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THE PARTITION ALGEBRA AND THE

KRONECKER COEFFICIENTS

C. BOWMAN, M. DE VISSCHER, AND R. ORELLANA

Abstract. We propose a new approach to study the Kronecker coefficients

by using the Schur–Weyl duality between the symmetric group and the parti-
tion algebra. We explain the limiting behaviour and associated bounds in the

context of the partition algebra. Our analysis leads to a uniform description

of the reduced Kronecker coefficients when one of the indexing partitions is a
hook or a two-part partition.

Introduction

A fundamental problem in the representation theory of the symmetric group
is to describe the coefficients in the decomposition of the tensor product of two
Specht modules. These coefficients are known in the literature as the Kronecker
coefficients. They are labelled by triples of partitions. Finding a formula or combi-
natorial interpretation for these coefficients has been described by Richard Stanley
as ‘one of the main problems in the combinatorial representation theory of the sym-
metric group’. This question has received the attention of Littlewood [Lit58], James
[JK81, Chapter 2.9], Lascoux [Las80], Thibon [Thi91], Garsia and Remmel [GR85],
Kleshchev and Bessenrodt [BK99] amongst others and yet a combinatorial solution
has remained beyond reach for over a hundred years.

Murnaghan discovered an amazing limiting phenomenon satisfied by the Kro-
necker coefficients; as we increase the length of the first row of the indexing parti-
tions the sequence of Kronecker coefficients obtained stabilises. The limits of these
sequences are known as the reduced Kronecker coefficients.

The novel idea of this paper is to study the Kronecker and reduced Kronecker
coefficients through the Schur–Weyl duality between the symmetric group, Sn, and
the partition algebra, Pr(n). The key observation being that the tensor product
of Specht modules corresponds to the restriction of simple modules in Pr(n) to a
Young subalgebra. The combinatorics underlying the representation theory of both
objects is based on partitions. The Schur–Weyl duality results in a functor, F :
Sn-mod→ Pr(n)-mod, which acts by first row removal on the partitions labelling
the simple modules. We exploit this functor along with the following three key facts
concerning the representation theory of the partition algebra: (a) it is semisimple
for large n (b) it has a stratification by symmetric groups (c) its non-semisimple
representation theory is well developed.

We interpret the Kronecker and reduced Kronecker coefficients and the passage
between them in terms of the representation theory of the partition algebra. The
limiting phenomenon discovered by Murnaghan and some associated bounds (due
to Brion) are then naturally explained by the fact that Pr(n) is semisimple for large
enough n.

Using the partition algebra we give a simple, unified approach to the cases where
one of the indexing partitions is a hook or a two-part partition. In particular,
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we obtain a positive formula in terms of the Littlewood–Richardson coefficients
for the reduced Kronecker coefficients in these cases (see Corollary 5.1). These
two cases have already been studied separately — a combinatorial interpretation
has been given for all Kronecker coefficients in the single hook case in [Bla12] and
a formula in terms of Littlewood–Richardson coefficients has been given for the
reduced coefficients in the single two-part partition case in [BO05].

Our approach brings forward a general tool to study these coefficients and pro-
vides a natural framework for the study of the outstanding problems in the area.
In particular, one should notice that our proofs are surprisingly elementary.

The paper is organised as follows. In Sections 1 and 2 we recall the combinatorics
underlying the representation theories of the symmetric group and partition algebra.
In Section 3 we show how to pass the Kronecker problem through Schur–Weyl
duality and phrase it as a question concerning the partition algebra. We then
summarise results concerning the Kronecker and reduced Kronecker coefficients that
have a natural interpretation in this setting. Section 4 contains a description of
the restriction of a standard module for Pr(n) to a Young subalgebra, giving a
new representation theoretic interpretation of [BOR11, Lemma 2.1]. In Section
5 we specialise to hook and two-part partitions and obtain positive formulas for
the reduced Kronecker coefficients in these cases. Section 6 contains an extended
example.

1. Symmetric group combinatorics

The combinatorics underlying the representation theory of the symmetric group,
Sn, is based on partitions. A partition λ of n, denoted λ ` n, is defined to be a
weakly decreasing sequence λ = (λ1, λ2, . . . , λ`) of non-negative integers such that
the sum |λ| = λ1 + λ2 + · · ·+ λ` equals n. The length of a partition is the number
of nonzero parts, we denote this by `(λ). We let Λn denote the set of all partitions
of n.

With a partition, λ, is associated its Young diagram, which is the set of nodes

[λ] =
{

(i, j) ∈ Z2
>0 | j ≤ λi

}
.

Given a node specified by i, j ≥ 1, we say the node has content j − i. We let ct(λi)
denote the content of the last node in the ith row of [λ], that is ct(λi) = λi − i.

Over the complex numbers, the irreducible Specht modules, S(λ), of Sn are
indexed by the partitions, λ, of n. An explicit construction of these modules is
given in [JK81].

1.1. The classical Littlewood–Richardson rule. The Littlewood–Richardson
rule is a combinatorial description of the restriction of a Specht module to a Young
subgroup of the symmetric group. Through Schur–Weyl duality, the rule also com-
putes the decomposition of a tensor product of two simple modules of GLn(C). The
Littlewood–Richardson rule is the most famous algorithm for decomposing tensor
products and has been generalised in several directions.

The following is a simple restatement of this rule as it appears in [JK81, Section
2.8.13].

Theorem 1.1 (The Littlewood–Richardson Rule). For λ ` r1, µ ` r2 and ν `
r1 + r2,

S(ν)↓Sr1+r2

Sr1
×Sr2

∼=
⊕

λ`r1,µ`r2

cνλ,µS(λ) � S(µ)

where the cνλ,µ are the Littlewood–Richardson coefficients (defined below).

The Littlewood–Richardson coefficient cνλ,µ is zero, unless λ ⊆ ν, and, otherwise

may be calculated as follows. For each node (i, j) of µ, take a symbol ui,j . Begin
with the diagram λ and:
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(1) Add to it all symbols u1,j (corresponding to the first row of nodes of µ) in
such a way as to produce the diagram of a partition and to satisfy (3).

(2) Next add all symbols u2,j (corresponding to the second row of nodes of µ)
following the same rules. Continue this process with all rows of µ.

(3) The added symbols must satisfy: (a) for all i, if y < j, then ui,y appears in
a later column than ui,j ; and (b) for all j, if x < i, then ux,j is in an earlier
row than ui,j .

By the transitivity of induction the Littlewood–Richardson rule determines the
structure of the restriction of a Specht module to any Young subgroup. Of particular
importance in this paper is the three-part case

S(ν)↓Sr1+r2+r3

Sr1
×Sr2

×Sr3

∼=
⊕

ξ`r1+r2
ν`r3

(cνξ,ηS(ξ) � S(η))↓Sr1+r2×Sr3

Sr1
×Sr2

×Sr3

∼=
⊕
λ`r1,

µ`r2,ν`r3

 ∑
ξ`r1+r2

cξλ,µc
ν
ξ,η

S(λ) � S(µ) � S(η).

We therefore set cνλ,µ,η =
∑
ξ c
ξ
λ,µc

ν
ξ,η.

1.2. Tensor products of Specht modules of the symmetric group. In this
section we define the Kronecker coefficients and the reduced Kronecker coefficients
as well as set some notation. Let λ and µ be two partitions of n, then

S(λ)⊗ S(µ) =
⊕
ν`n

gνλ,µS(ν),

the coefficients gνλ,µ are known as the Kronecker coefficients. These coefficients
satisfy an amazing stability property illustrated in the following example.

Example 1.2. We have the following tensor products of Specht modules:

S(12)⊗ S(12) = S(2)

S(2, 1)⊗ S(2, 1) = S(3)⊕ S(2, 1)⊕ S(13)

S(3, 1)⊗ S(3, 1) = S(4)⊕ S(3, 1)⊕ S(2, 12)⊕ S(22)

at which point the product stabilises, i.e. for all n ≥ 4, we have

S(n− 1, 1)⊗ S(n− 1, 1) = S(n)⊕ S(n− 1, 1)⊕ S(n− 2, 12)⊕ S(n− 2, 2).

Let λ = (λ1, λ2, . . . , λ`) be a partition and n be an integer, define λ[n] = (n −
|λ|, λ1, λ2, . . . , λ`). Note that all partitions of n can be written in this form.

For λ[n], µ[n], ν[n] ∈ Λn we let

g
ν[n]

λ[n],µ[n]
= dimC(HomSn

(S(λ[n])⊗ S(µ[n]),S(ν[n]))),

denote the multiplicity of S(ν[n]) in the tensor product S(λ[n]) ⊗ S(µ[n]). Mur-
naghan showed (see [Mur38, Mur55]) that if we allow the first parts of the par-
titions to increase in length then we obtain a limiting behaviour as follows. For
λ[N ], µ[N ], ν[N ] ∈ ΛN and N sufficiently large we have that

g
ν[N+k]

λ[N+k],µ[N+k]
= gνλ,µ

for all k ≥ 1; the integers gνλ,µ are called the reduced Kronecker coefficients. Bounds
for this stability have been given in [Bri93, Val99, Kly04, BOR11].

Remark 1.3. The reduced Kronecker coefficients are also the structural constants
for a linear basis for the polynomials in countably many variables known as the
character polynomials, see [Mac95].
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2. The partition algebra

The partition algebra was originally defined by Martin in [Mar91]. All the results
in this section are due to Martin and his collaborators, see [Mar96] and references
therein.

2.1. Definitions. For r ∈ Z>0, δ ∈ C, we let Pr(δ) denote the complex vector
space with basis given by all set-partitions of {1, 2, . . . , r, 1̄, 2̄, . . . , r̄}. A part of a
set-partition is called a block. For example,

d = {{1, 2, 4, 2̄, 5̄}, {3}, {5, 6, 7, 3̄, 4̄, 6̄, 7̄}, {8, 8̄}, {1̄}},
is a set-partition (for r = 8) with 5 blocks.

A set-partition can be represented by an (r, r)-partition diagram consisting of a
frame with r distinguished points on the northern and southern boundaries, which
we call vertices. We number the northern vertices from left to right by 1, 2, . . . , r
and the southern vertices similarly by 1̄, 2̄, . . . , r̄ and connect two vertices by a path
if they belong to the same block. Note that such a diagram is not uniquely defined,
two diagrams representing the set-partition d above are given in Figure 1.

3

3̄

2

2̄

1

1̄

4

4̄

5

5̄

6

6̄

7

7̄

8

8̄

3

3̄

2

2̄

1

1̄

4

4̄

5

5̄

6

6̄

7

7̄

8

8̄

Figure 1. Two representatives of the set-partition d.

We can generalise this definition to (r,m)-partition diagrams as diagrams repre-
senting set-partitions of {1, . . . , r, 1̄, . . . , m̄} in the obvious way.

We define the product x ·y of two diagrams x and y using the concatenation of x
above y, where we identify the southern vertices of x with the northern vertices of
y. If there are t connected components consisting only of middle vertices, then the
product is set equal to δt times the diagram with the middle components removed.
Extending this by linearity defines a multiplication on Pr(δ).

We now fix a unique choice of (r, r)-partition diagram corresponding to a given
set-partition. Note that any block in a set-partition is of the form A∪B where A =
{i1 < i2 < . . . < ip} and B = {j̄1 < j̄2 < . . . < j̄q} (and A or B could be empty).
We draw this block by putting an arc joining each pair (il, il+1) and (j̄l, j̄l+1) and
if A and B are non-empty we draw a strand from i1 to j̄1, that is we draw a single
propagating line on the leftmost vertices of the block. Blocks containing a northern
and a southern vertex will be called propagating blocks; all other blocks will be
called non-propagating blocks. Note that in Figure 1, the leftmost diagram is of this
form. We often omit the numbering on the vertices.

It is known that Pr(δ) is generated by the elements si,j , pi,j (1 ≤ i < j ≤ r) and
pi (1 ≤ i ≤ r) depicted in Figure 2 below (see [Mar96, Proposition 1]).
Assumption: We assume throughout the paper that δ 6= 0.

2.2. Filtration by propagating blocks and standard modules. Fix δ ∈ C×
and write Pr = Pr(δ). Note that the multiplication in Pr cannot increase the number
of propagating blocks. More precisely, if x, respectively y, is a partition diagram
with px, respectively py, propagating blocks then x · y is equal to δtz for some t ≥ 0
and some partition diagram z with pz propagating blocks, where pz ≤ min{px, py}.
This gives a filtration of the algebra Pr by the number of propagating blocks. This
filtration can be realised using the idempotents el = δ−lp1p2 . . . pl (1 ≤ l ≤ r),
depicted in Figure 3.
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si,j =

j

j

i

i

pi =

i

i

pi,j =

j

j

i

i

Figure 2. Generators of Pr(n)

el =
1

δl

l

l

Figure 3. The idempotent el

We have

C ∼= PrerPr ⊂ Prer−1Pr ⊂ . . . ⊂ Pre1Pr ⊂ Pr.
It is easy to see that

(2.1) e1Pre1
∼= Pr−1

and that this generalises to Pr−l ∼= elPrel for 1 ≤ l ≤ r. Moreover, Pre1Pr is the
span of all (r, r)-partition diagrams with at most r−1 propagating blocks and hence
we have

(2.2) Pr/(Pre1Pr) ∼= CSr.

Using equation (2.2), we get that any CSr-module can be inflated to a Pr-module.
We also get from equations (2.1) and (2.2), by induction, that the simple Pr-modules
are indexed by the set Λ≤r =

⋃
0≤i≤r Λi.

For any ν ∈ Λ≤r with ν ` r − l, we define a Pr-module, ∆r(ν), by

(2.3) ∆r(ν) = Prel ⊗Pr−l
S(ν).

(Here we have identified Pr−l with elPrel using the isomorphism given in equation
(2.1) and the action of Pr on ∆r(ν) is given by left multiplication.) These modules
are easily seen to coincide with the modules defined in [Mar96, Definition 7].

It is known ([MS93]) that Pr(δ) is semisimple if and only if δ 6∈ {0, 1, . . . , 2r− 2}
and in this case the set {∆r(ν) : ν ∈ Λ≤r} forms a complete set of non-isomorphic
simple modules.

In general, the algebra Pr(δ) is quasi-hereditary with respect to the partial order
on Λ≤r given by λ < µ if |λ| > |µ| (see [Mar96, Proposition 3]). The modules
∆r(ν) are the standard modules, each of which has a simple head Lr(ν), and the
set {Lr(ν) : ν ∈ Λ≤r} forms a complete set of non-isomorphic simple modules.

We now give an explicit description of the standard modules which follows di-
rectly from (2.3). We set V (r, r − l) to be the span of all (r, r − l)-partition dia-
grams having precisely (r − l) propagating blocks. This has a natural structure of
a (Pr(δ),Sr−l)-bimodule. It is easy to see that, as vector spaces, we have

∆r(ν) ∼= V (r, r − l)⊗Sr−l
S(ν).

The action of Pr(δ) is given as follows. Let v be a partition diagram in V (r, r − l),
x ∈ S(ν) and X be an (r, r)-partition diagram. Concatenate X and v to get δtv′

for some (r, r − l)-partition diagram v′ and some non-negative integer t. If v′ has
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fewer than (r − l) propagating blocks then we set X(v ⊗ x) = 0. Otherwise we set
X(v ⊗ x) = δtv′ ⊗ x.

Note that if ν ` r, then we have

∆r(ν) ∼= V (r, r)⊗Sr
S(ν) = S(ν)

viewed as a Pr(n)-module via equation (2.2).

2.3. Non-semisimple representation theory of the partition algebra. We
assume that δ = n ∈ Z>0 (the algebra is semisimple for n 6∈ Z≥0, and we shall not
require the degenerate n = 0 case).

Definition 2.1. ([Mar96, Section 2]) Let µ ⊂ λ be partitions. We say that (µ, λ)
is an n-pair, and write µ ↪→n λ, if the Young diagram of λ differs from the Young
diagram of µ by a horizontal row of boxes of which the last (rightmost) one has
content n− |µ|.

Example 2.2. For example, ((2, 1), (4, 1)) is a 6-pair. We have that 6 − |µ| = 3
and the Young diagrams (with contents) are as follows:

0 1
-1

⊂ 0 1 2 3
-1

note that they differ by 2 3 .

Recall that the set of simple (or standard) modules for Pr(n) are labelled by the
set Λ≤r. This set splits into Pr(n)-blocks. In [Mar96, Proposition 9], Martin gives
a complete description of these blocks and the structure of the standard modules,
which we now recall. The set of labels in each block forms a maximal chain of
n-pairs

λ(0) ↪→n λ
(1) ↪→n λ

(2) ↪→n . . . ↪→n λ
(t).

Moreover, for 1 ≤ i ≤ t we have that λ(i)/λ(i−1) consists of a strip of boxes in the
ith row. Now we have an exact sequence of Pr(n)-modules

0→ ∆r(λ
(t))→ . . .→ ∆r(λ

(2))→ ∆r(λ
(1))→ ∆r(λ

(0))→ Lr(λ
(0))→ 0

with the image of each homomorphism being simple. Each standard module ∆r(λ
(i))

(for 0 ≤ i ≤ t− 1) has Loewy structure

Lr(λ
(i))

Lr(λ
(i+1))

and so in the Grothendieck group we have

(2.4) [Lr(λ
(i))] =

t∑
j=i

(−1)j−i[∆r(λ
(j))].

Note that each block is totally ordered by the size of the partitions. Note also
that it follows from (2.4) that if λ is maximal in its block, then ∆r(λ) = Lr(λ), in
particular if λ is a partition of r this is always the case.

Proposition 2.3. Let ν ∈ Λ≤r and assume that ν[n] is a partition. Then we have
that (i) ν is the minimal element in its Pr(n)-block, and
(ii) ν is the unique element in its block if and only if n+ 1− ν1 > r.

Proof. (i) Observe that for ν[n] to be a partition we must have n − |ν| ≥ ν1. This
implies that ct(ν1) = ν1 − 1 ≤ n− |ν| − 1. So we have ν ↪→n µ for some partition µ
with µ/ν being a single strip in the first row. Thus we have ν = ν(0) and µ = ν(1).
(ii) Now as ν(1)/ν is a single strip in the first row with last box having content
n− |ν|, we have that |ν(1)/ν| = n− |ν|+ 1− ν1 and thus |ν(1)| = n+ 1− ν1. Thus
n + 1 − ν1 > r if and only if ν(1) /∈ Λ≤r, which is equivalent to ν being the only
partition in its Pr(n)-block. �
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3. Schur–Weyl duality

Classical Schur–Weyl duality is the relationship between the general linear and
symmetric groups over tensor space. To be more specific, let Vn be an n-dimensional
complex vector space and let V ⊗rn denote its rth tensor power.

We have that the symmetric group Sr acts on the right by permuting the factors.
The general linear group, GLn, acts on the left by matrix multiplication on each
factor. These two actions commute and moreover GLn and Sr are full mutual
centralisers in End(V ⊗rn ).

The partition algebra, Pr(n), plays the role of the symmetric group, Sr, when
we restrict the action of GLn to the subgroup of permutation matrices, Sn.

3.1. Schur–Weyl duality between Sn and Pr(n). Let Vn denote an n-dimensional
complex space. Then Sn acts on Vn via the permutation matrices.

(3.1) σ · vi = vσ(i) for σ ∈ Sn.

Notice that we are simply restricting the GLn action in the classical Schur–Weyl
duality to the permutation matrices. Thus, Sn acts diagonally on the basis of
simple tensors of V ⊗rn as follows

σ · (vi1 ⊗ vi2 ⊗ · · · ⊗ vir ) = vσ(i1) ⊗ vσ(i2) ⊗ · · · ⊗ vσ(ir).

For each (r, r)-partition diagram d and each integer sequence i1 . . . , ir, i1̄, . . . , ir̄
with 1 ≤ ij , ij̄ ≤ n, define
(3.2)

φr,n(d)i1,...,iri1̄,...,ir̄
=

{
1 if it = is whenever vertices t and s are connected in d

0 otherwise.

A partition diagram d ∈ Pr(n) acts on the basis of simple tensors of V ⊗rn as follows

Φr,n(d)(vi1 ⊗ vi2 ⊗ · · · ⊗ vir ) =
∑

i1̄,...,ir̄

φr,n(d)i1,...,iri1̄,...,ir̄
vi1̄ ⊗ vi2̄ ⊗ · · · ⊗ vir̄ .

Theorem 3.1 (Jones [Jon94]). Sn and Pr(n) generate the full centralisers of each
other in End(V ⊗rn ).

(a) Pr(n) generates EndSn(V ⊗rn ), and when n ≥ 2r, Pr(n) ∼= EndSn(V ⊗rn ).
(b) Sn generates EndPr(n)(V

⊗r
n ).

We will denote Er(n) = EndSn
(V ⊗rn ). Note that as V ⊗rn is a semisimple CSr-

module (as CSr is a semisimple algebra), we have that Er(n) is a semisimple
algebra (see for example [Ben98, Theorem 1.3.4]).

Theorem 3.2 ([Mar96] see also [HR05]). We have a decomposition of V ⊗rn as a
(Sn, Pr(n))-bimodule

V ⊗rn =
⊕

S(λ[n])⊗ Lr(λ)

where the sum is over all partitions λ[n] of n such that |λ| ≤ r.

Using [GW98, Theorem 9.2.2] we have, for λ[n], µ[n], ν[n] ` n with λ ` r and
µ ` s,

HomSn
(S(ν[n]),S(λ[n])⊗ S(µ[n]))

∼=
{

HomEr(n)⊗Es(n)(Lr(λ) � Ls(µ), Lr+s(ν)↓Er(n)⊗Es(n)) if ν ∈ Λ≤r+s
0 otherwise.

Now Lr+s(ν) is a simple Pr+s(n)-module annihilated by ker Φr+s,n and hence also by
ker Φr,n⊗ker Φs,n. Therefore, Lr+s(ν)↓Pr(n)⊗Ps(n) is the semisimple Er(n)⊗Es(n)-
module Lr+s(ν)↓Er(n)⊗Es(n) inflated to Pr(n)⊗ Ps(n), and so

(3.3) HomSn(S(ν[n]),S(λ[n])⊗ S(µ[n]))
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∼=
{

HomPr(n)⊗Ps(n)(Lr(λ) � Ls(µ), Lr+s(ν)↓Pr(n)⊗Ps(n)) if ν ∈ Λ≤r+s
0 otherwise.

In the next section, we shall implicitly use the fact that Lr(λ) = ∆r(λ) and Ls(λ) =
∆s(λ) for λ ` r, µ ` s.

3.2. Kronecker product via the partition algebra. Combining (3.3) with (2.4)
and Proposition 2.3(i) we have the following result.

Theorem 3.3. Let λ[n], µ[n], ν[n] ` n with λ ` r and µ ` s. Then we have

g
ν[n]

λ[n],µ[n]
=


t∑
i=0

(−1)i[∆r+s(ν
(i))↓Pr(n)⊗Ps(n): Lr(λ) � Ls(µ)] if ν ∈ Λ≤(r+s)

0 otherwise

where ν = ν(0) ↪→n ν
(1) ↪→n . . . ↪→n ν

(t) is the Pr+s(n)-block of ν.

For sufficiently large values of n the partition algebra is semisimple. There-
fore Theorem 3.3 reproves the limiting behaviour of tensor products observed by
Murnaghan (see Section 1.2). It also offers the following concrete representation
theoretic interpretation of the gνλ,µ.

Corollary 3.4. Let λ ` r and µ ` s and suppose |ν| ≤ r + s. Then we have

gνλ,µ = [∆r+s(ν)↓Pr(n)⊗Ps(n): Lr(λ) � Ls(µ)].

Remark 3.5. We recover the Murnaghan–Littlewood Theorem as follows. Let λ, µ, ν
be partitions and suppose that |λ|+ |µ| = |ν|. Then we have that ∆r+s(ν) = S(ν),
∆r(λ) = S(λ) and ∆s(µ) = S(µ) and so we have

gνλ,µ = cνλ,µ.

Corollary 3.6. We have that gνλ,µ = g
ν[n]

λ[n],µ[n]
if

n ≥ min{|λ|+ |µ|+ ν1, |λ|+ |ν|+ µ1, |ν|+ |µ|+ λ1}.

Proof. When n ≥ |λ| + |µ| + ν1 we have that ∆r+s(ν) = Lr+s(ν) by Proposition
2.3. The result now follows as

g
ν[n]

λ[n],µ[n]
= g

µ[n]

λ[n],ν[n]
= g

λ[n]
ν[n],µ[n]

. �

Corollary 3.6 gives a new proof of Brion’s bound [Bri93] for the stability of the
Kronecker coefficients using the partition algebra.

3.3. The Kronecker coefficients as a sum of reduced Kronecker coeffi-
cients. In [BOR11] a formula is given for writing the Kronecker coefficients as a
sum of reduced Kronecker coefficients. We shall now interpret this formula in the
Grothendieck group of the partition algebra by showing that it coincides with the
formula in Theorem 3.3.

Let ν[n] be a partition of n. We make the convention that ν0 = n− |ν| is the 0th

row of ν[n]. For i ∈ Z≥0 define ν†i[n] to be the partition obtained from ν[n] by adding

1 to its first i− 1 rows and erasing its ith row. In particular we have ν†0[n] = ν.

Theorem 3.7 (Theorem 1.1 of [BOR11]). Let λ[n], µ[n], ν[n] ` n. Then

g
ν[n]

λ[n],µ[n]
=

l∑
i=0

(−1)ig
ν†i
[n]

λ,µ

where l = `(λ[n])`(µ[n])− 1.

Relating this to the partition algebra, we have the following.
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Proposition 3.8. Let ν[n] ` n with ν ∈ Λ≤r and let ν = ν(0) ↪→n ν
(1) ↪→n . . . be

the maximal chain of n-pairs in Λ≤r. Then the partitions

ν†i[n] = ν(i)

for all i ≥ 0.

Proof. The i = 0 case is clear from the definitions. We proceed by induction.
Assume that

ν†i[n] = ν(i).

Then (ν(i))1 = n − |ν| + 1, (ν(i))j = νj−1 + 1 for j ≤ i, and (ν(i))j = νj for j > i.
Therefore

|ν(i)| = n− |ν|+ 1 +
∑
j 6=i

νj + i− 1 = n− νi + i

We have that ν(i+1)/ν(i) is a skew partition consisting of a strip in the (i+ 1)th

row. By definition of an n-pair the content, ct(ν
(i+1)
i+1 ), of the last node is n− |ν(i)|.

Therefore

ct(ν
(i+1)
i+1 ) := ν

(i+1)
i+1 − (i+ 1) = n− (n− νi + i) = νi − i

and ν
(i+1)
i+1 = νi + 1, therefore ν

†(i+1)
[n] = ν(i+1). �

Remark 3.9. In Theorem 3.3, t is chosen so that |ν(t)| ≤ |λ| + |µ| and |ν(t+1)| >
|λ| + |µ|. So Theorem 3.3 and 3.7 seem to give a different number of terms in the
sum. For example consider

g
(2)
(12),(12) = 1 g

(12)
(12),(12) = 0

these are given as a sum of one, respectively two terms in Theorem 3.3, both cases
have four terms in Theorem 3.7. Now consider

λ[n] = µ[n] = ν[n] = (10, 10, 10)

then `(λ[n])`(µ[n]) = 9. We have ν†8[n] = (113, 15) with |ν†8[n]| = 38. But r + s = 40,

so we have two more terms in Theorem 3.3, corresponding to ν(9) = (113, 16) and
ν(10) = (113, 17). However, we can show that in fact the two theorems give the
same sum.

First assume that `(λ[n])`(µ[n])− 1 > t, then for all i > t we have

ḡ
ν†i
[n]

λ,µ = 0

as |ν†i[n]| > |λ|+ |µ|. And so the two sums coincide.

Now assume that `(λ[n])`(µ[n]) − 1 < t. Then for all i > `(λ[n])`(µ[n]) − 1, we
have

i ≥ `(λ[n])`(µ[n]) ≥ |λ[n] ∩ (µ[n])
′|.

where (µ[n])
′ denotes the conjugate partition of µ[n]. (To see this observe that the

Young diagram of λ[n] ∩ (µ[n])
′ fits in a rectangle of size `(λ[n])× `(µ[n])). Now we

have

`(ν(i)) ≥ i ≥ |λ[n] ∩ (µ[n])
′|.

But this implies that ḡν
(i)

λ,µ = 0 by [Dvi93].
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4. The restriction of a standard module to a Young subalgebra

In this section we compute the restriction of a standard module to a Young
subalgebra of the partition algebra.

Set m = r+s for some r, s ≥ 1 and fix δ ∈ C×. We write Pr = Pr(δ), Ps = Ps(δ)
and Pm = Pm(δ). We view Pr ⊗ Ps as a subalgebra of Pm by mapping each d⊗ d′,
where d (resp. d′) is an (r, r)- (resp. (s, s)-) partition diagram, to the (m,m)-
partition diagram obtained by putting d and d′ side by side, with d to the left of d′.
When depicting an (m,m− l)-partition diagram we will draw a ‘wall’ separating the
first r northern vertices from the last s northern vertices to emphasize the action
of Pr ⊗ Ps.

We wish to understand the restriction of ∆m(ν) to the subalgebra Pr ⊗ Ps. Let
Dr denote the diagonal copy of Sr in Sr×Sr. We will need the following lemmas.

Lemma 4.1. Let V (2r, 0) be the subspace of V (2r, 0) spanned by all (2r, 0)-partition
diagrams having precisely r blocks of the form {i, j} with 1 ≤ i ≤ r and r+ 1 ≤ j ≤
2r. Then V (2r, 0) is a Sr ×Sr-module and we have

V (2r, 0) ∼= C↑Sr×Sr

Dr

∼=
⊕
λ`r

S(λ) � S(λ).

Proof. A basis for V (2r, 0) is given by the set {(1, κ)v0 : κ ∈ Sr} where v0 is the
diagram in V (2r, 0) where vertex i is connected to vertex r + i for all 1 ≤ i ≤ r as
pictured in Figure 4.

Figure 4. The diagram v0 in V (2r, 0) (with r = 4)

Now, the map

f : V (2r, 0)→ C↑Sr×Sr

Dr
= C(Sr ×Sr)⊗Dr C

given by
f((1, κ)v0) = (1, κ)⊗ 1

is clearly a bijection. Moreover, for (τ, τ ′) ∈ Sr ×Sr, we have

f((τ, τ ′)(1, κ)v0) = f((τ, τ ′κ)v0)

= f((1, τ ′κτ−1)v0) as shown in Figure 5

= (1, τ ′κτ−1)⊗ 1

= (1, τ ′κτ−1)⊗ τ1

= (τ, τ ′κ)⊗ 1

= (τ, τ ′)(1, κ)⊗ 1

= (τ, τ ′)f((1, κ)v0).

Thus f gives the required isomorphism. �

Lemma 4.2. Let V (2r, r) be the subspace of V (2r, r) spanned by all (2r, r)-partition
diagrams having precisely r propagating blocks of the form {i, j, k̄} with 1 ≤ i ≤ r

and r + 1 ≤ j ≤ 2r. Then, for any µ ` r we have that V (2r, r) ⊗Sr
S(π) is a

Sr ×Sr-module and we have

V (2r, r)⊗Sr
S(π) ∼= S(π)↑Sr×Sr

Dr

∼=
⊕
ρ,σ`r

gπρ,σS(ρ) � S(σ).
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τ κ

τ ′

=

τ−1

κ

τ ′

Figure 5. The action of Sr ×Sr on (1, κ)v0

Proof. Let X(π) be a basis for S(π). A basis for V (2r, r)⊗Sr
S(π) is given by the

set

{(1, κ)v1 ⊗ x : κ ∈ Sr, x ∈ X(π)}
where v1 is the diagram in V (2r, r) with blocks given by {i, r + i, i} (for 1 ≤ i ≤ r)
as depicted in Figure 6.

x

κ

Figure 6. The element (1, κ)v1 ⊗ x

Now the map

g : V (2r, r)⊗Sr
S(π)→ S(π)↑Sr×Sr

Dr
= C(Sr ×Sr)⊗Dr

S(π)

given by

g((1, κ)v1 ⊗ x) = (1, κ)⊗ x
is clearly a bijection. Moreover, for (τ, τ ′) ∈ Sr ×Sr, we have

g((τ, τ ′)(1, κ)v1 ⊗ x) = g((τ, τ ′κ)v1 ⊗ x)

= g((1, τ ′κτ−1)v1 ⊗ τx) as shown in Figure 7

= (1, τ ′κτ−1)⊗ τx
= (τ, τ ′κ)⊗ x
= (τ, τ ′)(1, κ)⊗ x
= (τ, τ ′)g((1, κ)v1 ⊗ x).

Thus g gives the required isomorphism. Finally note that

dimC HomSr×Sr
(S(π)↑Sr×Sr

Dr
,S(ρ)⊗ S(σ))

= dimC HomDr
(S(π), (S(ρ) � S(σ))↓Sr×Sr

Dr
)

= dimC HomSr (S(π),S(ρ)⊗ S(σ))

= gπρ,σ.

�

Theorem 4.3. Write m = r + s and let ν ` m − l, λ ` r − lr and µ ` s − ls for
some non-negative integers l, lr, ls. Then ∆m(ν)↓Pr⊗Ps

has a filtration by standard



12 C. BOWMAN, M. DE VISSCHER, AND R. ORELLANA

τ κ

τ ′

x

=

τ−1

κ

τ ′

τ

x

Figure 7. The action of Sr ×Sr on (1, σ)v1 ⊗ x

modules with multiplicities given by

[∆m(ν)↓Pr⊗Ps
: ∆r(λ) � ∆s(µ)] =

∑
l1,l2

l1+2l2=l−lr−ls

∑
α`r−lr−l1−l2
β`s−ls−l1−l2

π,ρ,σ`l1
γ`l2

cνα,β,πc
λ
α,ρ,γc

µ
γ,σ,βg

π
ρ,σ.

Remark 4.4. Note that these multiplicities are well-defined, this follows by the
general theory of quasi-hereditary algebras, see [DR92].

Proof. Recall that ∆m(ν) = V (m,m−l)⊗Sm−l
S(ν) and the action of Pm on ∆m(ν)

is given in Section 2.2. Now, we say that a block of a diagram in V (m,m − l) is
a crossing block if it contains at least one vertex in {1, . . . , r} and one vertex in
{r+1, . . . , r+s}. We say that a block of a diagram in V (m,m− l) is a propagating
block if it contains at least one vertex in {1, . . . ,m} and one vertex in {1̄, . . . ,m− l}.
We say that a block is an r-propagating block (resp. s-propagating block) if it is
propagating and it does not contain any vertices in the set {r+ 1, . . . , r+ s} (resp.
{1, . . . , r}). We claim that there is a filtration of ∆m(ν) ↓Pr⊗Ps with subquotients
isomorphic to

V (m,m− l)pr,ps,pc,nc ⊗Sm−l
S(ν),

where V (m,m− l)pr,ps,pc,nc
denotes the span of all diagrams in V (m,m− l) having

precisely pr (resp. ps) r-propagating (resp. s-propagating) blocks, pc crossing
propagating blocks and nc crossing non-propagating blocks. (Note that we must
have pr + ps + pc = m− l.) An example is provided in Figure 8.

Figure 8. An element of V (16, 5)1,2,2,2.

To see this, we will consider the action of the generators of Pr ⊗ Ps on ∆m(ν).
As seen in Section 2.1, Pr ⊗ Ps is generated by the set

{si,j , pi,j : 1 ≤ i < j ≤ r or r + 1 ≤ i < j ≤ r + s} ∪ {pi : 1 ≤ i ≤ r + s}.
Let v be a diagram in V (m,m−l)pr,ps,pc,nc

, and X be a partition diagram in Pr⊗Ps.
Then we have Xv = δtv′ for some (m,m − l)-partition diagram v′ and some non-
negative integer t. We write p′r, p

′
s, p
′
c and n′c for the number of r-propagating,

s-propagating, crossing propagating and crossing non-propagating blocks in v′, re-
spectively. We will now take for X each of the generators in turn and consider how
these numbers relate for v′ to those for v.



THE PARTITION ALGEBRA AND THE KRONECKER COEFFICIENTS 13

If X = si,j (for 1 ≤ i < j ≤ r or r + 1 ≤ i < j ≤ r + s) then it is clear that

(4.1) p′r = pr, p
′
s = ps, p

′
c = pc and n′c = nc.

Now suppose that X = pi for some 1 ≤ i ≤ r (the case r + 1 ≤ i ≤ r + s is
similar, with the role of r-propagating and s-propagating blocks interchanged). Let
Ai be the block in v containing vertex i. Then all blocks in v′ are the same as those
in v except for Ai which is replaced by Ai \ {i} and {i}. Thus if Ai \ {i} contains a
vertex in {1, 2, . . . , r} or if Ai is a non-propagating non-crossing block then we have

(4.2) p′r = pr, p
′
s = ps, p

′
c = pc and n′c = nc.

Now suppose that i is the only vertex in Ai ∩{1, . . . , r}. If Ai is a non-propagating
crossing block then we have

(4.3) p′r = pr, p
′
s = ps, p

′
c = pc and n′c = nc − 1.

If Ai is a propagating crossing block then we have

(4.4) p′r = pr, p
′
s = ps + 1, p′c = pc − 1 and n′c = nc.

Finally if Ai is r-propagating then we have p′r = pr − 1, p′s = ps, p
′
c = pc and

n′c = nc, but in this case we have pi(v ⊗ x) = 0 (where x ∈ S(ν)) as v′ has fewer
than m− l propagating blocks, (see Section 2.2).

Finally suppose that X = pi,j for some 1 ≤ i < j ≤ r (again, the case r + 1 ≤
i ≤ r+s is similar, with the role of r-propagating and s-propagating interchanged).
Denote by Ai (resp. Aj) the block containing i, resp. j. Then we have that the
blocks of v′ are the same as those of v expect that the blocks Ai and Aj are now
replaced by a single block Ai ∪ Aj . Thus, if Ai = Aj or if one of Ai or Aj is a
non-propagating non-crossing block then we have

(4.5) p′r = pr, p
′
s = ps, p

′
c = pc and n′c = nc.

Now suppose that Ai 6= Aj . If both Ai and Aj are non-propagating crossing blocks
then we have

(4.6) p′r = pr, p
′
s = ps, p

′
c = pc and n′c = nc − 1.

If one of Ai or Aj is non-propagating crossing and the other is propagating crossing
then we have

(4.7) p′r = pr, p
′
s = ps, p

′
c = pc and n′c = nc − 1.

If both Ai and Aj are propagating crossing blocks then we have p′r = pr, p
′
s = ps,

p′c = pc − 1 and n′c = nc, but in this case we get pi,j(v ⊗ x) = 0 as v′ has fewer
than m− l propagating blocks. If one of Ai or Aj is r-propagating and the other is
non-propagating crossing then we have

(4.8) p′r = pr − 1, p′s = ps, p
′
c = pc + 1 and n′c = nc − 1.

Finally, if one of Ai or Aj is r-propagating and the other is propagating crossing
then we have p′r = pr − 1, p′s = ps, p

′
c = pc and n′c = nc, but in this case we get

pi,j(v ⊗ x) = 0 as v′ has fewer than m− l propagating blocks.
It follows from (4.1)–(4.8) that the number of crossing non-propagating blocks

never increases when we apply an element of Pr ⊗ Ps and so we get a filtration of
∆m(ν) with subquotients isomorphic to V (m,m− l)nc

⊗Sm−l
S(ν) where V (m,m−

l)nc
is the span of all diagrams in V (m,m − l) having precisely nc crossing non-

propagating blocks. Now, we also get from (4.1)–(4.8) that V (m,m−l)nc
⊗Sm−l

S(ν)
has a filtration by the number of propagating crossing blocks with subquotients
isomorphic to V (m,m − l)pc,nc ⊗Sm−l

S(ν) where V (m,m − l)pc,nc is the span
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of all diagrams in V (m,m − l)nc
having precisely pc propagating crossing blocks.

Moreover, each of these subquotients decomposes further as⊕
pr,ps

pr+ps+pc=m−l

V (m,m− l)pr,ps,pc,nc ⊗Sm−l
S(ν).

This proves the claim.

Now note that as (Pr ⊗ Ps,Sm−l)-bimodules we have

V (m,m− l)pr,ps,pc,nc
∼= V (m, (pr, pc, ps))nc

⊗Spr×Spc×Sps
CSm−l

where V (m, (pr, pc, ps))nc
is the span of all diagrams in V (m,m− l)pr,ps,pc,nc

such
that the r-propagating blocks connect to the first pr southern vertices, the propagat-
ing crossing blocks connect to the next pc southern vertices and the s-propagating
blocks connect to the last ps southern vertices, see Figure 9.

Figure 9. An element, w, of V (16, (1, 2, 2))2.

Thus we get

V (m,m− l)pr,ps,pc,nc
⊗Sm−l

S(ν)

∼=(V (m, (pr, pc, ps))nc
⊗Spr×Spc×Sps

CSm−l)⊗Sm−l
S(ν)

∼=V (m, (pr, pc, ps))nc ⊗Spr×Spc×Sps
(CSm−l ⊗Sm−l

S(ν))

∼=V (m, (pr, pc, ps))nc ⊗Spr×Spc×Sps
S(ν)↓Spr×Spc×Sps

∼=V (m, (pr, pc, ps))nc
⊗Spr×Spc×Sps

⊕
α`pr
β`ps
π`pc

cνα,β,πS(α) � S(π) � S(β).(4.9)

From now on we write Sa1,a2,...,an for the Young subgroup Sa1
×Sa2

× . . .×San

of Sa1+a2+...+an . Now observe that as (Pr ⊗ Ps,Spr,pc,ps)-bimodules we have

V (m, (pr, pc, ps))nc
∼= (V (r, pr + pc + nc) � V (s, nc + pc + ps))

(4.10)

⊗Spr+pc+nc,nc+pc+ps
V (pr + 2pc + 2nc + ps, (pr, pc, ps))nc .

(Note that in V (pr + 2pc + 2nc + ps, (pr, pc, ps))nc we place a ‘wall’ after the first
pr + pc + nc northern vertices and so the triple (pr, pc, ps) refers to the number of
propagating blocks on the left side of the wall, crossing the wall and on the right
side of the wall respectively.) This is obtained by decomposing the diagrams as
illustrated in Figure 10.

Moreover, as (Spr+pc+nc,nc+pc+ps ,Spr,pc,ps)-bimodules we have

V (pr + 2pc + 2nc + ps, (pr, pc, ps))nc
∼= CSpr+pc+nc,nc+pc+ps⊗Spr,pc,nc,nc,pc,ps

(V (pr, pr) � V (2pc, pc) � V (2nc, 0) � V (ps, ps))

where we embed V (pr, pr) � V (2pc, pc) � V (2nc, 0) � V (ps, ps) inside V (pr + 2pc +
2nc + ps, (pr, pc, ps))nc

by putting V (pr, pr) on the set of vertices

{1, . . . pr, 1, . . . , pr}, V (2pc, pc) on the set of vertices

{pr+1, . . . , pr+pc, pr+pc+2nc+1, . . . , pr+2pc+2nc, pr + 1, . . . , pr + pc}, V (2nc, 0)
on the set of vertices {pr+pc+1, . . . , pr+pc+2nc}, and V (ps, ps) on the remaining
vertices. This is illustrated in Figure 11.
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Figure 10. Decomposing the diagrams in V (m, (pr, pc, ps))nc .

Figure 11. An element of V (pr, pr) � V (2pc, pc) � V (2nc, 0) �
V (ps, ps) embedded into V (pr + 2pc + 2nc + ps, (pr, pc, ps))nc

with
pr = 1 and ps = pc = nc = 2.

It follows that

V (pr + 2pc + 2nc + ps, (pr, pc, ps))nc
⊗Spr,pc,ps

(S(α) � S(π) � S(β))

∼= [(V (pr, pr) � V (2pc, pc) � V (2nc, 0) � V (ps, ps))⊗Spr,pc,ps

(S(α) � S(π) � S(β))] ↑Spr+pc+nc,nc+pc+ps

Spr,pc,nc,nc,pc,ps

∼= [(V (pr, pr)⊗Spr
S(α)) � (V (2pc, pc)⊗Spc

S(π)) � V (2nc, 0)

�(V (ps, ps)⊗Sps
S(β))]↑Spr+pc+nc,nc+pc+ps

Spr,pc,nc,nc,pc,ps

Using Lemmas 4.1 and 4.2 and the fact that V (pr, pr) ∼= CSpr and similarly for
V (ps, ps) we get that it is isomorphic to(
⊕γ`nc

⊕ρ,σ`pc gπρ,σS(α) � S(ρ) � S(γ) � S(γ) � S(σ) � S(β)
)
↑Spr+pc+nc,nc+pc+ps

Spr,pc,nc,nc,pc,ps
.

Now applying the Littlewood–Richardson rule we get that this is isomorphic to

⊕γ`nc
⊕ρ,σ`pc gπρ,σ ⊕λ`pr+pc+nc

µ`ps+pc+nc

cλα,ρ,γc
µ
γ,σ,βS(λ) � S(µ).

Combining this with equation (4.10) for a given direct summand in the decom-
position (4.9) we obtain

V (m, (pr, pc, ps))nc
⊗Spr,pc,ps

(S(α) � S(π) � S(β))
∼= (V (r, pr + pc + nc) � V (s, nc + pc + ps))⊗Spr+pc+nc,nc+pc+ps

(⊕γ`nc
⊕ρ,σ`pc gπρ,σ ⊕λ`pr+pc+nc

µ`ps+pc+nc

cλα,ρ,γc
µ
γ,σ,βS(λ) � S(µ))

∼= ⊕γ`nc
⊕ρ,σ`pc gπρ,σ ⊕λ`pr+pc+nc

µ`ps+pc+nc

cλα,ρ,γc
µ
γ,σ,β

(V (r, pr + pc + nc)⊗Spr+pc+nc
S(λ)) � (V (s, nc + pc + ps)⊗Snc+pc+ps

S(µ)).

But by the definition of the standard modules ∆r(λ) and ∆s(µ), this can be
rewritten as ⊕

γ`nc
ρ,σ`pc

⊕
λ`pr+pc+nc
µ`ps+pc+nc

gπρ,σc
λ
α,ρ,γc

µ
γ,σ,β∆r(λ) � ∆s(µ).
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Now noting that pr + ps + pc = m− l, pr + pc +nc = r− lr and ps + pc +nc = s− ls
and writing l1 = pc and l2 = nc, we get that l − lr − ls = l1 + l2 and the result
follows by combining with (4.9). �

In [BOR11, Lemma 2.1] a formula is given for writing the reduced Kronecker co-
efficients as a sum of Kronecker coefficients and Littlewood–Richardson coefficients.
An immediate corollary of the above theorem is an interpretation of this formula in
the setting of the partition algebra.

Corollary 4.5. Let λ, µ, ν be any partitions with |λ| = r, |µ| = s and |ν| = r+s− l.
Then the reduced Kronecker coefficient gνλ,µ is given by

gνλ,µ =
∑
l1,l2

l=l1+2l2

∑
α`r−l1−l2
β`s−l1−l2

∑
π,ρ,σ`l1
γ`l2

cνα,β,πc
λ
α,ρ,γc

µ
γ,σ,βg

π
ρ,σ

Proof. This follows from Theorems 3.3 and 4.3, noting that for |λ| = r and |µ| = s,
∆r(λ) = Lr(λ) and ∆r(µ) = Lr(µ). �

5. Hooks and two-part partitions

We now consider the case where one of the partitions in a reduced Kronecker
coefficient is either a hook or two-part partition. The first positive formula for the
two-part partition case was due to Ballantine and Orellana [BO05]. Blasiak [Bla12]
has recently given a combinatorial interpretation of the one hook case.

The result below provides positive formulas for g
ν[n]

λ[n],µ[n]
in the case that ν[n] is

a two-part or hook partition and n is sufficiently large. These formulas reveal a
distinct symmetry between the two cases.

Corollary 5.1. Let λ[n], µ[n], ν[n] be partitions of n with |λ| = r, |µ| = s and
|ν| = r + s− l.

(i) Suppose ν[n] = (n− k, k) is a two-part partition. Then we have

g
(n−k,k)
λ[n],µ[n]

= g
(k)
λ,µ =

∑
l1,l2

l=l1+2l2

∑
σ`l1
γ`l2

cλ(r−l1−l2),σ,γc
µ
γ,σ,(s−l1−l2)

for all n ≥ min{|λ|+ µ1 + k, |µ|+ λ1 + k}.
(ii) Suppose ν[n] = (n− k, 1k) is a hook partition. Then we have

g
(n−k,1k)
λ[n],µ[n]

= g
(1k)
λ,µ =

∑
l1,l2

l=l1+2l2

∑
σ`l1
γ`l2

cλ(1r−l1−l2 ),σ,γc
µ
γ,σ′,(1s−l1−l2 )

for all n ≥ min{|λ| + |µ| + 1, |µ| + λ1 + k, |λ| + µ1 + k} and where σ′ denotes the
transpose of σ.

Proof. Our assumption on n implies that g
ν[n]

λ[n],µ[n]
= gνλ,µ by Corollary 3.6.

The result follows from Corollary 4.5, noting that c
(k)
α,β,π (respectively c

(1k)
α,β,π) is

zero unless α = (r− l1− l2), β = (s− l1− l2), π = (l1) (respectively α = (1r−l1−l2),

β = (1s−l1−l2), π = (1l1)) in which case it is equal to 1 and g
(l1)
ρ,σ (respectively g

(1l1 )
ρ,σ )

is zero unless ρ = σ (respectively ρ = σ′), in which case it is equal to 1. �

Remark 5.2. In [BO05] they compute the Kronecker coefficients

g
µ[n]

(n−k,k),λ[n]
= g

(n−k,k)
λ[n],µ[n]

when n− |λ| − λ1 ≥ 2k, equivalently

n ≥ |λ|+ λ1 + 2k.

Noting that k = |µ| and for gνλ,µ 6= 0, we must have that |µ| ≤ |λ|+ |ν|, we see that
Corollary 5.1 improves this bound (as |µ|+ λ1 + k ≤ |λ|+ λ1 + 2k).
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6. Example

In this section, we shall compute the tensor square of the Specht module, S(n−
1, 1) for n ≥ 2, labelled by the first non-trivial hook, via the partition algebra. We
have that

HomSn(S(ν[n]),S(n− 1, 1)⊗ S(n− 1, 1)) ∼= HomP1(n)⊗P1(n)(L1(1)⊗L1(1), L2(ν)↓)
if ν ∈ Λ≤2 and zero otherwise. Therefore, it is enough to consider the restriction of
simple modules from P2(n) to the Young subalgebra P1(n)⊗ P1(n).

The partition algebra P2(n) is a 15-dimensional algebra with basis:

and the product of x, y ∈ P2(n) is defined by concatenation of x above y. For
example:

= = n .

There are four standard modules corresponding to the partitions of degree less
than or equal to 2; these are obtained by inflating the Specht modules from the
symmetric groups of degree 0, 1, 2. These modules have bases:

∆2(2) = SpanC

{
+

}
∆2(12) = SpanC

{
−

}

∆2(1) = SpanC

{
, ,

}
∆2(∅) = SpanC

{
,

}
The left-action of P2(n) on the standard modules is given by concatenation on

the top. If the resulting diagram has fewer propagating lines than the original, we
set the product equal to zero.

The algebra P1(n)⊗ P1(n) is the 4-dimensional subalgebra of P2(n) spanned by
the diagrams with no lines crossing an imagined vertical wall down the centre of
the diagram.

The restriction of the standard modules to this subalgebra is as follows:

∆2(2)↓P1(n)⊗P1(n)
∼= ∆1(1) � ∆1(1), ∆2(12)↓P1(n)⊗P1(n)

∼= ∆1(1) � ∆1(1),

∆2(1)↓P1(n)⊗P1(n)
∼= ∆1(1) � ∆1(1)⊕∆1(∅) � ∆1(1)⊕∆1(1) � ∆1(∅),

∆2(∅)↓P1(n)⊗P1(n)
∼= ∆1(1) � ∆1(1)⊕∆1(∅) � ∆1(∅).

In particular, note that ḡν(1),(1) = [∆2(ν)↓P1(n)⊗P1(n): ∆1(1) � ∆1(1)] = 1 for ν =

∅, 1, 12, 2.
The partition algebra P2(n) is semisimple for n > 2. For ν = ∅, (1), (12) or (2)

we have that ν[n] = (n), (n− 1, 1), (n− 2, 12), or (n− 2, 2) and ν[n] is a partition for
n ≥ 0, 2, 3, 4 respectively. Therefore the Kronecker coefficients

g
ν[n]

(n−1,1),(n−1,1)

stabilise for n ≥ 4 and are non-zero for n ≥ 4 if and only ν[n] is one of the partitions
above.
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Now consider the case n = 2. Neither ν = (12), nor (2) correspond to partitions
of 2, we therefore consider ν = ∅ and (1). We have that (1) ⊂ (2) is the unique
2-pair of partitions of degree less than or equal to 2 (see Section 3.3). Therefore
the only standard P2(2)-module which is not simple is ∆2(1) and we have an exact
sequence

0→ L2(2)→ ∆2(1)→ L2(1)→ 0.

Thus in the Grothendieck group we have that [L2(1)] = [∆2(1)] − [∆2(2)]. Hence,

we have that [L2(1)↓P1(2)⊗P1(2): L1(1)�L1(1)] = 0. We conclude that g
(12)
(12),(12) = 0

and g
(2)
(12),(12) = 1 as expected.

Acknowledgements

The authors wish to thank David Speyer for pointing out a crucial error in an
earlier version of Theorem 4.3 and Corollary 4.5. We would also like to thank the
referee for the helpful suggestions. M. De Visscher and R. Orellana thank Georgia
Benkart, Monica Vazirani and Stephanie van Willigenburg and the Banff Interna-
tional Research Station for providing support and a stimulating environment during
the Algebraic Combinatorixx workshop where this project started. C. Bowman and
R. Orellana are grateful for the financial support received from the ANR and NSF
grants ANR-10-BLAN-0110 and DMS-1101740, respectively.

References

Ben98. D.J. Benson, Representations and cohomology, Cambridge studies in advanced mathe-

matics, vol. I, Cambridge University Press, 1998.
BK99. C. Bessenrodt and A. Kleshchev, On Kronecker products of complex representations

of the symmetric and alternating groups, Pacific Journal of Mathematics 190 (1999),

no. 201-223.
Bla12. J. Blasiak, Kronecker coefficients of one hook shape, arxiv:1209.2209v2, 2012.

BO05. C. Ballantine and R. Orellana, On the Kronecker product of sn−p,p ∗ sλ, Electron. J.

Combin. 12 (2005), no. # R28, 1–26.
BOR11. E. Briand, R. Orellana, and M. Rosas, The stability of the Kronecker product of Schur

functions, J. Algebra 331 (2011), 11–27.
Bri93. M. Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta

Math. 80 (1993), 347–371.

DR92. V. Dlab and C. M. Ringel, The module theoretic approach to quasi-hereditary algebras,
Representations of algebras and related topics (H. Tachikawa and S. Brenner, eds.), LMS

Lecture Note Series, vol. 168, 1992, pp. 200–224.

Dvi93. Y. Dvir, On the Kronecker product of Sn characters, J. Algebra 154 (1993), no. 1,
125–140.

GR85. A. M. Garsia and J. Remmel, Shuffles of permutations and the Kronecker product, Graphs

Combin. 1 (1985), no. 3, 217–263.
GW98. R. Goodman and N. R. Wallach, Representations and invariants of the classical groups,

CUP, 1998.

HR05. T. Halverson and A. Ram, Partition algebras, European J. Combin. 26 (2005), no. 6,
869–921.

JK81. G. D. James and A. Kerber, The representation theory of the symmetric group, Ency-
clopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, 1981.

Jon94. V. F. R. Jones, The Potts model and the symmetric group, In: Subfactors: Proceedings

of the Tanaguchi Symposium on Operator Algebras (Kyuzeso, 1993) (NJ), World Sci.
Publishing River Edge, 1994, pp. 259–267.

Kly04. A. Klyachko, Quantum marginal problem and representations of the symmetric group,

arXiv:quant-ph/0409113 (2004).
Las80. A. Lascoux, Produit de Kronecker des représentations du groupe symétrique, Lecture

Notes in Math., pp. 319–329, Berlin, 1980.

Lit58. D. E. Littlewood, Products and plethysms of characters with orthogonal, symplectic and
symmetric groups, Cand. J. Math 10 (1958), 17–32.

Mac95. I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathe-

matical Monographs., The Claredon Press Oxford University Press, New York,, 1995.



THE PARTITION ALGEBRA AND THE KRONECKER COEFFICIENTS 19

Mar91. P. P. Martin, Potts models and related problems in statistical mechanics, Series on Ad-

vances in Statistical Mechanics, 5, World Scientific Publishing Co., Inc., Teaneck, NJ,

1991.
Mar96. , The structure of the partition algebras, J. Algebra 183 (1996), 319–358.

MS93. P. P. Martin and H. Saleur, On an algebraic approach to higher dimensional statistical

mechanics, Comm. Math. Phys. 158 (1993), 155–190.
Mur38. F. Murnaghan, The analysis of the Kronecker product of irreducible representations of

the symmetric group, Amer. J. Math. 60 (1938), no. 3, 761–784.

Mur55. , On the analysis of the Kronecker product of irreducible representations of Sn,
Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 515–518.

Thi91. J. Thibon, Hopf algebras of symmetric functions and tensor products of symmetric group

representations, Int. J. Algebra Comput. 1 (1991), no. 2, 207–221.
Val99. E. Vallejo, Stability of Kronecker products of irreducible characters of the symmetric

group, Electron. J. Combin. 6 (1999), no. 1, 1–7.
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