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Analysis of Model Implied Volatility for Jump Diffusion Models: 

Empirical Evidence from the Nordpool Market 
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ABSTRACT 

 

In this paper we examine the importance of mean reversion and spikes in the stochastic 

behaviour of the underlying asset when pricing options on power. We propose a model that is 

flexible in its formulation and captures the stylized features of power prices in a parsimonious 

way. The main feature of the model is that it incorporates two different speeds of mean 

reversion to capture the differences in price behaviour between normal and spiky periods. We 

derive semi-closed form solutions for European option prices using transform analysis and 

then examine the properties of the implied volatilities that the model generates. We find that 

the presence of jumps generates prominent volatility skews which depend on the sign of the 

mean jump size. We also show that mean reversion reduces the volatility smile as time to 

maturity increases. In addition, mean reversion induces volatility skews particularly for ITM 

options, even in the absence of jumps. Finally, jump size volatility and jump intensity mainly 

affect the kurtosis and thus the curvature of the smile with the former having a more 

important role in making the volatility smile more pronounced and thus increasing the 

kurtosis of the underlying price distribution. 
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1 Introduction 
 

Over the last 10 years radical changes have taken place in the structure of electricity markets 

around the world. Following the deregulation of power markets, prices are now determined 

under the fundamental rule of supply and demand and the resulting price volatility has 

increased the need for risk management using derivative contracts such as futures and options. 

It is important therefore for market participants to use option pricing models that can price 

fairly the most significant risks that exist in the market. However, due to the unique features 

of power markets, the traditional approaches for the pricing of derivatives that are used in 

other financial and commodity markets are not applicable to electricity. For instance, 

electricity is a non-storable commodity and a non-tradable asset which implies that arbitrage 

across time and space is limited. In addition, electricity prices exhibit extreme movements and 

volatility over short periods of time and are characterised by spikes which occur due to short-

term supply shocks. Given these features of power prices, the assumption used in the Black-

Scholes-Merton (BSM) model (Black and Scholes, 1973 and Merton, 1973) that the 

underlying asset follows a log-normal random walk, may not be appropriate. 

 

The issue of modelling power prices has been investigated extensively in the literature. For 

instance, Lucia and Schwartz (2002) use a mean reverting process, as in Vasicek (1977), and 

a two-factor model, along the lines of Schwartz and Smith (2000), to model power prices in 

Nordpool. Villaplana (2003) introduces a two-factor jump-diffusion model and shows the 

significance of jumps in explaining the seasonal forward premium in the market. 

Bessembinder and Lemmon (2001) and Longstaff and Wang (2002) show that the sign and 

size of the forward premium is related to economic risks and the willingness of market 

participants to bear those risks. Geman and Roncoroni (2006) introduce a marked-point 

process calibrated to capture the trajectoral and statistical features of power prices. Weron 

(2008) models Nord Pool prices using a jump diffusion model and Nomikos and Soldatos 

(2008) apply a seasonal affine jump diffusion model with regime switching in the long-run 

equilibrium level to model spot and forward prices in the same market. 

 

In this paper we investigate empirically the performance of option pricing models that take 

into account the existence of mean-reversion and spikes in the stochastic behaviour of power 

prices. In particular, we examine the performance of a spike mean-reverting model that 
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incorporates two different speeds of mean reversion - one for the diffusive part of the model 

and another one for the spikes - in order to capture the spiky behaviour of jumps and the 

slower mean reversion of the diffusive part of the model. Spikes are short-lived price 

movements of the spot market that do not spill-over to the forward market and, as such, they 

mean-revert at a much faster speed than ordinary shocks in the market. The proposed model is 

flexible in its formulation and encompasses the stylised features of many of the deregulated 

electricity markets around the world, as these have been identified in the literature. Therefore, 

although the model is calibrated to the Nordpool market, our results apply in general to other 

power markets as well. 

 

The performance of the spike option pricing model is assessed empirically on the basis of the 

model implied volatilities that it generates; that is, the implied volatilities for which the option 

price from the BSM model matches the price from the proposed spike model. Model implied 

volatilities provide a very useful framework for assessing the performance of option pricing 

models as they illustrate the volatility shape and term structure that a model can theoretically 

capture in the market. The use of model implied volatilities is also justified by the fact that the 

market for exchange traded options in power is not liquid and thus, we cannot rely on traded 

option prices to assess the fit of the model in the market. The analysis of model implied 

volatilities has received little attention in the options pricing literature for the power markets, 

although the same methodology has been applied for instance in the equity options markets by 

Branger (2004) who compares model implied volatilities generated using Merton’s (1976) 

jump diffusion and Heston’s (1993) stochastic volatility models. In fact, the proposed 

methodology can be applied to markets for which liquid option markets do not exist but, the 

pricing of options, for either over-the-counter trading or for real options applications, is 

important and thus, one wants to test the validity and properties of alternative option pricing 

models.  

 

In the paper, we derive the theoretical moments of the risk-neutral distribution implied by the 

spike model, as these provide information regarding the skewness and kurtosis of the implied 

volatility surfaces, and then examine the properties of the implied volatility shape using as a 

benchmark the traditional Black-Scholes-Merton model. This way, we are able to investigate 

whether the proposed model can capture the volatility smiles and smirks that are anticipated 

in the market, and also identify the model parameters that play the most important role in 

terms of shaping the volatility structure across maturities and strikes. In order to calculate the 
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implied volatilities, we derive semi-closed form solutions for European options based on the 

spike model, using the transform analysis by Duffie et al (2000). Our results indicate that the 

volatility skew depends primarily on the size and sign of the spikes whereas, it is the jump 

size volatility - rather than the jump intensity - that plays more important role in making the 

volatility smile more pronounced and thus increasing the kurtosis of the price distribution. 

Furthermore, even in the absence of spikes, we find that implied volatilities exhibit skewness 

since mean reversion does not allow the underlying prices to reach very high or low price 

levels, thus reducing the probability of an out-of-the-money option ending in-the-money  

  

The structure of this paper is as follows: the following section reviews the theory of option 

pricing and derives semi-closed form solutions for the spike model. In section 3 we derive the 

theoretical moments of the risk neutral distribution of the spike model. Section 4 presents the 

model implied volatilities generated by the model using different model parameters each time 

and providing intuitive explanations in terms of the moments of the underlying price 

distribution. Finally, Section 5 concludes the paper. 

 

2 Options Pricing using the spike model 
 

Modelling electricity prices presents a number of challenges for researchers for a number of 

reasons. Power prices tend to fluctuate around values determined by the marginal cost of 

generating electricity and the level of demand, in other words they have a tendency of mean 

reversion to an equilibrium price, which is a common feature of most commodity markets. 

Power prices also tend to change by the time of day, week or month and in response to 

cyclical fluctuations in demand, and thus contain a seasonality component. In addition, the 

non-storability of electricity means that inventories cannot be used to smooth-out temporal 

supply-demand imbalances which results in high volatility. This, coupled with supply-side 

shocks such as generating or transmission constraints and unexpected outages, cause 

temporary price “spikes” due to restrictions in the available capacity which may take from a 

few hours up to a few days to fix; in other words, electricity prices may jump to a new level 

of, say, ten times their mean, but they do not stay there for long as they quickly revert back to 

their mean level. Similarly, spikes may also occur due to the inelasticity of demand which, 

combined with the convex shape of the supply stack, means that a given increase in demand 

may result in a large increase in the equilibrium price. At this high level then, more generators 
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will enter the market to take advantage of the higher price thus forcing the price to revert back 

to its long-run mean. There is also another implication of the convex shape of the supply 

stack; at higher price levels the supply stack curve becomes steeper and steeper, hence price 

changes are bigger for a given change in demand, causing an asymmetry in the volatility. This 

is exactly the opposite from what is noticed in the equity markets, and is known as the inverse 

leverage effect (see e.g. Geman, 2005). 

 

Therefore, electricity prices have the tendency to mean-revert to an equilibrium level which 

also implies a decreasing volatility term structure as time to maturity increases. This 

phenomenon, known as the Samuelson effect (1965), is due to the fact that for non-storable 

commodities, such as electricity, any new information in the market will have a more 

prominent effect on derivative prices that are closer to maturity. Electricity prices also exhibit 

very high volatility, where spikes play a major role. In general, when spikes occur they do not 

spill over to the forward market, since they are short lived. (Geman, 2005) On the other hand, 

the existence of spikes induces excess skewness and kurtosis to the distribution of spot 

electricity prices, and this also has a direct impact on option prices, especially for out-of-the-

money (OTM) call options which now have higher probability of ending in-the-money (ITM), 

compared to the BSM model. This is also what causes the implied volatility from market 

prices in the BSM model not to be constant across strike prices but to have a smile or smirk 

shape as it will be shown in the next section. 

 

These properties of power prices can be captured by the seasonal spike mean-reverting model 

where the spot price, Pt, is modelled as the sum of a deterministic seasonal component, f(t), 

and the exponential sum of a stochastic component, Xt , which follows a stationary (as in 

Vasicek, 1977) process reverting to an equilibrium value, and a spike factor, Y, as follows: 
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In equation (1), k1 represents the speed at which X reverts to its mean-equilibrium value under 

the risk-neutral probability measure, 1
~ kX  , after a shock has occurred; 

*

XdW  
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represents the increment of a Brownian motion that causes the random shocks in the short-

term factor, X, and is scaled up by the volatility factor σx; k2 is the speed of mean reversion of 

the spike factor, Y, and the arrival of shocks is modelled via a compound Poisson process with 

intensity l. The distribution of the jump size is assumed to be Normal with mean μJ, and 

standard deviation σJ. Since the spike shock is expected to have a much shorter life than a 

normal shock, k2 should be larger than k1; finally, λX is the market price of risk that is asked in 

order for participants to trade derivatives in the power market.  

 

It has been shown empirically that the proposed model provides very good fit to power prices 

in terms of capturing their distributional and trajectoral properties. For instance, Nomikos and 

Soldatos (2008) compare a number of models in terms of their fit to spot and forward prices 

in Nordpool, and find that the spike model of equation (1) provides superior fit compared to 

ordinary mean reversion and jump diffusion models. The major feature of the spike model is 

that it incorporates two different speeds of mean reversion: one for the diffusive part of the 

model and one for the spikes, with the latter being much higher in order to capture the fast 

decay of jumps in the market. The justification for that is that spikes are short-lived price 

movements of the spot market that do not spill-over to the forward market; in order to ensure 

this, it is necessary to have a faster speed of mean reversion for the spikes. The importance of 

incorporating spike mean reversion in modelling power prices has been emphasised in a 

number of studies such as Geman and Roncoroni (2006), Weron (2008) and Huisman (2009). 

The advantage of the spike model proposed here is that we can use transform analysis (Duffie 

et al, 2000) to derive semi-closed form solutions for option prices. 

 

From the modelling point of view, the existence of spikes implies that the use of a simple 

mean-reversion model is not appropriate since it cannot capture adequately the dynamics in 

the spot market. On the other hand, modelling prices using an ordinary jump-diffusion model 

(as in Clewlow and Strickland, 2000) will result in the jump component being transferred to 

the forward prices as well, particularly if the speed of mean reversion in the market is not fast 

enough. Also, such a model will not be able to capture the spiky nature of the jump, especially 

in cases where shocks in the market die out at a slower rate. Therefore, the proposed model 

accounts for the difference in the speed of mean-reversion when normal shocks occur in the 

market, due to say variations in weather conditions or market behaviour, and when jump 

shocks occur due to an outage or a major generator coming out of the system for a few hours 

or days. Overall, the model is general in its formulation and captures the stylized features of 
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power markets - i.e. slow mean reversion for diffusive risk, spikes that mean revert at a very 

fast rate, volatility term structure and seasonality - in a parsimonious way. Despite the 

attractive features of this model and its empirical application to spot and forward markets, the 

issue of options pricing in the power markets using the spike model has received little 

attention in the literature.  

 

In the BSM model, the risk neutral density is lognormal and the expectation of the normalised 

option payoff can easily be calculated. In more sophisticated models, such as the mean-

reverting jump diffusion model of Clewlow and Strickland (2000), there is no closed-form 

solution for the risk-neutral density. One can use the Transform Analysis by Duffie et al 

(2000) (see Appendix A) and implement the Fourier inversion theorem where numerical 

integration of the imaginary part of complex function is performed. 1 This type of solution is 

semi-closed since numerical integration has to be performed to calculate the density function. 

2 To illustrate how transform analysis can be used to derive semi-closed form solutions for 

European option prices, as it is done by Duffie et al (2000), let us start by defining Ga,b(y;XT) 

as the price of a security that pays 
a Te X

 at maturity when 
T

b yX , where 
T

X  is a vector of 

the state variables that describe the price process and in our case  ,
T T T

X YX  . Also note 

that the price of a European call can be written as follows: 

 

       (2) 

 

 

 

where: E* denotes the expectation under the equivalent martingale measure;  χ captures both 

the distribution of the vector prices X as well as the effects of discounting and determines the 

transform function in DPS (2000); 1´ and 0´ denote 2x1 transpose vectors of ones and zeros, 

respectively, and, DK = K - f(T) denotes the de-seasonalised strike price 3. Equation (2) 

                                                 
1 Transform functions, like Fourier or Laplace, are transformations made to a function in order to have an 

analytical treatment to a solution (e.g. to find a closed-form solution in options pricing). For applications of 

Fourier transforms in options pricing see Cerny (2009). 
2 Note however that even in the BSM model, as in any other model for which a closed-form solution for option 

prices exists, the calculation of the risk-neutral density function also involves numerical integration of the area 

under the normal distribution, which can nevertheless be easily calculated using statistical software or tables.   
3 The reason we use the de-seasonalised strike price follows from the fact that the seasonality component is the 

deterministic part of the spot and can thus be subtracted directly from the strike price. Thus, in a model where 
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suggests that the call option payoff is ITM when XT +YT> ln(DK) or, alternatively, -XT -YT < -

ln(DK) . Also, denote  ,v vv  the variable defining the Fourier Transform then, Duffie et al 

(2000) show that: 

 

   
   

     

ln

1', 1'
0

ln

0
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Im 1' , ,0,0, , 1

2

i DK v

i DK vrT

i T e
G DK T dv

i T ee F T
dv








    
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
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           (4) 

  

where F(0, T, X) is the price of a forward contract for settlement at time T, derived in 

Appendix A;  , ,0,u TX  is the transform function, which is also derived in Appendix A; 

1i   , and Im[.] is the imaginary part of a complex number. Note that the intuition behind 

the functions G1’,-1’(ln(-DK); , ,T X ) and G0’,-1’(ln(-DK); , ,T X ) is exactly the same as in 

the BSM model for the  P0N(d1) and N(d2) terms. Thus G1’,-1’(ln(-DK); , ,T X ) is the 

expected value of the discounted de-seasonalised spot price, exp(X+Y), at maturity T, in case 

it is above the discounted de-seasonalised strike price DK, in the risk-neutral world. Similarly, 

G0’,-1’(ln(-DK); , ,T X ) is the risk-neutral probability that the option will be ITM at maturity.  

 

The numerical integration of equations (3) and (4) is carried out using the Adaptive Simpson 

Quadrature. The main advantage of this procedure is that it is very accurate and fast, as it 

divides the area of interest in the integration into smaller areas (or intervals), and uses more 

points in the areas where they are needed and less in the areas that are not needed, since the 

number of intervals needed does not depend on the behaviour of the integrated function 

everywhere, but on the points were the function behaves worst; see as well Glasserman, 

(2004). 

 

                                                                                                                                                         
there is deterministic seasonality the moneyness of the option is directly affected not only by the strike price but 

also from seasonality. 
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3 Option Pricing and Moments of the Spike Model 
 

In this section we discuss the impact of the model’s parameters on the implied volatility smile 

generated from the BSM model. For that we will first consider the impact of the model’s 

parameters on the moments of the risk-neutral distribution, i.e. variance, skewness and 

kurtosis, and then consider the impact of those moments on the implied volatility smile. Any 

jump-diffusion model will generate a skewed risk-neutral distribution with excess kurtosis. 

The theoretical variance of daily returns is derived using the characteristic function of the de-

seasonalised spot process based on the spike model of equation (1) (as in Das, 2001; see as 

well Appendix B), and is as follows: 

 

 
 

 1 2

2

2 2

2 2

1 2

1 1

2 2
J

k t k t

X J

e e
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k k

 
 

            (5) 

 

The first part of the variance is generated by the normal diffusive variable X, and the second 

from the spike variable Y; we call the latter part the jumpiness, and it is this part that has the 

most significant impact on the smile. We can see that the diffusive standard deviation, 

 2 1

1

1

2

k T

X

e

k


 ,  converges faster to a constant value with k1 and T, rather than increasing 

continuously with time to maturity as is the case in the BSM formula, 
X

T . This implies 

that, in the absence of jumps, if we calculate the price of a call option using the spike model, 

and then use the BSM model to find the value of σ such that the BSM option price matches 

that given by the spike model, we will see that the implied volatility parameter, σ, will be 

decreasing with time to maturity, as will be shown in later sections. Also as shown in 

Appendix B, the theoretical skewness and kurtosis of the returns implied from the model are: 
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where Variance is given in equation (5). We can see now that skewness and kurtosis depend 

exclusively on the parameters of the spike variable. Consider for instance the equation for 
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skewness, equation (6); since the mean of the jump size, μJ, is the only parameter that can take 

negative values, the sign of skewness of the distribution is determined solely by that 

parameter. This can be explained by the fact that positive (negative) jumps will result in 

higher (lower) prices which will shift the probability mass to the right (left) and thus induce 

positive (negative) skewness. Similarly, as the spike-speed of mean-reversion, k2, increases, 

the value of skewness and kurtosis decrease. In other words when jumps die-out very fast, i.e. 

when spikes do not last for long and the market reverts to normal market conditions relatively 

quickly, the impact of jumps on the skewness and kurtosis is reduced and, ceteris paribus, the 

value of those moments gets closer to 0 and 3, respectively. Furthermore, jump size volatility, 

σJ, and frequency, l, also play an important role in determining the size of the skewness and 

kurtosis of the distribution. 

  

It is then interesting to examine how a change in these moments will affect theoretically the 

shape of the implied volatility curves. We start by considering the impact of an increase in the 

variance, while the mean returns remain the same. As a result, the probability mass is shifted 

from returns close to the centre of the distribution to returns further in the tails; in other 

words, the distribution curve becomes wider. In terms of options pricing this implies that for 

all options along the strike price axis the probability of positive payoff increases, which leads 

to an upward shift of the overall level of the smile curve. 

 

Turning next to the skewness, this determines the relation between the prices of OTM puts 

and OTM calls. Assuming that the mean and the variance of the spot returns under the risk 

neutral measure remain constant, consider a decrease in skewness from normality; the 

probability mass is then shifted from very high to very low prices. The prices of OTM calls, 

which pay off for high spot prices, thus decrease, and the prices of OTM puts, which have a 

payoff for low spot prices, increase since there is greater area under the curve at those points. 

For negative skewness we therefore expect the implied volatility (IV) of OTM puts to be 

larger than the IV of OTM calls, since the probability of the underlying price reaching low 

prices is higher than that implied by the BSM model. Consequently, we expect to see a 

downward sloping smile as shown by Branger (2004) 4.  

 

                                                 
4 Note that the term ’downward sloping smile’ does not imply a monotonicity of the implied volatility function in a rigorous mathematical 

sense but rather a general decrease in the shape of IV as we move from ITM to OTM calls. 
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Finally, kurtosis depends on the fourth moment and measures the fatness of the tails of the 

distribution. If kurtosis increases, there is more probability mass in the tails of the distribution 

so very low and very high spot prices both have a higher probability of occurring when 

compared to the normal distribution.  In terms of option pricing, kurtosis is the main driver of 

the curvature of the smile. Assuming that all other moments remain constant, increasing the 

kurtosis directly implies higher probability of extreme prices and thus higher prices for OTM 

puts and OTM calls. In order to hedge against these extreme events, one can form a static 

portfolio of long positions comprising a continuum of calls with strike prices from zero to 

infinity, as shown by Carr and Madan (2001). 

  

4 Numerical examination of model Implied Volatilities 
 

Having derived the theoretical equations for the moments of the risk-neutral distribution, the 

next step is to analyse the spike model’s implied volatilities based on the BSM model, which 

is the anticipated price volatility such that the BSM option price matches the option price 

given by the spike model of equation (2). More specifically, under the log-normality 

condition, an option price is a value function of the current spot price P, strike K, the current 

time t in which the option is evaluated, exercise time T, interest rate r, and finally, the 

volatility parameter σ. 

 , , , , ,BS

Option BS
V f P K t T r  

 

The parameter σ reflects the model’s consensus on the anticipated random behaviour of prices 

on the interval [t, T], i.e. from the current date t to the option’s maturity date T. Now for any 

given option price from say, the spike model spike

option
V  , the corresponding implied volatility 

σimplied is defined as the value parameter σ, such that: 

 

 , , , , ,spike implied

option BS
V f P K t T r    (8) 

 

Applying standard techniques, such as Newton’s method, to solve equation (8) we can then 

obtain the model implied volatility. Our analysis is based on model implied volatilities from 

the BSM model as this is the benchmark for option pricing and market participants use it back 

out implied volatilities based on market quotes for option prices. The inconsistency of the BS 
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model lies on the assumption that the volatility is constant across strike prices and time to 

maturity and we thus believe that the suggested spike model will be able to capture the 

volatility smile evidenced in the market.  

 

The use of model implied volatilities is justified by the fact that the exchange-traded options 

market in Nordpool is illiquid; the majority of option contracts are traded in the over-the-

counter market, directly between the counterparties, and for those trades there are no publicly 

reported prices. Therefore, it is not possible to test, in a reliable way, whether option prices 

generated from the spike model match the prices of options traded in the market. Such a test 

requires a continuum of option prices across a range of dates, maturities and strike prices; in 

addition, in order to ensure that the results are not biased, these options must be liquid and 

represent traded contracts in the market. Consequently, we focus our analysis on the model 

implied volatilities relative to the BSM model as this provides the most reliable test for the 

validity of the spike option pricing model. This analysis will help us identify the major drivers 

of the volatility smile and also provide valuable insight into the shape of volatilities generated 

by the spike models and whether the volatilities capture the stylized facts that we anticipate in 

the market. 

Table 1: Parameter values used in the spike model of equation (1) 

 

Model 

Parameters 

Parameters 

values 

1

X

k


 

 
  
 

 
5.137 

σX 0.5 

k1 3 

Y0 0 

l 5.5 

μJ 0.1 

σJ 0.283 

k2 290 

r 5% 

Note: The table shows the parameters of the spike model in equation (1) used for the estimation of European 

option prices in the base case scenario. See equation (1) for the definition of the variables  
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In order to calculate the implied volatilities, the spike model is calibrated to Nordpool system 

prices for the period March 1, 1997 to February 29, 2004 and the estimation results are 

presented in Table 1 (see Nomikos and Soldatos, 2008 for more details on the estimation 

process). In the base case, we consider a diffusive volatility of 50% as experimentation with 

different values showed that this value of volatility creates a more pronounced smile for short-

term options - with maturities of less than two months which are examined here. This also 

helps us identify visually the major contribution of each parameter and generates clearer 

results for interpretation and discussion. 

 

Since the emphasis of our analysis is on the shape of implied volatilities, we assume that there 

is no deterministic seasonality, i.e. we assume that f(t) = 0. This is because deterministic 

seasonality affects directly the moneyness of the option, while the shape of the implied 

volatilities primarily depends on the parameters of the underlying stochastic processes, such 

as the jump parameters l , 
J

  and 
J

  and the diffusive volatility 
X

  . Therefore, in the 

following section we analyse the impact that each factor has on the implied volatilities by 

considering each factor separately, with the following order: First, we examine the effect of 

mean reversion on implied volatilities. Then, we look at the impact of time to maturity and 

changes in the mean jump size, 
J

 , on the volatility skew. Following that, we explore the 

comparative impact of the jump intensity, l, against the jump volatility, 
J

 , and explore 

which parameter affects more the curvature of the volatility smile. 

 

Volatility Skew in Mean Reversion  

We examine first how the implied volatilities of a pure mean-reverting model look like when 

the diffusive volatility, σX , is 100%, all jump parameters are set to zero and the remaining 

parameters are as in Table 1. In this analysis we consider short term-to-maturity European 

options (15 days), and three different equilibrium levels of X; The first case, which we call 

base case, is when the risk neutral equilibrium level is equal to the current spot price i.e. 

exp


 
 
 

= P ; in the second case the equilibrium level is below the current spot price (low 

case), and finally in the third case the equilibrium level is above the spot price (high case). 

 

These cases reflect different conditions in power markets and, in practice, whether power 

prices reflect the base, high or low cases considered here depends on a number of factors. In 
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Nordpool for instance, power prices are usually higher than the long-run yearly average in 

winter, reflecting the increase in residential demand mainly for heating and lighting purposes, 

and then drop in the summer as the weather is milder and the days are longer (Lucia and 

Schwartz, 2002). Another important factor is the generating mix in each power market. In 

Nordpool about 50% of the electricity is produced using hydro-generators which results in 

lower power prices. On the other hand, during periods of lower water levels in the reservoirs 

suppliers have to switch to more expensive fossil-fuel generators with higher marginal cost of 

production which results in higher system prices. Nomikos and Soldatos (2008) for instance, 

find that power prices are almost 100 NOK/MWh higher when water reservoir levels are low. 

Finally, Elliot et al. (2002) also link the level of power prices with the number of generators 

that are on-line at any given point in time; in the Alberta power pool for instance, they find 

that when fewer generators are running the price is higher than normal by as much as 70%, 

while when all the generators are running the price is below the normal price. 

 

Figure 1: Implied volatility of European Call Options across different equilibrium levels 
The figure shows the implied volatilities for European Call Options across varying levels of moneyness. We 

consider three different equilibrium levels corresponding to cases when the risk neutral equilibrium level is equal 

to the current spot price, exp

 
 
 

= P , (Base case), when it is below the current spot price (Low case) and when 

it is above the current spot price (High case). 
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Figure 1 and Figure 2 present the implied volatilities for call and put options, respectively, 

where moneyness is defined as the ratio K/P. Thus, looking at both figures from left to right, 
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we are moving from ITM to OTM call options and from OTM to ITM put options. Starting 

with the call options, we can note that the model displays some degree of skewness reflecting 

the fact that, due to mean reversion, prices do not fluctuate freely but are pulled back toward 

their mean. In the base and high cases, where the risk-neutral mean is equal and above the 

current spot price respectively, mean reversion is good for ITM call options since it pulls 

prices above the strike price and thus increases the likelihood that the options will end ITM; 

same is also true for the OTM options, however, since these options have lower probability of 

ending ITM, the impact of mean reversion is less beneficial compared to ITM options. 

Overall, this results in the skew evidenced in Figure 1. Turning next to the case where the 

equilibrium level is below the current spot price (i.e. the low case), we can see that volatility 

increases as strike price increases. This suggests that prices are now pulled toward lower 

levels due to mean reversion, and thus ITM calls are cheaper compared to calls calculated 

using the BSM model. OTM options on the other hand, are less affected by this since they 

have already a low probability of ending ITM, as the previous results showed. A similar 

pattern is observed in the case of put options, which are shown in Figure 2, where the implied 

model volatilities display exactly the opposite pattern from that of call options 5. 

 

  

                                                 
5 The general relationship between the shape of model implied volatilities for call and put options is similar to 

the one presented in Figure 1 and Figure 2 . In other words positive skewness will decrease IV for OTM Calls 

and increase IV for OTM Puts. Therefore, in the ensuing analysis we will present only the results for call 

options. Results for put options are available from the authors. 
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Figure 2: Implied volatility of European Put Options across different equilibrium levels 

The figure shows the implied volatilities for European Put Options across varying levels of moneyness. We 

consider three different equilibrium levels corresponding to cases when the risk neutral equilibrium level is equal 

to the current spot price, exp

 
 
 

= P , (Base case), when it is below the current spot price (Low case) and when 

it is above the current spot price (High case). 

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

75% 80% 85% 90% 95% 100% 105% 110% 115% 120% 125%

Moneyness in % (K/P)

Im
p

li
e

d
 V

o
la

ti
li
ty

Base Low Equilibrium Hgih Equilibrium

 

 

 

Volatility Smile, Time to Maturity and Mean Reversion 

Figure 3 compares the impact of changes in time to maturity on the implied volatilities of the 

spike model. First thing to note is that as time to maturity increases, implied volatilities 

decrease which is consistent with the Samuelson Hypothesis and depends on the speed of 

mean reversion, k1. This occurs because the BSM model implies that the variance of the spot 

prices should increase with time to maturity, whereas the variance equation in (5) implies that 

the variability of the spot prices decreases with time to maturity and eventually converges to a 

constant value. This also implies that, given that the speed of mean reversion in the spikes is 

much higher than that in the normal factor X, the contribution to the volatility coming from 

the spikes is significantly lower than that of the normal process, the longer the maturity of the 

option. For instance, for short dated options (i.e. 15-days to maturity) the impact of jumps is 

more pronounced compared to longer-dated ones. 
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Figure 3: Implied volatility skew of the spike model for 15-day, one and two-month 

European Call Options. 

The figure shows the implied volatilities for European Call Options based on the Spike model using the base 

case parameters across different strike prices (Moneyness) and maturities (15-days, one- and two-months). 
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Focusing now on the skewness and kurtosis, it is evident from Figure 3 that there is a 

pronounced smile for short-term options which then seems to flatten-out, particularly for 

OTM options, as time to maturity increases 6. This pattern is consistent with a jump diffusion 

model and can also be explained by looking at the skewness and kurtosis of the risk neutral 

distribution in equations (6) and (7). Both moments decrease with time to maturity and speed 

of mean reversion, and ultimately go to zero (3 for kurtosis) for long enough expiration dates. 

It seems therefore that the jump diffusion model proposed here produces a pronounced smile 

for short-term options, and this smile gradually flattens-out out as time-to-maturity increases. 

This seems to be generally the case with jump diffusion models and, as shown by Rebonato 

(2004), in order to still have a pronounced smile for long-dated options, it is more appropriate 

to use a stochastic volatility model as in Heston (1993). 

 

Another important factor affecting the volatility skew is the speed of mean reversion of the 

diffusive risk, which varies from market to market depending on a number of factors 

including the power-generation mix of each market. For instance, Escribano et al (2002) show 

                                                 
6 See Branger (2004) for evidence on how the smile flattens for long maturity options, when using Merton’s (1976) model. 
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that the degree of mean reversion in hydro-markets is lower than that evidenced in fossil-fuel 

based power markets, since hydro reservoirs play the role of indirect storage of electricity; as 

a result, there is some inter-temporal substitution for generating electricity which can dampen 

short-term variations in power prices, thus lowering the coefficient of mean reversion. In 

markets with no inter-temporal substitution, on the other hand, we should observe a higher 

degree of diffusive mean-reversion since generators cannot use inventories to smooth-out 

shocks, and the degree of mean reversion in electricity prices is mainly driven by the mean 

reversion in demand or in temperature. Along the same lines, Elliot et al. (2002) also show 

that there is a link between the number of generators and the degree of mean reversion; when 

fewer generators are running, and thus when prices are higher, the degree of mean reversion is 

higher, compared to when all the generators are running and thus there is spare capacity in the 

market.  

 

As the speed of mean reversion of the diffusive risk, k1, increases, we expect a similar pattern 

to that observed in Figure 3. In particular, the higher the value of k1, the faster the volatility 

will converge to a constant value and thus the lower the implied volatility. Similarly, we 

expect a more pronounced smile the slower the speed of mean reversion (i.e. for lower values 

of k1) and the smile will gradually flatten-out as the speed of mean reversion increases. 

Therefore, an increase in the speed of mean reversion will have a similar impact on implied 

volatilities as that of increasing the time-to-maturity of the option and vice-versa. 

 

Volatility smile and mean Jump Size 

Spikes are a prominent feature of power prices and are one of the most important factors 

affecting the volatility skew. The sign and size of expected jumps in power markets depend 

on a number of factors. For instance, Nomikos and Soldatos (2008) find very strong evidence 

of seasonality in the spikes in the Nordpool market. Upward spikes occur mainly during 

winter and are larger on average, since in winter the market operates at the steep part of the 

supply stack which, combined with any outage or transmission failure, may cause extreme 

price movements. Negative spikes, on the other hand, occur mainly during the spring and 

summer periods and non-working days and also appear to be smaller, in absolute terms. The 

size of spikes also depends on the power generation-mix in the market. For instance, in 

markets where electricity is generated by fossil fuel technology, prices are more volatile and 

spikes are more frequent and larger compared to markets where hydroelectricity is used 

(Escribano et al., 2002) 
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Figure 4: Implied volatility skew for 15-Day Call Options with respect to the sign of 

mean jump size μJ 

The figure shows the implied volatilities for European Call Options with 15-days to maturity based on the spike 

model across different strike prices (Moneyness), using positive and negative mean jump sizes, μJ, and the 

remaining parameters being the same as in the base case, in Table 1. 
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As shown in equation (6), the sign of skewness depends on the sign of the expected jumps 

 ( )lE Jdq  in log-returns, a fact that is depicted in Figure 4. If 
J

  is negative, the volatility 

smile seems to be upward slopping when moving from ITM to ATM call options and then 

becomes relatively flat, reflecting the fact that in this case there is a higher probability, than 

that implied from a normal distribution, for prices to reach very low levels. Similarly, when 

jumps are positive, the volatility smile is downward sloping as we move from ITM to ATM 

call options. It is worth noting that the pattern evidenced here is the opposite of what would 

have been expected using an ordinary jump diffusion model - e.g. without mean reversion in 

the jumps, such as Merton’s (1976) - where a positive jump would result in OTM call options 

to have higher implied volatilities than ATM and ITM options. However, this is not generally 

the case when mean reversion is incorporated in the model. Mean reversion pulls prices back 

to their equilibrium level which, in the base case considered here, is equal to the spot rate and 

thus, higher than the exercise price of ITM call options and lower than the exercise price of 

OTM call options. This reduces the probability of OTM calls ending up ITM and, at the same 

time, ITM call options have a higher probability of ending more ITM compared to an ordinary 

jump-diffusion model. Therefore, in the presence of positive jumps we expect to see implied 
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volatilities which decrease in an exponential fashion with strike prices, thus producing the 

negative skew shown in the graph. In the case of negative jumps, the probability mass is 

shifted to lower spot prices compared to the earlier case, which reduces the probability of call 

options to end ITM and results in lower implied volatilities. OTM options, on the other hand, 

are less affected by this since, due to mean reversion in prices, the probability of profitable 

exercise is already low.  

 

Volatility smile curvature; Jump intensity versus Jump size volatility 

Finally, we analyse the impact of jumpiness, which is the contribution of the jump component 

in the total variance as shown in equation (5). A jump diffusion model can be interpreted as a 

mixture of a pure jump process, as in the spike variable Y, and a diffusive process such as a 

GBM or a mean reversion. The issue is then to examine the impact of jumpiness on the smile 

and whether this is affected differently by changing each of the constituent components of 

jumpiness, namely σJ and l. The two extreme cases are when the jumpiness is zero and the 

implied volatilities for OTM options become flat, and when the jumpiness is one in which 

case the smile has the maximum curvature.  

 

Figure 5: Implied Volatility Skew for 15-Day European Call Options for different levels 

of jumpiness due to changes in Jump size volatility σJ 

The figure shows the implied volatilities for European Call Options with 15-days to maturity for the Spike model 

across different levels of moneyness, by changing the contribution of jumpiness to the total variance with respect 

to σJ and all other parameters remaining the same as in the base case, in Table 1. 
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Figure 5 displays the implied model volatilities for different levels of jumpiness, expressed as 

the percentage of the total volatility given in equation (5), by changing the jump size 

volatility, J , for options that are 15-days to maturity. For instance, a 90% jumpiness level 

means that jumpiness accounts for 90% of the total variance in equation (5) and this is 

achieved by changing the jump volatility, J , whilst keeping the jump intensity, l, the same as 

in the base case. We can see that that the smile becomes more pronounced as jumpiness 

increases and the implied volatilities of course are higher, since the overall volatility 

increases.  

 

Figure 6: Implied Volatility Skew for 15-Day European Call Options for different levels 

of jumpiness due to changes in Jump intensity l 
The figure shows the implied volatilities for European Call Options with 15-days maturity for the Spike model 

across different levels of moneyness, by changing the contribution of jumpiness to the total variance with respect 

to l and all other parameters remaining the same as in the base case, in Table 1. 
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Similar conclusions emerge when we examine Figure 6 which presents the implied volatilities 

for different levels of jumpiness, when increasing the jump intensity, l. Comparing the same 

levels of jumpiness, between Figure 5 and Figure 6, we note that when the increase in the 

contribution of jumpiness is due to an increase in jump-size volatility, the smile appears to be 

more pronounced than when it is due to an increase in jump-intensity. This is also evident in 

Table 2, where we report the percentage change in the parameters required in order to achieve 

a given level of jumpiness. We see that as the total contribution of the jumpiness increases, 
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the required percentage increase in intensity from the base case becomes very large; e.g. l 

needs to increase by 800% from the base case in order to achieve 90% jumpiness, whereas the 

comparative increase for jump size volatility is 216%. It seems therefore that jump size 

volatility plays a more important role in affecting the jumpiness and thus the kurtosis of 

implied volatilities. 

 

Table 2: Required percentage change in σJ or l in order to achieve a given level of 

jumpiness 

This table shows the required percentage change in jump size volatility, σJ, or jump intensity, l, compared to the 

base case (50% jumpiness), in order to reach a given level of jumpiness. 

Jumpiness 10% 25% 50% 75% 90% 

σJ -99.59% -50.00% 0% 80.28% 216% 

l -88.89% -66.67% 0% 200% 800% 

  

 

Another method for assessing whether it is the jump size volatility or intensity that contributes 

more to the smile curvature, is to employ the following three scenarios; one is the base case, 

using the same parameters as in Table 1, where jumpiness in equation (5) accounts for 50% of 

the total variance; in the second case, jump intensity is doubled in size and thus jump size 

volatility is lowered in order to keep the jumpiness at 50%, and in the third case, jump size 

volatility is doubled and jump intensity is lowered thus keeping again the jumpiness at 50%. 

The results are presented in Figure 7. 

 

We can see that when jump intensity, l, doubles, the overall level of implied volatilities 

increases and there is still a pronounced smile, but the slope of the volatility curve (mainly for 

OTM call options) is lower (i.e. flatter) compared to when doubling J . This is also 

consistent with the analysis presented in Figure 5 and Figure 6, which indicates that the smile 

is more pronounced when changes in jumpiness are due to changes in jump-size volatility. 

Thus, by keeping the spot returns’ volatility constant, if the jump volatility is reduced and this 

is offset by an increase in jump intensity, then the excess kurtosis of the distribution is 

reduced, making the smile flatter. On the other hand, if an increase in jump size volatility 

goes together with a decrease in jump arrivals, the smile becomes more pronounced due to an 

increase in the kurtosis. In all cases ITM volatilities are higher again due to mean reversion. 
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Of course we would also expect similar results for put options; in this case, the shape of the 

volatility smile is exactly the opposite from that of call, but the intuition remains the same. 

 

Figure 7: Implied volatility Skew for 15-Day European Call Options with respect to 

Jump Intensity l and Jump Volatility σJ 

The figure shows the implied volatilities generated from the spike model, when increasing by 100% either the 

jump size volatility or the jump intensity, but always keeping the overall level of jumpiness at 50%. 

45%

55%

65%

75%

85%

95%

105%

75% 85% 95% 105% 115% 125%

Moneyness % (K/P)

Im
p

lie
d

 V
o

la
ti

lit
y

Base Case Double Jump size volatility Double Jump Intensity

 

 

 

5 Conclusions 
In this paper we derived semi closed-form solutions for European options using a spike 

model. The model is flexible in its formulation and captures the stylized features of power 

prices. The main feature of the model is that it incorporates two different speeds of mean 

reversion: one for the diffusive part of the model and another one for the spikes, with the 

latter being much higher than the former in order to capture the fast decay of jumps in the 

market and the fact that spikes affect spot prices and do not spill-over to the forward market. 

We derive semi-closed form solutions using the transform analysis by Duffie et al (2001) and 

provide an intuitive explanation on each of the terms of the pricing equation. To provide 

further insight on the option pricing model, we calibrate the model in the Nordpool market 

and then calculate option prices which are used as inputs in the Black-Scholes-Merton model 

in order to extract implied volatilities. We find that the presence of jumps generates 

prominent volatility skews which depend on the sign of the mean jump size. We also show 
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that mean reversion reduces the volatility smile as time to maturity increases; interestingly, 

we find that even in the absence of jumps, mean reversion induces volatility skews 

particularly for ITM options. Finally, jump size volatility and jump intensity mainly affect the 

kurtosis and thus the curvature of the smile with the former having a more important role.  

 

There are several implications based on these results. First, in a mean-reverting market, a 

participant using a GBM model will get misleading results; for instance, if the spot price is 

above the equilibrium price, a mean reverting model will price an ATM call closer to an OTM 

taking into account the fact that the price will have the tendency to revert to its equilibrium 

price, thus reducing the probability of ending ITM. On the other hand, the presence of jumps 

increases the probability of OTM options ending ITM, thus making exercise more likely; for 

instance, positive jumps will increase the values of OTM calls and negative jumps will 

increase the values of OTM puts. However, the overall impact of jumps on option prices will 

also depend on the spike-speed of mean reversion as well as the time-to-maturity of the option 

since the impact of jumps is higher for short-term options. Overall, an increase in the intensity 

and volatility of jumps will increase the price of OTM calls and puts, when compared to the 

Black-Scholes-Merton model. 
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7 Appendix A: Introduction and Application of the 
Transform Function for the Forward Prices in the Factor 
Model 

 

A very useful assumption in the finance literature is that the state vector X follows an affine 

jump-diffusion process (AJD). An AJD is a jump-diffusion process for which the drift vector, 

the “instantaneous” covariance matrix, and jump intensities all have an affine (i.e. linear) 

dependence on the state vector. The affine jump-diffusion processes have been synthesized 

and extended by Duffie et al. (2000) (henceforth DPS); see also Chacko and Das (2002) and 

Dai and Singleton (2000). Affine diffusions (AD) and affine jump-diffusions (AJD) processes 

are quite useful in modelling underlying state variable due to their flexibility and tractability. 

DPS, for instance, have shown the close connection between the structure of affine models 

and Fourier transforms, and demonstrate how from this transform one can obtain derivative 

prices. The jump diffusion model presented in the main body of the paper belongs to the class 

of AJD. Hence, we can use the results provided by DPS in their transform analysis to obtain 

closed-form solutions implied by the spike model for forward and option prices.  

 

The DPS transform can be described as follows: Fix a probability space {Ω, , P} and an 

information filtration (t) = {t:: t 0}, and suppose that Xt is a Markov process in some 

state space nD  , following the stochastic differential equation (SDE): 

 

                          ( ) ( )t t t t td dt dW dZ   X X X       (9) 

 

 

Where Wt is an (t)-standard Brownian motion in n ;  x (.) : , (.) :n n nD D    are 

respectively the drift and diffusion functions, and Zt is a pure jump process whose jump sizes 

have a fixed probability distribution v on n  and arrive at frequency {l(Xt) : t 0} for some l: 

 0,D   . To be precise, suppose that Xt is a Markov process whose transition semi-group 
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has an infinitesimal generator of the Lèvy type, 7 defined at a bounded C2 function 

f: D , with bounded first and second derivatives, by 

 

 

1
( , ) ( , ) ( , ) ( ) ( , ) ( ) ( )

2

                ( ) ( , ) ( , ) ( )

T

tf t f t f t tr f t

l f z t f t dv z

     

  

  x xxx x x x x x x

x x x    (10) 

 

Intuitively, ( )t X and ( )t X  are the drift and diffusion terms of the process when no jump 

occurs, and the jump term captures the discontinuous change of the path with both random 

arrival of jumps and random jump sizes. That is, conditional on the path of X, the jump times 

of the jump term are the jumps times of a Poisson process with, possibly, time-varying 

intensity {l(Xs): 0 s t}, and the size of the jump at a jump time m is independent of {Xs : 0 

s m} and has the probability distribution v. 

 

In order for the transform function to work, as stated by DPS (2000), the drift, variance-

covariance, intensity and discount rate have to be affine functions of the state variables, 

hence: 

 

     

0 1 0 1

0 1 0 1ij

0 1 0 1

0 1 0 1

( ) , for ( , ) .

( ) ( ) , for ( , ) .
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n n n

T n n n n n

ij ij
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K K K K K

H H H H H

l l l l l l

R



 

    



  

     

     

     

     

x x

x x x

x x

x x

        (11) 

 

 

Let ( ) exp{ } ( )  
n

c c z dv z , be the characteristic function of the jump size distribution. 

The function  () determines completely the jump size distribution. Also assuming constant 

interest rates, R(x) = 0, futures prices are equal to forward prices. Let   (K, H, l, ρ, θ) 

which captures both the distribution of the vector process X as well as the effects of 

                                                 

7 The generator is defined by the property that 
0

{ ( , ) ( , ) : 0}
t

t sf t f s ds t X X is a martingale for any f 

in its domain (Ethier and Kurtz, 1986). 
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discounting, and determines a transform ψχ: n D
 

     of XT conditional on t, 

when well defined at t T, by 

 

            ( , , , ) exp ( ) |
T

u T

t s t
t

u t T E R ds e
  

  
X

X X                       (12) 

 

Where Eχ denotes the expectation operator under the distribution of X determined by Hence 

the difference between the conditional characteristic function of XT and the transform function 

ψχ is the discount factor R(XT). Therefore, under technical regularity conditions DPS (2000) 

show that 

           
( ) ( )( , , , ) t t

t
u t T e     x

X              (13) 

 

Where α and β satisfy the following complex-valued Ordinary-Differential-Equations: 

 

      

  

  

1 1 1 1

0 0 0 0

1
( ) ( ) ( ) ( ) ( ) 1 ,

2

1
( ) ( ) ( ) ( ) ( ) 1

2

      

      





    

    

T T

T T

t K t t H t l t

t K t t H t l t

                                  (14) 

With boundary conditions α(T)=0 and β(T)=u. 

 

Application to the Spike Model 

Now for the Spike model of equation (1) with constant jump parameters, the connection 

between the transform function and its use to find the forward prices is as follows: 

 

                             

 

  1

2

2

*

( )

( ) exp

        

( , )    
J J

t t t

t X t X X
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dX k X dt dW

dY k Y dt J dq
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  

                        (15) 

Therefore, 

 

                
    * *

1 2

( ) exp ( , , , )

                       exp( ( ) ( ) ( ) )

r r r

t T t T T t

r

E P f T e E e X Y e u t T

e t t X t Y

   

    

   





  

X
          (16) 

 

Where the vectors u=(1,1), and X = (Χt, Yt) and τ=T-t.  
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From (16) we use (14) to reach to the Ordinary Differential Equations and solve them: 

 

                     
1 2

1 2

 and ( ) 1 ( )
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

 

 

Hence, using equation (16) and the results from equation (17), we have the expected value of 

the spot under the risk neutral probability measure: 

 

1 2 2 2
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               (18) 

 

Using then equation (18) we define the de-seasonalised price of a forward contract for 

settlement at time T as follows: 

*

0(0, , ) ( ) ( )TF T E P f t X      (19) 

 

Proof of the formula for the security price Ga,b(y) 
 

For 0 < τ < ∞ and a fixed y , 
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where Fubini is applicable because:    ,lim ; , , , ,0,a b
y

G y T a T 


  X X  given that χ is 

well defined at (α,T). Next, we note that for τ>0, 
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 ( ) ( ) sinsgn( )iv z y iv y z v z ye e z y

dv dv
iv v

 

 

  

 

 
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is bounded simultaneously in z and τ, for each fixed y. By the bounded convergence theorem, 
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where    , , ,; , , lim ; , ,a b z y z y a bG y T G z T   X X . Using the integrability condition  

 , ,0,a ivb T dv   X , and by the dominated convergence theorem we have 
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Because  , ,0,a ivb T  X  is the complex conjugate of  , ,0,a ivb T  X  we have 

 
   

,
0

, ,0, , ,0,1
; , ,

2

ivy

a b

a T e a ivb T
G y T dv

iv

  





 

  
X X

X  

  



 32 

8 Appendix B: Closed-form Solutions of the Moments of 
the Spike Model 

 

As shown by Das (2001), one can obtain closed-form solutions of the moments of any jump 

distribution by first deriving the characteristic function, F(X, t, T; s), given that the jump 

intensity or jump distribution does not depend on the state variables. The solution of the 

characteristic function can be found using the DPS transform as follows: 

 

 F(X,T,t,T=t;s) = exp(is(X +Y ))  

 

where X=(X,Y). The above equation is also the boundary condition for the characteristic 

function. The relation between the characteristic function and the transform is given by: 

 

                                                  ( , , , ) , , ;r

t
u t T e F X Y T sX                      (20) 

 

where u=(is, is). Therefore, the solution of the characteristic function takes the form of the 

transform:  

                                   1 2
, , , ; exp( ( ) ( ) ( ) )F X Y t T s t t X t Y                        (21) 

 

with boundary conditions a(T) = 0, β1(T) = β2(T) = is. Thus, using the results from the 

transform analysis, and letting τ=T-t: 
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Now in order to find closed-form solutions for the moments, we need to differentiate the 

characteristic function successively with respect to s and then find the value of the derivative 

when s=0. Thus, if we denote the nth moment by mn, and the nth derivative of the 

characteristic function by /n n

n
F F s   , the moments can be derived using 
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1/ 0n

n n
m i F s    . However, since the characteristic function F, depends on α and β, we 

first have to derive their derivatives with respect to s. The derivatives of β with respect to s are 

as follows: 
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Likewise for α: 
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Having derived the above derivatives, and using a lengthy and tedious algebraic manipulation, 

the moments are given as follows: 
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where, assuming that the jump size distribution is normal, i.e. 
2( , )

J J
N   : 
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Having derived the moments, one can show explicit solutions for the variance, skewness and 

kurtosis of the deseasonalised spike process as follows: 
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Skewness: 
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Kurtosis: 
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