capacity factor on a"' 
Nq* Bearing capacity factor on p' 
Pb Ultimate pile base load 

Ps Ultimate pile shaft - soil interface load 

PI Plasticity index 

Qb Ultimate pile base stress 
Q. Ultimate pile shaft - soil interface stress 
R Overconsolidation ratio in vertical effective terms 

R, 
= Maximum previous overconsolidation ratio (R) 

Su Undrained shear strength 
Sub Undrained shear strength at pile base 

kN/m2 

N 

N 

kN/m2 

kN/m2 

kN/m2 

kN/m2 

a Undrained pile shaft adhesion factor - 

ß Drained pile shaft friction factor - 

r Intercept of Critical State Line with p'-lkN/m2 in 

v- In p' space - 

ry Unit weight kN/m3 

d Pile shaft-soil interface friction angle deg 

Strain - 

Stress ratio (q/p') - 

X Slope of swelling line in v- Lnp' space - 

r Slope of swelling line in Lnv - Lnp' space 
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ASlope of CSL in Lnv - Lnp' space 

v Poisson's ratio - 

p Settlement mm 

r, Shear stress at pile shaft kN/m2 

Friction angle deg 

Residual friction angle deg 

a Stress kN/m2 

a, t Vertical total stress at reference' level kN/m2 

w Angular velocity of centrifuge radians/s 

SUPERSCRIPTS 

p Plastic 

Effective 

SUBSCRIPTS 

ave Average 

b Pile base 

cv Critical state or Constant volume 
h Horizontal 

m Model 

o Background reading 

p Prototype 

v Volumetric 

v Vertical 

r Radial 

s Pile shaft 

t Total 

ult Ultimate 

0 Hoop 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

During the past two centuries man's impact on the environment has been 

enormous. Industrialisation has led to ever increasing requirements of 

raw materials for both public and private needs. Materials such as 

fossil fuels, ores and water are recovered directly from the Earth. In 

this project the effects of water extraction are of major interest. 

During, and following the period of the industrial revolution in the 

United Kingdom, man's requirement for water has increased due to 

increasing population (almost double in the past one hundred years) and 

due to the increased amount of water used per capita (Shaw, 1983). In 

the London area the requirements for water have contributed to a major 

reduction in the deep groundwater level through pumping from wells in the 

basal aquifer approximately 30m below ground level. In recent years the 

altered local extraction rates have led to a rise in water level back 

towards the pre 1800's level. The effect that this type of rising 

groundwater event has on foundation behaviour is being examined in this 

project. 

The main motivation for carrying out the research project clearly lies 

in the current situation in London. However, the findings are 

appropriate to other industrial cities and to the general problems of 

foundation behaviour with changing water pressures. 

1.1.1 Historical background in London 

In London, a significant contribution to the water supply has been 

through extraction of groundwater from the deep aquifers beneath the city 

during the past two hundred years. Water was obtained by sinking wells 

through the impermeable London Clay and Woolwich and Reading Clay layers 

into the underlying Basal Sands and Chalk layers. The first record of 

wells tapping the groundwater from the deep aquifer is in the late 

eighteenth century (Simpson et al., 1989). Initially the wells in 

central London close to the River Thames were artesian. During the 
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following 140 years, until about the time of the Second World War, water 

extraction from the deep aquifer increased causing a considerable 

lowering of the piezometric level of the groundwater. In the area around 

Trafalgar Square the piezometric level was reduced by over 95m from its 

pre 1800's level. A schematic of the groundwater levels is shown in 

Figure 1.1. 

From the 1940's onwards the multiple effects of well damage due to 

bombing in the war, improved road and electronic communications removing 

the need for industry to be located in cities (Martin and Rowthorn, 1986) 

and licensing controls introduced with the 1945 Water Act (Simpson et 

al., 1989) have resulted in a reduction of water extraction from the deep 

aquifer beneath London. This has led to a gradual increase in the 

piezometric level in the aquifer from its low level of the 1950's. The 

piezometric level beneath central London (Trafalgar Square) was at -61mOD 
in 1987 and rising at a rate of approximately 0.8m/year; near Liverpool 

Street the level was rising at 1.5m/year., More recent results (Nuttall, 

1994) show that, in certain areas, the rate of water level recovery is 

2.0m/year. Though a political decision has not yet been made, there is 

a likelihood that lost or unused wells will be re-opened to halt the rise 

in water table level beneath London (Nuttall, 1994) 

1.1.2 Ground conditions and foundations 

The area occupied by London is located in a synclinal fold running in an 

almost east-west direction, with the River Thames in a central position. 

In the central London area the geological succession shows a Tertiary 

clay cap (London Clay and Woolwich and Reading Clay) overlying sand 

layers (Woolwich and Reading sand and Thanet sand) which in turn overly 

a great depth of Chalk as shown in Figure 1.2. To the north and south 

the chalk layer rises upwards and outcrops some distance from central 
London. 

The reduction in groundwater level in the Basal sands and Chalk aquifer 

mentioned in section 1.1.1 above, between approximately 1800 and 1950 

(Simpson et al., 1989), has led to under drainage of the overlying clay 
layers causing a significant drop in pore water pressure in these 
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deposits with a corresponding increase in effective stress. The perched 

water table in made ground and terrace gravel layers at the top of the 

London Clay is supplied by surface recharge (precipitation and leaking 

water mains and sewers etc) and has maintained a continual downward 

seepage creating a non hydrostatic pore pressure distribution between the 

upper and lower aquifer as shown in Figure 1.3. 

More recently the groundwater level in the deep aquifer has begun to 

recover to pre 1800 levels. A continued increase in groundwater level, 

first noted in around 1970 will lead to a significant reduction in 

effective stress resulting in swelling and a loss in strength in the clay 

and underlying layers. If the groundwater level in the deep aquifer 

reaches the pre 1800 level where it intersected the ground surface there 

may also be flooding of fill and shallow quaternary deposits. The 

potential reductions in effective stress were not considered for 

foundations designed prior to the early 1980's. It is believed that the 

effect of the increase in pore water pressure on foundations will depend 

on the type and depth of the foundation. 

In very simple terms foundations can be classified by their depth of 

penetration into the ground and by their method of load transfer from 

foundation to soil. In London, shallow' foundations may be located in 

deposits above the London Clay where the water level is dominated by the 

surface water table. In such circumstances, the foundations are unlikely 

to experience distress due to the increase in pore water pressure in the 

underlying clay layers. There may be some problems if the deep water 

table becomes artesian as was the case in some areas two centuries ago. 

In contrast deep foundations, which extend to near the base of the London 

Clay or the Woolwich and Reading Clay, may experience the detrimental 

effects due to a rising pore water pressure of settlement relative to the 

ground surface and loss of load bearing capacity in the next 25 to 35 

years as water levels return almost to their original levels (Simpson et 

al. 1989). The mix of foundations (eg. combining deep under-reamed piles 

with shallow surface pads) used for a structure will dictate the overall 

behaviour of the building (Simpson et al. 1989). 
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1.2 Modelling of foundation behaviour in soil with rising pore 

pressures 

1.2.1 Physical modelling 

Modelling of foundations at realistic stress levels has been widely 

carried out using downward hydraulic gradient techniques (Zelikson, 

1969), miniature element studies in pressurised cells (Chandler and 

Martins, 1982; Anderson et al., 1985) and on geotechnical centrifuges 

(Craig, 1985). The uses of downward hydraulic gradient and centrifuge 

techniques allow variation of effective stress with depth in the model 

ground thus allowing scaled model tests of the whole foundation to be 

performed. Use of pressurised cells at constant stress with depth allows 

investigation of specific aspects of a soil-interaction problem. In this 

project the behaviour of both shallow and deep bored (replacement) 

foundations has been modelled using centrifuge testing techniques. The 

behaviour of soil with changing pore pressures has been investigated 

using single element testing in a triaxial stress path cell. 

Centrifuge modelling: 

A series of centrifuge tests has been undertaken to examine bored 

foundation behaviour in stiff clay with increasing pore pressures. 

During a test the model is allowed to come into pore water pressure 

equilibrium after spin-up of the centrifuge to the required test speed. 

Foundations are then loaded, this may or may not include loading to 

failure followed by unloading to working loads, prior to the increase of 

groundwater level at the base of the model. When swelling has finished 

further foundation load tests are carried out. The tests have used a 

variety of foundation geometries modelling shallow foundations, under- 

reamed piles and straight shafted piles with two different diameters to 

assess the behaviour of different foundation types. Factors of safety 

on load have been also been varied to assess the effect that this has on 
foundation settlement. Finally two different initial pore pressure 
distributions were used prior to groundwater level rise; one where there 

was negative pore pressure at the clay surface in hydrostatic equilibrium 

with the deep water table; the other had a surface perched water table 
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with downward seepage through the clay to the deep water table. During 

the tests preconsolidation pressure, model soil type, clay depth and pile 

depth have been kept constant during most of the model tests. The tests 

are a continuation and elaboration of those carried out by 

Andersen (1990). 

Triaxial testing: 

A limited number of triaxial tests were carried out in a Bishop and 

Wesley cell to obtain soil parameters and to assess soil behaviour during 

one dimensional consolidation, swelling and pore pressure change. The 

data demonstrate far field stress changes that occur during a rising 

groundwater event and have provided parameters for use in numerical 

modelling. 

1.2.2 Numerical modelling 

Finite element modelling and more simple hand analyses have been carried 

out to assess the centrifuge test results and to investigate other 
factors that have not been examined in the centrifuge tests. 

Finite element method analyses: 

Initial finite element calculations were carried out to compare the model 

pile installation process with that of a prototype pile to assess 

differences in behaviour that might occur during a rising groundwater 

event. After pile installation a rising groundwater level event was 

initiated. A second set of analyses was carried out which isolated the 

behaviour of a pile shaft after pile installation during a rising 

groundwater event. Finally a series of analyses was carried out of a 

wished-in-place pile behaviour during a rising groundwater event. 

Hand calculations: 

A set of calculations using existing soil and soil-foundation interaction 

models has been carried out and compared with the centrifuge test 
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results. The model that was used provided a relatively easy method to 

assess foundation behaviour during rising groundwater events. 

1.3 Objectives of the research 

From the previous sections in this chapter it is clear that qualitatively 

the effects of a rising groundwater level on foundations are understood: 

o Foundations will settle relative to the ground surface as the 

effective stresses reduce; 

o Foundations will suffer a loss in load carrying capacity as the 

effective stresses reduce. 

However, quantitatively the effects are not fully known and it is this 

aspect that has been examined in this project. Consequently, the 

research objectives were identified as: 

o Develop centrifuge testing procedures and models to provide data 

on the effects of a rising groundwater level on foundations; 

o Assess the effects of geometry and factor of safety on foundation 

settlement and the loss of load carrying capacity during a rising 

groundwater event; 

o Carry out numerical analyses of the tests to assess the suitability 

of numerical procedures for analysis of this problem; 

1.4 Outline of the thesis 

The thesis has a further six chapters as follows: 

Chapter 2: 
Chapter 2 has three main sections covering a literature review of: 

foundation design and behaviour; in-situ soil stresses; and the effect 

of pore water pressures on foundation behaviour. In each section the 

current theories and empirical relationships, relevant to this project, 

are evaluated. Attention is given to the topics which have proved most 

problematic in the analyses presented ih the subsequent chapters. The 

chapter finishes with a proposed method for assessment of foundation 
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settlement during a rising groundwater event using the topics reviewed 

in the previous three sections. 

Chapter 3: 

Chapter 3 has two main parts. Firstly the soil models used in the finite 

element modelling of the foundations in a rising groundwater environment 

are presented. Secondly results from the triaxial tests on Speswhite 

Kaolin under one dimensional conditions are presented. The results from 

the tests have also provided parameters for use in the numerical 

modelling presented in Chapter 6. 

Chapter 4: 

In Chapter 4 the geotechnical centrifuge testing technique and its 

relevance to modelling foundations in a rising groundwater environment 

are summarised. The equipment used in the tests is described and any 

shortcomings in the testing procedure are discussed. 

Chapter 5: 
The centrifuge test results are presented in Chapter 5. Firstly, typical 

model behaviour is presented from starting to stopping the centrifuge so 

that the general behaviour of the model foundations can be understood. 

A centrifuge test using in-flight site investigation techniques is then 

presented. Foundation load behaviour is reviewed prior to presenting 

typical foundation behaviour during a rising groundwater event. The 

chapter finishes with an assessment of loss of foundation load capacity 

due to a rising groundwater event and a summary of the main findings. 

Chapter 6: 
Comparisons were made between prototype and centrifuge model situations 

during pile installation. The behaviour of the installed piles was then 

investigated during simulated rising groundwater events. The finite 

element section of the chapter concludes with an assessment of wished-in- 

place pile behaviour during a rising groundwater event. The chapter 

finishes with an assessment of pile behaviour during a rising groundwater 

event using a non-computer based method. 

27 



Chapter 7: 

Chapter 7 summarises the main findings of this research project and 

proposes additional areas where further research could be carried out. 

Appendix A: 

A brief description of each centrifuge model test undertaken including 

the main test results during the rising groundwater event is given in 

Appendix A. 

Appendix B: 

A sample "by hand" calculation of centrifuge model settlement during a 

rising groundwater event is included in Appendix B. The method adopted 

allowed a relative simple procedure to be used for prediction of pile 

settlement. 

1.5 Sumary 

In this introductory chapter the events leading up to the reduction in 

groundwater level in the deep aquifer and the underdrainage of the 

overlying clay layers resulting in depressed pore water pressures have 

been described. A brief description of the qualitative effects of loss 

in load bearing capacity, settlement relative to the ground level and 

differential settlement between varying types of foundation resulting 

from an increase in groundwater level in the deep aquifer was presented. 

The investigative methods of centrifuge testing, triaxial testing and 

numerical analysis, used in the project were discussed. An outline of 

the thesis with brief comments on the following six chapters and two 

appendices was given. 
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CHAPTER 2 LITERATURE REVIEW 

The main phenomena which govern the behaviour of non-displacement 

foundations situated in clay when subjected to rising pore water 

pressures are considered. To understand the problem the behaviour of the 

soil and its interaction with foundations must be examined. Thus the 

following topics are reviewed in this chapter: 

In section 2.1 the behaviour of deep (and shallow) foundations are 

reviewed in terms of load carrying capacity and load displacement 

response. 

In section 2.2 the changes in stress that occur in a soil body, free from 

foundation loads, during deposition, erosion of overlying layers and 

variations in ground water level have been reviewed. Reductions in 

vertical effective stress and the consequential lowering of horizontal 

effective stress have a direct influence on both foundation load capacity 

and subsequent foundation settlement during a rising groundwater event. 

In section 2.3 case histories involving, foundation behaviour in a soil 

with changing pore water pressures are reviewed. 

Section 2.4 uses the information presented in the previous sections and 

suggests how foundation settlement during a rising groundwater event 

might be calculated using existing inexpensive techniques. 

2.1 Deep and shallow foundation design and behaviour 

In this project foundations are differentiated by their formation depth 

below ground level and their method of load transfer to the soil. 
Shallow foundations are assumed to mobilise no side resistance to 

vertical loading. Piles are subdivided into predominantly friction piles 
and those mobilising significant end bearing as well as full shaft 
friction at working load. 

The manner in which the shaft and the base of a pile transfer load to the 

soil is very different and will be considered independently for 
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calculation of ultimate load carrying capacity but will, by necessity, 

be drawn together when considering the overall load-displacement response 

of a pile. 

The notation adopted for pile shaft - soil interface and base stresses 
and loads (with subscripts 's' for shaft and 'b' for base) is: 

q- Mobilised stress (kN/m2) 

Q- Ultimate stress (kN/m2) 

p- Mobilised load (N) 

P- Ultimate load (N) 

2.1.1 Ultimate load capacity of piles 

The ultimate load of a pile can be defined as either the load at which 

settlement continues to increase without further additional loading or 
the load which causes a settlement of 10% of the foundation base diameter 

(Fleming et al., 1992). Burland et al. (1966) point out that the latter 

category is likely to be the controlling factor for end bearing 

resistance (not for pile shaft resistance) for most soil conditions. The 

definition is likely to give a lower limit to ultimate load capacity as 
it is likely that only localised yielding will have occurred. In this 

project the failure load has been deemed to be the load, during a 

constant rate of loading (CRL) test, which gives a settlement of 10% pile 

base diameter. The rate of loading used'in the centrifuge tests, while 

not slow enough to provide fully drained conditions, was sufficiently 

slow to create largely drained loading conditions. 

2.1.1.1 Pile shaft capacity 

Until recently the shaft capacity of piles in clay was calculated in 

terms of undrained strength (Su) measured from quick undrained triaxial 

tests on undisturbed samples and an empirical adhesion factor (a) back 

calculated from pile tests: 

Q. -a Su (2.1) 

The value of empirical adhesion factor 'a' depends on the strength, 
stiffness and plasticity of the clay. For a normally consolidated 
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deposit a value of a-1 is typical but for overconsolidated or stiff 

clay a value of a<0.5 would be common. 

More recently researchers have shown that shaft friction can be 

calculated using effective stress terms Burland (1973). The shaft 

capacity is related to a parameter 'ß' and the vertical effective stress 

(a�'). The parameter 'ß' is a function of the horizontal to vertical 

effective stress ratio at the pile shaft (Ks) and the angle of friction 

between the shaft and the clay (6). Any true cohesion (c') within the 

soil is assumed to have been reduced to zero along the shaft due to 

remoulding of the shaft surface during bore excavation. The shaft 

capacity at any point can be calculated using: 

Qs 
- Ks . av. tanb - ß. a;, ( 2.2) 

or 

Q: hat il,, tans ( 2.3 ) 

The choice of values of K. (-ab/a., ) and d has been well documented, for 

example Chandler and Martins (1982), Anderson et al. (1985), Burland and 
Twine (1988) and Poulos (1989) and using numerical analyses by Potts and 

Martins (1982). 

For bored piles K, is assumed to have a maximum value equal to the 

coefficient of earth pressure at rest in the ground before the pile was 

installed. However, due to stress relief during pile construction and 

possible concrete shrinkage it is unlikely that the initial KO will apply 

at the pile shaft. Lopes (1979) showed schematically the change in 

horizontal (radial) stress and pore water pressure around a bored pile 

prior to loading. Figure 2.1 shows a reduction in pore water pressure 

and total horizontal stress during shaft excavation (lines 2). During 

concrete placement and setting and subsequent consolidation the pore 

water pressure gradually returns to previous equilibrium values, while 

the total horizontal stress at the pile shaft does not similarly recover 

back to previous levels (lines 3 and 4). Chandler and Martins (1982) 

proposed that for piles in highly overconsolidated clay (which dilates 

during shearing) the loss in radial stress during pile installation is 

somewhat compensated for by the increase in radial stress during loading, 
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resulting in reestablishment of initial, pre-installation, horizontal 

effective stresses along the pile shaft. 

Possible values of Ka for bored piles in stiff clay have been summarised 

by Poulos (1989) as being the lower of K. or 0.5(1 + K5) or in the range 

of 2/31(5 to K. showing a large degree of uncertainty for design purposes. 

The value of b is not known and will depend on the clay and on the 

condition on the soil-foundation interface. The value of 6 is likely to 

lie between the angle of friction of the remoulded soil (s ,) and the 

residual angle of friction (¢_). If there is continuous smearing of the 

pile shaft during excavation or large displacements between the pile 

shaft and soil the value of 6 will tend towards 4_. 

Anderson et al. (1985) demonstrated, using a single element model of a 
bored pile shaft in overconsolidated clay, that the reduction in K, 

resulting from shaft excavation and pile placement is largely recovered 

over a period of time. Tests in a carefully controlled environment 

demonstrated that K, recovered to about 90% of KO over a period of seven 

days (model scale, no scale factors were given) for soils with an 

overconsolidation ratio of five or higher. The final measured value of 

K. did not appear to be affected by a delay between shaft excavation and 

concrete placement although such delays' could result in K, recovering 

more slowly. The friction angle at the shaft interface measured in model 

pile load tests was close to the residual angle of friction as measured 

in a ring shear apparatus (For Speswhite Kaolin in an overconsolidated 

state 4= was measured as 11°). K. values measured in the clay body were 

close to those predicted by Wroth (1975). The model piles incorporated 

a total radial pressure transducer and a pore pressure transducer on the 

pile shaft from which the horizontal effective stress acting on the shaft 

was deduced. The clay body was instrumented with total earth pressure 

and pore water pressure transducers. 

Twine (1987) and Burland and Twine (1988) used back analyses of prototype 

scale bored pile tests in stiff clays to demonstrate that a lower bound 

value of shaft capacity, measured in maintained load tests, can be 

calculated using the residual angle of friction (0i) and the coefficient 
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of earth pressure at rest (K. ). A literature review carried out by Patel 

(1991) confirmed these findings concluding that a pile shaft to soil 

interface angle of friction of 0= or slightly higher linked with the 

initial K. gives a realistic lower limit to bored pile shaft capacity. 

Q s conservative - K,. av. tanor 

2.1.1.2 Pile base capacity 

(2.4) 

In contrast to shaft capacity, the base capacity for non displacement 
foundations in stiff clay is often calcul#ted in terms of undrained shear 

strength. 

For circular footings the bearing capacity is: 

Qb - s,. d,. N,. S,., b + ry. H (2.5) 

Where Nc - bearing capacity for surface strip foundation 

applied to Ste, 

sc - shape factor applied to N, 

do - depth factor applied to N, 

Sub - undrained strength at the foundation base 

ry. H - is often compensated for by the pile self weight 

and therefore ignored. 

The product of sdc. Nc is approximately 9.0 for circular footings where 

the depth exceeds four base diameters (Skempton, 1959). In principle the 

reduction in pile base bearing capacity during a rising groundwater event 

could be assessed by calculating the reduction in available S, at any 

particular stage. 

In general, base capacity for piles has not been considered in terms of 
effective stress because (Fleming et al., 1992): 

o deformation required to mobilize full drained capacity would, in 

most circumstances, exceed allowable structural movements; 

o there must be sufficient short and intermediate term pile base 

capacity to prevent early failure. 
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However, during a rising groundwater event pile base behaviour should be 

considered in effective stress terms. It is therefore necessary to 

calculate ultimate end bearing capacity using drained bearing capacity 

parameters. If, as recommended by Poulos and Davis (1980), the soil is 

assumed to have zero true cohesion (c' - o) and the influence of the 

weight of the soil beneath the pile base is ignored then: 

/ Qb - Nq. uvb 

where ovb 

Nq 

(2.6) 

vertical effective stress at pile base level 

(see comments in section 2.3.2) 

bearing capacity factor on vertical effective 

stress. 

More recent research by Troughton and Platis (1989) suggested that, for 

piles in sand, drained bearing capacity should be related to the mean 

normal effective stress (p') and not a'. A full review of the work by 

Troughton and Platis is included in section 2.3.3. 

There is a degree of uncertainty for the, value of N. for soils with low 
friction angles. However, for comparison of the percentage change in 

drained pile base capacity before and after a rising groundwater event 
the actual value is not essential. 

2.1.2 Pile settlements 

Skempton (1959) drew the following conclusions concerning settlement from 

a series of pile load tests in London Clay: 

o settlement at ultimate load is approximately 8.5% (1 inch in a 

foot) of pile base diameter; 

o the shaft adhesion is fully mobilised at smaller settlements than 
the base resistance. 

2.1.2.1 Shaft load displacement response 

Analysis of pile tests carried out by Whitaker and Cooke (1966) show that 

pile shaft frictional resistance develops rapidly with settlement and is 

34 



generally fully mobilised when settlement has reached 0.5% of the pile 

shaft diameter (Burland and Cooke, 1974). 

The shaft transfers load to the surrounding soil by means of shear 

stresses, which decrease in magnitude inversely with distance from the 

pile (Fleming et al., 1992). Changes in mean stress even close to the 

pile are relatively small resulting in small deflections (Poulos, 1989). 

Fleming et al. (1992) presented an expression for pile shaft settlement 
due to shaft friction assuming the soil to be linearly elastic. All 

settlement was assumed to be as a direct result of shear strains: 

p_ - '6 -rr-_ T 

where pa 

Pa 

1 

Gava 

rm 

ro 

ý 

Ps ln rm 
r 

a 
27r ._ 
L 7f 1 . V. 

(2.7) 

Shaft settlement 
Load carried by pile shaft -soil interface 

Shaft length 

Mean shear modulus of soil along pile shaft 

Radius from pile at which strains become 

negligible =2.51(1-v) (Randolph and Wroth, 

1978). 

Pile radius. 

2.1.2.2 Base load displacement response 

In contrast to the shaft load displacement response the base load 

displacement response requires relatively large displacements (10% of 

pile base diameter or larger) to mobilise ultimate capacity fully. The 

base load-displacement response was non-linear especially when loads 

exceeded 1/3 ultimate base capacity (Burland and Cooke, 1974). 

The calculation of settlement approaching ultimate capacity has not 
received much attention. For most structures these movements would be 

unacceptable. 

Some work has been carried out in calculating pile base settlements under 
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typical working stresses. Many of the published formulae (Burland et 

al., 1966; Burland and Cooke, 1974; Fleming, 1992) although presented 

in differing formats are traceable to the Boussinesq solution for 

stresses, strains and displacements within an isotropic elastic half- 

space resulting from a point vertical surface load; 

qb. db(l-YZ) I - ý_. Pb p 

where Pb 

db 

qb 

Eb 

Ip 

(2.8) 

Pile base settlement; 

Pile base diameter; 

Pile base stress; 

Young's modulus of soil at pile base; 

Influence factor - 0.5 for a uniform circular 

load at great depth. 

In the method presented by Burland et al. (1966) the results from pile 
tests were back analyzed to allow pile settlements to be calculated on 

a site specific basis. The analysis is valid for base loads less than 
30 percent of the ultimate base load where the load displacement response 

could be assumed linear: 

Pb K. ý (2.9) 

K is a factor related to plate settlement on an elastic material back- 

calculated from plate load tests (a conservative value for London Clay 

is K-0.02). Thus to mobilise 30 percent of the ultimate base 

resistance a settlement of approximately 0.6% base diameter would be 

required, at which point it is likely that full shaft capacity will have 

been mobilised (especially for end bearing piles in clay where the pile 

base diameter is often enlarged). 

2.1.2.3 Composite pile settlement 

Fleming (1992) derived a pile settlement analysis using a composite 

approach incorporating both pile shaft and base components with elastic 

soil parameters and ultimate loads to describe the total pile response 

to maintained loading. The method uses a hyperbolic function as 
described by Chin (1972) to assess the ultimate pile shaft or base 
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capacity from the pile response to loading as defined in Figure 2.2; the 

offset K was used by Chin in defining the ultimate pile load from a 

hyperbolic load-displacement curve. The hyperbolic function is compared 

to an elastic solution for shaft or base settlement (similar to Eqns. 2.7 

and 2.8 respectively) resulting in an expression for pile behaviour from 

negligible load to near failure. Eqns. 2.10 and 2.11 are typical 

expressions for base and shaft settlement calculations. 

Pile base response: 

Pb - 

where Pb 

Pb 

Pb 

E25 

db 

Pile shaft response: 

0.6 Pb Pb 
25 b" b-Pb 

(2.10) 

Pile base settlement 
Ultimate pile base load as defined by Chin 

(1972) at which load displacement is infinite 

Pile base load 

Young's modulus at 25% of base failure stress 
Pile base diameter. 

ps - 
Mg d, Ps 

-r. -p- 
(2.11) 

where ps - Pile shaft settlement. 

ps - Pile shaft load 

ds - Pile shaft diameter 
Ps - Ultimate pile shaft load as in by Chin (1972) 

M. - Flexibility factor representing pile settlement 

caused by shaft friction 

ra 

ava 

S- ln(rm/r, ) (see Eqn. 2.7) 

G, ve - Average soil shear modulus over length of pile 

r, - Average shear stress at shaft to soil interface. 

This approach, whilst using only one elastic parameter to describe either 
the base (E25) or the shaft (G.. ) settlement response to loading gives a 
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non-linear response representative of prototype pile behaviour. As 

either (Pb-pb) or (P, -p3) become smaller so displacements become larger 

in a hyperbolic manner. By assuming that Pb - ps an expression for 

settlement of the whole pile can be derived. The pile settlement 

response to loading can be expanded, to incorporate elastic pile 

shortening. 

2.1.3 Shallow footing load capacity 

The calculation of shallow footing load capacity in stiff clay, as with 

pile base capacity, is usually carried using the undrained strength. The 

product of the bearing capacity factor N, and the shape and depth factors 

sc and do in Eqn. 2.5 is 6.2 for a shallow circular footing and 5.1 for 

a strip footing at the ground surface (Skempton, 1951) and as shown in 

Figure 2.3. 

2.1.4 Shallow footing settlement 

The settlement of shallow footings follows closely that of base 

settlement of a pile described in section 2.1.2.2. The only difference 

that occurs between the settlement of the pile base and a shallow footing 

is due to the influence of the formation level. 

The recent advent of cheap computing facilities has allowed more complex 

soil models to be used in settlement calculations (Padfield and Sharrock, 

1983). The more accurate models include anisotropic elastic solutions 

and constitutive soil models. Examples of the latter are described in 

Chapter 3 and used in finite element analyses in Chapter 6 for analysis 

of pile behaviour during a rising groundwater event. 

2.2 In-situ soil stresses 

In section 2.1.1 it was shown that pile shaft load capacity is directly 

related to the horizontal effective stress magnitude, whilst in section 

2.1.2 a settlement calculation using a failure load was presented. It 

is therefore necessary to understand the stress changes that occur within 

the soil body during a rising groundwater event to allow predictions of 
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foundation behaviour (load-displacement response) to be made. 

The formation of an over-consolidated clay deposit commences with the 

deposition of a normally consolidated clay layer. This is followed by 

the removal of overlying deposits. All changes in vertical overburden 

stress are assumed to occur with zero horizontal strain. 

During the processes of overburden increase and decrease the vertical and 

horizontal stresses (a,, ah) are continuously changing. The horizontal 

effective stress is stress history dependant and is calculated from the 

coefficient of earth pressure at rest (K, ) and the vertical effective 

stress: 

ah - Ko. a/ v 

2.2.1 Initial one dimensional loading 

(2.12) 

On initial one dimensional loading the horizontal effective stress 

increases linearly with the vertical effective stress. Jaky derived an 

equation for K, 
mc (the coefficient of earth pressure at rest for a 

normally consolidated deposit) which is commonly used in approximate form 

as (See Mayne and Kulhawy, 1982): 

Kcno -1-s in0l 

2.2.2 One dimensional unloading 

(2.13) 

Brooker and Ireland (1965) found that when a normally consolidated 

deposit is unloaded the ratio of oh/o,, changes. They also found that 

K,,, (coefficient of earth pressure during unloading from a normally 

consolidated state) was dependent on stress history as well as 0'. 

Mayne and Kulhawy (1982), who complied data from over 170 different soils 

suggested that: 

(2.14) 
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where R- overconsolidation ratio in terms of vertical 

effective stress 

K,. is often assumed to have an upper limit equal to the coefficient of 

passive earth pressure (K. ). When passive failure is reached the 

coefficient of passive earth pressure is often limited to: 

K. - 
(1+sin 0ý�) 

r (1-sin ýcv) 

where 0.1 

(2.15) 

effective angle of friction at constant volume 

shearing. 

However due to dilatant effects values of 1( in excess of Kp as defined 

in Eqn. 2.14 may be encountered at high overconsolidation ratios. 

Al-Tabbaa (1987) investigated the behaviour of Speswhite Kaolin using a 

instrumented oedometer and found that: 

Ko - 0.69R0.46 (2.16) 

Wroth (1975) recognised that the initial slope of the unloading curve in 

stress space was approximately constant. Using Poisson's ratio (v') and 

Hooke's Law the following equation was derived for lightly 

overconsolidated soil: 

ýu ' Kone. - 1'r7 . iR-1) (2.17) 

A1-Tabbaa (1987) measured Poisson's ratio (v') for Speswhite Kaolin to 

be 0.3±0.05. 

2.2.3 One dimensional reloading 

On reloading Mayne and Kulhawy (1982) noticed that the change in ob' was 

less than a,, '. With the limited data they had available the following 

empirical relationship between Ohl and a, ' on reloading was found 

(assuming that the passive failure line had not been reached at any time 

in the soil's stress history): 
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lR( Kor - (1-sin ý). +0.75(R ý-1I 
2.18) 

ý( laýsiA I) 

where 

ý 
vmu 

', ax T 
Qv in 

9. the maximum overconsolidation ratio the soil has 

been submitted to i. e. 

(2.19) 

Eqn. 2.17 simplifies to Eqn. 2.13 for initial unloading and Eqn. 2.12 for 

a normally consolidated deposit. 

Burland and Hancock (1977) assumed that on loading the soil is initially 

behaving in an elastic manner. Wroth (1975) suggested that on reloading 

the slope of change in horizontal effective stress to the change in 

vertical effective stress is similar to that of the initial unloading 

slope where the soil is behaving elastically. The elastic relationship 

between change in horizontal stress with change in vertical stress is 

given by: 

Aoh - Aoý .V1 T l, v 
(2.20) 

2.2.4 Earth pressure and changing pore water pressure 

The effect of reducing pore pressures in a deposit is similar, in 

effective stress path terms, to reloading the deposit. A rise in pore 

water pressure is analogous to unloading the deposit. Initial estimates 

of the loss in horizontal effective stress as a result of a rising 

groundwater table by Simpson et al. (1989) and Troughton and Platis 

(1989) assume that Eqn. 2.20 is valid where the soil stress ratio had not 

reached passive failure. For this assumption to be approximately correct 

the increase in pore pressures must have been preceded by a similar 

loading stage (usually a fall in pore pressure). For calculation of 

actual stress levels in the ground rather than changes of stress the 

initial value of K. must be known using either on-site measurements or, 

in the case of centrifuge testing where the previous stress history is 

known, by use of the equations presented above. 
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2.3 Case histories of foundation behaviour with changing pore water 

pressure 

Possible loss of foundation bearing capacity and movements due to a 

rising groundwater event have been forecast by Wilkinson (1984), Simpson 

et al. (1987) and (1989) and Kulhawy and Beech (1987). Foundation 

behaviour in soil with a moving groundwater table has been studied by 

means of full scale tests (Armishaw and Cox, 1979; Troughton and Platis, 

1989) and model scale tests (Andersen, 1990; Challa and Poulos, 1992). 

A numerical investigation of piled raft behaviour was carried out by 

Poulos (1993). 

2.3.1 Wilkinson (1984): An introduction to the problem 

Wilkinson (1984), whilst introducing a discussion on the geotechnical 

consequences of rising groundwater levels, pointed out that in the London 

basin the rise in pore pressures could result in a loss of up to 50% of 

pile capacity due to the reduction in effective stresses. He suggested 

that this loss could be allowed for in design by increased area of pile 

bases to account for subsequent reductions in bearing capacity. 

2.3.2 Armishaw and Cox (1979): Rising groundwater levels and driven 

piles in granular soils 

Armishaw and Cox (1979) carried out a series of driven piled tests in a 

sand and gravel stratum overlain by a peat and clay layer. Groundwater 

levels were controlled by wells which provided up to a 5m increase in 

groundwater level in the sand and gravel layer. Shaft capacity was 

measured by pull out tests at different groundwater levels. Overall pile 

capacity was measured by static load tests. 

They found that the percentage loss in base capacity for a rise in pore 

pressure was less than the loss in vertical effective stress as shown in 

Figure 2.5. If the data from the individual pile tests are extrapolated 

to a,, - 0, the results suggest that the bearing capacity would not reduce 

to zero. This was explained by incorporating a term for effective 

pressure caused by driving (q. ) in the following equation: 
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NQ äQb -, äu. 

NQ 

where q7 

(2.21) 

base resistance when a4 is extrapolated to zero. 

The resulting loss in base capacity was 1/3 to 1/2 of that predicted when 

the apparent locked in stress caused by driving effects was ignored. 

This locked in stress suggests that the horizontal effective stress plays 

a part in end bearing capacity. 

2.3.3 Troughton and Platis (1989): A large scale pile test with 

modelling of changing effective stresses in sand 

Troughton and Platis (1989) reported on a large scale instrumented pile 

test carried out during the redevelopment of the London Docklands. The 

test was carried out on a base grouted bored pile with its tip embedded 

in the Thanet Sand stratum beneath the Woolwich and Reading Beds (see 

Figures 1.2 and 1.3). The test was carried out to assess the effect that 

the excavation of a basement above the pile and the effect that a change 

in groundwater level would have on the ultimate end resistance of the 

pile. The pile was surrounded by injection wells capable of reducing the 

vertical effective stress to levels representing the situation when the 

basement had been excavated and the long term case when the groundwater 

level had increased back to equilibrium levels as indicated by the pore 

pressure profiles from the Isle of Dogs in Figure 1.3. The pile was 

sheathed above the level where the pore water pressure was not influenced 

by the injection wells. 

While the pile test was not carried out in a clay stratum it does 

demonstrate some of the potential detrimental effects that rising 

groundwater has on foundations. The results showed that: 

o when the pore pressure was increased (effective stress reduced) 

there was a reduction in ultimate pile base load; 

o when the pile base load was kept constant and the pore pressure 

increased there was a small pile base settlement. 
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Analysis of the results showed that there was a linear relationship 

between ultimate pile base load (Pb) and vertical effective stress. The 

relationship did not pass through the origin of the axes as would be 

predicted from the classical bearing capacity and as shown in 

Figure 2.6(a). Pb was also compared with the mean normal effective 

stress (p'): 

pý - 
ý(d 

°+2. 
db) - 

al v (1 + 2. K. ) (2.22) 

As can be seen from Figure 2.6 (b) there was a linear relationship 
between Qb and p' which continued through the origin. The initial value 

of o'h was obtained from pressure-meter data. Changes in ah' were 

calculated using isotropic elastic theory discussed in section 2.2.3 and 
Eqn. 2.20. The ultimate pile base capacity was found to be: 

Pb - AbQb - AbNQpl 

where Ab - Pile base area 
Nq - Bearing capacity factor on p' 

(2.23) 

The results demonstrate the that simplified elastic theory provided a 

good tool with which pile behaviour in dense sand can be predicted. 

There is, however, no reason as yet why foundation in clay should 

behaviour in such a linear fashion when subjected to large reductions of 

effective overburden pressure, especially if all time low vertical 

effective stresses are reached. 

2.3.4 Simpson et al. (1987 and 1989): CIRIA SP69 

In 1989 the Construction Industry Research and Information Association 

published a specially commissioned report concerning the implications of 

a rising groundwater level beneath London (Simpson et al., 1989). The 

report gave an historical overview of the events leading up to the then 

present situation and indicated areas of London most at risk from the 

rising groundwater level. The potential effects on different types of 
foundations, tunnels and shafts caused by the groundwater level rise were 

considered. 
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Of particular relevance to the work being carried out are the conclusions 

concerning shallow and piled foundations: 

Shallow foundations: 

For shallow foundations located on the tertiary clays and surrounded by 

a perched water table the effects of a rising groundwater level in the 

deep aquifer will be nominal. This is due to a majority of the pore 

pressure change in the tertiary clays '(London clay and Woolwich and 
Reading clay) occurring beneath the surface zone where pore water 

pressures are primarily controlled by the perched water table. For 

shallow foundations in fill or terrace sands and gravels which are in 

direct contact with the deep aquifer there will be some loss in bearing 

capacity and additional settlement as the groundwater level rises. 

Piled foundations: 

A distinction is made between straight shafted predominantly friction 

piles and under-reamed piles in which both shaft friction and end bearing 

contribute to the load carrying capacity. It is recognised that there 

will be some loss in load carrying capacity although this is not likely 

to lead to actual pile failure. Calculations relating shaft friction to 

horizontal effective stress (Burland, 1973, Burland and Twine, 1988) 

predict a loss of between 16% and 0% for an increase in pore pressure of 

50% of hydrostatic at depth reducing to 0% pore water pressure change at 

the surface. Loss in design end bearing capacity is related to the loss 

in available undrained shear strength as a result of reducing effective 

stresses and soil swelling. The second, and possibly the more important, 

effect on piles is the settlement that will occur as a result of 
increasing base load, reducing soil stiffness and soil swelling passed 

the piled foundation. The anticipated modes of behaviour for deep and 

shallow foundations in clay are shown in Figure 2.7. 

2.3.5 Kulhawy and Beech (1987): The effect of recovering water 
levels on foundation side resistance 

Kulhawy and Beech (1987) demonstrated the effect of fluctuations in 
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groundwater level on foundation side resistance. While Kulhawy and Beech 

were principally dealing with a normally consolidated deposit they 

demonstrated indirectly that on recovery of groundwater level there is 

a reduction in foundation side resistance where stress change is 

calculated using an expression such as equation 2.17. In reviewing this 

paper Steenfelt (1987) warned that minor movements caused during 

foundation installation will result in stress relief and may cause a 

reduction in horizontal effective stress. The work of Burland and Twine 

(1988) and Anderson et al. (1985), while not contradicting Steenfelt's 

comment, does suggest that foundation side resistance may be calculated 

using an approach such as that described by Kulhawy and Beech. 

2.3.6 Andersen (1990): An initial series of centrifuge tests 

modelling rising groundwater in clay 

As part of a pilot study for the present project three centrifuge tests 

were carried out by Andersen (1990). The project was carried out to 

assess the ease of centrifuge modelling for examining the effects of a 

rising groundwater table on foundations in clay. 

The tests were carried out using dead weights to model the foundation 

loads. The model foundations correspond to a 1.3m pile 15m long and a 

3.8m diameter pad at prototype scale. Figure 2.8 shows the model 

configuration. 

In the three tests carried out the results showed that it was possible 

to measure soil and surface movements due to rising groundwater and that 

piles settled relative to the soil surface. The results were of a 

qualitative form and were useful in preparing the initial centrifuge 

tests reported herein. 

2.3.7 Challa and Poulos (1992): Model tests of piles in swelling 

clay 

A series of model scale tests was carried out to investigate the 
behaviour of driven piles in clay subjected to increasing pore water 

pressure. The tests used a 25mm diameter pile 230mm long in a 
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pressurised test container some 380mm in diameter. The clay body was 

produced by compacting clay at the optimum moisture content into the test 

container. The clay surface was surcharged prior to driven pile 

installation. The sample was then inundated with water from the top and 

bottom. During the period of clay swelling measurements of pile stresses 

and soil and pile movements were recorded. No measurement of pore water 

pressure in the soil was made and hence it was not possible to correlate 

pile to soil surface relative displacement and pile load capacity loss 

with change in soil effective stress. 

However, the tests showed that: 

o There was a significant loss in pile load capacity resulting from 

an increase in soil moisture content (equivalent to a reduction in 

effective stress level) as shown in Figure 2.9; 

o Soil swelling around a floating unloaded pile caused tensile 

stresses in the pile as shown in Figure 2.10; 

o Movement of a floating unloaded pile increased as the soil heave 

increases (tests T04 and T05). However, for a pile socketed in a 

stable sand layer pile movement would be controlled by the 

anchoring stress and would tend towards a limiting value (tests T06 

and T07). Figure 2.11 shows the results of four piles, two 

floating and two with bases in sand. 

2.4 A simple by hand" settlement calculation 

The previous sections in this Chapter have summarised foundation 

behaviour in ground with a stable pore water pressure regime and outlined 

foundation behaviour in ground with a changing pore water pressure 

regime. Prediction of foundation settlement during a rising groundwater 

event requires knowledge of foundation load transfer to the ground and 

changes in soil strength and stiffness which result in reduced pile 

capacity, pile settlement and ground heave. 

Calculation of foundation settlement due to rising groundwater must 

consider the dominant method of load transfer in friction and end bearing 

piles. 

47 



2.4.1 Friction piles 

Piles in which shaft friction dominates will ultimately be partially in 

tension as the soil swells around a rigid pile, as demonstrated by Challa 

and Poulos (1992) for driven piles. Pile settlement will result from 

soil swelling passed the pile shaft which experiences zero pile to soil 

relative movement at the neutral point as defined by Fleming and 

Powderham (1989) and O'Reilly and A1-Tabbaa (1990). Reduction of pile 

shaft friction, for bored piles, in which K, is approximately equal to K., 

may be obtained approximately using formulae such as Eqns. 2.4 and 2.20 

assuming that appreciable plastic deformation of the soil does not occur. 

Soil heave above the new pile neutral point may be assessed using 

suitable soil deformation moduli. In estimation of the neutral point a 

balance is made between pile head load, shaft friction carrying the load 

and shaft friction anchoring the pile. If conservative assumptions are 

made concerning pile settlement the neutral point will move down the pile 

shaft and the surface pile settlement will be an upper bound. These 

assumptions, however, will lead to non conservative estimates of pile 

tension which should be assessed independently. A schematic diagram of 

friction pile settlement, Figure 2.12., shows initial and final profiles 

of stress in the pile shaft and defines the neutral point (level of zero 

pile soil displacement and also where tensile forces will be maximum) 

demonstrating the depth of soil causing pile settlement relative to the 

surface. 

2.4.2 End bearing piles 

Piles which mobilise appreciable end bearing resistance during initial 

loading will also mobilise full shaft friction during the initial loading 

stage. In this case bored pile settlement is a function of pile 

settlement relative to the soil at pile base level and soil heave above 

the pile base level. Pile settlement relative to stationary ground may 
be assessed using a procedure such as that presented by Fleming (1992) 

and outlined in Section 2.1.2.3. Two calculations would be carried out, 

one before and one after the rising groundwater event, the difference 

being pile settlement during the event. Loss in pile shaft capacity 

would be calculated using the same method as friction piles while base 
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capacity would be in terms of ultimate drained strength in order to 

assess long-term settlement as suggested in Section 2.1.1.2. Calculation 

of soil heave contributing to pile settlement would be from the level of 

the pile base after settlement due to the rising groundwater event. A 

schematic of end bearing pile settlement is shown in Figure 2.13 

indicating pile settlement at the surface and at the base which is in 

contrast to the movements for friction piles presented in Figure 2.12. 

2.5 Suýary 

The first section of this literature survey outlines current hand 

calculation design methods for calculation of foundation ultimate load 

capacity and foundation displacement response to loading. Attention has 

been paid to drained foundation capacity as it is this that will 
determine foundation behaviour during a long-term rising groundwater 

event. 

In the second section of the review in-situ soil stresses during one 
dimensional deposition and erosion were summarised. Assumptions and 

calculation of horizontal effective stress change during a rising 

groundwater event were presented. 

In the third section CIRIA SP69 and a selection of case histories where 

foundations were subjected to fluctuations in pore water pressure were 

presented. In all reported cases loss in foundation base capacity was 

found to be less than the loss in vertical effective stress at foundation 

base level. For a pile test in sand the reduction in base resistance was 

found to be proportional to the mean normal effective stress. Reduction 

in pile shaft resistance has been reported to be comparable to the loss 

in far field horizontal effective stress. 

The final section draws together the observation of foundation behaviour 

and proposes a simple method of foundation settlement prediction during 

a rising groundwater event. 
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CHAPTER 3 CRITICAL STATE SOIL MODELS AND TRIAXIAL TESTING 

3.1 Introduction 

This chapter consists of two distinct parts. In the first part two soil 

models, the Schofield model (Schofield, 1980) and a three surface 

kinematic hardening model (Stallebrass, 1990) are introduced. The models 

are used in the finite element analyses presented in Chapter 6. In the 

second part a short series of triaxial tests is presented. The tests 

were designed to provide the basic soil parameters required in the finite 

element analyses and to investigate the effects of changing pore water 

pressure on coefficient of earth pressure (I. ) under one dimensional 

conditions. The parameters used in the finite element modelling are 

presented in Chapter 6. 

3.2 Introduction to Critical state soil mechanics 

The concepts of critical state soil mechanics, that the ultimate shear 

strength (M. p') at critical state of soil is solely dependant on specific 

volume; and that on reaching the critical state strength during plastic 

shearing there is no further volume change or generation of excess pore 

water pressure, have become widely accepted. These concepts have been 

incorporated into critical state soil models such as the original 

Cam-Clay model described in Schofield and Wroth (1968). This model 

allowed realistic prediction of soil behaviour during plastic yielding 

for soil in a normally consolidated or lightly overconsolidated state. 

Within the yield locus overconsolidated behaviour was based on isotropic 

elasticity theory where: 

fEr j-[ 11/K' p 
15p' 

c0 1/3GI Sp/ 

Ký-°PI 
PC 

Ki 
3(1-2vý )_ 3(1-2� ) vp/ 
3 (1+vT 'ý (1+vT ýc 

(3.1) 

(3.2) 

(3.3) 
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The original Cam clay model has given rise to altered and often more 

sophisticated versions. The Schofield model (Schofield, 1980) 

incorporates a rupture and a fracture surface as part of the Cam clay 

yield locus and assumes isotropic elasticity within the yield locus. A 

three surface kinematic hardening model (Stallebrass, 1990 and 1991) 

models the effects of recent stress history and incorporated within the 

modified Cam clay state boundary surface. Overconsolidated behaviour 

incorporates the effects of recent stress history within an elasto- 

plastic framework. Britto and Gunn (1987) used some of these soil models 
in the finite element program CRISP and provided the opportunity for 

other users to implement different models into the same basic program 

(Stallebrass, 1992). 

3.3 Schofield Model 

The layout of the Schofield model is shown in Figure 3.1. The model 

differs slightly from the original version proposed by Schofield (1980) 

in geometry but the essential features are the similar. The model 

implemented in CRISP (Britto and Gunn, 1990) has the same state boundary 

surface as the original Cam clay for soil in a normally consolidated or 

lightly overconsolidated state (p'>pö). For heavily overconsolidated 

soils peak stress ratios have been reduced so that yield occurs on the 

no tension cut off or the Hvorslev surface. The three parts of the state 

boundary surface are shown in Figure 3.1 (a). The equations for the 

state boundary surface are: 

No tension cut-off: 

Q_3pi 

Hvorslev surface: 

Fýa 

q-(M-H)plo 
T 

+Hp/ 
Po 

Cam clay surface: 

q'M Pl in 
[5r. 

(3.4) 

(3.5) 

(3.6) 
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Yield on any part of the state boundary surface obeys the normality 

condition. For a stress state dry of critical (p'<pö as labelled on 

Figure 3.1b) negative volumetric strain increments are calculated and 

contraction of the state boundary surface occurs with strain softening 

until a critical state is reached. Shear and volumetric strains inside 

the state boundary surface may be calculated using equation 3.1 above. 

The model in CRISP allows specification of either a drained Poisson's 

ratio (v') or a constant value of shear stiffness (G) from which elastic 

shear strains are calculated. By specifying Poisson's ratio shear 

stiffness is calculated using equation 3.3 above, this then varies with 

mean normal effective stress and specific volume. 

3.4 Three surface kinematic hardening model: Stallebrass model 

The advantages of Cam clay and associated soil models lie in the 

prediction of plastic strains which occur as soil yields and strain 

hardens on the state boundary surface for states wet of critical. The 

behaviour of soil in an overconsolidated state is reduced to isotropic 

elastic behaviour as mentioned in section 3.2 above. The increased 

awareness that overconsolidated clays are non-linear (Jardine et al., 

1984, Stallebrass, 1990) has led to soil models that are capable of 

modelling overconsolidated soil behaviour incorporating the non-linear 

aspects of soil behaviour prior to major plastic shearing. 

The model formulated by Stallebrass (1990) is shown in Figure 3.2. It 

consists of the outer ellipse of the modified Cam clay model (Roscoe and 

Burland, 1968) which is renamed as the Bounding surface. Inside this 

bounding surface there are two kinematic yield surfaces. The smaller 

surface is the new yield surface inside which strains increments are 

elastic (ostensibly the region were Go exists). Outside this lies the 

history surface, which when in line with the stress increment and 

tangential to with the inner (yield) surface defines the limit of recent 

stress history effects. The soil stress state is restrained to lie on 

or inside all three surfaces which expand and contract during loading and 

unloading. The three surfaces have the same shape (that of the bounding 

surface) and have sizes that are related to the bounding surface by fixed 
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ratios. The model will revert back to modified Cam clay behaviour when 

the soil state is on the bounding surface. 

Parameters for use in the finite element modelling are presented in 

Chapter 6. 

3.4.1 State boundary surface 

The state boundary surface, named the 'bounding surface' is an ellipse 
in the q- p' space with formula: 

pi 
_ 

M2 
ý O 142 + 

where 0 stress ratio q/p' 

Q- (al-a1) + (a, -a3) * (Qi-ag) 

(3.7a) 

(3.7b) 

Pl 
(3.7c) Qi+Qj+Oj 

3 

Stress changes which enlarge the bounding surface obey the normality 

condition in keeping with the family of Cam clay models where 

b cvP MZ-ý, 7 2 

ÖcsP 
--L-ý/ý 

(3.8) 

The volumetric state on a normally consolidated soil is defined in 

Ln v- Ln p' space where: 

Lnv -N- a'. Lnp/ 

Where 

(3.9) 

Slope of compression line in Ln v- Ln p' space. 

A full description of plastic yielding on the state boundary surface is 

included in Wood (1992) and will not be reproduced here. 

3.4.2 Overconsolidated behaviour 

The description of soil behaviour within the state boundary surface is 

an extension a two-surface model proposed by Al-Tabbaa (1987) and is 

based on observations of laboratory tests carried out by Richardson 
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(1988) and Stallebrass (1990) in which the effects of recent stress 

history were investigated. 

Observations from triaxial tests showed that soil stiffness was a 

function of change in direction of load path and length of load path, the 

combined effects of which are called 'recent stress history'. The 

effects of stress path rotation are shown on Figure 3.3 and Figure 3.4 

which are taken from Stallebrass (1990). Figure 3.3 shows the effect 

of shearing a sample, initially isotropically consolidated to 

p, '-720kN/m2, along a constant p' stress path after approaching 

p'-300kN/m2, q-OkN/m2 from four different directions as indicated on 

Figure 3.4. In these figures two distinct features of behaviour are seen 

that are not modelled in modified Cam clay. Firstly, by rotating stress 

path direction the shear stiffness changes as seen in Figure 3.3 where 

the line for 8- 180° has a larger shear modulus than the two shearing 

stages after rotations through B- 90° and -90°. The stress increment 

which has not been rotated 0- 0° has the lowest stiffness. All four 

tests had the same overconsolidation ratio and similar specific volumes 

prior to shearing. Secondly, the effect of changing stress state inside 

the bounding surface is seen on Figure 3.4. Stress increments, which 

move any of the surfaces, within the bounding surface result in elasto- 

plastic strains. This is seen in Figure 3.4 (a) where the dilatant 

behaviour of an overconsolidated sample causes a reduction in the size 

of bounding surface. If the sample were on the wet side of critical as 

in Figure 3.4 (c) volumetric strains would be positive resulting in an 

expansion of the bounding surface. 

The reduction in size of the bounding surface when samples are sheared 

on the dry side of critical as a result of dilatant behaviour has an 
important effects not modelled in modified Cam clay by acting to restrict 

the size of stress ratio (q/p') prior to reaching the bounding surface. 

As with modified Cam clay if a soil element is sheared enough the 

dilatant behaviour will bring the sample to critical state at which point 

volumetric straining ceases. 
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3.5 Triaxial testing 

A limited number of stress path triaxial tests were carried out to 

provide data for finite element analysis input and on iC behaviour for 

soil stress paths in normally and over consolidated states. 

3.5.1 Triaxial apparatus 

The triaxial testing was carried out in a Bishop and Wesley (1975) type 

hydraulic triaxial cell . 
The cells were set up to test soil samples 

with nominal dimensions of 38mm diameter and 76mm height. The cells were 

connected to a mains air supply with a constant minimum pressure of 

800kN/m2 which defines the upper bound of cell pressure (the cell is 

capable of withstanding higher pressures). Higher axial pressures were 

possible due to the area ratio between axial ram and sample. The cell 

was controlled using a micro-computer and dedicated software similar to 

that described by Atkinson et al. (1985b). The equipment is described 

briefly below. 

3.5.2 Controlling software 

A modified version of the program TRILOG3 (Stallebrass, 1990 and 

Richardson, 1988) was used to control the stress and strain increments. 

TRILOG3 has the following features: 

o Control of axial and radial strain paths 

o Logging and recording of data 

o Procedure for reducing effect of voltage fluctuation to transducers 

0 Area correction for calculation of axial stress. 

Axial ram control using a stepper motor driven Bishop ram and clicker box 

providing axial strain control was also possible. 

Several important variations to the original program were made to provide 
better quality results for the non-standard range of stress or strain 

paths followed: 
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A compliance correction for axial load cell compression has been applied 

to axial displacement measurement. The correction allows more accurate 

calculation of axial strain (Atkinson and Evans, 1985a). The compliance 

correction is based on the axial load. This correction is important when 

simulation of K. conditions is being carried out. The compliance was 

seen to be non-linear and has been modelled using a second order 

polynomial fit. Axial strain corrections for a deviator stress of 

300kN/mI (deviator load of 0.34kN) were in the region of 0.2%. 

A compliance correction was applied to the volume gauge. When pore 

pressures in the volume gauge remain constant during a test this 

correction is not needed. However, when pore pressures change, for 

instance when simulating a changing groundwater table, applying a 

compliance correction to the volume gauge will improve accuracy. The 

compliance measured was reproducible and recoverable on a complete loop 

of back pressure. Richardson (1988) reported that the flexibility of the 

volume gauge (as measured here) was large compared to that of the 

drainage leads and of the pore pressure transducer. 

An extra procedure allowing shearing at constant mean normal total stress 

(or, if pore pressure is kept constant, mean normal effective stress) was 

added to the program. The procedure controls radial stress during strain 

controlled axial shearing. 

During radial strain controlled K. stages the frequency of cell pressure 

updating was reduced by a factor of 10 to 20 compared to the rate of 

updating axial stresses and pore water pressure. This addition to the 

program reduces the amount of radial stress hunting for the stress 

corresponding to the required radial strain producing a smoother stress 

path. However, even with this program change there was significant 

oscillation of the cell pressure at changes of stress path (eg K. loading 

to Ka unloading) where the soil stiffness is relatively high. 

3.5.3 Controlling hardware 

A schematic of the connections between the micro-computer (a BBC micro- 
computer), the interface unit (Spectra ms-interface), relays and triaxial 
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cell is shown in Figure 3.5. The computer, using the control program 

described above receives data from the cell transducers via the interface 

unit. The information is processed and the required stress changes are 

calculated. Movements of the stepper motors controlling the manostats 

are calculated and relayed to their destination. 

3.5.4 Instrumentation: 

The work being carried out in this series of tests requires large stress 

changes and correspondingly large strains. While the incorporation of 

internal strain transducers (both axial and radial) often provides higher 

quality data it was not considered necessary in this work. The 

instrumentation used consisted of: 

o Internal axial load cell (Surrey University type, Wykeham Farrence) 

o Druck 10 bar pressure transducers for back pressure and cell 

(radial) pressure 

o Imperial College type volume change gauge equipped with a RDP 

displacement transducer 

0 MPE or RDP displacement transducers for measuring axial strain. 

During the series of tests back pressure and cell pressure transducers 

behaved satisfactorily with steady calibration constants and offsets. 

Displacement transducers for axial and volume strain measurement also 

performed well. Drift of the load cells during the period of a test 

(approximately 1 month) was recorded at the ends of some tests. The 

drift corresponded to an error of up to lOkN/m2 resulting in less 

reliable data. 

Calibration of transducers took place through the test set up within a 

temperature controlled environment. Calibration constants for load and 

pressure transducers were taken from the best fit line over the 

anticipated pressure/load range. Calibration constants for the 

displacement transducers have been taken from their linear range. All 

the instrumentation used gave linear responses over the range of 

operation for the tests carried out. 
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A detailed description of the instrumentation, signal conditioning and 

logging system used have been given by Richardson (1988) and Stallebrass 

(1990) and will not be reproduced here. 

3.6 Testing and test results 

3.6.1 Sample and cell preparation 

The samples were consolidated from a clay slurry with a nominal moisture 

content of 120%. Two methods were used for preparation of the samples: 

A floating wall consolidometer was used for preparation of single samples 

to a vertical effective stress of 100-200kN/m2. The floating wall 

consolidometer used has a length of 200mm and an internal diameter of 

38mm. Frictionless top and bottom pistons ensure that the stress passes 

through the sample rather than through the floating ring; 

Stiff overconsolidated clay samples were obtained from a large clay 

specimen consolidated in a centrifuge tub. The samples were brought to 

a maximum preconsolidation pressure of as, ' - 1250kN/m2 before controlled 

swelling to a�' - 200kN/m2 and final rapid unloading before sampling. 

38mm samples were taken in thin walled stainless tubes which were wax 

sealed for storage prior to testing. 

Prior to mounting a sample zero outputs from the transducers were 

recorded with the cell full of water but open to atmospheric pressure. 

The sample was then mounted on the triaxial pedestal and surrounded by 

a side drain prior to fitting the membrane. The side drains were used 

to reduce drainage path lengths and consolidation times and were similar 

to those used by Stallebrass (1990). The cell was then filled with water 

and sealed, the sample was then allowed to come into equilibrium with the 

drainage shut. Once the pore pressure had stabilised the drainage leads 

were flushed whilst pore pressure and cell pressure were controlled. 

Saturation was then checked by measuring the B value (the change in 

sample pore pressure divided by the change in cell pressure under 

undrained conditions); a value of over 0.95 (absolute minimum) was 

required before testing commenced. If the B value was not satisfactory 
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at the required back pressure, drainage was allowed under controlled 

conditions to saturate the sample. The B value was then rechecked prior 

to connection of the suction top cap. 

3.6.2 K. effective stress paths 

Most of the tests were carried out under one dimensional conditions to 

simulate the geological history of the ground. Figure 3.6 shows the 

normally consolidated behaviour (with intermediate unload reload loops 

removed) of five tests in the vertical effective stress to horizontal 

(radial) effective stress plane. The five tests show good agreement 

giving a value of the coefficient of earth pressure at rest in the 

normally consolidated state (K.,,, ) of 0.65. 

This values lies within the reported experimental range of 0.62 from 

Equation 2.12 and 0.69 found by Al-Tabbaa (1987) using an instrumented 

oedometer. The value of 0.65 has been adopted for K. 

On unloading, the stress paths were somewhat ragged due to the initial 

stiffness of the soil on stress reversal and the hunting process of the 

radial stress to maintain zero radial strain. Five traces on unload 

stress path are shown in Figure 3.7(a), (b) and (c) and are grouped 

together according to the common stress paths and the maximum stress 

reached in each test. Averaging of the results about common points has 

been carried out. The results have been correlated by plotting the 

coefficient of earth pressure (K,,, ) against the overconsolidation ratio 

calculated using vertical effective stress (R) as shown in Figure 3.8. 

An average line through the points suggests that for initial loading and 

unloading: 

Kou - 0.65 R°. 4* (3.10) 

At the end of the unloading stress path, cycles of pore water pressure 

were carried out to measure the effective stress path obtained due to 

changing pore water pressure under one-dimensional conditions. The 

results of these stress paths are shown in Figures 3.9(a) to (d). 

Test L3 shown in Figure 3.9(d) was sampled from a tub with 

a'er 1250kN/m2, the other three samples were brought to their highest 
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effective stress conditions in the triaxial cell. All four tests have 

been plotted as change in vertical effective stress against change of 
horizontal effective stress in Figure 3.10. The tests all show similar 
hysteretic stress path loops. All four tests show closure of the stress 

path loop and where second loops are started a strong degree of 

reproducibility. The average change of stress in the four tests was: 

Adh 
0.49 (3.11) 

In section 2.2.4 it was suggested that closed cycles of pore water 

pressure could be approximated using equation 2.20. For a Poisson's 

ratio of 0.3 (reported by Al-Tabbaa, 1987) and the assumptions of linear 

elasticity: 

el -E (dl - v/(d2 + 0'3)) etc. (3.12) 

the value in the change of horizontal to, vertical effective stresses in 

Eqn. 3.11 would be 0.43. The tests were carried out at Ko values 

somewhat lower than exist in the upper layers of an overconsolidated clay 
deposit and are more appropriate to stress changes at depth than at 

levels close to the surface. 

The stress loops show the difficulty the cell had in changing stress path 
direction under strain control as seen by an initial drop in horizontal 

effective stress on the initial increase in vertical effective stress 
(drop in pore water pressure). 

3.6.3 Volumetric conditions during K, stress paths 

In the presentation of the critical state soil models given above the 

relationship between specific volume, mean normal effective stress and 
stress ratio (' - q/p') is defined for both models by relating the 
intercept of the current swelling line and the state boundary surface to 

pc'. Therefore if the position of any constant stress ratio plane can be 

found the behaviour of the soil can be fixed in volumetric-stress space. 
The relationship between specific volume and mean normal effective stress 
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for the tests presented in Figure 3.6 has been plotted in Ln v- Ln p' 

space in Figure 3.11 as required for the Stallebrass model. The average 

measured value for No (the interception of the one dimensional 

compression with p'-lkN/m2 in v/Lnp' space) is 3.03 and for the slope of 

the one-dimensional normal consolidation line A is 0.18 and A* is 0.083. 

During unloading from the maximum pressure the swelling line has a 

continuously increasing slope as seen in Figure 3.11. This change in 

slope is not considered in the Schofield model for which x is taken to 
be constant. Figure 3.12 shows the back pressure cycles for tests T8, 

T9 and L1 all of which had the same maximum preconsolidation pressure of 

o, ' - 600kN/m2 under one-dimensional conditions. The results show the 

open loops associated with an elasto-plastic material as described in the 

Stallebrass model with average slope of a- -6y/6Ln(p') - 0.04. 

Values for a and '* under one-dimensional and isotropic conditions, have 

been obtained from Al-Tabbaa (1987) and reproduced in Figure 3.13 and 
Figure 3.14 for unloading and reloading respectively. The results show 

that the tangent values of x and K* vary considerably with the length of 

stress path with increasing values, or reducing stiffness, as the length 

of stress path increases. 

3.6.4 Shearing 

At the end of several of the tests the samples were sheared in drained 

compression along a constant p' path. The results of three such tests 

(ultimate stress ratio and where appropriate peak stress ratio) are shown 
in Figure 3.15 plotted in p' q space. The design line for the projected 
Critical State Line is shown with a slope of M-0.85. The volumetric 

strain is plotted against triaxial shear strain in Figure 3.16. Tests 

Ti an T3 show positive volumetric strains as would be expected for 
lightly overconsolidated samples. Neither sample reaches a constant 

volume state as seen by the ever increasing volumetric strain even though 
both samples ultimate stress ratios during axial strain controlled 

shearing. The heavily overconsolidated sample, L1, shows a more unique 

volumetric state at high shear strain levels. 
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CHAPTER 4 CENTRIFUGE MODELLING AND THE MODEL TEST PROCEDURE 

4.1 Introduction 

The use of centrifuge model testing for investigation of geotechnical 

situations started in Russia between the First and Second World Wars for 

the examination of mining related situations (Schofield, 1980). Since 

then geotechnical centrifuge testing has become used extensively as 

demonstrated by contributions to specialist and general soil mechanics 

related conferences. 

Before describing the equipment used in the series of centrifuge tests 

the basic scaling laws relevant to the centrifuge testing will be 

described. The different models used will be described and errors 

inherent in centrifuge modelling assessed. The chapter ends with a 

description of the instrumentation and equipment used in the model tests. 

4.2 Centrifuge scaling laws 

When a mass is rotated about a fixed point it experiences an acceleration 

as it is constantly pulled out of a straight line. The inertial 

acceleration (a) directed towards the axis of rotation generated in this 

way is 

a- 

where a 

ti - 
r- 

(JZr (4.1) 

centrifuge acceleration (m/s2) 

angular velocity (rad/s) 

radius of centre of gravity of mass (m) 

However, if the model is considered independently the direction of the 

acceleration is reversed so that it acts towards the base of the model. 

This component of the acceleration is used in centrifuge modelling. The 

direction of acceleration is perpendicular to the model surface in the 

same manner that Earth's gravity is perpendicular to level ground. When 

comparing the model in a centrifugal acceleration field with one where 

the dominant acceleration is due to the attraction of the Earth's 

mass (g), the ratio of accelerations (n) is: 
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n-a-2_ 
g 9.81 

(4.2) 

All scaling relationships are calculated using the factor W. 

4.2.1 Stress and dimensions 

Soil behaviour (in drained and undrained conditions) is dominated by the 

frictional forces between particles and their relationship with the 

volumetric state of the soil (usually expressed as voids ratio or 

specific volume for clays). To enable a centrifuge model and a prototype 

to be compared, the soil, at similar positions in the model and the 

prototype, must be at the same stress level. To achieve this model 

dimensions must by reduced by the same ratio that stress gradients 

increase: 

om - oD " dpng - dDPg ." cim -ý (4.3) 

where d- depth 

o- stress in model 

p- soil density 

subscript m- model 

subscript p- prototype 

Secondly, the soil must be prepared to the correct volumetric state 

either before the centrifuge test starts or on the centrifuge arm during 

the test. In this way soil strength (including dilation for heavily 

overconsolidated samples) and stiffness will be modelled correctly. 

4.2.2 Time 

In soil mechanics, time is important when considering the shearing of 

soil and the rate of diffusion processes. In this project the rate of 

excess pore water pressure dissipation is to great advantage. 

In consolidation theory the rate of pore pressure change is dependent on 

the soil consolidation (or swelling) properties and the drainage path 

length. Assuming that the soil properties are the same in model and 
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prototype (which requires similar stress histories as pointed out by 

Coodings, 1985) diffusion processes, will take place in a time of 1/n2 in 

the model compared to the prototype as in one dimensional consolidation 

theory: 

Su 
_c 

bzu 
TE °sa 

where cv - coefficient of consolidation 

u- pore pressure 

t- time 

d- drainage path length 

(2.4) 

This condition requires that both model boundary conditions and drainage 

path length are scaled properly. 

4.2.3 Mass 

The effect that a mass (eg. kilogrammes) has on a model is a combination 

of the increase in force (Newtons) it exerts due to the increase in 

acceleration level (n) and the reduction in soil or foundation area on 

which it acts (1/n2). These combine to create to give an effective scale 

factor for mass of 1/n3. 

4.2.4 Summary 

The combination of the scaling laws described above provides a powerful 

tool for examining foundation behaviour in clay. In the tests carried 

out the centrifuge acceleration was held constant at 100g during the 

test. Table 4.1 shows the model to prototype relationships for a typical 

test. Further scaling relationships are presented in Taylor (1987). 

4.3 Centrifuge model and preparation 

Prior to commencing the centrifuge test the overconsolidated clay sample 

(Speswhite Kaolin) had to be prepared. This was carried out by 

consolidation of a clay slurry with an initial moisture content of 120- 

130%. Consolidation took place in a computer controlled hydraulic press 

schematically shown in Figure 4.1(a). The press was controlled by a desk 
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top computer fitted with a multi-function PC super card by CIL (1989). 

The computer program combined with the interface card processed data from 

the instrumentation marked on Figure 4.1(a) and updated voltage output 

to the convertors controlling air pressure to the air-water interface and 
hydraulic pump. The elevated pressures required for consolidation of 

centrifuge samples are obtained by use of an on-line pump which converts 

and amplifies (a factor of 36) the air pressure into oil pressure. Using 

this method centrifuge size soil samples can be consolidated to l500kN/m2 

(21 tonne load) with the existing set-up. 

The clay was mixed from either a powder or recycled clay mixed with 

distilled de-aired water. In most tests the final consolidation 

pressures were l250kN/m2; full details are given in chapter 5. On 

achieving full consolidation at the maximum pressure the clay samples 

were swelled back to a typical vertical pressure that would be 

experienced (around 220kN/m2) during the centrifuge test at 100g. When 

equilibrium was reached at this lower pressure pore water pressure 

transducers were installed in the clay through ports mounted in the 

centrifuge tub sides. The holes, in which the transducers were inserted, 

were formed using a guided auger. Prior to inserting the transducer a 

small amount of de-aired clay slurry was placed in the end of the hole 

to create an air free interface between soil and transducer. The holes 

were then backfilled with slurry prior to sealing the transducer cable 

at the port. 

In most tests final model preparation in the press used a downward 

hydraulic gradient technique (Zelikson, 1969) to create an effective 

stress distribution in the model similar to the one that would be 

achieved after equilibrium is achieved on the centrifuge. Figure 4.1(b) 

shows a schematic of the stresses generated using the downward hydraulic 

gradient technique. Further comments on the benefits of using the 
downward hydraulic gradient technique are given in Section 4.6. 

Shortly (three to four hours) before the centrifuge test was planned to 

start the clay sample was removed from the press. Swelling of the clay 
was reduced by closing the tap on the base drain inlet at the base of the 

model (this reduces dissipation of negative pore water pressures) and by 
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removing all traces of free water from the surface of the clay. Model 

foundations were than installed in preformed holes. The holes were 

excavated using a thin walled tube which was guided so that the holes 

were vertical (parallel to the tub sides) and not oversized as shown in 

Figure 4.2. A small amount of de-aired slurry was placed at the base of 

the hole prior to placing the foundations. When an under-reamed pile was 

being modelled the under-ream was excavated from the base of the shaft 

using a custom made tool. The under-ream void was filled with a quick 

setting resin prior to placing of the straight shafted part of the pile. 

A dry sand layer was then placed on the clay surface before placement of 

the displacement transducers and loading of the tub onto the centrifuge 

arm as seen in Figure 4.3a. A typical model set up with two similar 

piles is shown in Figure 4.3b. 

4.3.1 Soil stress errors 

In the preparation of the overconsolidated layer of soil a maximum 

preconsolidation pressure (p'm�, ) was applied to the top of the sample. 

When primary consolidation had finished the pressure was reduced leaving 

the soil layer with a constant p'c with depth. This is somewhat 

different to the prototype situation where p'c will increase with depth. 

If it is assumed that the top of the clay layer has the correct stress 

history the differences between model and prototype are: 

Stiffness: 

The reduction in maximum preconsolidation pressure at the base of the 

model compared to the prototype will result in a higher specific volume 

that expected. Research by Stallebrass (1990) showed that the soil bulk 

modulus and probably its shear modulus were dependent on mean normal 

effective stress and overconsolidation ratio (p' and R which together 

specify the current specific volume). While the vertical effective 

stress will be similar in model and prototype R and therefore p' will be 

lower in the model than the prototype leading to reduced soil stiffness. 

Strength: 

There will be a lower gradient of undrained strength with depth in the 
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model (when scaled to the corresponding prototype) than in the prototype 

situation as predicted using critical state soil mechanics for failure 

on the critical state line: 

Su -2 exp'rý°) (4.4) 

The specific volume will be higher in the model than the prototype due 

to the reduced preconsolidation pressure and slightly lower mean normal 

effective stresses. 

This reduction in undrained shear strength is confirmed by Stewart (1989) 

who compiled undrained strength data from laboratory and centrifuge tests 

using Speswhite Kaolin clay and determined: 

Su - 0.22 vloRo. s' (4.5) 

Permeability: 

Al-Tabbaa (1987) showed that for Speswhite Kaolin permeability was a 

function of voids ratio where the vertical and horizontal permeabilities 

(Kr and Kb) could be calculated using: 

k�- 0.5 (v - 1) 3"25 x10'6mm/sec (4.6) 

kh-1.43 (v-1)2.09x10"6mm/sec (4.7) 

Hence, the reduction in permeability with depth will not be as rapid in 

the model as in the prototype (assuming it were made of Kaolin) due the 

more uniform specific volume with depth. This leads to a flatter pore 

water pressure profile when downward seepage is being modelled as shown 

in Figure 4.4. Consequently, in the model, lower initial pore water 

pressures were achieved at equilibrium prior to groundwater level rise 

than would be expected in the prototype. Similar trends will be seen for 

models and prototypes which are formed of different types of clay. 

Bromhead (1994), using finite element calculations and an idealised 

layered deposit, commented on the effects of variation of permeability 

with depth. He found that naturally occurring reductions in permeability 

with depth resulted in only small reductions in pore pressure in the 

upper part of a clay deposit when subjected to downward seepage and under 

drainage. Pore water pressure profiles measured in the London area, 
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reported by Simpson et al. (1989), show that the reductions in pore 

pressure at the top of natural clay deposits are reasonably small when 

subjected to downward seepage and under drainage. It was reported that 

the non-linear link between the pore pressures at the top and base of the 

clay layer could be a result either incomplete consolidation (Simpson et 

al., 1989) or non constant permeability with depth (Bromhead, 1994). 

4.4 Centrifuge modelling errors 

In the ideal prototype situation a foundation will be installed in a bed 

of clay homogenous in the horizontal plane and with a near linearly 

varying total stress with depth. The clay layer will at some depth below 

the surface have a horizontal base and will be infinite in the horizontal 

direction or at least have vertical boundaries at some distance from the 

foundation to cause no interference with the foundation. Foundation 

loads will be in line with the foundation centre line which itself will 

be vertical. In a centrifuge model the effect of changing radius through 

the model (Eqn. 4.1) will result in model geometry moving away from this 

ideal situation. Also, the necessity to have models of finite size will 

inevitably result in some boundary effects. 

4.4.1 Vertical acceleration field 

Eqn. 4.1 shows that as the increase of acceleration level is linear with 

model depth resulting in soil with higher stress gradients at the base 

of the model that at the surface. It has been shown that to minimise 

this error the required 'g' level should be calculated for a point at one 

third of the model depth. This results in the correct average vertical 

stress down the centre line of the model. The total stress at any point 

down the model centre line can be expressed as: 

e. d 
°'t"fz 

Zo 
pDw=dD 

giving: 

°vt-ý(2Zod + d'ý 

Where Z� and d are defined on Figure 4.5. 

(4.8) 

(4.9) 
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Figure 4.6 shows the total vertical stress distribution for prototype and 

centrifuge model situations for a 25m deep layer at prototype scale. 

4.4.2 Radial acceleration error 

Eqns. 4.9 and 4.10 assume that the model is not offset from the centre 

line extending diametrically from the centrifuge axis. For points off 

this line eqn 4.10 becomes: 

2 
ý_ 

ý2 (2xy+y 2) (4.10) 

Where: 

XýIZ7+(Oc1Z°1 I` ° f1ZO+dJI 
2 (4. lla) 

) 0.7 

Yý ll70+ d)' + Ocl')0.5 -X (4. llb) 

The symbol 0c (offset from centre line) is defined in Figure 4.5. When 

0c1 is made equal to zero Eqn. 4.10 reduces to Eqn. 4.9. 

Figure 4.7 shows the prototype stress variation with depth at 

'0c1 - 0.18m' model scale, which represents a line of points close to the 

edge tub. At the base of the model there is a stress 3.7% greater than 

the equivalent point in the prototype situation when 'd' is assumed to 

be a third of the full depth of clay in the calculation of w 

([gn/(z, +d)); ). This compares to 2.6% In Figure 4.6 along the model 

centre line. The average stress error in the whole sample is +0.5% 

compared to the prototype situation. 

4.4.3 Model foundation orientation in gravity field 

Due to the geometry of the centrifuge swing it was necessary to place the 

model foundations offset from the model centre line. The axis of each 
foundation was offset by 0.08m from the centre line. This results in an 

average foundation inclination of 1 in 20 to the resultant acceleration 
direction. This inclination is significantly larger than a typically 
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recommended bored pile vertical tolerance of 1 in 75 (Fleming et al., 

1992). However, the effects of this are somewhat mitigated by the 

direction of foundation loading which is kept fully in line with the 

foundation axis. The non-axial component, of foundation load results from 

the net weight of the pile which is small compared to the magnitude of 

axially imposed foundation load. It was not possible to incline the 

model foundations so that they were parallel to the resultant 

acceleration direction due to the orientation of the tub sides. The tub 

sides are orthogonal to its base allowing the soil to swell uniformly. 

If the foundations were inclined to the tub sides they would also be 

inclined to the principal direction of soil swelling and consolidation. 

4.4.4 Coriolis acceleration errors 

Coriolis acceleration errors resulting from particles moving from one 

radius of gyration to an other are small in the tests being carried out 

due to the low permeability of the soil and the small foundation 

movements during loading and unloading. For the piezocone tests where 

the rate of penetration in test RW16 was 2. Omm/sec the Coriolis 

acceleration (a, ) error is: 

2 dr de 
ac 

ý 
dt dt 

a d8' 
r ät 

2 d= 
dt 

_2. velocity 

r 
d8 w. = 
dt 

(4.12) 

giving a result of approximately 0.01%. This is negligible compared to 

the other unknowns of a piezocone test. 

4.5 Test equipment 

In this section the equipment used for carrying out the tests is 

described. 

4.5.1 Acutronic 661 centrifuge 

The Acutronic 661 centrifuge is a dedicated geotechnical centrifuge. A 

schematic of the important features is shown in Figure 4.8. It combines 

a swing radius of 1.8m (the typical radius of the point at one third clay 
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depth for use in eqn 4.1 is approximately 1.60m ) with a maximum 

acceleration of 200g and package mass of 400kg. The maximum operational 

capacity is 40g. tonne (either 200kg at 200g or 100kg at 400g). 

The machine is situated in a aerodynamic shell which is surrounded by a 

sacrificial soft brick wall. This wall is in turn surrounded by a 

reinforced concrete containment shell. The centrifuge arm is balanced 

manually by moving a counter weight prior to spin up. The centrifuge 

pedestal has built in strain gauges which monitor the out of balance 

force constantly during operation. The machine will automatically shut 

down if the out of balance force exceeds a preset limit. This safety 

feature allows unsupervised running of the machine overnight. 

The slip ring stack is located above the centrifuge and comprises 130 

electrical rings and 5 hydraulic rings (oil, water and compressed air). 

Of the electrical slip rings 64 are used for relaying transducer signals 

from the model to the logger, the remainder are used for power supply to 

the arm, triggering solenoid valves and relay of closed circuit 

television signals. 

4.5.2 Data recovery 

Transducer signals are amplified and filtered in the on-arm junction 

boxes. On-arm amplification is either 1,10 or 100. The signals are 
then transferred from the junction boxes to the control room where there 
is further amplification (1,2,4 and 8 times) and filtering prior to 
being logged on a personnel computer. The computer is fitted with a 12 

bit analogue to digital convertor data logging card manufactured by Burr 

Brown. The card is interfaced by a commercially available data logging 

program "Labtech notebook" version 4.1. 

The program allows transducer signals to be logged at predetermined 

voltage ranges of ±0.01 volts to ±10 volts and an autoranging setting is 

available where the program selects the optimal input voltage range to 

use. The amplifiers on-arm and in the control room are set to provide 

the strongest signal being transferred across the slip rings and to fully 

use the logging range that has been chosen. 
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4.5.3 Model containers 

Two centrifuge tubs were used during the series of tests. Both tubs had 

nominal dimensions of 400mm internal height and 420mm internal diameter. 

The tub used in the first four tests was made of steel with painted 

sides. It had access ports at 5mm, 50mm, 150mm and 250mm above the base 

through which pore pressure probes were installed. In the remainder of 

the tests a polished stainless steel tub was used in which extra ports 

were installed at intermediate positions of 100mm and 200mm above the 

base. The sides of both tubs were greased with Duckhams Keenomax L3 

prior to placing the base sand drainage layer and clay slurry for 

consolidation. Consolidation took place in one run requiring extensions 

to be mounted above the tubs during the initial stage of consolidation. 

4.5.4 Foundation types and installation 

The effects of pile installation in centrifuge models has been studied 

by Craig (1985). The study concentrated on driven piles in sand and clay 

and for piles in clay, at least, the rate of driving was not seen to 

influence long term settlement under loading. Bored pile construction 

and subsequent loading during flight has not been studied. 

Ideally the model pile foundations would have been installed during 

flight on the centrifuge. Installation would have taken place after 

equilibrium had been reached with a low water table and before the 

groundwater table was raised. This, however, was not possible due to the 

complexity of the procedure and was not attempted. The foundations were 

installed in clay at lg prior to loading the assembled model onto the 

centrifuge swing. Modelling procedures were adopted to limit the effects 

of pile installation prior to spin-up and are discussed in section 4.6. 

With the exception of the pad in test RW1 all foundations were made of 

aluminium and were loaded externally using loading rigs described in 

section 4.5.5. The foundations were installed in holes bored in the 

clay. The holes were excavated following the same procedure in all cases 

(three plugs of 50mm length with diameter equal to foundation diameter) 

to help ensure that foundation behaviour would be similar. Prior to 
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placing the foundation in the hole kaolin slurry was placed in the base 

of the hole. This slurry was displaced upwards between the hole sides 

and the foundation when the foundation was placed ensuring continuity 

between foundation and soil. 

In the cases were an under-ream pile was being installed the pile shaft 

was excavated as usual. Excavation of the under-ream was carried out 

using a miniature tool placed down the shaft. The under-ream void was 

then filled with quick setting cement in test RW4 (not wholly successful) 

and a quick setting metal loaded epoxy resin in the remaining under-ream 

tests. When the under-ream material had become solid the pile was placed 

down the hole partially filled with kaolin slurry (in test RW4 no kaolin 

slurry was placed down the hole prior to pile placement resulting in a 

low shaft capacity). 

Foundation load was measured above ground level at the pile top 

(typically 40mm above soil level) using a load cell. The actual total 

pile load was then the net weight of the pile plus the load cell reading 

plus the unmeasured weight of the lower part of the load cell (at 100g 

this corresponds to approximately 24 tonnes prototype pile load) In 

several tests load cells mounted in the pile bases were used to 

distinguish between pile shaft and base loads. 

Four different foundation types were used. All had a nominal length 

150mm in the clay with shaft diameters from 12.7mm to 19mm. The under- 

reamed piles were constructed with a 16mm diameter shaft and a 23mm 

diameter base. A typical pile design with under-ream and load cell is 

shown in Figure 4.9. 

4.5.5 Loading rigs 

As mentioned in section 4.2.3 mass has a scale factor of 1/n3 in the 

centrifuge compared to the prototype. This fact is utilised in providing 

load to the foundations. The simple loading device shown in Figure 4.10 

applies the load 'vertically' (in line with foundations and tub sides) 

to the foundation by using an axial bearing to control the orientation 

of the loading pin. Foundation load is altered by removing (loading) or 
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adding (unloading) water to the bucket suspended on the arm. Loading is 

achieved by using a remote controlled solenoid valve to dump water, while 

unloading is carried out by inserting water through an hydraulic slip 

ring to the bucket. In test RW5 and onwards the loading pin and load 

cell were loosely suspended from the balancing lever allowing touch down 

of the load cell and pin, followed by the balancing lever, to be gradual 

resulting is a smoother initial loading of the foundation. 

4.5.6 Standpipe 

The top and bottom boundaries of the clay layer are used to control the 

equilibrium pore water pressure conditions. The surface of the clay was 

kept either wet (surface water present) or in suction (surface sealed 

with liquid paraffin). The surface liquid condition did not change 

during any one test. 

The sand layer at the base of the clay was connected to the standpipe 

arrangement, as shown in Figure 4.11. The arrangement allowed three 

different pore water pressures to be applied to the base of the clay 

layer creating three different equilibrium pore water pressure profiles 

during a test. The required level was selected by operation of solenoid 

valves (normally closed setting) attached to the dump and lower overflow 

standpipe ports. 

4.5.7 Instrumentation 

Three different types of instrumentation were used: 

o Druck PDCR 81 miniature pressure transducers fitted with a porous 

ceramic front element were used to measure pore water pressures within 

the clay model. In each model there were between three and five 

transducers evenly distributed through the depth of the model. The pore 

pressure transducers had a pressure range of either 300 or 1000kN/m2 

depending on the maximum pressure they would be subjected to during the 

model preparation and testing. Similar transducers were also used to 

monitor water levels in the standpipe, loading rig water containers and 

the surface water level. Output from the transducers was in the order 
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of ±0.1V at full scale deflection. The output was amplified by 100 times 

by the on-arm junction box prior to being relayed to the logging system. 

o Linearly variable differential transformers (LVDT's) were used to 

measure foundation and soil surface movements. In tests RW1-RW3 five 

LVDT's (range ±12.5mm) were used, three to monitor surface movements and 

one on each foundation. In test RW4 - RW7 six LVDT's (range ±5mm) were 

used, three on the surface and three distributed over the two 

foundations. In test RW9 onwards an extra measurement of soil surface 

movement close to the tub edge was taken. Output from the transducers 

is ±3.5V for both ranges of transducers used. The output was amplified 

by 1 prior to being relayed to the logging system. In latter tests an 

off-arm amplification with a gain of 2 was applied to the ±5mm LVDT's. 

o RDP load cells were used to measure imposed foundation loads at the 

surface while an Entran load cell and a City University load cell were 

used to measure pile base load. The surface load cells had a linear 

range of ±2200N (±5001bs) while the pile base load cell had a linear 

range of ±500N. The RDP load cells have an output of 10*10-3 V/kN while 

the lower capacity Entran load cell outputs 0.13V/kN. The output was 

amplified by 100 on-arm and in later tests a further amplification factor 

of 2 was applied. 

All instrumentation was calibrated through equipment used during the 

tests, (arm mounted junction boxes with filters and amplification, slip 
rings and logging system). Pore pressure transducers were calibrated 

against a pressure transducer which is regularly calibrated against a 
dead weight system. Load cells were calibrated with hanging weights. 
LVDT's were calibrated against a micrometer scale. 

data from test RW15 is shown in Figure 4.12. 

4.5.8 Piezocone and actuator 

Typical calibration 

The piezocone used in tests RW8 and RW16 was a 60° cone with cross 
sectional area of lcm2 manufactured by Fugro-McClelland of Holland. The 

penetrometer was fitted with a porous stone 12.5mm from the cone tip or 
lmm from the cone shoulder and an -internal pore water pressure 
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transducer. The influence that the pore pressure, in the internal cavity 

of the cone, has on the load cell reading is 

-a)u 

where qt - corrected cone resistance 

q, - measured cone resistance 

a- effective cone area ratio 

u- pore pressure 

(4.13) 

A value of a-0.6 was measured by Allman (1992a) in a calibration chamber 

while a value of a-0.71 has been calculated from measurements from the 

cone geometry. The value measured by Allman has been used this work. 

The piezocone is mounted on an actuator, Allman (1992b). The actuator 

has two degrees of freedom (one horizontal movement and vertical) and is 

driven by stepper motors connected to an off-arm controlling computer in 

the control. 

The cone was disassembled prior to use and carefully de-aired prior to 

reassembly under fluid. In test RW8 the cone was saturated using silicon 

oil in an effort to prevent desaturation during in-flight moving between 

test locations. The use of silicon oil was reported by Meigh (1987) as 

a beneficial aid in preventing desaturation. However, at 100g the cone 
became desaturated and reduced the usefulness of the data. In test RW16 

different preventative measures to stop desaturation were adopted. The 

cone was saturated with distilled water and the tip was always immersed 

in a thirty millimetre deep layer of water overlying the sand layer. The 

cone did not desaturate during testing giving reproducible results of 

pore water pressure and cone resistance measurements. 

4.6 Pore pressures and downward hydraulic gradient consolidation. 

In modelling foundations in clay it is considered important to install 

the foundations in soil at the correct effective stress level. Ideally 

the model bored piles would be installed in flight after pore pressure 

equilibrium had been achieved. Pad footings are less effected by the 

stress condition at which they are installed. Failure to install piles 
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in soil with the correct effective stress regime will result in 

unrealistic soil structure interaction caused by soil consolidation (or 

swelling) resulting in down drag (or uplift) of the pile (see section 

5.5.1). For instance a pile having undergone down-drag will have 

unrealistically high toe loads, as monitored in test RW3 and RW4. On 

loading the pile the base would provide a stiffer response than expected. 

Whilst it was not been possible to install bored piles during flight due 

to the complex process of excavation and pile placement steps were taken 

to install the pile in the clay model with the correct effective stress 

regime. This was carried out by using a downward hydraulic gradient 

(Zelikson, 1969) in the press prior to model removal providing an 

effective stress profile that would later be achieved after spin-up on 

the centrifuge, by keeping the time from removal of the model from the 

press to spin-up on the centrifuge to a minimum (thus reducing swelling 

prior to centrifuge spin-up) and by keeping water away from the clay 

surface. The idealised downward hydraulic gradient stress profiles 

obtained in the consolidometer have shown in Figure 4.1(b). 

In addition to the benefit of installing the piles in soil with the 

correct effective stress conditions the time to pore pressure equilibrium 

on the centrifuge after spin-up was also reduced. 

While it was not possible to get reliable readings of pore water 

pressures in the model prior to spin-up due to cavitation in the 

transducers positive excess pore water pressures were significantly 

reduced when downward hydraulic gradient and quick model assembly were 

used. In tests where the downward hydraulic gradient technique was used 

the excess pore pressure at the mid height pore pressure probe was 

typically reduced by over 50% compared to the cases where it was not 

used. 

4.7 Test procedure 

Spin-up: 

Immediately prior to spin up of the model the base drainage was opened. 

The centrifuge was then started and accelerated to the required speed 
during two to three minutes. During spin up excess pore water pressures 
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(relative to the top and base pore water pressure conditions) were 

created. 

Excess pore water pressure dissipation: 

These excess pore water pressures immediately start to dissipate to the 

boundary conditions which are set to produce one of two different initial 

pore pressure profiles. In a majority of the tests downward seepage was 

set up through the clay layer by maintaining a surface water table in the 

sand layer on top of the clay and by allowing free drainage at the base 

of the clay as shown in Figure 4.13(a). A second profile modelling a 

clay layer with an impermeable surface cap and a hydrostatically 

increasing pore pressure with depth with the upper part of the clay layer 

in suction was also set up as shown in Figure 4.13(b). The impermeable 

surface was created by covering the clay with liquid paraffin. The 

liquid paraffin prevented drying out of the clay surface. Dissipation 

of the excess pore water pressures usually took place overnight during 

which the centrifuge was largely left unsupervised. 

Foundation loading: 

Foundation loading was then carried out using the loading rigs mounted 

vertically above the foundations. During this stage some foundations 

were loaded to failure (a displacement of 10% of the base diameter) prior 

to unloading to the required working load. 

Rising groundwater event: 
The pore pressures in the clay were then raised in one or two steps by 
increasing the water pressure at the base of the model using the external 
standpipe. The final pore pressure regime was set to be close to a 
hydrostatic profile extending from the model surface. 

Further foundation loading: 

When the pore water pressures had established at the higher level further 

foundation load tests were carried out. The centrifuge was then stopped 

and moisture content samples taken. 

Piezocone tests: 

In the two tests where the piezocone was used the initial pore water 
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pressure profile shown in Figure 4.13a was created after spin-up and 

excess pore water pressure dissipation. Three piezocone tests were then 

carried out in to a clay depth of 200mm at constant rates of penetration. 

The centrifuge was then stopped and the actuator holding the piezocone 

moved to allow further tests in undisturbed soil. The centrifuge was 

restarted and the pore water pressure raised to a hydrostatic profile 

extending from the clay surface. Further piezocone tests were then 

carried out. 

Preliminary results from several early centrifuge tests have been 

presented by Morrison and Taylor (1994a and 1994a). 
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CHAPTER 5 CENTRIFUGE TESTS AND RESULTS 

5.1 Introduction 

A total of sixteen centrifuge tests were undertaken with up to two 

foundations located in each model. The general test procedure was 

described in section 4.7. The test configurations are presented in 

Tables 5.1(a), (b) and (c) where foundation geometry, clay 

preconsolidation pressure, initial pore water pressure profile and some 

general comments are given. 

In the following the centrifuge tests are grouped together according to 

the principal objective of the particular experiment. The description 

commences from the point where the model had reached equilibrium with a 

low water level on the centrifuge. 

Tests RW1 to RW4: 

These four tests provided information on testing problems as well as 

basic information on foundation behaviour in a rising groundwater 

environment. Each test was more sophisticated than its predecessor due 

to improved testing procedure and loading rigs. In test RW4 the downward 

hydraulic gradient system was first used for final sample preparation in 

the press. Load tests were carried out on all foundations resulting in 

non standard behaviour of the foundations during the rising groundwater 

event. Test RW2 was unsuccessful due to variation of imposed foundation 

load during the rising groundwater event. 

Tests RW5 to RW7: 

In these tests the effect that initial load testing, prior to the rising 

groundwater event, has on foundation behaviour during a rising 

groundwater event was examined. Two identical piled foundations were 

installed in each model, one of which was load tested prior to raising 

the groundwater level. Test RW5 was unsuccessful due to an 

uncontrollable increase in foundation load during the rising groundwater 

level stage. 
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Tests R%J8 and RW16: 

In these tests series of piezocone penetration tests were carried out. 

Test RW8 was unsuccessful due to desaturation of the piezo-element and 

a break down in the data logging system. In test RW16 a surface water 
lake, deep enough to keep the cone submerged during cone movements from 

one testing location to another, was used to prevent drying out of the 

piezo element. The results of the piezocone penetrations provided data 

against which loss in pile base load capacity during a rising groundwater 

event can be compared. Pore water response in the model after removal 

of the cone showed no sign of hydrostatic continuity with the surface 

water table between tests at the low water level suggesting that the 

holes healed during removal of the cone over a large proportion of their 

depth. 

Test RW9: 

In this test London Clay was used instead of Speswhite Kaolin. The test 

was stopped twice as a result of malfunction of the slip rings. The test 

was not repeated due to the excessive sample preparation time required 

due to the low permeability of London Clay. Problems were also likely 

to occur during running of the centrifuge due to the excessively long 

testing times required. 

Tests RW10 and RW11: 

Data from previous loading tests was used for calculation of appropriate 

foundation loads for modelling the influence of factor of safety on 

similar foundations during a rising groundwater event. In test RW10 

under-reamed piles were modelled while in test RW11 more slender straight 

shafted piles were used. The piles were load tested after the rising 

groundwater event. 

Tests RW12 and RW13: 

The drainage conditions were changed in these tests to assess the effect 

that a sealed clay surface would have on foundation settlements. The 
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perched water table present in all other tests was replaced with a layer 

of liquid paraffin which is immiscible in water. The tests used a 

combination of one pile and one shallow footing as used in tests RW1 to 

RW4. The foundations were not load tested prior to carrying out the 

rising groundwater event. 

Tests RW14 and RW15: 

These tests were carried out to assess the effects of foundation geometry 

on settlement during a rising groundwater event. In each tests two 

different piles (an under-reamed pile and a straight pile) were tested 

at different loads but similar factors of safety. Load tests were 

carried out after the rising groundwater event. 

5.1.1 Data obtained fron tests 

The data obtained from each test commencing with model preparation and 

culminating with centrifuge spin-down include: 

o Stress history in consolidation press; 

o Initial excess pore water response during spin up; 

o Dissipation of excess pore water pressure generated during spin up 

resulting in soil and foundation movements and negative skin 

friction loading on pile shafts and pile base loading; 

o Model foundation load settlement relationship during loading; 

o Increase in pore water pressures (rising groundwater event) causing 

soil and foundation movements and redistribution of stresses in 

deep foundations; 

o Model foundation load-displacement relationship during load testing 

after rising groundwater event; 

o Generation of excess pore pressures during spin down. 

The first six items are necessary for analysis of the centrifuge 

modelling of foundations in a rising groundwater environment. The last 

item gives a rough check on total vertical stress at each pore water 

pressure transducer level. 
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For the tests where piezocone penetrations were being carried out 

profiles of cone load and pore water pressure were obtained against a 

background pore water pressure profile. These tests were carried out at 

low and high pore water pressure profiles and require the data in the 

first three points above for full analysis of the soil stress state. 

5.2 Generalised pore water pressure changes in the model 

The behaviour of the clay body during the centrifuge test is controlled 

by the water pressure boundary conditions. These conditions allow water 

to leave the model (consolidation) or enter the model (swelling) 

resulting, when equilibrium is achieved, in the required effective stress 

regimes. 

5.2.1 Spin up and subsequent dissipation 

As previously stated the changes in total stress in the model cause 

similar changes in pore water pressure during spin up. The event is 

considered to be essentially undrained resulting in a zero effective 

stress change. Figure 5.1 from test RW10 shows a typical pore water 

response during spin up. As the speed increased so did the pore water 

pressure. There may be some lag in the pore water pressure reading 

possible as a result of desaturation of the pore pressure transducer and 

potential cavitation of the clay-water mixture due to the pore suction 

generated when the sample was unloaded from the press. The pore pressure 

transducers at the base and at the mid-height of the model (labelled Base 

and tUA) show a quick response while the transducers at two fifths and 

four fifths depth (labelled U and IA) show a distinct delay in response 

to spin up. 

On reaching full speed the change in pore water pressures can be 

monitored as the they dissipate to the imposed boundary conditions as 

shown on Figure 5.2(a) from test RW10. The pore water pressures 

dissipate to low equilibrium levels of between 20 and 50kN/m2 through out 

the model when the imposed boundary conditions shown in Figure 4.13(a) 

were used. When a sealed surface was imposed the pore water pressures 

dissipated to a depressed hydrostatic profile as shown in Figure 5.2(b) 
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from test RW13 with the boundary conditions shown in Figure 4.13(b). In 

Figure 5.2(a) and (b) traces of net pile base load during the pore water 

pressure dissipation stage are shown. In Figure 5.2(a) the pile base 

load response reflected the pore water pressure changes in the 

surrounding soil showing an increase in load as the soil consolidated so 

dragging the pile base into the ground. In general the pile base loads 

were small and were later exceeded when working loads were applied 

reversing the direction of shear along the pile shaft in the process. 

In Figure 5.2(b) the pile load did not change significantly as the pore 

water pressure in the soil at the pile base remained fairly constant. 

However, the pile base load was high during the pore water pressure 

equilibrium stage and must be considered during the analysis of 

subsequent pile loading and rising groundwater events. 

5.2.2 Rising groundwater event 

When equilibrium had been reached with the low pore water pressures 

indicated by the final points in Figure 5.2 the model was ready for 

modelling the rising groundwater event. Foundation loads were applied 

using either complete load tests or more frequently by applying a nominal 

working load. The initial vertical effective stress regimes were high 

for the nine tests using a surface water table and downward seepage as 

shown by line 'a' in Figure 5.3. The vertical effective stress profiles 

for the two tests using a sealed surface are presented in Figure 5.4. 

For the tests where downward seepage was used, Figure 5.3, the loss in 

vertical effective stress in the region of the pile was of the order of 

40% at all levels monitored by pore water pressure transducers. 

Figure 5.5 shows the increase in pore water pressure from test RW10 

plotted against time. At the finish of the test pore water pressures 

were sub hydrostatic resulting in the vertical effective stresses being, 

on average, twelve percent higher than the very long term condition. 
Failure to reach full hydrostatic pore water pressure conditions was 

caused by time restraints on centrifuge access and by a modelling 

inconsistency. The modelling error was a result of the curved phreatic 

surface which exists in centrifuge testing. The base drain water level 

was controlled by the standpipe whose overflow level was set level with 
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the top of the sand surcharge. This results in a sub hydrostatic pore 

water distribution on the centre line where the pore water transducers 

were located. In the analysis, no correction to the measured pore water 

pressures have been made to account for the pile position offset from the 

centre line. The surface water table was kept close to the top of the 

sand layer in the centre of the model. 

For the tests where the surface was sealed as shown in Figure 5.4, the 

pore water pressure did not get close to a long term condition as 
indicated on Figure 5.6 from test RW13, even though the rising 

groundwater stage lasted over two times longer than that shown in 

Figure 5.5 where downward seepage was present. The contributory reasons 

for the slow equilibration of pore pressures are: the lack of downward 

seepage which provides access to water from the surface thus reducing the 

drainage path length, and a rectangular excess pore water pressure 

distribution compared to a triangular one with water available top and 
bottom. There is also a possibility of unmonitored surface evaporation 

reducing pore water pressures near the surface. 

5.2.3 Spin down 

At the end of the test the centrifuge was brought to rest and the model 

returned to 1g. During this event the pore water pressures were 

monitored giving an estimate of the total vertical stress change and a 

rough indication of vertical total stress at each transducer level (some 

side friction on the tub sides may take up some of the total stress 

change). Figure 5.7 from test RW16 shows the readings of five pore water 

pressure transducers during spin down. The readings gave a check on 

total stresses calculated from transducer positions within the model 

(measured during model excavation) multiplied by an average bulk unit 

weight of the soil. 

5.3 Moisture content at end of tests 

Moisture contents were taken at the end of the test after spin down. 

Care was taken to prevent as much swelling as possible prior to sampling 

by closing the base drainage, removing any free surface water and by 
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taking the moisture content samples as quickly as possible. Figure 5.8 

and 5.9 show the final moisture content profiles for all tests (except 

test RW7) where the initial preconsolidation pressure was 1250 kN/m2. 

Figure 5.8 contains data from the eight tests where surface water was 

present during the model testing. Figure 5.9 contains the two tests were 

surface water was not present. In both sets of data there is a 

significant reduction in water content with increase of depth over the 

top 200mm. This trend reverses in the bottom 50 to 75mm and probably 

results from swelling due to water intrusion from the base drain. The 

scatter in data, especially in Figure 5.8 is a result of the variation 

in final vertical stress in the model as previously shown in Figure 5.3. 

In test RW11, marked with solid squares in Figure 5.8, the pore water 

pressure was reduced prior to spin down and this set of data forms the 

lower bound to the scatter of data points. All moisture content samples 

have liquidity indices between 0.18 and 0.27 at 50mm depth reducing to 

between 0.13 and 0.20 at 200mm depth. The Speswhite Kaolin used in the 

series of centrifuge tests had Atterberg limits of PL - 34% (Viggiani, 

1992) and LL - 65% giving PI - 31%. 

5.4 Piezocone tests 

The piezocone tests were carried out to assess the reduction in the 

strength of the clay due to a rising groundwater event. In centrifuge 

test RW16 a total of eight piezocone penetration tests were carried out 

to a clay depth of 190mm, typically 40mm below the base level of the 

model piles used in the other tests. The tests were carried out in a 

model with surface water and downward seepage similar to Figure 4.13 (a). 

Three tests were carried out with a variable depressed water table and 

five tests with near hydrostatic pore water pressures. The vertical 

effective stress conditions at the start of each test and rates of 

penetration are shown in Table 5.2. 

Two different penetration rates were chosen, 2. Omm/sec (tests 3,6,7 

and 8) and 0.2mm/sec (tests 1,2,4 and 5). The data provide a comparison 

of cone resistance at different rates of loading and shearing in soil 

with different effective stress regimes. 
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Atkinson and Salfors (1991) summarise cone penetration testing and report 

that cone resistance and when available sleeve friction are functions of 

soil strength. Correlations of cone resistance with deformation moduli 

are empirical and are therefore site specific. 

5.4.1 Piezocone test results 

5.4.1.1 Tests at 0.2®/sec 

In Figure 5.10(a) and (b) uncorrected cone stress and excess pore water 

pressure are plotted against penetrometer position below the clay surface 

(there was a 9mm sand surcharge on top of the clay layer). The data fall 

neatly into two distinct bands representing the two different effective 

stress conditions. Tests CPT1 and CPT2 carried out in the depressed pore 

water pressure regime lie above tests CPT4 and CPT5 carried out in the 

high pore water pressure regime in both uncorrected cone resistance and 

excess pore water pressure plots. The offset of the excess pore water 

pressure in Figure 5.10(b) is a result of the porous element of the cone 

being 12.5mm behind the tip of the cone which is used as the reference 

point. A correction of +12.5kN/m2 (0.0125w by lOkN/m3 by scale factor) 

to the excess pore water pressure would only be valid in the sand layer, 

where hydrostatic conditions exist, and has therefore not been applied. 

The pore pressure ratios (B. ) were calculated using a formula suggested 

by Senneset and Janbu (1985) and supported by Atkinson and 

Salfors (1991): 

Ba - 

where Ut 

Ut 

9t 

avt 

Au 

Qn 

ut - up 
- 

qt - Ovt 
Au 
qn (5.1) 

measured pore water pressure 

back-ground pore water pressure 

cone resistance corrected for pore pressure in 

cone cavity (see Section 4.5.8) 

total vertical stress 

excess pore water pressure 

net corrected cone resistance 

as shown in Figure 5.11. Bq was relatively constant for most of a 

penetration test and had values of approximately 0.2 for tests CPT1 and 
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CPT2 and 0.15 for tests CPT4 and CPT5. 

Figure 5.12 shows the traces of net corrected cone resistance (qn) 

plotted against vertical effective stress for the four tests carried out 

at 0.2mm/sec. The four tests show that qn has a high degree of 

correlation with vertical effective stress irrespective of the depth 

below ground level. 

In Figure 5.13 the net corrected cone resistance (qn) is plotted against 

mean normal effective stress (p'). The mean normal effective stress has 

been calculated using the relevant equations presented in Section 2.2 and 

the Ka relationships presented in section 3.5.2. The maximum and minimum 

vertical effective stress levels have been calculated from the stress 

regimes in the consolidation press and pore water pressures measured 

during centrifuging of the sample. These maximum and minimum vertical 

effective stresses allowed calculation of mean normal effective stress. 

The traces at the different effective stress regimes are visibly 

different but the trend, unlike that in Figure 5.12, does appear to pass 

closer to the origin. Calculation of horizontal effective stress has 

been carried out as carefully as possible. However, as shown by 

Al-Tabbaa (1987) and in Figure 3.8 the chosen line relating K. on 

unloading to overconsolidation ratio is very much an average and some 

errors are likely. 

5.4.1.2 Tests at 2. Omm/sec 

Figures 5.14(a) and (b) to 5.17 correspond to Figures 5.10 to 5.13 but 

are for piezocone tests carried out at 2.0mm/sec rather than 0.2mm/sec. 

Cone test CPT3 was carried out at a low water level (high effective 

stress regime) while cone tests CPT6, CPT7 and CPT8 were carried out at 

a high water level (low effective stress regime). As with the tests at 

the slower cone penetration rate the three tests at the high water level 

show good repeatability of uncorrected cone resistance and generated 

excess pore water pressure (see Figure 5.14(a) and (b)). 

The pore pressure ratio, as in Eqn. 5.2, gave peak values of 0.5 and 0.4 

for the test at low water level and high water level respectively as 
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shown in Figure 5.15. Again the repeatability of the tests was good. 

Net corrected cone resistance (qn) results are plotted against vertical 

effective stress and mean normal effective stress in Figures 5.16 and 

5.17. In both plots there is a strong degree of correlation of cone 

resistance with effective stress levels. 

5.4.2 Discussion of piezocone results 

5.4.2.1 Rate of penetration 

Meigh (1987) reported on the effects of cone penetration rate on cone 

resistance and found that for a variety of both normally and 

overconsolidated clays, cone resistance increased with penetration rate 

(within the band of 1 to 20mm/sec for three different clays and 0.1 to 

20mm/sec for London Clay). Almeida and Parry (1983a) found that for 

Kaolin, variation in penetration rate between 1 and 20mm/sec did not 

effect the measured cone resistance for either normally consolidated or 

overconsolidated deposits. The tests carried out in this research 

project were at 0.2 and 2.0mm/sec and demonstrated a reversal of the 

trend reported by Meigh. A possible explanation for this is found in a 

comparison of the excess pore water pressure response at the cone base 

shown in Figure 5.11 and Figure 5.15 in terms of pore water pressure 

ratio (B. ). For the faster tests B. averaged 0.45 while for the slower 

tests an average value of 0.15 was measured at depth. It seems likely 

that in the tests at 0.2mm/sec a combination of soil permeability (Kaolin 

has a relatively high permeability for a clay) and cone penetration rate 

has lead to partially drained conditions resulting in higher cone 

resistance. It may be that for Kaolin the threshold speed at which 

drained effects start to become apparent lies between 0.2 and 2.0mm/sec 

which is at the lower bound of the penetration rates investigated by 

Almeida and Parry (1983a). 

5.4.2.2 Correlation with undrained strength (Se) 

Foundations in stiff clay usually have their base resistance calculated 

in terms of S,, as described in section 2.1.1.2. Correlations of cone 
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resistance with undrained strength are not straightforward and have led 

to a variety of cone factors (Nk) depending on cone resistance and 

plasticity. Almeida and Parry (1983a and 1983b) carried out a series of 

comparisons of cone penetration resistance with vane shear strength 

measured in calibration chambers and during centrifuge tests where cone 

resistance was related to the vane measured undrained shear strength by: 

Nk- 90 
T. 

and 

Nc - 
Qt - at 

- 
Qn 

ý_ ý 
-u -u 

ý- IT, 

(5.2) 

(5.3) 

For a soil at a medium to high overconsolidation ratio (an average value 

of R-6 exists at the pile base level) a combination of data points from 

Almeida and Parry (1983a) and Francescon (1983) (after Almeida and Parry, 

1983a) give values for Nk of 9.5 and N, of 8.5. They noted that the 

measured cone bearing capacities were lower for reconsolidated kaolin 

than for naturally occurring clays which typically have values of Nk - 
18±4 (Meigh, 1987). 

Stewart (1989) used the relationship proposed by Skempton (1954) relating 

undrained shear strength to plasticity index and vertical effective 

stress 

S� 
-0.11+0.37PI (5.4) 

and the relationship linking undrained strengths for a one-dimensionally 

overconsolidated and normally consolidated deposits to overconsolidation 

ratio (Ladd et al., 1977) 

ISu/a'vloc 

ý Rm 

S. /; 
°/nc 

(5.5) 

to give for Speswhite and Spestone Kaolins (which are thought to have 

similar mechanical properties and both have a plasticity index of 31% as 

reported by Mair, 1979) 

Using undrained strength calculated from Eqn. 5.6 and an assumed constant 
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- 0.22 Ro. 57 

% 
o, 

(5.6) 

Nc - 8.0 (which gives a better fit than 8.5) results in a predicted 

profile of cone resistance. This profile is plotted in Figure 5.18 with 

data from the four cone tests at 2.0mm/sec. The rapid gain in strength 

at low effective stress levels is predicted reasonably well. The 

measured cone resistance is over-predicted at intermediate stress levels 

corresponding to intermediate depths and converges at higher stress 
levels towards the base of the model for both low and high water levels. 

Some difference in predicted to measured results may be caused by 

variation in stress paths assumed in the predicted values and the stress 

paths actually followed by the clay sample. The results from Almeida and 

Parry (1983a) show that Nc was not a constant and for a particular soil 

type varied with overconsolidation , ratio. However, at high 

overconsolidation ratios Nc did not vary significantly. This allowed 

comparisons to be made of undrained shear strength before and after a 

rising groundwater event using the same cone constant. 

5.4.2.3 Correlation with drained strength 

The tests carried out at 0.2mm/sec produced a set of results which, while 

not consistent with fully drained conditions, as shown by the generation 

of excess pore pressure evident in Figure 5.11, do display some aspects 

of drained behaviour. In Figure 5.12 there is a strong reliance of cone 

resistance with vertical effective stress and which implies a cohesion 

intercept. In Figure 5.13 (cone resistance against mean normal effective 

stress) the general trend is closer to passing through the origin if the 

high cone resistance at low effective stress level is attributed to peak 

friction angles larger than 0', on the Hvorslev surface. The difference 

in the tests at low and high water table in Figure 5.13 is disappointing 

and may be a result of errors in the calculation of horizontal effective 

stress. 

5.4.2.4 Comparison of drained and undrained strength 

The effect of the rising groundwater event on drained and undrained 

strength is different. If Figures 5.12 and 5.16 are compared it is 
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clear that the percentage reduction in the partially drained strength is 

significantly larger than the reduction in undrained strength, 

approximately 30.5% compared to 24% respectively based on the piezocone 

tests or 20% (undrained strength reduction) from Eqn. 5.6 at the level 

of the pile base in the other centrifuge tests for a 40% reduction 

(approximately 250 to l50kN/m2) in a',. The results have further 

ramifications with respect to the foundation load tests discussed in the 

next section. Foundation loading took place using a constant rate of 
loading approach. For a typical foundation peak load was reached in 300 

seconds model scale. At this rate of loading it is likely that nearly 
fully drained conditions existed and as such foundation base resistance 

measured was approaching a long-term maximum for the settlements 

obtained. 

The penetration tests carried out by Almeida and Parry (1983a) 

incorporated an average shaft friction measurement. They found that 

shaft resistance reduced with decreasing penetration rate for a soil with 

overconsolidation ratio of 10. For the rate of pile penetration arising 

from the constant rate of loading an extrapolation of the findings of 

Almeida and Parry suggest the shaft resistance measured during loading 

will be fully drained and a minimum. 

5.5 Piled foundation load behaviour prior to rising groundwater 

The results of the piezocone tests described in section 5.4 demonstrate 

that the undisturbed ground experiences a reduction in both undrained and 

partially drained bearing capacity during a rising groundwater event. 

In this section the results of piled foundation load behaviour before the 

rising groundwater event will be presented. This will provide an initial 

framework in which foundation movements during a rising groundwater event 

can be discussed. In Table 5.3(a), (b) and (c) the loading history of 

all the foundations are presented. Loads are presented in Newtons (N) 

and are appropriate to model scale (equivalent prototype loads can be 

determined by multiplying by the scale factor of n2). Stresses on 

foundation shafts and bases are reported in kilo Newtons per meter 

squared and are appropriate to both model and prototype alike as 

demonstrated in section 4.2. Foundation shaft and base loads use the 
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following definitions: 

Pt ' Ps + Pb - gsAs + gbAb 

gs - 
Ptl + Wp Pbl 

As 

Pb - 

where p 

Pti 

Pbl 

q 

WP 

W. 

A 

qbl - Wa 

Ab 

(5.7) 

(5.8) 

(5.9) 

Mobilised load (t - total, s- shaft, b- base) 

Load registered on top load cell 

Load at pile base level 

Mobilised stress (s - shaft, b- base) 

Pile self weight plus unregistered weight of 

load cell 

Weight of excavated soil 

Area 

The load measured at the base of the pile is considered to be the gross 

pile base load. For calculation of the actual load mobilising base 

resistance the weight of excavated soil is subtracted to obtain the net 

pile base load. In the case of under-reamed piles a similar approach is 

adopted. The annulus of soil above the pile under-ream surrounding the 

pile shaft is not considered to act on the pile base after settlement has 

taken place and is therefore not included in calculation of net pile base 

load. 

For piled foundations, shaft and base loads change during the main phases 

of a centrifuge test as a result of soil movements and effective stress 

changes. The loads at all stages of the centrifuge test are required to 

carry out full analysis of the test. An incorrect distribution of load 

(load carried by the shaft compared to load carried by the base) on a 

pile prior to a rising groundwater event will lead to irregular behaviour 

when the pore water pressure rises. Shallow foundation are assumed to 

interact with the ground only via their base and are not susceptible to 

incongruous load distributions. 
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5.5.1 Piled foundations during initial pore water pressure equilibrium 

stage 

In section 5.2.1 of this chapter reference was made to pile bases 

attracting load as a result of consolidation of the surrounding soil 

after spin up. This problem was recognised early on in the series of 

tests and by the time the fourth test was attempted a downward hydraulic 

gradient system (described in Section 4.6) was working for the final 

consolidation stage in the preparation press to reduce ground movements 

in the vicinity of the pile during model preparation and after spin up. 

However, even for simple model configurations it was not possible to 

prevent some soil consolidation after spin up which resulted in small, 

but for slender piles significant, pile base loads prior to foundation 

loading. Previous research into load displacement response of piles has 

shown that pile shafts mobilise full resistance after much smaller 

displacements than pile bases (see Section 2.1.2). Therefore for 

slender, nominally friction, piles loading to working loads would not 

result in the mobilisation of significant base load. To find the piles 

which had been affected by these extra base loads the base response was 

monitored during foundation loading as discussed in Section 5.5.2. When 

there was an initial base load that did not increase during pile loading 

the pile base was assumed to be non-standard. This criterion for 

modelling prototype situations accurately suggests that only piles which 

mobilise end bearing resistance at working loads may be modelled 

correctly in the centrifuge tests. Two piles displayed no increase in 

base load when subjected to working loads. Pile 2 (a slender 12.7mm 

diameter pile) in test RW14 displayed a low mobilised shaft friction 

together with a high base load resistance and was clearly affected by 

consolidation of the surrounding soil. The movements of this pile, and 

other non-instrumented slender piles, must be considered to have been 

affected by consolidation of the ground after spin-up. Settlement 

behaviour during the rising groundwater event was assumed to be a lower 

bound to the settlement that would be measured without this initial high 

base load. Pile 1 in test RW6 displayed no increase in base load during 

loading. The fact that base load was small (net load less than zero) 

combined with a shaft friction approaching full capacity which suggests 
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that the pile was near to prototype conditions after loading and its 

behaviour will be compared with the remaining piles. 

5.5.2 Initial foundation loading 

Prior to the rising groundwater event foundation load tests to failure 

(typically a displacement of 10% foundation base diameter, section 2.1.1) 

were carried out in tests RW1, RW3, RW4, RW6 and RW7 as shown in 

Table 5.3(a) and (b). In tests RW3 and RW4 a distinction between pile 

shaft and base capacity was possible. In tests RW10 and RW15 where 

under-reamed piles were being modelled, the ultimate shaft capacity was 

also obtained as the settlement required to mobilise working base 

capacity exceeded that needed to mobilise full shaft capacity. The load- 

displacement response of the five piles that were loaded to failure are 

shown in Figure 5.19. The two piles for which there was distinction 

between base and shaft load measurement in Figure 5.19(a), show a 

relatively soft response of the base compared to the shaft, similar 

behaviour is displayed by prototype piles. Two of the piles in Figure 

5.19(b) show a more linear increase in load with displacement after the 

initial stiff response of the shaft observed in the other two piles or 

in the piles in Figure 5.19(a). This is because the loading for these 

two piles continued until a displacement of 10% pile base diameter has 

been achieved while for the other piles some of the displacement was due 

to settlement at constant load. Loading of the pile in test RW4 was 

stopped prior to reaching a settlement of 10% pile base diameter due to 

the onset of large movements, possible related to cracking of the 

concrete under-ream noted after the test. 

Calculations of the parameter ß (Eqn. 2.2) were carried out using an 

average vertical effective stress for the piles where full mobilisation 

of skin friction was achieved. An average value of 0.3 ±0.025 was 

obtained from four piles at low water table where full shaft friction on 

initial loading was seen to be mobilised (P1 in RW3, Pl in RW7, Pl in 

RW10 and P1 in RW15). This combined with a pile shaft friction angle of 

16° (this was measured during a reversal stage of a standard shear box 

interface test, Tahzeem 1993) gives a coefficient of earth pressure at 

the shaft of 1.05. The equations presented in section 2.2 predict 
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significantly higher values of K0 The change in I( is attributed to 

reduction in radial effective stress due to the installation procedure 

adopted for pile installation. Loss in prototype radial stress would be 

less due to the ameliorating process of placing concrete which acts to 

re-establish the radial stress prior to concrete curing. Finite element 

analyses of model and prototype pile installation processes have been 

carried out in Chapter 6. 

When piles were unloaded after pile testing the distribution of shaft to 

base load was not the same at similar loads during the loading stage. 

The pile base unloads more slowly than the shaft, occasionally resulting 

in the average shaft friction acting to push the pile base into the 

ground as shown in Figure 5.20(a) taken from the under reamed pile in 

test RW4 (in Figure 5.20 overload refers to additional base, or shaft, 

load during unloading after load testing, compared to the load 

distribution during initial loading). On initial unloading, pile base 

and shaft load reduce. On further unloading the rate of base unloading 

reduces while the shaft maintains its rate of unloading. By the time 

that the required working load is reached the net shaft load is negative 

and the base is carrying all the head load and the component of negative 

shaft load. The straight pile in test RW3, Figure 5.20(b) shows a 

similar trend except that at working load the net shaft stress is still 

acting to carry some head load. In this case the magnitude of average 

shaft stress after loading is approximately 59% the maximum shaft stress 

that would normally be mobilised at the working load. 

5.6 Foundation behaviour during a rising groundwater event 

In the presentation of foundation behaviour during a rising groundwater 

event five tests will be discussed in detail. Each test demonstrates a 

different facet of foundation behaviour during a rising groundwater event 

and is typical of other tests not presented in detail. The results of 

all successful tests are used in providing the final picture of 

foundation behaviour. 

Once the foundations have come into equilibrium with their working loads 

the pore water pressure in the base sand aquifer is increased rapidly in 
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one or two steps. During the following period the pore water pressure 

in the clay comes into equilibrium with the increased pore water pressure 

in the basal sand resulting in soil and foundation movements. A full set 

of figures and basic description for each of the eleven most successful 

centrifuge tests and the piezocone test (RW16) is given in Appendix A. 

5.6.1 Tests RW3 and RW6: Comparison of pre-loaded and non pre-loaded 

piles 

In these tests the behaviour of a pre-loaded pile is compared with that 

of a non pre-loaded pile. Test RW3 provides the behaviour of a pre-load 

tested pile during a rising groundwater event and test RW6 allows 

comparison of a load tested and a non-load tested pile. 

The sequence of loading and unloading to the required working load of the 

pile in test RW3 has already been described in section 5.5.2 and Figure 

5.20 (b). At the onset of the rising groundwater event the pile had a 

factor of safety of 2.1 (calculated using an ultimate load from a 

continuous rate of loading test) and a load distribution between shaft 

and base of 109N and 76N respectively. This compares with the load 

distribution of approximately 180N and 5N (shaft and base) at the same 

total load of 185N on initial loading. 

The pile load distribution during the rising groundwater event is shown 

on Figure 5.21. Vertical effective stress at 150mm clay depth 

(corresponding to pile base level) is plotted along the abscissa. The 

initial pile load distribution lies on the right hand side of the figure 

corresponding to initial high effective stress regime. The pile load 

distribution is plotted as the ordinate. During the rising water event 

the pile load distribution changes as the soil around the shaft swells 

resulting in an uplift of the pile and an unloading of the base. At the 

end of the rising groundwater event the shaft load has increased to 180N. 

This is below ultimate shaft load for the existing effective stress 

regime (P. - 234N for a'v, �. - 90kN/m2) as shown in Figure 5.22. Here the 

ultimate shaft capacity measured at three different effective stress 

levels at which full shaft friction was mobilised during test RW3 is 

plotted against average vertical effective stress along the pile shaft. 
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If further swelling of the soil had occurred it is anticipated that 

increased shaft friction would have been mobilised resulting in uplift 

of the pile base (and unmeasured tension in the lower part of the pile). 

Test RW6 was designed to assess the effect of the redistribution in pile 
load during a rising groundwater event. Pile 1 was instrumented with a 
base load cell and was not load tested prior to raising the groundwater 
level. Pile 2 was not instrumented and was load tested. The pile load 

distributions are shown in Table 5.4 before and after the event for 

Pile 1 and calculated values for Pile 2. Figure 5.23 shows the pile 

movements during the rising groundwater event. Vertical effective stress 

at the pile base level is plotted on the abscissa with pile and surface 

movements on the ordinate. The inset' figure shows the pore water 

pressure profiles associated with the four indicated effective stresses 

on the main figure. The foundation loads during the same period are 

shown on Figure 5.24. The two total loads remain constant during the 

early part of the test but Pile 2 loses load after c'�150 decreases below 

l60kN/m2 beyond which point test results are not reported. The signals 

are noisy due to interference on the centrifuge slip rings. However, it 

is possible to detect that Pile 1 shaft load increases during the early 

part of the test prior to a slight decrease towards the end of the test 

at which stage full shaft capacity will have been mobilised. Pile 2 will 

have behaved similarly to the pile in test RW3 during the rising 

groundwater event both having started with an overloaded pile base. The 

change in effective stress during this test (RW6) was larger than in test 

RW3 allowing larger differential settlements between pile and surface 

providing more opportunity for Pile 2 to re-establish a pile load 

distribution similar to Pile 1. 

The movements associated with each pile, shown in Figure 5.23, 

demonstrate that the effect of pre-loading a pile is to reduce settlement 

relative to the surface during a rising groundwater event. Pile 2 

settled less than Pile 1. Although both piles in test RW6 were not 

instrumented the observed behaviour of pre-loaded piles in tests RW3 and 

RW4 (a full record of behaviour during a rising groundwater event for 

each is included in Appendix A) suggests that the effect of preloading 

is to reduce pile base settlement relative to the ground surface during 
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a rising groundwater event. The base load for Pile 1 in test RW6 

increased marginally during the latter part of the test suggesting a 

small base settlement. For Pile 2 the base settlement is likely to have 

been zero or possibly negative due to the pile base moving upwards 

relative to the surrounding soil. 

The behaviour of test RW7 (reproduced in Appendix A), where two piles 

similar to those used in test RW6 but with lower factors of safety, 

reproduced a similar trend in behaviour. The piles settled more than 

those in test RW6 due to the smaller factor of safety and the pre-loaded 

pile settled less than the non pre-loaded pile. 

5.6.2 Test RWlO: Influence of initial factor of safety on settlement 

In this test the influence of initial factor of safety on pile movements 

during a rising groundwater event was investigated. Two under-reamed 

piles with base area twice that of the shaft cross-section and depth 6.5 

times the base diameter were used. Neither pile was load tested prior 

to the rising groundwater event. The calculated initial factor of safety 

on ultimate load prior to the rising groundwater event was 1.8 (Ps + 

Pb/3.3) for Pile 1 and 2.1 (Ps + Pb/5.5) for Pile 2. The partial factors 

on pile base load are calculated assuming that on initial loading full 

shaft capacity is loaded and has a partial factor of 1.0. 

During initial loading of Pile 1 the displacement was 0.38mm which fully 

mobilised the shaft friction as can be seen in Figure 5.25 where the 

shaft stress reaches a maximum value and then reduces to an equilibrium 

level as excess pore water pressures decay. Pile 2 settled by 0. lmm 

which when compared with the load settlement of the shaft of pile 1 was 

enough to fully mobilise shaft friction. During the rising groundwater 

event there was a measured transfer of load from the shaft to the base 

of Pile 1 as shown in Figure 5.26. The initial peak in total load (due 

to temporary malfunction of the loading mechanism) after 1000 seconds 

into the test is not considered to influence to overall behaviour of the 

pile. There is a 10% reduction in mobilised shaft stress during the 

rising groundwater event. 
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Figure 5.27 shows the displacement of the two piles and the ground 

surface plotted against far field vertical effective stress at the pile 

base level. The low factor of safety pile (Pile 1) is seen to settle 

0.24mm more than the high factor of safety pile (Pile 2). Both piles are 

seen to settle significantly (1.28mm and 1.04mm) relative to the ground 

surface. At the end of the test the pore pressures were slightly 

sub-hydrostatic as shown in Table 5.4 where pore water pressure is quoted 

against clay depth measured from the sand-clay interface. Any further 

swelling is likely to be near to the surface and would result in ground 

surface swelling and a small reduction in horizontal stresses and shaft 

friction. This would cause an absolute downward movement of both piles; 

there was some evidence of this type of response towards the end of the 

test. 

Test RWll in which two slender piles with a length to base diameter ratio 

(L$/Db) of 12.0 with different initial factors of safety were tested 

together and showed a similar result with the low factor of safety pile 

settling more than the high factor of safety pile. A buried plate at the 

same level as the pile bases showed that the lightly loaded pile did not 

settle significantly relative to the surrounding soil. The movement of 

the plate also suggests that the piles in test RW10 settled significantly 

compared to the surrounding soil (approximately 0.75mm and 0.5mm for 

Piles 1 and 2 respectively). 

5.6.3 Test RW13: The behaviour of different foundation types (and 

different initial pore water pressure distributions) 

In this test the displacements of a pad, a pile and the ground surface 

were compared during a rising groundwater event in which the pore water 

pressure profile was initially hydrostatic extending from a negative 

value at the surface. The rising groundwater stage of test RW13 lasted 

43 hours during which time the pore water pressure moved half way to 

equilibrium in the region influencing the foundation behaviour. 

Figure A. RW13.1 in Appendix A shows the ever decreasing rate of increase 

in pore pressure with time. It was not possible to continue the test to 

achieve full equilibrium. The results can, however, be compared with 

those tests where a perched surface water table and downward seepage 
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existed prior to the rising groundwater event. A schematic of the 

different pore water pressure profiles before and after the rising 

groundwater event is given on Figure 4.13. 

Figure 5.28 shows the foundation behaviour during the rising groundwater 

event. Three displacement results are presented, surface, pad and pile 

(the pile had a 12.7mm diameter straight shaft and was 150mm long). The 

first point to observe is that the magnitude of soil swelling compared 

to the previous tests in Figures 5.23 and 5.27 is large especially when 

considering that test RW13 had not reached equilibrium. The large ground 

heave is caused by the large percentage loss in effective stress near the 

soil surface which does not occur to the same extent when a perched water 

table exists. The second point to observe is that the pile settlement 

relative to the ground surface is also large (the absolute pile movement 

is small) compared to Pile 1 in test RW11 (reproduced in Appendix A, 

Figure A. RW11.3) where the pile loads were similar (p� - 230-235N) but 

test RW11 had a perched water table. The final point to observe is that 

of pad settlement. During pad loading to a working load of pw - 150N a 

settlement of 0.12mm was observed. During the following rising 

groundwater event a further 0.69mm settlement occurred due to the 

reduction in effective stress near the surface. The pad was seated on 

the clay surface where at the start of the test the vertical effective 

stress was approximately 90kN/m2 due to negative pore pressures. If the 

rising groundwater event had reached equilibrium the vertical effective 

stress would have reduced to zero. However, at the time when the test 

was stopped it is estimated that the vertical effective stress at the 

surface was approximately 40kN/m2 resulting in approximately a 42% 

reduction in the vertical effective stress in the surrounding soil. 

Further swelling would have led to significantly larger pad settlement 

and ultimately failure of the clay foundation. 

The load behaviour of the foundations is shown in Figure 5.29. The pad 

load remained fairly constant during the event. The initial slight 

increase in load during the first part of the test was due to leakage in 

the loading system which was corrected before the overload became large. 

The pile head load was constant but there was an unexpected load transfer 

from the pile base to the pile shaft. During initial loading a 
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displacement of 0.12mm occurred (the initial pile load at the start was 

150N due to pile self weight) and for this displacement it appeared that 

full shaft capacity was mobilised. The reason for an increasing shaft 

capacity during the test is not clear from the results obtained but may 

be due to increased radial stresses acting on the pile shaft caused by 

a deterioration of hoop stress and a reduction in "open shaft" stability 

as the negative pore pressures reduce. The change in load distribution 

will have acted to reduce settlement of the pile during the rising 

groundwater event though the settlements were still large demonstrating 

the different mode of behaviour caused by different initial pore water 

pressure distributions. 

In the tests modelling initial negative pore pressures at the surface 

downward hydraulic gradient method was not used due to experience gained 

by Stallebrass (1993) in a separate series of tests. This means that the 

soil near the surface was swelling in a primary unload stress path rather 

than swelling back to a previous low stress state. This will tend to 

exaggerate the magnitude of heave and also bearing capacity reduction due 

to larger horizontal effective stress changes than would otherwise be the 

case. However, the general trend of behaviour observed above will be 

unaltered. 

5.6.4 Test RW15: Comparison of two different geometry piles 

In this test the behaviour of two different foundations were compared. 

Pile I was an under-reamed pile and Pile 2 was slender; both piles were 

founded at the same depth of 150mm into the clay. Full details on the 

foundations' geometry are included in Table 5.1. On initial loading to 

290N Pile 1 settled by 0.25mm and appeared to mobilise full shaft 

friction as would be expected in an under-reamed pile. Pile 2 settled 

by approximately 0.025mm (the resolution of the LVDT was 0.004mm) on 

initial loading to 164N suggesting that the load increment was taken by 

shaft friction. A small overload (16% of pM) of the pile occurred during 

loading. This could lead to an incorrect load distribution in Pile 2 

prior to the rising groundwater event, however in light of the small 

settlements during loading it is considered unlikely that significant 

base load was mobilised. Prior to the rising groundwater event Piles 1 
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and 2 had initial factors of safety of 2.4 and 2.0 respectively. Early 

on in the rising groundwater event Pile 2 suffered an increase in load 

to 330N corresponding to a factor of safety of 2.1 (as reported in 

Table 5.3c). It is estimated that this extra load will have caused 

0.09mm settlement which has been removed from the displacement recorded 

during the rising groundwater event. 

The displacement behaviour of the piles, a buried plate and the ground 

surface during the rising groundwater event are displayed in Figure 5.30. 

The results show the different magnitude of settlement associated with 

different pile type. The slender pile, Pile 2, settled significantly 

less than the under-reamed pile and was seen to move in unison with the 

buried plate. Pile 1 settlement is attributed to both soil swelling 

passed the shaft and due to settlement of the pile base. Pile base 

settlement is caused by transfer of load to the pile base from the shaft 

(this was measured in the early part of the test prior to a breakdown in 

the signal measurement), a reduction in soil stiffness and the necessity 

to mobilise a larger proportion of the drained bearing capacity (due to 

the larger load and reduced bearing capacity). The surface heave 

monitored during the test was larger than in the other tests with a 

perched water table. This was due to the longer swelling period (22 

hours compared to other tests when the swelling stage was stopped after 

11 hours) and due to the lower initial pore water pressures prior to the 

rising groundwater event. 

In test RW14 where a similar set-up was used similar trends of behaviour 

were observed. The under-reamed pile (with a lower load than the 

corresponding pile in test RW15) which, while settling into the soil at 

the pile base level, resulted in significantly less settlement than the 

pile in test RW15 at similar values of ground surface heave. In test 

RW14 the base of the slender pile (Pile 2) unloaded from an initially 

high load (Figure A. RW14.3) suggesting pile base uplift. This was not 

indicated by a comparison of plate and pile displacements suggesting that 

the plate had experienced limited uplift due to friction on its narrow 

shaft. 
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5.7 Comparison of piled foundation load capacity before and after a 

rising groundwater event 

In section 5.6.1 it was shown that load testing a foundation prior to a 

rising groundwater event results in non-standard behaviour during the 

subsequent rising groundwater event. This led to a reduction in the 

number of piles load tested prior to the rising groundwater event. 

However in several tests load capacities of the composite pile (shaft and 

base) or just load capacity of the shaft were obtained before and after 

the rising groundwater event allowing a comparison to be made. 

5.7.1 Shaft capacity 

In section 5.5.2 it was suggested that the process of pile installation 

caused significant reduction in radial stress acting on the pile. The 

actual radial stress acting on the pile is unknown. It is therefore not 

possible to undertake a rigorous analysis of the mechanism of loss of 

shaft capacity during a rising groundwater event. 

However, by comparing the average shaft friction of individual piles with 

the change in vertical effective stress, as well as the predicted change 

in far field horizontal effective stress a mode of behaviour of the model 

pile shaft may be obtained. A summary of the results from tests RW10 and 

RW15 is shown in Table 5.5. In calculating horizontal effective stress 

the equations presented in Section 2.2 have been used taking account of 

stress levels generated during sample preparation and during centrifuge 

testing. The results confirm that loss in shaft capacity is less than 

loss in vertical effective stress. It also appears that for the model 

piles where reductions in radial stress were caused during pile 

installation, the percentage reduction in shaft capacity is less than the 

percentage reduction in calculated horizontal stress. The comparison of 

shaft capacity and far field horizontal effective stress is very much 

influenced by correct prediction of the horizontal effective stress. 

This must be taken into account when making any firm conclusions relating 

q, to Oh. , 
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5.7.2 Base capacity 

During the series of tests it was noticed that if a pile was load tested 

before and after a rising groundwater event, failure loads were not 

significantly different. However, if two similar piles were tested at 

different ends of a rising groundwater event a loss in load capacity was 

obtained when comparing the two piles. A summary of measured and 

calculated pile base capacities is shown in Table 5.6. The seven points 

are plotted on Figure 5.31(a) showing a reasonable correlation of pile 

bearing pressure against mean normal effective stress as demonstrated by 

Troughton and Platis (1989) using a prototype pile test in sand. The 

same pile base capacities are plotted against vertical effective stress 

in Figure 5.31(b). The apparent cohesion intercept may in part be due 

to fully drained conditions not being obtained but is considered mainly 

to be due to the relationship between base capacity and mean normal 

effective stress. This result compares well with the piezocone tests at 

0.2mm/sec where there was a stronger correlation of cone resistance with 

p' rather than o, '. 

5.8 Factors affecting foundation movements during a rising groundwater 

event 

In section 5.6 the results from four tests during rising groundwater 

events were presented. In this section the results from all the 

successful tests will be brought together to allow a broader picture to 

be drawn. 

In section 5.5.1 it was suggested that the slender pile settlements were 

affected by initially high base loads due to negative skin friction 

caused during consolidation of the ground after spin-up. In section 

5.6.1 it was shown that load testing a pile would reduce settlement 

relative to the ground surface during a rising ground water event. The 

data from tests RW6 and RW7 show that the effect of load testing is to 

reduce pile settlement during a rising groundwater by on average 1% of 

the pile base diameter. For the slender piles the effects of load 

reversal will be less due to smaller end bearing resistance mobilised 

(the piles were not tested to failure) and by the smaller diameter pile 
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base. It has therefore been decided to include these piles, in the 

following sections, with the other non pre-loaded piles with the 

understanding that settlements observed are a lower bound. 

5.8.1 The influence of factor of safety on pile settlement 

During the series of centrifuge tests the factor of safety was varied for 

the three different pile geometries used. The initial factors of safety 

are presented in Tables 5.3 and 5.4. 

In comparing the different tests it is necessary to find similar points 

in each test. From Table 5.4 (and Figure 5.3a where a'� is plotted 

against depth) it can be seen that the pore water pressures before and 

after the rising groundwater events were not identical. In addition, the 

thickness of the clay layer varied by approximately ±4% from the average 

final thickness of 265mm (see Table 5.1) or by 9% of the thickness below 

pile base level. In comparing results from different tests it has been 

decided to compare foundation settlements at points in time when the 

average volumetric strain (corresponding to vertical strain for one- 

dimensional conditions) is the same in all models. A value for this 

average volumetric strain (e" 
, ". 

) of -0.6% (i. e. swelling) was chosen. 

This value lies towards the end of most model rising groundwater stages. 

Plotting settlements at similar strain levels was chosen to overcome the 

differences in clay thickness which would effect the ratio of swelling 

above and below the pile base level if a constant magnitude of soil heave 

had been used. By using e. , v* the magnitude of soil swelling above the 

pile base will be similar in all tests. 

The results of ten piles used in 6 centrifuge models are shown in 

Figure 5.32. The piles are grouped together using straight lines to 

differentiate between the three slenderness ratios used. For each pile 

type the results follow the expected trend of increasing settlement with 

decreasing factor of safety. It appears that factor of safety plays a 

more significant role in the behaviour of the under-reamed piles than for 

the more slender piles as seen be the slope of the average lines through 

groups of different pile types. 
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In Figure 5.33 the approximate (upper bound) pile movement attributed to 

settlement of the pile base, as indicated by the buried plates (these may 
have moved upwards slightly as suggested in Section 5.6.4), has been 

isolated. The empty rectangular points are real data while the filled 

rectangles are taken from test RW10 where the plate settlement was 

estimated using data from the other three tests. The approximate results 

show that the slender pile settlement was dominated by heave passed the 

pile shaft. This is in contrast to the larger based piles which obtain 

a significant proportion of their settlement from base settlement. 

5.8.2 The influence of slenderness ratio on pile settlement 

The data in Figures 5.32 and 5.33 have been plotted in Figures 5.34 and 
5.35 to allow examination of the effect of slenderness ratio on pile 

settlement. In Figure 5.34 pile settlement is plotted against 

slenderness ratio with average settlements for three different factors 

of safety shown by solid lines. The average lines show that for piles 

of identical length and with similar factor of safety settlement is 

controlled by pile geometry. The same is true for the approximate pile 

base settlement as shown in Figure 5.35. The piles with a higher 

slenderness ratio do not mobilise full shaft friction after the 

groundwater level rise and will experience pile base heave as suggested 

by the average line at L$/Db - 12 for a pile factor of safety of 2.3. 

5.8.3 The influence of initial pore water pressure profile on 

foundation movements 

Data from the two piles used in tests RW12 and RW13 have been processed 

in the manner described in sections 5.8.1 and 5.8.2. The different 

initial pore water pressure profiles in Figure 4.13 result in different 

patterns of swelling as the groundwater level rises. For downward 

seepage the emphasis is on swelling near the base of the model while for 

a model with a depressed hydrostatic profile the emphasis is on heave in 

the near soil surface strata. It is therefore not strictly correct to 

compare swelling in models with different initial pore water pressure 

profiles at the same strain level since this was intended to isolate 

similar magnitudes of heave above pile base level in each model. 
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However, to demonstrate the different pattern of heave associated with 

a groundwater level rise originating from a depressed hydrostatic profile 

a comparison has been made at similar strain levels. Figure 5.36 shows 

data for the straight piles taken from Figure 5.32. The two piles from 

tests RW12 and RW13 had measured foundation settlements well in excess 

of the trends of pile settlement for piles where a perched water table 

exists. 

5.8.4 The influence of pile length on pile settlement 

With the exception of the piles in test RW7 all piles had their bases at 

150mm below the top of the clay layer. The piles in test RW7 had their 

bases 160mm below the top of the clay layer (this additional length was 

due to a failed attempt at under-ream construction after which the pile 

base was installed 10mm deeper). It is therefore not possible to make 

definitive comments on the influence of foundation length on settlement 

during a rising groundwater event. It is, however, clear that there are 

differences in behaviour between shaft dominated piles and end bearing 

dominated piles. The trade off between a long friction pile which will 

experience soil swelling past the pile base over a longer length and a 

pile with a large base which will suffer settlement of the base should 

be considered if pile settlement due to a rising groundwater event is to 

be minimised. 

5.9 Suýary 

Centrifuge model tests have been used to explore foundation behaviour 

during a rising groundwater event. The model tests have allowed 

observation of foundation response during simulated rising groundwater 

events and the performance of piezocone penetration tests before and 

after a rising groundwater event. 

The results have shown that: 

o Pile end resistance under predominantly drained conditions is 

linearly related to the mean normal effective stress. Percentage 

loss in undrained strength, during a rising groundwater event, was 
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shown to be less than the percentage loss in drained strength. 

Pile base capacity should therefore be considered in drained 

strength terms for situations where effective stress reductions are 

anticipated. 

o For the model piles used the percentage reduction in shaft friction 

was less than percentage loss in calculated far field horizontal 

effective stress. The ultimate shaft friction stress measured 

during load testing was less than that calculated for a wished-in- 

place pile and residual strength of the clay at the interface. 

o Shallow foundation settlement is predominantly a function of the 

initial pore water profile. In situations where a perched water 

table exists shallow foundation settlement is limited in contrast 

to the case where no surface perched water table exists when 

significant settlements will occur. 

o Deep bored foundation settlement is a function of pile geometry 

(straight and slender or under-reamed), initial factor of safety 

and initial load distribution on the shaft and base. The largest 

settlements were measured for under-reamed piles with low initial 

factors of safety. 
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CHAPTER 6 NUMERICAL ANALYSIS OF PILED FOUNDATIONS 

The majority of this chapter is concerned with finite element modelling 

of bored pile behaviour during installation and when subjected to a 

rising groundwater event. Modelling of pile installation and subsequent 

loading followed by rising groundwater sequences was carried out. A 

second series of finite element analyses modelled the behaviour of 

wished-in-place piles during a rising groundwater event. The finite 

element sections are followed by predictions of centrifuge model pile 

settlement during a rising groundwater event using the method outlined 

in Section 2.4. 

6.1 Introduction: finite element modelling 

A series of finite element method analyses has been carried out to 

predict model and prototype pile behaviour during a rising groundwater 

event using the Stallebrass three surface kinematic hardening model 

described in Section 3.4. These analyses commenced with a simplified 

procedure for modelling pile installation sequences relevant to the 

centrifuge model piles and normal prototype conditions. The pile 

installation analyses were successful and demonstrate different stresses 

in the ground around the pile due to the two different installation 

sequences. The analyses of the rising groundwater stages were less 

successful due to the connection between pile and soil elements. A 

possible explanation of the problem is presented together with potential 

modelling changes that could be used to overcome the problem. 

A series of analyses following on from the end of the pile installation 

stage was carried out in which the pile shaft was modelled as a smooth 

vertical boundary. Although these analyses deviated from real conditions 

where the pile shaft is a friction controlled boundary (allowing slip 

between elements) they allowed an investigation of the effects of pile 

installation on stress changes during the rising groundwater event for 

model and prototype piles. The analyses have produced some unexpected 

results and highlight the stress conditions that are most likely to 

result in different magnitudes of pile shaft capacity change during a 

rising groundwater event. 
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The finite element analysis part of this chapter finishes with a series 

of analyses of wished-in-place prototype piles using the Schofield model. 

The analyses were carried out to assess the performance of the Schofield 

model for modelling piles in a rising groundwater environment. 

6.2 Introduction to the finite element program - CRISP 

All the analyses have been carried out using the finite element program 

CRISP (CRItical State Program). The program was written in the Cambridge 

University Engineering Department and the basic form of the program is 

presented by Britto and Gunn (1987). 

The program has taken on an organic form which allows users to implement 

different soil models within the general CRISP framework. The three 

surface kinematic hardening model presented in Section 3.4 has been 

formulated and implemented in CRISP at City University by 

Stallebrass (1992). The Schofield model is a standard constitutive soil 

model in CRISP and has not been altered for the analyses carried out. 

6.2.1 Types of analyses 

Analyses may be carried out in axisymetric or plane strain conditions. 

Drainage conditions may be undrained, consolidation or fully drained. 

The analyses reported in this chapter were all axisymetric consolidation 

analyses. The consolidation analysis utilises theory by Biot (1941) 

which models the volumetric changes of a soil matrix as a function of 

both stress change and time change in a three dimensional framework. 

Analyses may be stand alone analyses or continuation analyses. The 

latter start from the end of a previous analysis and use the soil state 

at the end of the preceding analysis as the in-situ conditions. 

6.2.2 Element types and boundary conditions 

A wide range of elements is used with the general program CRISP93, 

including linear and cubic strain triangles and linear strain 

quadrilaterals, bar and beam elements and total stress slip elements. 

However, in the version in which the Stallebrass model is implemented 

111 



only linear strain and cubic strain triangles are, at present, available. 

The boundaries of the mesh may be either displacement or stress 

controlled. The majority of the analyses used displacement controlled 

boundaries, but two investigative analyses incorporated sections of the 

mesh adjacent to the pile with either strain or stress controlled 

boundaries. The analyses using the Schofield model used linear strain 

quadrilaterals arranged in the same pattern as pairs of triangles used 

for the Stallebrass model analyses. 

6.3 Modelling of pile installation 

Two separate analyses were carried out which modelled the pile 

installation processes. In the first analysis (1PIEXC) a simplified 

prototype pile installation sequence was followed. A 15m deep 0.8m 

radius hole was excavated unsupported. Stresses representing hydrostatic 

concrete pressure, with unit weight 24kN/m3, were then placed on the 

shaft sides and base. The hydrostatic stresses where then replaced with 

solid concrete elements from the base upwards. Finally a long period was 

provided to allow full dissipation of excess pore water pressures 

generated during pile installation. 

In the second analysis (1P2MOD) a pile was installed in a mesh of 

centrifuge model dimensions and in-situ stresses representing those after 

downward hydraulic gradient consolidation in the preparation press 

described in Sections 4.5.4 and 4.6. The pile shaft was formed at lg 

prior to placing the pile elements. This was followed by a simulated 

acceleration of the finite element model to model centrifuge spin-up. 

The sequence followed in both analyses was similar to the sequence of 

pile excavation steps used by Kutman (1986) and Pantelidou (1994) where 

the effects of diaphragm wall installation was being examined in a plane 

strain environment. 

The two analyses allow comparison of model and prototype pile 
installation sequences and resultant stress fields around the piles. A 

summary of the two analyses is included in Table 6.1. 
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6.3.1 Mesh and material properties 

The mesh used in the these analyses is shown in Figure 6.1. It comprises 
316 vertex nodes and 616 elements of which 568 have soil properties and 
48 concrete properties. The mesh is fixed in space using roller bearings 

on both vertical sides and full fixity along the base. The axis of 

symmetry is the left boundary of the mesh. A large number of elements 

were concentrated around the left side of the mesh in the zone where the 

pile was installed and where stress gradients were highest. The 

remainder of the mesh has reasonably fine elements in the vertical 

direction to enable the rising groundwater event to be modelled. The 

dimensions of the prototype scale mesh are 18m radius and 25.5m depth for 

analysis 1PIEXC. The model scale mesh for analysis 1P2MOD has dimensions 

of 1/100 that of the prototype scale mesh. The dimensions were chosen 

to be compatible with the centrifuge models in which the pile position 

was off centre. The material properties adopted in the analyses are 

presented in Table 6.2. The material properties were obtained from the 

triaxial tests presented in Chapter 3, Stallebrass (1990), Viggiani 

(1992) and Al-Tabbaa (1987). 

6.3.2 In-situ stress conditions 

The analyses require the input of a set of in-situ effective stresses and 

boundary loads in equilibrium with each other and the unit weight of the 

soil prior to the start of the analysis. When using the Stallebrass 

model, in which current soil behaviour is influenced by both recent and 

long term stress history, it is necessary to model the last major event 

that the soil was subjected to prior to pile installation and to specify 

the bounding surface size, which for an overconsolidated soil will have 

decreased from a previous maximum value. Figure 6.2 shows the variation 

of pc' (defined in Figure 3.2) with vertical effective stress on 

unloading from l250kN/m2 obtained from a two element one-dimensional test 

analysis. At the start of the analysis the surfaces are centred around 

the specified stress state. By modelling the last major event(s) the two 

kinematic yield surfaces described in section 3.4 are arranged correctly 

prior to modelling the operations under investigation. Initial horizontal 

effective stresses were calculated using'Equation 3.10. 
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In analysis 1PIEXC the stiff clay being modelled was assumed to have been 

subjected to recent under-drainage and it was therefore necessary to 

model both overburden removal, which influences near surface behaviour, 

and pore water pressure reduction at the base of the model which 

influences behaviour at depth more than at the surface. Figure 6.3 shows 

the three vertical effective stress profiles in-situ, after overburden 

removal and after pore water pressure reduction. The clay was assumed 

to have constant permeability with depth and would not produce a non- 

linear pore pressure profile at equilibrium as discussed in section 

4.3.1. This approximation did not greatly affect the pore water 

pressures in the region of the pile but did increase pore pressure at the 

base of the mesh. During a continuation analysis modelling a rising 

groundwater event the pore water pressure changes at the base of the 

model will therefore be reduced resulting in smaller deep seated heave. 

In analysis 1P2MOD the clay being modelled started in the consolidation 

press, described in section 4.3, under a total vertical stress of 

200kN/m2. The model was then brought into equilibrium with a downward 

hydraulic gradient stress field in the manner shown in Figure 4.1(b). 

Removal of the model from the press was assumed to result in no change 

in effective stress and the pile was installed in soil with this 

effective stress regime. 

6.3.3 Soil stress state before pile installation 

The soil stress state before pile installation was influenced by both 

overburden removal and under drainage. During the overburden removal 

pore water pressure was fixed at the top and base of the mesh at -5kN/m2 

and 250kN/m2 respectively. At the end of this event pore water pressure 

was reduced to 72kN/m2 at the base of the mesh resulting in a sub- 

hydrostatic pore water pressure profile. The vertical and horizontal 

(or' - oe') effective stress distributions after these operations are 

shown in Figure 6.4. The constitutive model does not restrict the stress 

state to passive pressure conditions as seen near the surface where high 

horizontal effective stresses can exist in a low vertical effective 

stress region. At increased depth the value of K. converges with that 

predicted by a combination of Eqns. 3.10 and 2.20 as shown on Figure 6.5. 
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In analysis 1P2MOD the horizontal effective stress distribution is 

somewhat different from that shown in Figure 6.4 due to the different 

stress path followed and is shown in Figure 6.6. 

6.3.4 Pile installation results: 1PIEXC 

The most unstable time during the pile installation process is the 

situation just before modelling concrete placement. Figure 6.7 shows the 

vertical, radial and hoop effective stress distributions in the mesh at 

this stage. The change in stresses from the far field conditions are 

localised around the open excavation. Both the vertical and the hoop 

effective stresses are seen to increase while the radial effective stress 

decreases. There is zero radial total stress acting on the inside of the 

pile shaft and pile shaft stability is only due to the mobilisation of 

temporary negative pore water pressures and hoop stresses around the open 

shaft. The stress path, in p'-q space, followed during the excavation 

phase is shown on Figure 6.8 for element 336 which is located one radii 

from the pile shaft at 10m depth and element 497 at the same depth but 

1/4 pile radii from the shaft. An increase in absolute value of deviator 

stress (q) occurs for both elements during shaft excavation. The 

deviator stress has been assigned a negative value due to the initial 

stress state where K is greater than zero. 

q-ý (d r-adv)2 - (adv-a/e)2 - (alr-ale)2 + 6rrr2 (6.1) 

The stress path is reversed when modelling concrete placement in the open 

excavation as seen by the reducing absolute value of deviator stress. 

In the long term condition (the shaft boundary is impermeable) the radial 

stress close to the shaft face has moved back towards far field levels 

as can be seen by comparing Figure 6.9(a) with 6.9(b) which show 

distributions of radial, vertical and hoop effective stresses for the 

cases when the shaft was open and long term conditions after pile 

elements have been placed respectively. The distributions were taken 

along a radius at 8m beneath the top of the mesh (approximately pile mid 

hight). The major change is the reduction in hoop and increase in radial 

effective stresses. The irregularity of the lines representing effective 

stresses is due to the data points coming from slightly different levels 

as can be seen from Figure 6.1 where rows of elements radiating from the 
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pile are inclined. 

The long term vertical, radial and hoop effective stress distributions 

within the mesh are shown on Figure 6.10. The change in radial effective 

stress is a maximum close to the ground surface and decreases with depth. 

This may be due to the effects of the hydrostatic concrete pressure which 

exert a larger stress at depth relative to the in-situ horizontal stress 

which is a function of K, The long-term hoop and vertical effective 

stresses have also moved back towards pre-excavation values although both 

are still elevated close to the pile. The average reduction in radial 

effective stress adjacent to the pile shaft due to pile installation was 

24% (225kN/m2 to l70kN/m2). 

Horizontal displacements induced during excavation and concreting are 

shown in Figure 6.11 for depth profiles at 1. Om and 5.5m from the pile 

axis. For the profiles 1.0m from the pile axis the maximum displacement 

is at 2/3 depth due to the restraining effect of the pile shaft base. 

Near surface movements, during concreting, were minor in the vicinity of 

the pile while further down the shaft concrete pressures acted to push 

the shaft sides near the base back towards the pre-excavation positions. 

There was an overall inward movement of the soil during pile 

installation. 

6.3.5 Pile installation results: 1P2MOD 

The model pile was installed in ground which was very stable compared to 

the size of hole being constructed. The effective stresses (which 

contribute to stability) were high relative to the pile size at lg due 

to the requirement that consolidation on the centrifuge after reaching 

the test acceleration should be kept to a minimum. 

The processes of shaft excavation resulted in a significant loss of 

radial stress in the soil adjacent to the pile as can be seen in 

Figure 6.12(a) and a corresponding, if less marked, increase in hoop 

stress in Figure 6.12(b). The average reduction in radial stress is 31% 

resulting in an average value of l60kN/m2 from 232kN/m2. The zone with 

reduced radial effective stress is seen in Figure 6.13 and extends for 
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about 8 pile radii compared to 2 pile radii for the prototype pile shown 

in Figure 6.9(b). 

Horizontal displacements during pile excavation are shown on Figure 6,14 

for profiles at the same distance (scaled at 1/100) as those shown in 

Figure 6.11 for the prototype pile. Displacements at 10mm from the pile 

axis vary almost linearly with depth increasing from the base of the pile 

to the surface. The overall magnitude of displacement (incorporating a 

scale factor of 100) was smaller then final displacements during 

prototype installation procedure. Displacements at 55mm from the model 

pile axis were relatively small as in the prototype pile analysis at the 

corresponding distance of 5.5m. 

6.3.6 Comments on prototype and model pile installations 

Both prototype and model pile installation analyses have resulted in a 

reduction of radial effective stress and an increase of hoop effective 

stress in the soil around the pile shaft, the model pile experiencing the 

larger long-term change in stress regime around the pile. The reduction 

in radial effective stress will result in a reduction in pile shaft 

capacity when subjected to axial loading. The combined radial and hoop 

stress distributions around the model and prototype piles have altered 

significantly from the initial K,, conditions (especially the model pile). 

In centrifuge model pile installation the pile was placed in a pre-formed 

hole with a small amount of slurry in the base. The pile displaced the 

slurry allowing the clay access to a small amount of water which caused 

swelling against the pile shaft. In the model pile installation analysis 

this last step was omitted and may result in a higher radial stresses 

than actually existed. In the prototype analyses no attempt has been 

made to model concrete shrinkage which would also tend to reduce radial 

effective stresses. 

The trends, however, observed in both model and prototype analyses are 

reasonable. The results will allow further modelling of pile behaviour 

during a rising groundwater event for the real case when the pile has not 

been wished-in-place. 
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6.4 Piles in a rising groundwater event after pile installation 

Rising groundwater events were simulated after the prototype pile 

installation sequence. Problems were experienced due to the difference 

in vertical stiffness between the pile and the soil and due to the 

unavailability in the CRISP code of effective stress slip elements. Slip 

elements which allow differential movements have been used successfully 

by Desai et al. (1984) and Van Langren and Vermeer (1991) in S. materials 

for modelling of interface behaviour between materials of very different 

properties. Britto and Gunn (1990) point out that if the user requires 

a limiting stress element followed by slip then interface slip elements 

are the only option. 

In CRISP93 axisymetric slip elements have been implemented, however these 

respond to changes in total stress acting on their boundary and not to 

changes in effective stress. In modellin& a rising groundwater event the 

change in ultimate shear stress (Orf) would be: 

OT f slip element - tan6 (Au 
+ Aol 

r) 
(6.2) 

which for Aar'/Du - -0.4 (from Eqn. 2.20) would result in an increase in 

erf of 60% du. tan6 rather than a reduction of 40% Au. tan&. 

In the analyses that were carried out the effect of the displacement 

continuity between the pile and adjacent soil led to severe problems. 

When the soil swelled under one dimensional conditions, shear stresses 

were mobilised in the elements closest to the pile where the stiffness 

of the pile acts to restrain swelling. The largest effect occurs near 

the ground surface where the soil heave would be a maximum and where pile 

to soil relative displacement would, in practice, also be a maximum. 
Figure 6.15 shows shear stress along two profiles parallel to the pile 

axis at 0.9m and 5.5m from the pile centre at the end of the rising 

groundwater event following prototype pile installation (Rising 

groundwater event 'A' of analysis 1PIEXC). For the profile closest to 

the pile shaft unrealistically large shear stresses exist close to the 

surface which is at 25.5m above the base of the mesh. Towards the base 

of the pile (at 10.5m above the base of the mesh) the shear stress 

changes direction indicating a reversal of direction of shear between the 
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pile and the soil. The high shear stresses near the surface are 

supported by a 'membrane effect' resulting from a forced shear strain on 

an element. The shear stresses appear to be supported by increases in 

the normal effective stresses. As an example, the vertical effective 

stress distribution for the same elements are plotted in Figure 6.16. 

The profile close to the pile shaft has vertical effective stresses far 

in excess of those at mode remote locations from the pile which 

approximate to far field conditions. 

The combined effect of the elevated shear and normal stresses results in 

a stable stress state as shown in Figure 6.17 where stress ratio 

(q - q/p') is plotted against mesh height. All the elements adjacent to 

the pile lie below the critical state line (M - 0.85) and are well within 

the bounding surface. The profile of stress ratios Sm from the pile axis 

show a more usual distribution of q for an overconsolidated deposit where 

the upper 8m have stress ratios at or in excess of the passive failure 

calculated from a critical state angle (the possibility of a stress ratio 

calculated by a model based on Cam clay exceeding passive failure was 

discussed in section 2.2.2). 

In terms of pile to soil displacement the depth at which there was a 

change in sign of shear stress as indicated in Figure 6.15 can be seen 

in Figure 6.18 where pile to soil displacement is zero (approximately 13m 

from base of mesh); this is termed the neutral point. Pile to soil 

displacement above this level acts to pull the pile out of the ground 

while below, the pile is pulling the soil upwards (the soil is anchoring 

the pile). 

A second series of exploratory analyses was carried out in which the 

upper two layers of soil elements were decoupled from the pile or removed 

and replaced with an equivalent overburden surcharge and pore water 

pressure fixity. The vertical sides of the elements 462 and 466 adjacent 

to the pile were provided with either stress or strain controlled 

boundaries as shown in Figure 6.19. In all cases the alterations had 

little beneficial effect. For the stress controlled boundary analyses 

and the analyses where the top two layers of elements were replaced with 

a surcharge, the elements immediately, below 466 suffered from the 
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membrane effect while in the strain controlled boundary situation element 

465 (adjacent to 466) acted as an anchor as the soil dragged it upwards 

resulting in an unrealistic negative vertical effective stress and low 

P.. 

Within the context of this project it has not been possible to rewrite 

CRISP code to allow for effective stress slip elements that would, 

potentially, overcome some of the problems encountered. It has been 

possible, however, to investigate briefly the behaviour of a frictionless 

pile shaft during a rising groundwater event. 

6.4.1 Pile shaft in a rising groundwater event 

In the previous section the rigid connectivity between pile and soil has 

led to unrealistic modelling of pile shaft-soil interaction during a 

rising groundwater event. To obtain an approximation of model pile shaft 

behaviour during a rising groundwater event, pile installation was 

carried out as outlined in section 6.3. However, immediately before the 

rising groundwater event the pile elements were removed and replaced with 

a strain controlled boundary with zero horizontal displacement on the 

vertical side and a surcharge on the elements immediately beneath the 

pile base. The rising groundwater event was then carried out; the soil 

elements surrounding the pile shaft initially had a'r < a's as indicated 

in Section 6.3. 

6.4.1.1 After analysis 1PIEXC 

Figure 6.20 shows the variation of radial and hoop effective stress with 

vertical effective stress for three elements at approximately 10m depth. 

The elements, 500,321 and 47 are at 0.3,1.8 and 19 radii from the pile 

shaft respectively. Elements 321 and 47 show a similar reduction of 

radial and hoop stress as the vertical effective stress reduces during 

the rising groundwater event. The ratio of the average change of 

horizontal to vertical effective stress, as in Eqn. 6.2 is 0.45 and 0.36 

for elements 321 and 47 respectively. Element 500, closest to the shaft, 

experienced a large reduction in radial effective stress of 0.57 times 

that of the vertical effective stress while the hoop effective stress 
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reduced by only 0.19 do's,. 

6.4.1.2 After analysis 1P2-MOD 

Figure 6.21 shows elements 500,321 and 47 which are at the same relative 

position as those just described for analysis 1PIEXC in Section 6.4.1. 

The initial relationship between radial, hoop and vertical effective 

stresses is different for each element at the start of the rising 

groundwater event. However, during the rising groundwater event the 

initially low radial stress of elements 500 and 321 (lower than iC 

conditions illustrated by element 47) converge with the far field radial 

stress resulting in a more uniform horizontal effective stress field. 

The average change in stress is less than would be predicted using 

Eqn. 2.20. Hoop stresses in elements 500 and 321 have also converged 

towards the far field horizontal stress level and in doing so have 

decreased more than the far field stresses. 

During the centrifuge tests percentage reduction in shaft capacity, which 
is related to radial effective stress as in Eqn. 2.3, was less than the 

predicted percentage reduction in far field in horizontal effective 

stress (see Table 5.5). The results from this analysis support this 

observation for piles which have not had the beneficial effect (in terms 

of increasing radial stresses leading to increased shaft friction prior 

to the rising groundwater event) of hydrostatic concrete pressures prior 

to concrete setting. 

6.4.1.3 Comparison of smooth shaft analyses 

The two analyses reported show very different behaviour with respect to 

radial effective stress change during a, rising groundwater event. To 

investigate the differences in behaviour a third analysis was carried out 
(1PIMOD) using the same set of operations as the prototype analyses 

except that hydrostatic concrete pressures were not placed on the inside 

of the excavation before the concrete elements were placed. The results 

of this analysis showed a similar response during a simulated rising 

groundwater event as the model pile analysis. It appears from these 

results that the process of reversing the stress path direction during 
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concreting leads to a larger reduction in radial effective stress during 

the rising groundwater event. 

6.5 Rising groundwater event using Schofield model 

Section 6.4 showed that using the Stallebrass model, problems were 

encountered when modelling large shear strains against a rigid boundary. 

As a comparison the pile behaviour during a rising groundwater event was 

analysed using the Schofield model (described in Section 3.3). The 

analyses modelled wish-in-place piles with a reduced strength soil layer 

adjacent to the pile shaft with M-0.5 (compared to M-0.85 in the main 

body of soil). The analyses are not directly comparable with those 

carried out using the Stallebrass model or the centrifuge tests since 

pile installation was not modelled. However, they allow an assessment 

of a different constitutive model for assessment of pile behaviour during 

a rising groundwater event. 

Four analyses were carried out using the same initial soil stress 

conditions but with different pile head loads. The mesh and pile 

geometry used were similar to those in the analyses reported in section 

6.3 except that one linear strain quadrilateral was substituted for two 

linear strain triangles. One of the runs (SCH2) was repeated using a 

rapid pore water pressure change similar to the centrifuge model tests 

rather than a gradual pore water pressure change that has been used in 

the other finite element analyses. 

Ultimate pile load was obtained by carrying out a drained load test 

(analysis SCHI). The resultant ultimate pile head load was 824N (at 

model pile scale), 502N being carried by the shaft friction and 322N by 

end bearing, for a pile settlement of 10% pile base diameter in keeping 

with the definition used in the centrifuge tests and as described in 

Section 2.1. Loading of the pile becomes unstable after the reduced 

shear strength elements around the pile shaft reach critical state at the 
load quoted above. Further loading causes high shear strains in this 

narrow band resulting in stress ratios outside the state boundary 

surface. Factors of safety reported in'Table 6.3 are calculated using 

this pile load capacity. The coupling between shear and bulk moduli 
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assumed in the Schofield model reduces the distinction between shaft and 

base loading phases seen in Figure 5.19(a) resulting in significant pile 

base load prior to full mobilisation of shaft capacity. 

The horizontal effective stress distributions before and after the rising 

groundwater event are shown on Figure 6.22. During the rising 

groundwater event the average far field change in radial effective stress 

(and hoop effective stress) was approximately 0.42 that of the change in 

vertical effective stress over much of the pile length. This is in 

keeping with isotropic elasticity theory which is used for modelling 

overconsolidated soils with stress states not on the state boundary 

surface. Near the surface the ratio rises to 0.55 due to plastic 

yielding of the soil. 

The five rising groundwater analyses are summarised in Table 6.3. The 

overall behaviour of the analyses show that increased axial pile load 

causes larger settlements relative to the surface and soil at the pile 

base level and increased pile base load at the end of the event, all of 

which are in keeping with the centrifuge test results. Figure 6.23 shows 

surface and pile head movements (6.23a) and pile base load (6.23b) from 

analysis SCH5 on the ordinates against vertical effective stress at far 

field pile base level on the abscissa. The change-over from unloading 

of the pile base to loading of the pile base is clear on both figures at 

a$, - 205kN/m2 resulting in a temporary increase in rate of settlement 

relative to vertical effective stress level. In analysis SCH4 a similar 

trend was observed at a', - 175kN/m2. In the other analyses pile base 

load decreased continually during the rising groundwater event as the 

mobilised shaft friction increased. 

Analysis SCH2M which modelled the rising groundwater event with a rapid 

change in base drain water pressure followed by an equilibrium stage gave 

similar magnitudes of pile and surface movements at the end of the 

analysis as analysis SCH2 which modelled the rising groundwater event 

gradually. The pattern of movement shown on Figure 6.24 from analysis 

SCH2M is similar to that observed in the centrifuge tests (see Chapter 5) 

although foundation movements cannot be directly compared due to the 

difference in stress field around the pile discussed in Section 6.4. 
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The analyses were very sensitive to the stress state in the soil adjacent 

to the pile shaft resulting in large numbers of increments to model a 

rising groundwater event. In the analyses with high pile loads (SCH4 and 

SCH5) over 2000 increments were required for what appears a relatively 

simple analysis. 

6.6 Conclusions from finite element analyses 

It appears from the finite element analyses carried out that the adoption 

of a wish-in-place policy may not give realistic results when modelling 

model pile behaviour during a rising groundwater event due to the stress 

changes observed during the pile installation analyses. For prototype 

bored piles, in which the soil stress state is disturbed during 

installation, the change in radial effective stress change adjacent to 

the pile shaft during a rising groundwater event is closer to, but 

slightly higher than, the far field stress change. The continuation 

analyses of idealised frictionless pile shafts indicated that the 

differences in pile installation techniques may lead to different 

magnitudes of behaviour during a rising groundwater event, although the 

trends observed in both analyses were similar. 

The Stallebrass model has demonstrated its strength in modelling complex 

stress paths during pile installation. However, it was not successful 

in modelling the rising groundwater event with a pile in place. This may 

in part have been due to time restraints of the number of increments 

needed to model a rising groundwater event (the final pile installation 

analyses took place in over 8000 increments requiring 4.5 days on a 

486DX33 IBM compatible computer) and on the low degree of freedom type 

of element used. There where however, problems relating to high small 

strain stiffness, which is considered to be a soil constant and not 
dependant on stress level, which induced unrealistic stress distributions 

near the surface and which in turn effected soil stress states at deeper 

levels. Incorporation of effective stress slip-elements between pile and 

soil may have reduced this effect significantly. Reduction of the small 

strain stiffness (in effect making the soil model behaviour closer to 

that of Cam clay) may also have reduce the "membrane" effect. Further 

modelling developments including the implementation of a no tension 
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cut-off are being carried out and will inevitable improve the model 

performance at low stress levels. 

The Schofield model was found to be reasonably successfully for modelling 

wished-in-place piles during a rising groundwater event. The trends in 
behaviour were similar to those observed in the centrifuge tests. If it 
is considered that pile installation techniques do not alter the stress 
state around a pile shaft then using wished-in-place pile installation 

and appropriate soil parameters should model pile behaviour accurately, 

6.7 Simple analyses ("by hand") of pile settlement during a 

rising groundwater event 

The basic format for prediction of pile settlement during a rising 

groundwater event was presented in Section 2.4. The method relies on 

work from others (Fleming, 1992; O'Reilly and Al-Tabbaa, 1990) together 

with trends of behaviour seen in the centrifuge testing and finite 

element modelling. Using the method by Fleming (1992) requires that the 

stiffnesses (E25 for the base and G,. for the shaft) and pile capacity 

must be measured or predicted before and after the rising groundwater 

event. Data from pile load testing (using a method which gives drained 

load displacement response) allows estimation of these average soil 

moduli and ultimate base and shaft capacities as defined by Chin (1972). 

Calculation of pile capacity and appropriate moduli after the rising 

groundwater event require consideration 

Pile capacity: 

Pile base capacity was shown to be a function of mean normal effective 

stress for piles in sand by Troughton and Platis (1989). For piles bases 

in clay the centrifuge tests have shown a similar trend seen in 

Figure 5.31 (a). Therefore, when the initial drained capacity is known 

final drained capacity may be calculated using Eqns. 2.22 and 2.23. For 

a model pile shaft, it appears that the reduction in capacity for bored 

piles whose shafts have displaced inwards during construction is less 

than predicted using the original far field K. value and Eqn. 2.20 as 
indicated by both model centrifuge piles and the finite element analyses. 
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However, if it is considered that pile installation causes little soil 

disturbance then the use of Eqn. 2.20 for calculation of reduction in 

horizontal stress at the shaft face would seem appropriate where the pore 

water pressure change does not lead to large plastic deformation. If 

plastic deformation is likely (approaching the state boundary surface) 

then larger changes in horizontal effective stress must be allowed for. 

Stiffness moduli: 

The use of one stiffness parameter each for the pile shaft and base 

assumes an average soil behaviour in all zones surrounding the pile. 

Initial estimates of the average base stiffness parameter is available 

from pile loading tests as suggested by Fleming (1992). Rigorous 

assessment of stiffness beneath the base during a rising groundwater 

event would be highly complex and should include consideration of stress 

path direction in the zone of soil around the pile. A more simple 

approach would be to assume that stiffness is a function of p' and 

specific volume as used in the Schofield model such that: 

P/ E25 «3 (2 - 2v/ )° 
x 

(6.3) 

Poisson's ratio and s are assumed to be constant resulting in a fairly 

simple relationship between E25, v and p' before and after the rising 

groundwater event. Similar assumptions can be made for Ga,,, to assess the 

new parameter Ms in Eqn. 2.11. 

6.7.1 Prediction of centrifuge model behaviour 

A series of calculations have been carried out to calculate model pile 

settlement (under-reamed and slender types) relative to the surface 

during the centrifuge tests. A sample calculation for an under-reamed 

pile is included in Appendix B. Figure 6.25 shows the centrifuge data 

points for settlement of under-reamed and slender piles (marked with 

symbols) previously produced as Figure 5.32 compared with the data using 

the above method (solid lines). The under-reamed pile calculated values 

agree reasonable well with the data points although at higher factors of 

safety there seems to be an over prediction of settlement. The agreement 

of the calculated values with the data points is less strong for slender 
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piles. These two points indicate that for piles which are predominantly 

friction piles that either the centrifuge tests were giving conservative 

movements due to initial overloading of the pile base as observed in Pile 

2 in test RW14, or the method of calculation over predicts movements, (or 

a combination of the two). The general trends, however, agree well with 

the centrifuge tests. Soil heave at 150mm was calculated to be 0.7mm, 

the remaining foundation movement was due to pile settlement. 

6.8 Summary 

Finite element analyses have investigated pile installation effects for 

model and prototype bored piles and the effect that they have on pile 
behaviour during a rising groundwater event. Finite element analyses of 

wished-in-place pile behaviour during a rising groundwater event have 

been used to assess the applicability of a less sophisticated soil model 
for analysis of the problem. Simple "by hand" analyses have been used 
for a quick assessment of pile behaviour during a rising groundwater 

event without recourse to complex finite element analyses. 

The pile installation analyses were undertaken to assess differences in 

behaviour, during a rising groundwater event, that might result from the 

different procedure followed during installation of centrifuge model 

piles compared with that normally adopted for prototype piles. The 

results have shown that, on a smooth pile surface, the prototype piles 

will suffer a larger percentage reduction in shaft capacity than the 

model piles. This fact should be considered, when extrapolating 

centrifuge model results, for analysis of prototype a bored pile during 

a rising groundwater event where load transfer from shaft to base may be 

larger than in an equivalent model pile. 

The analyses of the wished-in-place piles have shown that piles in a 

rising groundwater environment may by studied by means of finite element 

analyses. The Schofield model, which was used in these analyses, 

simplifies overconsolidated soil behaviour to isotropic elasticity and 

in doing so smooths out distinct modes of shaft and base behaviour seen 

in model and prototype piles. Implementation of interface elements which 

allow a finite shaft capacity to be mobilised without the problems with 
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soil stress state would allow slip between pile and soil and would, it 

seems, provide a better predictive tool. 

Finally, the "by hand" analyses have shown that quick assessment of pile 

settlement, in this case based on centrifuge observations, may be made 

that provide reasonable assessment of pile settlement during a rising 

groundwater event. The method relies on good prediction of soil heave 

and on initial pile load test data followed by assessment of pile 

capacity reduction and deterioration of soil stiffness. 
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CHAPTER 7 CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER WORK 

7.1 Methodology 

The performance of foundations in stiff clay during a rising ground water 

event was investigated by means of centrifuge model tests and some 

associated numerical modelling and triaxial testing. 

In the centrifuge tests, model foundations were installed in a bed of 

overconsolidated Speswhite Kaolin clay at lg prior to spin up on the 

centrifuge. Effective stress equilibrium was obtained during flight with 

the foundations subjected to working loads while the pore water pressures 

in the clay were controlled by a depressed water pressure in the base 

drainage layer. The water pressure in this drainage layer was then 

raised so initiating a rising groundwater event in the overlying clay 

layer. Observations of foundation and ground displacements, pore water 

pressures and foundation load distribution were made during the rising 

groundwater event. The effects of foundation geometry (shallow or deep, 

straight or under-reamed piles), initial factor of safety on load, 

initial load distribution between pile shaft and base and initial pore 

water pressure distribution in the model ground were examined. In two 

centrifuge tests a series of piezocone penetration tests were carried out 

before and after a rising groundwater event. 

In the finite element analyses, model and prototype installation 

procedures were examined to allow comparison of the model pile 

installation with a prototype event. Continuation analyses modelling 

pile behaviour in a rising groundwater event were then carried out. A 

set of 'by hand' calculations were carried out to assess more simple 

techniques for predicting foundation settlements during a rising 

groundwater event. 

The triaxial testing was undertaken to provide basic soil parameters for 

use in the numerical modelling and to examine soil stress paths during 

one dimensional loading, unloading and pore pressure cycles. 
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7.2 Soil in a rising groundwater environment 

A series of piezocone penetration tests was carried out to investigate 

soil strength reduction due to a rising groundwater event. Slow tests 

(mobilising a large proportion of drained strength) showed an almost 
linear relationship of net cone resistance with mean normal effective 

stress. The rising groundwater event caused a reduction in cone 

resistance at pile base level of 30% compared to a 40% reduction in 

vertical effective stress. Faster tests (mobilising undrained shear 

strength) showed a 24% reduction in cone resistance for the same 

reduction in vertical effective stress, predicted undrained strength 

reduction was 20%. 

Triaxial tests investigated the relationship between radial effective 

stress and change in back pressure (modelling a rising groundwater event) 

in overconsolidated clay constrained to deform with zero lateral strain. 

The tests showed that the reduction in radial effective stress was less 

than 50% of the change in axial effective stress but more than that 

predicted by isotropic elastic theory. 

These two sets of different tests, together with soil heave due to the 

change in effective stress levels, illustrate the changes in soil state 

that will influence the behaviour of foundations during a rising 

groundwater event. 

7.3 Foundations in a rising groundwater event 

The series of centrifuge tests showed that, for similar length bored 

piles in stiff clay, differential settlement between the two piles during 

a rising groundwater event depended on: 

o Foundation geometry: 

The geometry of the foundation (slender or under-reamed) and the manner 
by which load is transferred from pile to soil was seen to effect pile 

settlement relative to the ground surface during a rising groundwater 

event. Piles which require mobilisation of end bearing resistance at 
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working loads will settle due to: load transfer from the shaft to the 

base; reduced end bearing resistance; reduced soil stiffness; and soil 

heave above the pile base level. Piles which rely only on shaft friction 

at working loads will settle mainly due to soil swelling passed the pile 

shaft; the lower part of the pile will ultimately go into tension. 

Typically, end bearing piles will settle more than friction piles of the 

same length. 

o Initial factor of safety: 

For similar geometry piles the initial factor of safety will effect 

settlement during a rising groundwater event. End bearing piles with a 

low factor of safety will be required to mobilise a larger proportion of 

their ultimate end bearing capacity, as, load is shed from shaft to a 

reduced capacity base, resulting in large pile base settlement relative 

to the surrounding soil. Friction piles with a low factor of safety will 

have their neutral point at a deep level on the pile shaft and 

consequently there will be significant soil heave above the neutral point 

level. 

Pile foundation length was not varied during the centrifuge test 

programme. However, the centrifuge tests have shown that a large 

proportion of pile settlement relative to the ground surface, especially 

for slender piles, was due to soil heave along the pile shaft. In order 

to assess the effects of pile length for reduction of pile settlement 

relative to the ground surface a comparison should be made between 

settlement due to pile base behaviour for shorter piles and increased 

depth of neutral point for longer friction piles. 

In examining differential settlement between shallow and deep foundations 

it was shown that a shallow foundation moved with the heaving ground 

surface during rising groundwater events in a soil stratum where the 

initial equilibrium condition was a perched water table with downward 

seepage. Differential settlements in this case were entirely due to pile 

settlement relative to the ground surface. 
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Where the initial pore pressure distribution was hydrostatic from a 

depressed surface water table, the shallow foundation, founded at the top 

of the clay layer, settled as effective stresses in the clay near the 

surface reduced. Piles in ground with negative pore water pressures near 

the surface prior to the rising groundwater event were subjected to large 

soil heave above base or neutral point level. Assessment of differential 

settlements, in these circumstances, must consider the behaviour of 

foundations at all levels. 

Piled foundation load capacity was seen to reduce as a result of a rising 

groundwater event. Base capacity, measured under largely drained 

conditions, was seen to be linearly related to the mean normal effective 

stress in the ground in agreement with the slow piezocone tests. 

Contrary to normal expectations, it appeared that the percentage 

reductions in model pile shaft capacity were less than the percentage 

reduction in the predicted far field horizontal effective stress. The 

finite element analyses suggested that this effect was likely to be a 

function of the pile installation procedure for the centrifuge model and 

would not be applicable to prototype piles. The finite element analyses 

indicated that reduction in prototype pile shaft capacity is more closely 

linked to the reduction in far field horizontal effective stress and is 

likely to be larger than that predicted from isotropic elastic theory. 

7.4 Implications for foundation behaviour and design 

Foundations which are surrounded by soil where pore pressure may rise 

will experience: 

oA reduction in drained end bearing resistance proportional to the 

change in mean normal effective stress; 

oA reduction in shaft capacity proportional to the change in radial 

effective stress which in turn is probably slightly higher than 

that predicted from elastic theory (assuming the soil stress state 
is inside the state boundary surface); 

oA reduction in soil stiffness; 

o Soil heave around the foundation. 
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These factors combine to produce highly undesirable conditions for 

structures, especially where there are mixed foundations. Differential 

settlements between shallow and deep foundations may conservatively be 

estimated by assuming that the shallow foundation moves with the ground 

surface while the piled foundation will be affected by the above 

criteria. 

Prediction of settlement of end bearing piles will require consideration 

of all four criteria while conservative estimates of fully reinforced 

friction pile settlement may be obtained by calculation of soil heave 

above the pile base level. 

The designer of new structures must predict settlement of individual 

foundations and assess the likelihood of differential settlements. Where 

differential settlements are inevitable design must either disassociate 

the structural elements or provide enough sub-structure strength to 

bridge the potential difference in settlements. As general rules 

foundation types should not be mixed; ground bearing slabs should be 

either suspended or have enough strength (and bending moment resistance) 

to support uplift pressures caused by the anchoring effects of the piled 

foundations; and where possible foundation length should be kept to a 

minimum so that the effects of rising groundwater levels, which are 

greatest at depth, are kept to a minimum. 

7.5 Limitations of the work 

Relatively inexpensive centrifuge modelling of bored foundations in clay 

during a rising groundwater event has provided a large amount of 

information on model bored pile behaviour in reconstituted Speswhite 

Kaolin during rising groundwater events. An unsuccessful attempt to use 

reconstituted London Clay was made but failed due to centrifuge slip ring 

malfunction and was not reattempted. 

Major limitations of the work carried out are: 

o Installation of the bored foundations at Ig rather than during 

flight at the required scale factor. The finite element analyses 
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of prototype and model pile installation suggested that the 

reduction in shaft capacity during a rising groundwater event would 

be less in model than prototype piles. The general modes of 

behaviour, however, were the same. 

o The use only of Speswhite Kaolin as the model ground. Kaolin has 

the very desirable property, for a clay, of high permeability which 

allowed a drained rising groundwater event to be modelled on the 

centrifuge over a two day period. The effects of rising 

groundwater will potentially be greater for higher plasticity clays 

and less for lower plasticity clays. 

o The influence of ground consolidation after spin-up resulted in 

negative skin friction on the piles. For slender piles, this would 

result in base loads that were in excess of working base loads 

creating a non-standard pile and non-standard behaviour during a 

rising groundwater event. The largest slenderness ratio used was 

(shaft length/base diameter) 12.0. 

0 The finite element analyses were carried out with the available 

software. In analysis of piles during a rising groundwater event 

the pile shaft-soil interface was found to be very important. The 

software used did not incorporate the correct types of interface 

slip elements which may have allowed better finite element 

modelling of the pile behaviour in rising groundwater environment. 

7.6 Further work 

Centrifuge modelling techniques capable of carrying out pile installation 

during flight would allow a wider ranging investigation of bored pile 
behaviour during a rising groundwater event. In particular, longer more 

slender piles could be investigated and prototype installation procedure 

could be followed more closely. The complexity of the procedure 

prevented its attempt in this research project. 

The centrifuge research programme was restricted to shallow pad 
foundations and bored piles. For completeness, the behaviour of 
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displacement piles, which subject the soil to very different stresses 

during installation, should be investigated to provide information 

allowing informed prediction of prototype behaviour during a rising 

groundwater event. 
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Quantity Example Scale 

factor 

Prototype Model 

No. of g 1 100 

Length Pile diameter Clay 

depth 

1/n 1.2m 

25m 

0.012m 

0.25m 

Stress Pore pressure 1 100kN/m2 l00kN/m2 

Load Imposed pile load 1/n' 500 Tonne 0.5kg 

Time 

consolidation 

Groundwater 

rise 

1/n2 27 years 1 day 

Table 4.1 Scale factors for centrifuge tests 
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RWI RW2 RW3 RW4 RW5 

PWP at 50mm depth 29 28 31 18 
start of 100mm 37 57 44 31 
rising depth 44 86 57 43 
groundwater 150mm 
stage (kPa) depth 

PWP at end 50mm depth 59 41 48 49 
of rising 100mm 106 89 102 92 
groundwater depth 152 137 156 136 
stage (kPa) 150mm 

depth 

Movement (mm): 
surface 1.42 0.60 1.62 1.60 

Foundation 1 

Initial FOS 1.0 2.1 2.2 1.35 
conditions 

Pý (N) 480 182 210 240 
q, (kN/m) 14.3 -1.5 - 
q, (kN/m2) 376 509 - 

Final P. (N) 480 182 227 

conditions q, (kN/m) 24.0 20.4 

q, (kN/m) 25 211 

Displacement (mm) 0.38 0.50 1.12 

Foundation 2 

Initial FOS 1.1 1.8 1.5 1.7 
conditions 

P. (N) 258 147 215 190 
q, (kN/m) (NA) (NA) (NA) - 
q, (kN/m'-) 222 117 171 - 

Final P. (N) 258 147 210 
conditions q, (kN/m) (NA) (NA) (NA) 

q, (kN/m2) 222 117 107 

Displacement (nun) 1.19 0.60 1.50 

Table 5.4a Summary of foundation behaviour during rising groundwater event tests RW 1 to RW5 



RW6 RW7 RW8 RW10 RW11 

PWP at 50mm depth 22 13 26 20 
start of 100mm 28 24 35 24 
rising depth 34 37 45 25 
groundwater 150mm 
stage (kPa) depth 

PWP at end 50mm depth 44 46 58 52 
of rising 100mm 91 90 104 94 
groundwater depth 135 146 156 139 
stage (kPa) 150mm 

depth 

Movement (mm): 

surface 1.7 1.95 1.59 1.64 
150mm depth - - - 1.08 

Foundation 1 

Initial FOS 2.2 1.6 1.8 1.6 
conditions 

PM (N) 200 280 397 235 
q, (kN/m) 29.6 28.6 37.5 - 
qb (kN/m2) -107 248 320 - 

Final P. (N) 210 285 397 235 
conditions q, (kN/m) 30.3 28.6 33.4 - 

qb (kN/m2) -104 273 390 - 

Displacement (mm) 1.03 0.70 0.31 0.86 

Foundation 2 

Initial FOS 2.2 1.6 2.1 2.1 
conditions 

P, (N) 206 280 346 182 

q, (kN/m) - - (37.5) - 
qb (kN/m2) - - (197) - 

Final P,, (N) 210 275 352 185 
conditions q, (kN/m) - - (33.4) - 

qe (kN/m) - - (282) - 

Displacement (mm) 1.20 0.94 0.55 1.04 

Table 5.4b Summary of foundation behaviour during rising groundwater event tests RW6 to RW 11 



RW12 RW13 RW14 RW15 RW16`' 

PWP at 50mm depth -34 -37 24 11 21 
start of 100mm -11 -10 34 22 25 

rising depth 42 39 43 21 29 

groundwater 150mm 
stage (kPa) depth 

PWP at end 50mm depth 0 0 43 42 69 

of rising 100mm 42 55 94 90 113 

groundwater depth 102 105 144 137 160 

stage (kPa) 150mm 
depth 

Movement (mm) 
surface 1.80 2.25 1.63 2.95 
150mm depth (mm) - 0.77 1.26 1.48 

Foundation 1 

Initial FOS 1.7 1.4 2.4 2.1 
conditions 

P, (N) 295 232 292 320 

q. (kN/m) 41.5 29.2 29.8 34.1 
qb (kN/m2) -30 452 197 193 

Final P. (N) 300 248 300 327 

conditions q. (kN/m) 38.8 34.6 30.7 29.1 

qb (kN/m) 39 324 202 292 

Displacement (mm) 0.34 0.46 0.91 0.5 

Foundation 2 

Initial FOS -1.6 -2.1 2.1 2.0 
conditions 

PA(N) 260 150 147 164 
q. (kN/m) (NA) (NA) 18.2 - 
qb (kN/m) 207 119 328 - 

Final P� (N) 165 166 154 164 

conditions q. (kN/m) (NA) (NA) 24.2 - 
qb (kN/m) 131 132 55 - 

Displacement (nun) 1.27 1.56 1.18 1.48 

.1 Water table 31 mm above sand layer of 9mmm thickness. 

Table 5.4c Summary of foundation behaviour during rising groundwater event tests RW 12 to 
RW 16 



Test No. RW 10 RW15 

Pile No. Pile 1 Pile I 

(kN/m) 120.5 130.8 

Low a'... (kN/m2) 182.9 204.9 

water 
l l 

Load P, (N) 265 240 
eve 

Stress 37.7 34.1 

ß 0.313 0.261 

or'.., (kN/m2) 71.4 80.0 

High water a',. _ 
(kN/m) 140.1 153.4 

level Load P, (N) 239 207 

Stress 34.0 29.4 

ß 0.476 0.493 

pQ,, (%) 9.8 13.8 
Change 

pd��W (%) 40.7 38.8 
rA-01-h- 

(%) 23.4 25.1 

Table 5.5 Shaft capacity before and after a rising groundwater event 

Test No. RW6 RW7 RW14 RW14 RW15 

Pile No. Pile 2 Pile 2 

Slenderness ratio 9.5 10.0 

Low a', (kN/m') 255 261 
water table 
stresses at a'b (kN/m) 312 312 

150mm 
p' (kN/m) 293 295 

depth 
(160mm in Load Pb (N) 257 274 
RW7) 

Qb (kN/m) 1047 1094 

Pile No. Pile 1 Pile 1 Pile 1 Pile 2 Pile 1 

Slenderness ratio 9.5 10.0 6.5 12.0 6.5 

High water a'� (kN/m) 156 146 146 146 146 
table 
stresses at b (kN/m') 253 244 244 244 246 

150mm p' (kN/m) 221 211 211 211 212 
depth 
(160mm in Load Pb (N) 193 216 390 140 365 
RW7) 

Qb (kN/m2) 679 786 782 927 756 

Table 5.6 Base capacity before and after a rising goundwater event 



Analysis 1PIEXC 1P2MOD 

Mesh scale Prototype Model 

Dimensions radius 18.0 0.18 
(m) 

height 25.5 0.255 

Initial Surface 100 200 
stresses 

PWP Hydrostatic zero 

Scale factor n 1 1 

Stresses before Surface 0 0 
pile excavation PWP -8 top to 68 base -8 top to -390 base 

Scale factor n 1 1 

Use of liquid concrete Yes No 

Place pile elements Replace concrete Fill open hole 

Scale factor increment 0 99 

Rising water event 

A Pile in place 

B Frictionless shaft Frictionless shaft 

Table 6.1 Pile instalation analyses summary 



Symbol Parameter Value 

Stallebrass Model - Speswhite Kaolin 

G. kPa Elastic shear stiffness 60000 

K. Elasttc kappa in Lnv-Lnp' space 0.007 

M Stress ratio at critical state q/p' 0.85 

>' Lambda in Lnv-Lnp' space 0.0838 

r Specific volume of CSL at p'= lkPa 3.0 

K,, m/sec Vertical permeability 1.11E-9 

Kr m/sec Horizontal permeability 0.2E-9 

T Ratio of history to bounding surface size 0.25 

S Ratio of elastic to history surface size 0.08 

H Hardening factor 2.5 

'y,, kN/m' Unit weight of water 10 

y, kN/m' Unit weight of saturated soil 18 

Schofield Model - Speswhite Kaolin 

Main body of 
ground 

Elements close to pile 

a Average kappa in v-Lnp' space 0.035 0.035 

A Lambda inv-Lnp' space 0.18 0.18 

e. Voids ratio on CSL at p'= l kPa 1.97 1.97 

M Slope of CLS 0.85 0.5 

Drained Poisson's ratio 0.3 0.3 

H Slope od Hvorslev surface in q-p' space 0.5 0.25 

S Slope of no ternion cut off in q-p' space 3.0 3.0 

K� m/sec Vertical permeability 1.11E-9 1.11E-9 

K, m/sec Horizontal permeability 0.3E-9 0.3E-9 

y.. kN/m' Unit weight of water 10 10 

'yi, kN/m' Unit saturated weight of soil 18 18 

Elastic - Concrete 

E kPa Young's modulus 63E6 

01 Poisson's ratio 0.25 

G kPa Shear stiffness 25E6 

y kN/m' Unit weight 8 or 24 

Table 6.2 Summary of material properties for finite element modelling 



Analysis SCH2 SCH3 SCH4 SCH5 SCH2M 

Pile loading Pile head load (N) 301 402 503 603 301 

Initial factor of 2.7 2.1 1.6 1.4 2.7 

safety 

Pile settlement on 0.15 0.20 0.26 0.34 0.15 
loading (mm) 

Rising PWP change at Gradua Gradual Gradual Gradual Rapid 

groundwater base 1 

event 
Surface heave 1.19 1.19 1.19 1.19 1.18 
(mm) 

Pile settlement wrt 0.47 0.51 0.60 0.66 0.45 

surface (nun) 

Pile settlement wrt -0.11 -0.07 0.01 0.08 -0.12 
base (mm) (heave) (heave) (settle) (settle) (heave) 

Initial pile base 121 143 165 197 121 

load (N) 

Final Pile base 5 45 124 190 3 
load (N) (97 min) (166 

min) 

Table 6.3 Summary of rising groundwater event analyses using Schofield model (model scale) 
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Figure 2.1 Stresses around a bored pile shaft (After Lopes, 1979) 
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Figure 2.2 Hyperbolic function applied to pile settlement (After 
Chin, 1972) 
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Figure 3.2 Three surface kinematic yield hardening model in p' -q 
space: Stallebrass model 
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Figure 4.3a View of typical centrifuge model prior to loading onto 
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Figure 4.3b Set up of a typical centrifuge model with two similar piles 
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Figure 5.24 Foundation loads during rising groundwater event, test RW6 
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Figure 5.31b Pile end bearing capacity against vertical effective stress 
at pile base level 



1.6 1.8 2 2.2 2.4 2.6 
Factor of safety 

Figure 5.32 Correlation of pile initial factor of safety with 
settlement relative to soil surface during rising 
groundwater event for three pile geometries 

-0.20- 1.4 1.6 1.8 2 2.2 2.4 2.6 
Factor of safety 

Figure 5.33 Correlation of pile initial factor of safety with 
settlement relative to soil at pile base level during 

rising groundwater event for three pile geometries 



1.50 

1.25 

1.001 

0.75 

o. soý 

0.25 

Numbers relate to factor of safety 

0.00 456789 10 11 12 13 14 15 16 
Slenderness ratio 

Figure 5.34 Correlation of pile slenderness ratio (pile length - Ls/Db 

-pile base diameter) with settlement relative to the ground 
surface, with general trends for different initial factors 

of safety 

1.00 

0.80ý 

o. soý 

0.40 

Numbers relate to factor of safety 

1.8 m 

2.1 ö 
2.1 m 

2.4 0 
1. s 

0.20 ::: = 1.6 

jtý 
2: 10 = 2.0 

0.00 FOS = 2.3 

-0.20 456789 10 11 12 13 14 15 16 
Slenderness ratio 

Figure 5.35 Correlation of pile slenderness ratio (pile length - L, /Db 

-pile base diameter) with settlement relative to soil at 
pile base level, with general trends for different initial 
factors of safety 



1.50 

Sealed surface 
E 1.25ý 
E 

0 
RW13, Ls/Db = 12 

Q 

RW12, Ls/Db=9.5 

1 .00 

ý 
ö 0.75- 

0.50- 
G) 

2» 0.25ý 

0.00 1.2 1.4 1.6 1.8 2 2.2 2.4 
Factor of safety 

Figure 5.36 Comparison of settlement of straight piles for different 
initial pore pressure profiles 



25.5m 

Figure 6.1 Mesh used for pile installation and rising groundwater 
analyses with Stallebrass model 



1400 

1200 

1000 

800' 

600 

400 

200 

200 ' 400 600 800 1000 1200 1400 
Vertical effective stress (kPa) 

Figure 6.2 Variation of p'c with a', during one dimensional unloading 
from a',, - 1250kPa 

26- 

24- 

22- 

20- 

18- 

16- 

14- 

12- 

10- 

8- 

6- 

4 

2 

Surface at 25.5m -B 
Initial 

---- 
Overburden removed 

- 
Base PWP reduced 

n 
50 100 15O 200 250 300 350 400 450 

Vertical effective stress (kPa) 

Figure 6.3 Vertical effective stress profiles before, during and after 
modelling effects of recent stress history, analysis 1PIEXC 



26- 

24- 

22- 

20- 

Is- 

16- 

14- 

12- 

10- 

8- 

6- 

4- 

2 

0 
0 

E3 
Vertical 

Horizontal 

50 100 150 200 250 300 350 400 450 500 
Effective stress (kPa) 

Figure 6.4 Vertical and horizontal effective stress profiles after 
modelling effects of recent stress history, analysis 1PIEXC 

26- 

24- 

22- 

20- 

is- 

16- 

14- 

12- 

10- 

8- 

6- 

4- 

2ý 

0 123 456789 10 
Ko 

FE prediction 

Calculated 

Figure 6.5 Comparison of K. profile from Figure 6.4 and calculated 
profile from Eqn 3.8 and 2.20 



0.26- 

0.24- 

0.22- 

0.20- 

0.18- 

0.16- 

0.14- 

0.12- 

0.10- 

0.08- 

0.06- 

0.04 

0.02 

0.00 
0 50 100 150 200 250 300 350 400 450 500 

Effective stress (kPa) 

-a-- 

Vertical 
-- 
Horizontal 

Figure 6.6 Vertical and horizontal effective stress profiles after 
modelling effects of recent stress history, analysis 1P2MOD 



W 
N 

a) ý 
N 

CD ý 

U 
a) w 

v- 
CL) 
a. 
0 
0 

U 

Ul) 
N 

O V) O 
N 

(w) ysaw ;o asog woj; aouoisia 
0 

U 

41 H 
Pr 

y 

H 
>_1 

r-d 
cu 

v 
ý 

N 

ý 
-0 (w) 

CE 0 
.,. ) 
41 
Ca 

U 

0) 

Gh 
N ý) 
0. U to 
O )4 V) 

4j 0) V) 
v) w Cl) 

JJ 1j 0) 
". -1 (L) i! ) 34 39 41 
y -1 0) to 
r 
oU-, 4 0) 

ý 
4"c 0) l! 

ýOWdU 

p r-1 0) W 
J� ) cb (4-1 

,')". ý cö 
(1) 

'd 
i+ "d 0 

V1 0) CO 0 
u)>w'x 
0) 
w 
1. J -% -% -, 

2 

V) R1 AU 

N 
N 
ý 

. ý+ 
N 

Q) 
ý 

U 
Q) 

. ý.. 
C) 

O 
U 

O 
ý 

it) 
N 

ýQ ýN i5 nn 

Qp bý 

, , 1, ,, IA Cý 

ysaw 10 aaoq wa; aouo}sia 

ý8 
ý 

.pýý /- 
iy/ ýýý/1iS 

II 
P 

IR 

aa 

E§ýR 

viii 

u ý 
ov 
r' V 

u 
n 

E 
2 

ý .. ' 
u U 
C 
O 

r 
X 
in 

J 

0 

ýE 
ý 

O 
L r+ 
C 
V 
U 

OV 

E 

v .. U) ö 

I 

ýý Iý ý, Sa 
\.. 

ý. 1.. 1. 
ý 

-L--ýj p 
o vý oNo 
N 
(w) ysaw 10 asog wa; Vouo}siQ 

tC 

d 
C 
dD 

. '., W 



0 

-50 ý 

S, 
Mi 

v -1Mý 
Q 

Excavation 

-150-1 

Element 336 

-2001 1 0 50 100 150 200 
p' (kPa) 

0 

-50., 

ioo1 
ýI a Y 

Q 
-150.1 

Element 497 

Finish (long term) 

Start 

Concreting 

P 
250 300 

Finish (long term) 
radial stress = 244kPa 

Start 
radial stress = 246kPa---. , q 

Concreting 

Excavation 

-200ý 

-250 

ýý 
0 50 160 150 200 250 300 350 

p' (kPa) 

Figure 6.8 Stress path during pile installation, analysis lPIEXC: 
a) Element 336,10m depth 0.8m from shaft 
b) Element 497,10m depth 0.15m from shaft 



400 

375 

350 

325 

300 

275 

250 

225 

200 

175 

150 

125 

a 

Open shaft 

4- 

100 
02468 10 12 14 16 18 

Distance from pile centre in radii 

400- 

375- 

350- 

325- 

300- 

275- 

250- 

225- 

200- 

175- 

150- 

125- 

100- 
. __0 2 

Long-term, after installation 

Radial 
t 
Vertical 

Hoop 

Radial 

---- 
Vertical 

Hoop 

468 10 12 14 16 18 
Distance from pile centre in radii 

Figure 6.9 Vertical, radial and hoop effective stress distributions 

at lOm depth, analysis 1PIEXC: 

a) Open shaft 
b) After installation 



N 
y 
0) 

.... N 

0) 
> 

ý 
U 
0) 

. ý.. 
0) 

a- 0 
0 

U 

v ý 

N 
(! ) 
ý 
ý 

ý-+ 
N 

ý 
ý 

ýº+ 
U 
V 

ý 
CD 

v 

U 

N 
ý 

LO 
N 

be) 
N 

000 
Ný 

(w) ysaw jo asog wa; ýýuoicia 

( ) ysaw ;o asog woi; aouo; sio 

O 
N 

(W) 
in 

ycaw lo asog wo. j; aouolsip 

W 
. '., 

N 
N 
4) N 
)+ N 

dN 41 
NLN 

u 
4) Nw 
>u 

4) N 
> 

a> ý 
w 
Cd 

U ++ 0) 
du> 

WU -4 
wyu 0) WU 

W 0) 
.rUW 
40 44 

v. -+ d 
.. ,ý 

.. I. I. O 
dW>ä0 

ý+ w .... .. cn -4 Co 0U 

0 
ý 
ý 

ý4 
:3 
eo 
..., 



26 

24- 

22ý 

20ý 

18ý 

161 

14ý 

12- 

10+r 
-20 -18 

iQ 
 o 

.o 
.Q 

.0 

.Q 

.Q 

.Q 

.Q 

 Q 

. 1: 1 

-Q 

ýQ 

W 

+ )K 

-4- w 
+ ilE 

-16 -14 -12 -10 -8 -6 -4 -2 
Horizontal displacement (mm) 

+ 
ý 

0 

5.5m Open 

5.5m Long 

0 
1.0m Open 

I . Om Long 

Figure 6.11 Horizontal displacements during pile installation at 1.0m 

and 5.5m from pile axis, analysis IPIEXC 



0) n 

u 
: -. 
u 
u 

ü 

0 
0 

U 

ý ý 0) 

... ý 
a) > 
U 
4) 

ý 
ý 
G) 

v 
v 
v 

-0 

ý Co 
ý 
h 
a) > 
U 

. ̀ .. 
ý 

U 
ý 
G) 

ý 

ý 

kn 
O 

ý N 
0 

ý 

i 

O tn ° In N 

0OOO 
(w) 49OW 10 asoq wa; a: )uD}sia 

0 
N0 
OO00 
(w) ysaw ;o asoq woj; aouo}riQ 

I 

9D2°2 9 ý 
N R 14 

7 

NQný 

Ap. p 

An 0 in 0 
NN 17 

0C 

p0000 

(w) ysaw 30 asog woi; aouoIcia 

iii]]] / 

. ý. E 

2 
.. Oc 
u '. U 

0 V 
CL 
E 

due 

C 
O 
N 

0 
0 

00 0 ö 

( LO ý 
dE 

u ý ý C 
u 
U 

_O v 
0 0. 

E 
0 ý w 

LI) u 
0u 

,c 00 
X 
in 

J0 
0 

0ý 
0 
0 

y 
Ul 

. --t 
Co r. 
Co 

(L) 

r4 
. r., P. 

d 
4-1 

cd 

dy 
Y+ tq 
J-ý d 
rn ý 

1J 
NW 

". ý N 

U ". d 
d 41 

4-1 U 
44 d 
U 4.4 

44 
ri GI 

U rl 

.. ýýo , ý.., 
.. a., b vi Ad cd 

V1 0D Cl 
a) x: S-i Cl 

1J W '-% 1-1 1-1 
V) r-i cd pU 

CV 
--i 

%O 

d 
}d 

Gp 
... ý 

U) 
U) 
a) 

U) 

a) 
..., 
U 
a) 

W 
44 
d 
a 
0 
0 



400 

375 

350 

325 

300 

275 

250 

225 

200 

175 

150 

1257 

1M. 
I 

Open 

W 
-E9 

i- ýý 
02468 10 12 14 16 18 

Distance from pile centre in radii 

400 

375 

350 

325 

300 

275 

250 

225 

200 

175 

150 

125 

100 

Long term 

0248 10 12 14 16 1,8 
Distance from pile centre in radii 

Ea 

Radial 

Vertical 

Hoop 

ä 

Radial 

Vertical 

Hoop 
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a) Surface and pile displacement 
b) Pile base load 
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APPENDIX A CENTRIFUGE TEST DETAILS 

The information given in this appendix comprises a full description of 

the eleven most successful centrifuge tests (RW3, RW4, RW6, RW7, RW10, 

RW11, RW12, RW13, RW14, RW15 and RW16). The following results are 

presented in graphical format and are at model scale: 

1) Pore water pressure against time during the rising groundwater 

event. The pore water pressure responds to a rapid change in water 

pressure in the base drainage layer of the model at time -0 hours. 

2) Displacement with time of soil surface, foundations and where 

present the buried plate. 

3) Foundation loads, including (when data were available) a 

distinction between pile shaft and base loads against vertical 

effective stress at the pile base level of 150mm below clay 

surface. 

4) Displacement of soil surface, foundations and where present the 
buried plate against vertical effective stress at pile base level 

of 150mm below clay surface. 

Figures (1) and (2) and Figures (3) and (4) are plotted together allowing 

a direct comparison of displacement and pore water pressure change and 

displacement, effective stress and foundation load distribution. 

Calculation of shaft load assumed a linear distribution of shaft capacity 

with depth and therefore multiplied the measured shaft load by the ratio 

of shaft length to length over which shaft load was determined to obtain 

total shaft load as shown in Table A. 1. 
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Pile type Straight Straight Under-reamed 

Slenderness ratio 12 9.5 6.5 

Length of shaft (mm) 150 150 142 

Length of shaft above 

measurement level (mm) 

149 140 132 

Length of base (mm) 1 10 10 

Shaft multiplication ratio 150/149 150/140 142/132 

Table A. 1 Pile shaft geometry. 

Test RW3: 

A 16mm diameter straight pile and a 40mm diameter pad were compared in 

this test in a bed of clay preconsolidated to 1250kPa. The pile had a 

base load cell which differentiated between the upper 140mm of shaft and 

lower 10mm of shaft and end bearing load as described above. Both 

foundations were load tested to find their ultimate load capacity prior 

to the rising groundwater event. After load testing, the foundations 

were subjected to working loads resulting in factors of safety on 

ultimate load of 2.1 and 1.8 for the pile and pad respectively. 

During excess pore water pressure dissipation following spin-up the 

solenoid valve controlling the standpipe dump failed resulting in a build 

up in pore water pressure as indicated in Figure A. RW3.1 by the high pore 

water pressures at the start of the rising groundwater event. 

During the rising groundwater event surface and foundation heave were 

smaller than in other tests due to the smaller pore water pressure rise 

as shown in Figures A. RW3.1 and A. RW3.2. The pad was seen to move 

closely with the ground surface while the pile lagged behind by about 
0.15mm at the end of the test. 
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The small pile settlement (relative to the ground surface) was partially 

a result of the load redistribution from the pile base to the shaft seen 

in Figure A. RW3.3 where foundation loads are plotted against vertical 

effective stress at pile base level. It appeared that at the end of the 

stage that full redistribution of load to the shaft had yet to occur. 

Principal observations from test RW3: 

a) Pad foundations settle only slightly were a perched water table 

exists to dominate near surface pore water pressures. 

b) Redistribution of load occurs from pile base to shaft during a 

rising groundwater event for pre-loaded piles. 

Test RW4: 

The first attempt of modelling an under-ream pile was carried out in this 

test. The under-ream was formed of quick setting portland cement and was 

not completely successful. However, the test was completed and provided 

useful information on the behaviour of piles with expanded bases. As in 

test RW3 both pile and pad foundations were load-tested prior to the 

rising groundwater event. After load capacity testing, working loads 

corresponding to factors of safety of 2.2 and =1.5 respectively were 

applied. 

The load displacement response of the pile appeared to be between that 

of a straight shafted pile and that of a competent under-reamed pile. 

This observation, based on load capacity response, was confirmed by the 

fractured state of the under-ream on examination of the pile after the 

test. 

Full consolidation of the clay took place prior to the rising groundwater 

event as indicated by the low initial pore water pressure seen in Figure 

A. RW4.1 compared to Figure A. RW3.1. Surface and foundation displacements 

were larger than in test RW3 as a result of the complete reduction in 

pore water pressure prior to the rising groundwater event. 
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The initial load test on the pile resulted in the shaft friction working 

to load the base at working load as seen on Figure A. RW4.3, at 

ov150'-23OkPa there was a small net shaft load. During the rising 

groundwater event load was transferred form the base to the shaft as in 

test RW3. 

Differential displacements between the foundations and ground surface 

were larger in this test than in test RW3. From Figure A. RW4.4 it can 

be seen that the pad settled approximately 0.125mm while the pile settled 

0.5mm. Pile settlement is solely a result of soil swelling passed the 

pile and not due to pile base settlement as confirmed by an ever 

decreasing pile base load in Figure A. RW4.3. 

Principal observations from test RW4: 

a) The pad with a low factor of safety settled slightly relative to 

the ground surface during the rising groundwater event. 

b) The pile behaviour during the rising groundwater event was 

influenced by the initial load test resulting in unloading of pile 

base during. The pile settlement at prototype scale of 50mm 

resulted from soil swelling passed the pile shaft tending to pull 

the pile base upwards. 

Test RW6: 

In this test a typical working pile (i. e. not previously load tested) was 

successfully subjected to a rising groundwater event. The test was a 

repeat of the unsuccessful test RW5. Two piles were tested together. 

Pile 1 had a base load cell and was not load tested prior to the rising 

groundwater event, while Pile 2 with no base load cell was pre-load 

tested. The combination of the two piles in one test provided data on 

initial load capacity and allowed a comparison of movements associated 

with the two different pile load conditions to be made. It also allowed 

a comparison of pile load capacity before and after a rising groundwater 

event. 

A. 4 



Initial consolidation of the clay after spin-up resulted in low pore 

pressures throughout the clay body as shown in Figure A. RW6.1 at the 

start of the rising groundwater event. 

The piles were both loaded to have a factor of safety of 2.2 on ultimate 

capacity. A combination of data from the two piles showed that this load 

represented partial factors of safety of Qs/l + Qb/10 for Pile 1. During 

the rising groundwater event pile head loads remained constant until 

Qv15o' dropped below 160kPa at which stage Pile 2 unloaded as seen in 

Figure A. RW6.3 due to a slip-ring malfunction. The movements in Figure 

A. RW6.4 show that Pile 1 which was not pre-load tested settled relative 

to the ground surface more than Pile 2. This is attributed to the 

different distribution of load between shaft and base at the beginning 

and during the rising groundwater event. By comparing the load behaviour 

of Pile 1 in Figure A. RW6.3 with either Figure A. RW3.3 or A. RW4.3 the 

difference between a pre-load tested and a typical working pile is 

evident. The load cell output in Figure A. RW6.3 was quite noisy. 

However, the results show a small initial load transfer from the pile 

base to the shaft which is followed by a slight reloading of the pile 

base for Pile 1. The displacement during initial loading of Pile 1 was 

0.035mm (0.2% pile shaft diameter, from Table 5.3b) and it is therefore 

not surprising that full friction was not mobilised at the working load. 

Figure A. RW6.5 shows a comparison of pile load capacity before (Pile 2) 

and after (Pile 1) the rising groundwater event. The loss in total load 

capacity is apparent and is approximately 19% for an average reduction 

in vertical effective stress over the length of the pile of 36%. 

Principal observations from test RW6: 

a) The load testing of a pile will act to reduce settlements during 

a rising groundwater event. The pile was load tested to failure, 

this is unlikely for a working pile which will usually be proof 

load tested to 1.5 or 2.0 times working load. The mechanism, 

however, will be similar for typical prototype proof tested piles 

which will have overloaded bases at the start of a rising 

groundwater event. 
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b) Both piles settled significantly relative to the ground surface, 

Pile 1 by 0.67mm at model scale and Pile 2 by 0.5mm at model scale 

as seen in Figure A. RW6.4 at av150' - 155kPa 

c) The reduction in load capacity was less than the loss in vertical 

effective stress. Base load capacity loss was approximately 25% 

for a reduction in vertical effective stress at pile base level of 

39%. Shaft load capacity loss was approximately 10% for an average 

reduction in vertical effective stress over the length of the pile 

of 36%. 

Test RW7: 

Test RW7 had similar objectives to test RW6. Two similar geometry piles 

were tested together at the same working load. One pile was load tested 

prior to and the other after the rising groundwater event. The working 

loads applied resulted in a factor of safety of 1.6 or Pile 1 with 

partial factors on the shaft of 1.0 and on the base 2.7. 

The results are presented in the same format as those in test RW6 and 

will not be discussed in detail. 

Principal observations from test RW7: 

a) Both piles settled significantly relative to the ground surface, 

Pile 1 by 0.97mm and Pile 2 by 0.76mm at an average model vertical 

strain of 0.6% as seen in Figure A. RW7.4. A settlement of lmm at 

model scale corresponds to 100mm at prototype scale and is likely 

to result in significant distress to a structure. 

b) Total load capacity loss of 14% was less than the reduction in 

average vertical effective stress of 35%. Base load capacity loss 

was approximately 21% for a reduction in vertical effective stress 

at pile base level of 40%. Only slight loss in shaft load capacity 

was measured during the rising groundwater event as indicated by 

the relatively flat shaft load measurements in Figure A. RW7.3. 
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c) The settlements in this test were larger than those in test RW6 and 

were a result of the lower initial factors of safety. 

0 

Test RW10: 

The results of tests RW6 and RW7 showed that factor of safety effects 

settlement of foundations in a rising groundwater environment. In this 

test two similar under-reamed foundations with different factors were 

compared in a rising groundwater event. Pile 1 was subjected to a load 

of 400N representing a calculated factor of safety of 1.8 while Pile 2 

had values of 345N and 2.2 respectively. The under-ream material used 

was a quick-setting metal loaded epoxy (No. 551-075 from Radio Spares 

components UK). The resin was proof tested under unconfined compression 

and was seen to have satisfactory shear strength and creep properties. 

Behaviour of the under-ream was satisfactory in this and succeeding 

under-reamed piles tested. 

Pore water pressures at the start of the rising groundwater test were on 

average 30% hydrostatic over the length of the pile. At the end of the 

test they had risen to 87% of hydrostatic values (Figure A. RW10.1). 

Foundation settlements during the rising groundwater event were large 

(Figures A. RW10.2 and A. RW10.4) and for most of the test the foundations 

remained stationary as the soil swelled both below and above the pile 

base level as indicated by the changes in pore water pressure in Figure 

A. RW10.1 at all depths. Settlements relative to ground level were 1.2mm 

for Pile 1 and 0.94mm for Pile 2 at an average vertical strain in the 

sample of 0.6%. The settlements monitored in Pile 2 of this test were 

similar to those in Pile 1 of test RW15 which had the same length and 

factor of safety. 

Foundation load distribution was monitored in Pile 1 (Figure A. RW10.3). 

Clearly load is transferred from the shaft to the base. During initial 

loading of Pile 1 shaft load capacity peaked at a displacement of O. lmm. 

On a continuation of loading the shaft capacity reduced, possible due to 

a combination of dissipation of excess pore water pressures and reduction 

in 6 (Eqn. 2.3). Pile 2 settlement on initial loading was 0.1mm. During 
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the rising groundwater event there was a load transfer of form the shaft 

to the base in Pile 1 (Figure A. RW10.3) of approximately 10% initial 

shaft capacity. Pile 2, which is thought to have mobilised full shaft 

capacity during initial loading, would also have experienced a similar 

reduction in shaft capacity. 

Principal observations from test RW10: 

a) As previously seen in tests RW6 and RW7 piles with higher factors 

of safety settle less than those with lower factors. 

b) Settlements for under-reamed piles are larger than those from 

straight shaft piles of similar lengths and similar factors of 

safety. 

c) For piles which fully mobilise shaft friction during initial 

loading the rising groundwater event will result in a one way load 

transfer from the shaft to the base. 

Test RW11: 

This test was similar to test RWIO except that two straight shaft piles 

with slenderness ratios of 12 were tested together. Foundation loads 

were 235N and 182N representing calculated factors of safety of 1.6 and 

2.1 for Piles 1 and 2 respectively. Neither pile had base load 

measurement capability. An additional displacement transducer was placed 

on top of a rod connected to a buried plate at pile base level allowing 

the pile settlement a ground level to be separated into components of 

soil heave passed the pile base and settlement of the pile base relative 

to the surrounding soil. 

Pile settlement during the pore water pressure rise from 24% hydrostatic 

to 82% hydrostatic resulted in both piles settling relative to the buried 

plate. Pile 2, with the lower of the loads, settled very slightly 

compared to the plate and significantly less than Pile 1 in this test and 

48% less than under-reamed Pile 2 in test RW10 which had a similar factor 
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of safety. 

Principal observations from test RW11: 

a) As with the under-reamed piles in test RW10, slender piles were 

seen to settle more as the factor of safety reduced. 

Test RW12: 

Test RW12 was the first of two tests examining the result of raising the 

pore water pressure from a depressed hydrostatic profile. The test set 

up reverted back to that used in tests RW3 and RW4 where a pad and a pile 

were tested together. The test was carried out to assess the effects of 

a different initial pore water pressure profile that might occur in 

situations of long-term under drainage in the absence of a perched 

surface water table. 

Figure A. RW12.1 shows the initial pore water pressures in the sample. 

At the start of the test pore suctions were estimated to be -34kPa at 

50mm clay depth. At the end of the test this pore pressure had risen to 

approximately OkPa. The rising groundwater stage of the tests lasted 

over 21 hours model time, twice as long as the previous tests. The time 

to achieve near hydrostatic pore water pressures in the clay was 

prohibitively long resulting in a full rising groundwater not being 

undertaken. The loss in control of the pad loading rig can be seen from 

Figure A. RW12.3 when at ov150' i 205kPa a sharp reduction in load 

occurred. The settlement of the pad will have been reduced by this 

unloading. However, the pad settled significantly relative to the ground 

surface even for the uncompleted pore water pressure rise as seen on 
Figure A. RW12.4. 

The pile shaft load remained fairly constant during the rising 

groundwater event which may be a result of not being fully mobilised 

during initial loading to a displacement of 0.8% pile shaft diameter 

(initially a slight increase in shaft load was seen followed by a small 
decrease). The pile settlement relative to the ground surface was quite 
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large and was due to the small reduction in effective stress below pile 

base level and the large reduction above base level compatible with the 

initial depressed hydrostatic pore pressure profile. 

Further comments on this test are combined with those on test RW13. 

Test RW13: 

This test was similar to test RW12 but incorporated a buried plate for 

measurement of ground heave at pile base level. 

The rising groundwater stage of the test lasted 43 hours during which 

time the pore water pressure at 50mm clay depth rose from approximately 

-37kPa to OkPa. The pore water pressures were still rising at the time 

the test was stopped as can be seen on Figure A. RW13.1. 

Displacement measurements showed that the pad settled significantly 

relative to the ground surface and that the pile, a slender pile with 

initial factor of safety of 1.4, settled relative to the buried plate. 

The pad was seated on the clay surface which was covered with liquid 

paraffin. The initial vertical effective stress (from of - u) close to 

the surface appears to be incorrect as it appears that the top pore water 

pressure transduce (48mm depth) had cavitated as indicated by the sharp 

change in pore water pressure gradient at time - 13 hours on 

Figure A. RW13.1. However, data from the remaining pore pressure 

transducers indicate that surface vertical effective stress reduced from 

approximately -110kPa to -40kPa. The vertical effective stress at the 

surface at the end of the test represents a surcharge of over two metres 

of overburden at prototype scale and as such was at a higher vertical 

effective stress than for the pads in tests RW3 and RW4 where vertical 

effective stress at the pad base level at the end of the tests was 

approximately l6kPa. From this comparison it appears that for pad and 

pile alike settlement due to rising groundwater beneath a depressed 

hydrostatic pore water pressure profile will result in larger settlements 

than for a similar pore water pressure increase at depth below a downward 

seepage pore pressure profile. 
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During initial loading the piles in tests RW12 and RW13 both piles 

settled by approximately 1% pile diameter and appeared to mobilise full 

shaft friction. In both tests RW12 and RW13 pile shaft load was not seen 

to degenerate significantly due to the rising ground water. There are 

no data to explain this, however, the stability of the pile shaft during 

construction and after spin-up, when pore pressures remained negative, 

is likely to have led to low radial stresses against the pile. As the 

pore water pressures rose the soil around the shaft would have swelled 

possibly resulting in higher radial effective stresses than before the 

rising groundwater event. 

Principal observations from tests RW12 and RW13: 

a) Shallow pad foundations will settle relative to the ground surface 

when there is a pore water pressure increase below a depressed 

hydrostatic profile. 

b) Pile foundations will settle relative to the surface more in the 

case of pore water pressure rising below a depressed hydrostatic 

profile compared to an initial pore water pressure profile 

generated through downward seepage. The magnitude of effective 

stress reduction in the former case above pile base level is much 

larger than the latter case and causes the extra pile settlement 

relative to the heaving ground surface. 

Test RW14: 

Tests RW14 and RW15 completed the series of tests looking at foundation 

behaviour during a rising groundwater event. In both tests an under- 

reamed pile was compared with a slender pile. Both tests were carried 

out with an initial pore water pressure profile generated through 

downward seepage. 

In test RW14 initial pile factors of safety were 2.5 on the under-ream 

pile (Pile 1) and 2.1 on the slender pile (Pile 2). Pore water pressure 

increased from 33% hydrostatic to 84% hydrostatic resulting in a average 
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loss in vertical effective stress of 34% over the length of the piles, 

and a 41% loss at pile base level. 

Pile settlements relative to the surface were larger for the under-reamed 

pile even though it had the larger factor of safety as seen in Figures 

A. RW14.2 and 4. This might partly be caused by an unloading of the Pile 

2 base during the rising groundwater stage. 

Both piles settled relative to the buried plate which in this case 

appears to be due to the plate being dragged upwards, the result of which 

should be questioned. This is consistent with the behaviour of the base 

of Pile 2 which unloaded suggesting some base heave. 

Further comments on this test are combined with those on test RW15. 

Test RW15: 

In this test initial pile factors of safety were 2.2 on the under-ream 

pile (Pile 1) and 2.0 on the slender pile (Pile 2). Pore water pressure 

increased from 19% hydrostatic to 81% hydrostatic resulting in a average 

loss in vertical effective stress of 40% over the length of the piles and 

a 45% loss at pile base level. 

The under-reamed pile settled relative to the plate and the slender pile 

which was seen to move almost exactly with the plate. The larger surface 

heave seen in this test compared to the other tests with downward seepage 

is a result of the low initial pore water pressure achieved at the start 

of the test. This was due to the existence of small negative pore water 

pressures after spin up which then rose to the low equilibrium pore water 

pressure profile. 

The slender pile was seen to move in unison with the buried plate. 

However, it seemed from differential movement between plate and ground 

surface that the plate (as in test RW14) has been dragged upwards by 

comparing movements with pore water pressure change in Figure A. RW15.4. 

It seems that the plate readings can be taken as an upper bound of soil 
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heave at pile base level and as such Pile 2 will have heaved slightly 

relative to the soil at pile base level. 

Principal observations from tests RW14 and RW15 and others: 

a) This test and test RW14 confirm the influence of pile geometry on 

foundation settlement suggested by comparing pile settlement 

results from previous tests: foundations, of the same length, which 

mobilise base capacity at working load settle relative to the 

ground surface more than those which do not. 

b) A significant proportion of under-reamed pile settlement is due to 

settlement of the pile base due to increased pile base load 

(measured), reduced pile base load capacity (measured) and reduced 

soil stiffness (known from laboratory test results). The remaining 

settlement is due to all the vertical straining of soil above pile 

base level contributing to the pile settlement. 

C) Slender pile settlement is due almost solely to soil swelling 

passed the pile shaft which will result in either unloading of the 

pile base where a pre-load exists and/or the creation of tensile 

forces in the pile at the soil attempts to stretch the pile. 

Test RW16: 

This test comprised eight cone penetration tests using a Fugro miniature 

piezocone penetrometer. The analysed results of the tests have been 

presented in section 5.4 of the main text. 
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base level during rising groundwater event, test RW6 
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during rising groundwater event, test RW10 
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Figure A. RW11.1 Pore water pressure increase against time 
during rising groundwater event, test RW11 

0.2 

-1.8+ 0 2 4gg 

Time (hours) 
10 12 
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Figure A. RW12.1 Pore water pressure increase against time 
during rising groundwater event, test RW12 
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Figure A. RW12.3 Foundation loads against vertical effective 
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Figure A. RW14.1 Pore water pressure increase against time 
during rising groundwater event, test RW14 
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Figure A. RW14.2 Displacement against time during rising 
groundwater event, test RW14 
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Figure A. RW14.4 Displacement against vertical effective stress at pile 
base level during rising groundwater event, test RW14 
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Figure A. RW15.1 Pore water pressure increase against time 
during rising groundwater event, test RW15 

0.5 

0.0 

-0.5 

E 
E -1. ý 

\\ 

w 

I E -1.5 m 
ea 

12 
0ý 

-2.5ý 

. 3. 0ý 

-3.5+ 0 
T- 
5 10 15 

Time (hours) 

Pile 1 

20 
T 

25 
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Figure A. RW16.1 Pore water pressure increase against time 
during rising groundwater event, test RW16 
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Figure A. RW16.3 Raw data from piezocone tests at 0.2mm\sec. 
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APPENDIX B: CALCULATION OF PILE SETTLEMENT 

Calculation of settlement during rising groundwater event for Pile 1 test 

RW14. 

Data: Length 

Shaft diameter (da) 

Base diameter (db) 

150mm 

16mm 

23mm 

Before rising 
groundwater event 

After rising 
groundwater event 

P' 150wo depth 302 kPa 211 kPa 

ph "1 459 N 321 N 

P. "2 240 N 207 N 

E25 *3 19090 kPa 13340 kPa 

M. *4 0.001 0.0013 

*1 Ultimate pile base load: 

Based on observation of pile load tests in section 5.7.2 and 

calculated mean normal effective stress. Pb - Ab 3.66 p'. 

*2 Ultimate shaft load: 

Measured during centrifuge tests and included in Table 5.3c. 

*3 Young's modulus at 25% ultimate pile load: 

Based on Eqn 2.8 where (1-'2). Ip - 0.61 and back analysis of pile 

test after rising groundwater event. Value quoted for before 

rising groundwater event is (p' LWL/p' HWL) 302/211 times that measured 

after the rising groundwater event. 

*4 Flexibility factor for shaft settlement: 

No direct measurement of this was possible during the centrifuge 

tests. Therefor M. was set to 0.001 for initial conditions (in the 

range quoted by Fleming, 1992) and increased to 0.0013 after the 

rising groundwater event using data in Eqn 2.11 and appropriate 

values for r. and Gav. " 
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Calculation of pile settlement in 'stationary soil' due to reduced 

effective stress and stiffness. 

Component of pile base settlement: 

Pb 

Component of pile shaft settlement: 

pa ý 
M. Ca P. (B. 2) (2. llbis) 
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Figure B. 1 Pile base settlement during rising groundwater event for 

varying initial factor of safety (After Fleming, 1992). 

Settlement due to rising groundwater event is the difference 

in pile settlements before and after rising groundwater event 

and assumes superposition. 
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Calculation of soil heave above pile base level may be carried out using 

appropriate soil parameters such as K. For Speswhite Kaolin a value of 

K-0.05 was assumed for the calculation of soil heave. Soil swelling 

in most centrifuge tests included both secondary primary unloading 

requiring a larger r. than would be needed if all swelling was on a 

secondary unload loop as used in the finite element analyses using the 

Schofield model in Chapter 6. Figure B2 shows soil heave above any given 

level so that settlement for piles of different depth or different 

neutral point can be obtained from one figure. At 0.15m depth the soil 

heave above this level is 0.7mm. 
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Figure B2 Soil heave due to rising groundwater event. 

1 

Overall pile settlement relative to ground surface for a pile with 

initial factor of safety of 2.1 is: 

Pile base settlement 0.27 mm 

Soil heave + 0.70 mm 

Total settlement - 0.97 mm 
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