
              

City, University of London Institutional Repository

Citation: Przulj, V. (1998). Computational modelling of vortex shedding flows. 

(Unpublished Doctoral thesis, City University London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/7565/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


COMPUTATIONAL MODELLING OF 
VORTEX SHEDDING FLOWS 

Vlado Przulj 

Thesis submitted for the 

Degree of Doctor of Philosophy 

in the School of Engineering 

City University 

Department of Civil Engineering 

City University 

London EC 1 V OHB 

July 1998 



Contents 

Contents 

List of Tables 

List of Figures 

Acknowledgements 

Abstract 

Nomenclature 

1 INTRODUCTION 

1 .1 The Vortex Shedding Phenomenon 

1.2 Experimental Background .... 

1.3 Computational Background . . . . 

1.3.1 Previous studies on laminar vortex shedding flows 

1.3.2 Previous studies on turbulent vortex shedding flows. 

1.4 The Present Approach and Its Justification 

1.5 Objectives..... 

1.6 Contents of Thesis 

2 MATHEMATICAL FORMULATION 

2.1 Introduction......... 

2.2 The Conservation Equations 

2.3 Averaging Concepts ..... 

2.4 Mean-Flow Equations '" 

2.5 Turbulence Transport Equations 

2.6 Modelling the Reynolds-Stress Tensor. 

2.6.1 The eddy-viscosity fonnulation 

2.6.2 Two-equation k - E models . . 

2.7 Turbulence Model Development '.' . . 

2.7.1 Modifications to the conventional k - E model 

2.7.2 Unsteady modification ............ . 

.' 

ii 

v 

vii 

xi 

xii 

xiii 

1 

3 

8 

9 

10 

13 

15 

15 

17 

17 

17 

18 

20 

21 

24 

24 

25 

27 

28 

30 



CONTENTS 

2.8 Near-Wall Treatment 

2.9 Closure ...... . 

3 NUMERICAL METHOD 

3.1 Introduction . . . . . . 

3.2 General Forms of Transport Equations 

3.3 Discretisation Procedure ...... . 

3.3.1 Numerical grids and related issues 

3.3.2 Time discretisation ....... . 

3.3.3 Discretising the convection and diffusion fluxes 

3.3.4 Source terms . . . . 

3.3.5 Algebraic equations 

3.4 High-Resolution Convective Schemes 

3.4.1 Formulation and properties of high-order schemes 

3.4.2 Boundedness criteria ..... 

3.4.3 A choice of bounded schemes 

3.5 Pressure-Velocity Coupling ... 

3.6 Boundary and Initial Conditions 

3.7 Overall Solution Procedure 

3.8 Closure . . . . . . . . . . 

4 LAMINAR FLOW PREDICTIONS 

4.1 Introduction........ 

4.2 Numerical Considerations 

4.2.1 Solution domains and grids. 

4.2.2 Boundary and initial conditions 

4.2.3 Computational details ..... 

4.3 Periodic Vortex Shedding: Common Features 

4.3.1 Initiation ........ . 

4.3.2 Development....... 

4.3.3 The Karman vortex street. 

4.4 Numerical Uncertainties .. 

4.4.1 Time discretisation 

4.4.2 Spatial discretisation 

4.4.3 Size of the computational domain 

4.4.4 Summary............. 

4.5 Single Cylinders in Uniform Flows .... 

4.5.1 Square cylinder: results and discussion 

4.5.2 Circular cylinders results and discussion. 

4.5.3 Three-dimensionality and limitations of 2-D simulations 

4.6 Two Cylinders in Tandem .................... . 

iii 

31 

34 

35 

35 

36 

37 

37 

39 

41 

45 

46 

48 

48 

52 

53 

55 

58 

63 

64 

65 

65 

66 

66 

69 

69 

71 

71 

72 

74 

82 

83 

84 

89 

91 

92 

93 

100 

103 

108 



CONTENTS 

4.6.1 Background..... 

4.6.2 Discussion of results 

4.7 Oscillatory Flows . . . . . . 

4.7.1 Background ..... 

4.7.2 Numerical considerations. 

4.7.3 Results and discussion 

4.8 Closure .......... . . 

5 TURBULENT FLOW PREDICTIONS 

5.1 Introduction ....... . 

5.2 Experimental Evidence .. 

5.3 Numerical Considerations 

5.3.1 Solution domain and grids 

5.3.2 Boundary and initial conditions 

5.3.3 Computational details ... 

5.4 Assessment of Turbulence Models 

5.4.1 Conventional k - E models. 

5.4.2 Unsteady modification 

5.5 Numerical Uncertainties .. 

5.5.1 Temporal resolution 

5.5.2 Spatial resolution . . 

5.5.3 Size of the solution domain 

5.5.4 Summary.......... 

5.6 Square Cylinder: Results and Discussion. 

5.6.1 Integral parameters ..... 

5.6.2 Time-averaged distributions . . . 

5.6.3 The phase-averaged results .... 

5.7 Circular Cylinder: Results and Discussion 

5.8 Closure 

6 CLOSURE 

6.1 Summary and Achievements 

6.2 Future Research . . . . . 

A Previous Numerical Studies 

B Richardson Error Estimator 

REFERENCES 

IV 

. . 

108 

109 

113 

114 

115 

117 

123 

125 

125 

125 

128 

128 

129 

130 

130 

131 

134 

136 

136 

138 

142 

144 

144 

146 

148 

153 

155 

163 

167 

167 

170 

171 

176 

178 



List of Tables 

2.1 Model constants for the high Reynolds number k - E models. . . . . . . . . . 27 

3.1 Source terms and diffusion coefficients in the integral transport equation (3.4). 37 

3.2 Linearization of the source terms in the k - E model (all quantities are defined at 
the CV centre P). . . . . . . . . . . . . . . . . . . . . . 46 

3.3 Definition and properties of various convective schemes. 51 

4.1 Domain size and grid parameters for a square cylinder. . 66 

4.2 Domain size and parameters for a circular cylinder grid. . 68 

4.3 Temporal refinement tests for the flow past a square cylinder at Re = 200 (grid 
D1 - 136 x 118; SMART scheme). . . . . . . . . . . . . . . . . . . . . . . .. 83 

4.4 Temporal refinement tests for the flow past a circular cylinder at Re = 100 (grid 
D2 - 134 x 88; SMART scheme) ........................ " 84 

4.5 Flow past a square cylinder at Re = 250. Strouhal number and force coefficients 
computed with different convective schemes. ................... 85 

4.6 Flow past a square cylinder at Re = 100. Influence of the grid expansion factor 
,on the integral parameters (fmc/ H = 0.005, b.t* = 0.78 x 10-3 ). ....... 88 

4.7 Flow past a square cylinder at Re = 250. Influence of the near-wall distance on 
the integral parameters <Ie = 1.125, b.t* = 0.38 x 10-3 ). . . . . . . . . . . .. 88 

4.8 Comparison of two types of the grid refinement for the flow past a square cylinder 
at Re = 100. .................................... 88 

4.9 Domain size effect on the vortex shedding parameters for the flow past a square 
cylinder at Re = 100 (b.t* = 0.778 x 103 , b.nc/ H = 0.005, Ie = 1.125) ... 91 

4.10 Estimated error bands for the laminar vortex shedding results (b.nc/ H ~ 0.005, 
Ie ~ 1.125, domain D1, SMART). . . . . . . . . . . . . . . . . . . . . . . . .. 92 

4.11 Square cylinder. Predicted integral parameters as obtained with grid 0 1-136x 118 
and the SMART scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93 

4.12 Flow around a circular cylinder. Predicted integral parameters as obtained with 
the grid Dl-143x98 (see Table 4.2) and the SMART scheme. . . . . . . . . . .. 102 

4.13 Flow past a circular cylinder. Comparison of the computed Strouhal number and 
the drag coefficient (0 1-143x98, SMART scheme) with data of Williamson (1989) 
and simulations of Henderson (1995), respectively. ................ 103 

4.14 Previous predictions of the flow around two circular cylinders in tandem. . . . .. 108 

4.15 Predicted vortex shedding parameters for the flow around two circular cylinders in 
line as a function of L/ D: (a) Re := 200, (b) Re = 500. ............. 110 

4.16 A survey on the numerical studies for oscillating and combined uniform current 
and oscillating flows around a circular cylinder. . . . . . . . . . . . . . . . . .. 116 



LIST OF TABLES 

4.17 Oscillatory flow past a circular cylinder. Estimated numerical uncertainties for the 
Morison force coefficients (f3 = 196, b.t* = 3.66 X 10-3 , QUICK scheme). . .. 117 

4.18 Circular cylinder in laminar oscillatory flows. Predicted force coefficients in terms 
of the K c-number (Tos = 327.9888, grid 98 x 64, QUICK scheme). . . . . . .. 118 

4.19 Circular cylinder in current plus oscillations. Predicted variation of force coeffi-
cients with velocity ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 121 

5.1 Experimental conditions and measured integral vortex shedding parameters for the 
flow over a square cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 127 

5.2 Parameters of numerical grids used for computations of the turbulent flow past a 
square cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 129 

5.3 Temporal refinement tests for the turbulent flow past a square cylinder at Re = 
20000 (grid Dl - 139 x 122(a); SMART scheme). . . . . . . . . . . . . . . .. 137 

5.4 Turbulent flow around a square cylinder at Re = 20000. Effects of three convec-
tive schemes on the integral parameters. . . . . . . . . . . . . . . . . . . . . .. 138 

5.5 Turbulent flow around a square cylinder at Re = 20000. Grid refinement effects 
on the bulk parameters as obtained by present (a) and RNG (b) k - E models 
(b.t* = 0.0078, SMART scheme). . . . . . . . . . . . . . . . . . . . . . . . .. 141 

5.6 Influence of domain size on the vortex shedding parameters for the turbulent flow 
past a square cylinder at Re = 20000 (the present k - E model, SMART scheme, 
b.t* = 0.0078, b.nc/ H = 0.02). . . . . . . . . . . . . . . . . . . . . . . . . .. 143 

5.7 Estimated numerical errors for the turbulent vortex shedding results predicted by 
the present k - E model, the grid D1 - 139 x 122(a), b.t* = 0.0078 and SMART 
scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144 

5.8 Summary of computations on the turbulent vortex shedding from a square cylinder 
(Re ;:::: 20000): authors, turbulence models and numerical parameters. . .... , 146 

5.9 Present and previous predictions and measurements of integral parameters for the 
turbulent flow around a square cylinder. ...................... 147 

5.10 Parameters of numerical grids used to compute turbulent flows past a circular 
cylinder. . . ',' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 159 

5.11 Turbulent flow around a circular cylinder. Predicted integral parameters as ob­
tained with the unsteady (a) and the RNG (b) k - E model. . . . . . . . . . . .. 159 

A.I Summary of two-dimensional numerical simulations of nominally laminar flows 
around a square cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 172 

A.2 Summary of numerical simulations of nominally laminar flows around a circular 
cylinder ...................................... " 173 

A.3 Summary of previous numerical simulations of turbulent flows past a circular 
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . .. 174 

AA Summary of previous numerical simulations of turbulent flows past a square cylinder. 175 

VI 



List of Figures 

1.1 Characteristic flow regions for a circular cylinder: (a) steady separation, (b) vortex 
shedding. ...................................... 2 

1.2 Vortex shedding parameters vs. Re for a smooth circular cylinder in a uniform 
low-turbulence stream: the mean drag coefficient (top), r.m.s. lift coefficient (mid-
dle) and Strouhal number (bottom) ........................ " 5 

1.3 Vortex shedding parameters vs. Re for a smooth square cylinder in a uniform low-
turbulence stream: the mean drag coefficient (top) and Strouhal number (bottom). 7 

3.1 A typical control volume and the points-of--compass notation used for the cell-
centred two-dimensional structured grid.. . . . . . . 38 

3.2 Definition of upstream, central and downstream cells. . . . . . . . . . . . . . .. 49 

3.3 NVD diagram for several convective schemes. . . . . . . . . . . . . . . . . . .. 52 

3.4 Graphical representation of TVD (left) and CBC (right) criteria and NVD charac-
teristics of some bounded schemes. . . . . . . 53 

3.5 Application of the wall boundary conditions. . . . . 60 

4.1 Typical solution domain and boundary conditions. . . . . . . . . . . . . 66 
, 

4.2 Representative numerical grid of D1 - 136 x 118 for a square cylinder. 67 

4.3 Representative numerical grid D1 - 143 x 98 for a circular cylinder. . . 68 

4.4 Circular cylinder at Re = 100. Time histories of the drag coefficient (top) and lift 
coefficient (bottom) as obtained with two initial asymmetric perturbations. . . .. 72 

4.5 Time histories for the flow past a circular cylinder at Re = 105: drag coefficient 
(top), lift coefficient (middle), and angle of separation (bottom). ......... 73 

4.6 Streamline patterns for the flow past a circular cylinder at Re = 105: (a) symmet-
rical wake at t* = 8.25; (b) asymmetrical vortices at the instant t* = 61.96 when 
the drag coefficient has a minimum value (see also Fig. 4.5). . . . . . . . . . .. 74 

4.7 Development of vortex shedding past a circular cylinder at Re = 105. Streamline 
patterns showing the time evolution of the flow regimes after the onset of vortex 
shedding. ...................................... 75 

4.8 Development of vortex shedding past a circular cylinder at Re = 105. Stream­
line patterns obtained at moments when the lift coefficient has maximum values 
illustrate reduction of the recirculation region and disappearance of two coexisting 
shed vortices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76 

4.9 Periodic vortex shedding from a circular cylinder at Re = 105. Streamlines in the 
near wake representing a complete shedding cycle (successive plots at intervals of 
T/8). . .............. "......................... 77 

4.10 Model of periodic vortex shedding using topology of instantaneous streamlines 
(separatrices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 78 



LIST OF FIGURES 

4.11 Karman vortex street for a circular cylinder at Re = 105. Streamlines using fixed 
frame of reference (top) and with frame of reference in translation at velocity 
0.85 Uo (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79 

4.12 Streaklines for a circular cylinder at Re = 105: (a) computed at t* = 204.9 
(where the lift coefficient is at maximum); (b) photograph from experiments by S. 
Taneda, van Dyke (1982). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80 

4.13 Developed vortex shedding from a circular cylinder at Re = 105: the drag coeffi-
cient (top), lift coefficient (middle), and angle of separation (bottom). ...... 81 

4.14 Power spectra for the flow past a circular cylinder at Re = 105: drag coefficient 
(left), lift coefficient (middle), and angle of separation (right). . . . . . . . . . .. 82 

4.15 Flow past a square cylinder at Re = 200. Effect of the time step size on the vortex 
shedding parameters (grid 0 1-136x 118, SMART scheme). . . . . . . . . . . .. 84 

4.16 Flow past a square cylinder at Re = 250. Time history of the drag (left) and lift 
(right) coefficient as obtained with various convective schemes (grid 0 1-136x 118, 
tlt* = 3.89 x 10-3 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 

4.17 Flow past a square cylinder at Re = 250. Streaklines computed with different 
convective schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 87 

4.18 Flow past a square cylinder at Re = 100. Effect of the grid expansion on the drag 
coefficient (above) and lift coefficient (below). . . . . . . . . . . . . . . . . . .. 89 

4.19 Flow past a square cylinder at Re = 250. Effect of the near-wall distance on the 
drag coefficient (above) and the lift coefficient (below). . . . . . . . . . . . . .. 90 

4.20 Flow past a square cylinder at Re = 100. Variations of the Strouhal number (top, 
left), the mean drag, (top, right), r.m.s. drag (below, left) and r.m.s. lift (below, 
right) coefficients with the blockage factor.. . . . . . . . . . . . . . . . . . . .. 92 

4.21 Velocity vectors around a square cylinder as calculated at two Reynolds numbers: 
(top) Re = 100, (bottom) Re = 150. . . . . . . . . . . . . . . . . . . . . . . .. 94 

4.22 Time histories of the drag coefficient (left) and the lift coefficient (right) for the 
fiow around a square cylinder as calculated at different Reynolds numbers (grid 
o 1-136x 118, SMART scheme). .......................... 96 

4.23 Velocity vecto~s and streamlines around a square cylinder showing the flow reat­
tachment at the cylinder sides: (top) Re = 300, (middle) Re = 500, and (bottom) 
Re = 1000 (grid DI-136xl18, SMART scheme). . . . . . . . . . . . . . . . .. 97 

4.24 Flow around a square cylinder at Re = 300. Time traces of the lift coefficient as 
calculated with two initial perturbations (top) and without it (below). . . . . . .. 98 

4.25 Flow around a square cylinder at Re = 300. Time traces of the drag coefficient as 
calculated with two initial perturbations (top) and without it (below). . . . . . .. 98 

4.26 Square cylinder. Predicted and measured mean drag coefficients and Strouhal 
numbers (grids Dl-136x118 and D2-123x106; SMART scheme). . . . . . . . .. 99 

4.27 Time history of the drag coefficient (left) and the lift coefficient (righH for vortex 
shedding from a circular cylinder as a function of Reynolds numbers (grid 01-
143x98, SMART scheme). . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 101 

4.28 Flow past a circular cylinder. Comparison of the computed Strouhal numbers (the 
grids Dl-143x98 and D2-134x88; SMART scheme) with others. . . . . . . . .. 104 

4.29 Flow past a circular cylinder. Comparison of the computed mean drag coefficients 
(the grids DI-143x98 and D2-134x88; SMART scheme) with others. . . . . . .. 104 

4.30 Flow past a circular cylinder. Comparisons between 2-D and 3-D simulations and 
experiments (present predictions with the grid Dl-143 x 98 and SMART scheme). 106 

viii 



LIST OF FIGURES 

4.31 Two circular cylinders in line with the spacing ratio L / D = 4: the grid (top), 
streaklines for Re = 200 (middle) and time histories of the drag and lift coeffi-
cients also at Re = 200 (bottom). ......................... III 

4.32 Variation of the Strouhal number (a), mean drag (b) and lift coefficient amplitude 
(c) with cylinders spacing. ............................. 112 

4.33 Reynolds number effect on the mean drag coefficient of the upstream (top) and 
downstream (bottom) cylinder versus cylinder spacings. . . . . . . . . . . . . .. 112 

4.34 Circular cylinder in pure oscillatory flows. Computed drag coefficients versus time 
at Kc = 0.5,3, and 4 and (3 = 196 (the top curve shows the inlet velocity variation). 118 

4.35 Circular cylinder in pure oscillatory flows. Computed drag (left) and lift (right) 
coefficients versus time at various higher K c-numbers for (3 = 196 (top curves 
show the inlet velocity variation). . . . . . . . . . . . . . . . . . . . . . . . . .. 119 

4.36 Circular cylinder in pure oscillatory flows. Comparisons of Morison's drag (top) 
and inertia (middle) coefficients and the root-mean-square lift coefficient (bottom). 120 

4.37 Circular cylinder in current plus oscillations. Time histories of the drag (left) and 
lift (right) coefficients as a function of velocity ratio. ............... 121 

4.38 Circular cylinder in current plus oscillations. Morison's inertia coefficient (top) 
and other force coefficients (bottom) as obtained with K c = 4 and (3 = 200 
(present results: grid 98 x 64, D..t* = 2.5 . 10-3 , SMART scheme). ....... 122 

5.1 Numerical grid Dl - 139 x 122(a) and boundary conditions for the flow around 
a square cy linder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 128 

5.2 Effects of turbulence models on the turbulence intensities as calculated along the 
stagnation line for the steady flow approaching a circular cylinder. . . . . . . .. 131 

5.3 Turbulent flow past a square cylinder at Re = 20,000. Time evolution of the drag 
(top) and lift (bottom) coefficients as predicted by the standard and RNG k - E 

models (grid D1 - 139 x 122(a), SMART scheme). .. . . . . . . . . . . . .. 132 

5.4 Turbulent flow past a square cylinder at Re = 20,000. Time evolution of the drag 
(top) and lift (bottom) coefficients as predicted by RNG k - E model with two 
near-wall cell distances (grids Dl - 139 x 122(a, b), SMART scheme). . . . .. 133 

5.5 Turbulent flow ·past a square cylinder at Re = 20,000. Time evolution of the drag 
(top) and lift (bottom) coefficients as predicted by the k - E model before and after 
the unsteady modification. ............................. 134 

5.6 Effects of the k - E turbulence models on the time-averaged centreline distribution 
of the turbulent kinetic energy for the flow past a square cylinder at Re = 20000. 135 

5.7 Wall units Y* versus time as predicted by the k - E models (Re = 20000). . . .. 135 

5.8 Effects of the time-step size on the distribution of time-averaged flow variables: 
(left) the pressure coefficients, (right) the stream wise velocity and fluctuating ki-
netic energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 137 

5.9 Turbulent flow around a square cylinder at Re = 20000. Time traces of the drag 
(left) and lift (right) coefficients as calculated by three convective schemes. ... 139 

5.10 Effects of convective schemes on the distribution of time-averaged flow quanti-
ties: (left) the pressure coefficients, (right) the streamwise velocity and fluctuating 
kinetic energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 139 

5.11 Turbulent flow around a square cylinder at Re = 20000. Time traces of the drag 
(left) and lift (right) coefficients as obtained on three different numerical grids (the 
present k - E model with the SMART scheme and D..t* = 0.0078). . . . . . . .. 141 

lX 



LIST OF FIGURES 

5.12 Grid resolution effects on the distribution of time-averaged flow quantities: (left) 
the pressure coefficients, (right) the stream wise velocity and fluctuating kinetic 
energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142 

5.13 Domain size influence on the distributions of time-averaged flow quantities: (left) 
the pressure coefficients, (right) the streamwise velocity and fluctuating kinetic 
energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 143 

5.14 Instantaneous streamlines (top), velocity vectors (middle) and turbulent kinetic 
energy contours (bottom) as computed by the present k - E model at the phase 
corresponding to the maximum CL. ........................ 145 

5.15 Predicted and measured time-averaged (top) and r.m.s. (bottom) pressure coeffi-
cients around a square cylinder (Re = 20000).. . . . . . . . . . . . . . . . . .. 148 

5.16 Predicted and measured time-averaged velocity (top) and total fluctuating kinetic 
energy (bottom) along the centreline (Re = 20000). . . . . . . . . . . . . . . .. 150 

5.17 Centreline distributions of predicted and measured time-mean apparent normal 
Reynolds stresses in x (top) and y (bottom) directions (Re = 20000). ...... 151 

5.18 The time-averaged profiles of the Reynolds stress component < u2 ) (top), apparent 

component (u/2
) = < u2 + U;2) (middle) and global fluctuating kinetic energy k f 

(bottom) at several lateral cross-sections along the upper side of a square cylinder. 152 

5.19 Time traces of the pressure signal monitored at the middle of the top face: (a) 
measurements of Lyn (1992), (b) present computations. . . . . . . . . . . . . .. 153 

5.20 Predicted and measured phase-averaged (phases 1,9) axial (top) and vertical (bot-
tom) velocity profiles along the centreline (Re = 20000). . . . . . . . . . . . .. 155 

5.21 Computed and measured time-averaged and phase-averaged (phases 1,9 and 17) 
axial velocity profiles at several lateral cross-sections along the top face of a square 
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 156 

5.22 Computed and measured time-averaged and phase-averaged (phases 1, 9 and 17) 
lateral velocity profiles at several lateral cross-sections along the top face of a 
square cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157 

5.23 Numerical grid G1 used for the flow past a circular cylinder at Re = 1.4 x 105.. 158 

5.24 Circular cylinder. Time histories of the drag coefficient (right), the lift coefficient 
(left) and the separation angle (bottom) as calculated by the present k - E model. 160 

5.25 Flow past a circular cylinder at Re = 1.4 x 105 . Velocity vectors (top) and pres-
sure contours (bottom) as computed by the unsteady k - E model at t* = 117.6 
(minimum Cd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 161 

5.26 The predicted and measured time-averaged centreline velocity (top) and the wall 
pressure coefficient (bottom) for a circular cylinder (Re = 1.4 x 105 ). . . . . .. 162 

5.27 Predicted and measured time-averaged wall pressure coefficient for a circular 
cylinder (Re = 3.5 x 106 ) ............................ " 163 

5.28 Turbulent flow around a circular cylinder. Comparison of the computed mean drag 
coefficient (top) and the Strouhal number (bottom) with others. . . . . . . . . .. 164 

x 



Acknowledgements 

I am very grateful to Dr B.A. Younis for his constructive criticism, continuous support 

and encouragement throughout the course of this study. 

I would like to thank all the members and previous members of the Hydraulics Division 

with whom I had useful discussions, in particular to Prof. l.R. Chaplin, Dr K. Subbiah, 

Dr D. Cokljat, Dr B. Basara and Dr A. Razavi. 

My sincere thanks to Mr C. Parker for his comments regarding the final text of this thesis. 

I am especially indebted to my parents for their support and sacrifices. 

Dedicated to my wife Mirza and our son Vanja and daughter Dunja. 



Abstract 

This study describes the development and application of a two--<:limensional CFD method for vor­
tex shedding flows past square and circular cylinders. The overall approach can be regarded as a 
compromise between the accuracy and computational costs, especially for high-Reynolds number 
flows. The latter are modelled by variants of the k - E eddy-viscosity model which is used in 
conjunction with wall functions. 

The governing equations, expressed through Cartesian vector and tensor components, are dis­
cretised using the finite volume method with a colocated storage arrangement for all variables. 
Body-fitted (non-orthogonal) structured or block-structured numerical grids can be used. Fully­
implicit, first-order accurate time discretisation is adopted, while the space discretisation is for­
mally second-order accurate. In order to ensure a bounded solution, the high-resolution MIN­
MOD and SMART schemes are implemented. 

The numerical method is validated against experimental data for various laminar flow situ­
ations: (i) single square and circular cylinders in a uniform flow, (ii) two circular cylinders in 
tandem submerged in a uniform flow and (iii) a circular cylinder in oscillatory flows. In the case 
of the uniform flow over single cylinders, the issues affecting the accuracy and reliability of two­
dimensional numerical solutions are addressed. It is shown that numerical uncertainties caused 
by a choice of the solution domain width (the blockage) very often cancel time and space dis­
cretisation errors. Further, advantages of high-resolution bounded schemes such as the MINMOD 
and SMART are confirmed. Variations of the mean drag coefficient and Strouhal number with 
Reynolds number are accurately predicted for the Reynolds number below 200, i.e. for two­
dimensional flow conditions. For these conditions, some physical features of vortex shedding are 
emphasized. For other flow configurations, parametric studies are conducted to investigate effects 
of additional factors on the integral vortex shedding parameters and flow regimes. In all cases, the 
present results compare well to the published experimental and numerical data. 

Various versions of the k - E model are considered for turbulent flow predictions. A new 
model, with an unsteady modification related to the production of the dissipation rate, is proposed. 
This model and the RNGmodel are validated against data for vortex shedding f{'om single square 
and circular cylinders. In the case of a square cylinder (Re = 20,000), both models yield satis­
factory results for the integral parameters and most of the time-averaged and phase-averaged flow 
variables. These results stand comparison with those obtained by other models or LES methods. 
For a circular cylinder, the boundary layers are laminar before flow separation over a wide range 
of Reynolds numbers, up to 1 X 106

. On the other hand, the tested k - E models are based on 
the principal assumption that the flow is turbulent everywhere. Consequently, the flow separa­
tion is predicted wrongly which leads to unsQccessful predictions of other vortex shedding results. 
Better results are obtained for the postcritical regime (Re > 106), where the boundary layers are 

turbulent before separation. 
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Chapter 1 

INTRODUCTION 

1.1 The Vortex Shedding Phenomenon 

This thesis is concerned with the computation of (nominally) two-dimensional unsteady 

flows around square and circular cylinders normal to an unbounded stream. These sim­

ple geometries are examples of the wider category of bluff bodies which includes such 

structures as buildings, bridges, towers and offshore pipelines and platforms. A char­

acteristic feature of the flows around such geometries is the periodic or quasi-periodic 

alternate separation of fluid from the surfaces. This is the well-known phenomenon of 

vortex shedding. In non-mathematical terms, Lugt (1983) defines the vortex as "the ro­

tating motion of a multitude of material particles around a common center." Of course, 

there is n~ vortex without vorticity which is "the angular velocity of matter at a point in 

continuum space." The ,bluff body creates separated flow over a part of its surface and this 

is a precondition for the generation of vortices at the walls. Whether vortices will remain 

attached to the body, or will be separated (shed) from it, depends on the Reynolds number, 

Re. For a circular cylinder with the diameter D (Figure 1.1) placed in a moving fluid of 

viscosity J.L and density p and uniform velocity Uo, the Reynolds number is defined as: 

Re = pUoD . (1.1) 
J.L 

, 

An overall impression of the vortex-shedding phenomenon can be gained from Fig-

ure 4.12 which shows numerical (present work) and experimental visualizations of vortex 

shedding from a circular cylinder at Re = 105. 

Vortex shedding is a time-dependent process and is one which is usually strongly de­

pendent on the Reynolds number. Briefly, as the moving fluid approaches the cylinder 

(Figure 1.1), the pressure reaches a maximum at the stagnation point and boundary lay­

ers develop along the cylinder sides. At Reynolds number values in excess of 4.5, the 

boundary layers separate from each side under the influence of adverse pressure gradi-



INTRODUCTION 1.1 The Vortex Shedding Phenomenon 

(a) 

Uo, p, ~ i ~ 
~ i D "----/ ~ x 
=.~.? ........ _ ..... _.- .. 

Steady wake 

(b) 

Unsteady wake 

Figure 1.1: Characteristic flow regions for a circular cylinder: (a) steady separation, (b) 
vortex shedding. 

ents and form two free shear layers that enclose a pair of recirculation regions behind the 

cylinder (i.e. two attached vortices). According to Coutanceau and Defaye (1991), the 

flow remains steady, two-dimensional and laminar at Re below Re~ ~ 40 which marks 

the onset of the primary wake instability which introduces a vortex shedding regime. The 

laminar periodic wake of staggered vortices of opposite sign -the "von Karman vortex 

street"- characterizes vortex shedding for Re below a certain value of the Reynolds num­

ber (Re~D ~ 190 for a circular cylinder). Above this number, the two-dimensional wake 

undergoes a transition to a three-dimensional state and, later, to a turbulent state. For a 

circular cylinder, this occurs at Re~ ~ 1000. A change from the two-dimensional to the 

three-dimensional self-sustained flow is associated with a secondary wake instability of 

the vortex street. The wake transition regime is surprisingly rich in the three-dimensional 

vortex dynamics phenomena, as discussed recently by Williamson (1996). At Re > Re~ 
the fundamental shear flow instabilities induce turbulence, first in the separated shear lay­

ers and then in the boundary layers. Depending on the Reynolds number, different flow 

regimes can be identified, some of which do not exhibit regular vortex shedding. 

The alternate shedding of vortices from a bluff body alters the pressure field around it 

and causes fluctuations of surface pressure forces. These forces can be sufficient to cause 

flexible and lightly damped structures to oscillate. These oscillations may, in turn, interact 

with the flow leading to an aeroelastic response. If the vortex shedding frequency is close 

to the structure's natural frequency, self.:-induced oscillations may occur, with disastrous 

consequences to the stability of bridges, stacks, tall buildings, cooling towers, etc. The 

failure ofthe original Tacoma Narrows Bridge (USA) in 1940 (McCroskey, 1977) is a well 
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known example. Many other important parameters (e.g. the aerodynamic performance in 

terms of lift and drag, and the heat transfer coefficient) are influenced by vortex shedding. 

The phenomenon is therefore of interest to designers :of road vehicles, ships, aircrafts and 

their power plants, and heat exchange devices. 

The study of vortex shedding has attracted researchers since the sixteenth century 

when Leonardo da Vinci drew the movement of water around an obstacle in a stream 

(MacCurdy, 1954). It has also been observed for long that telegraphic wires in the wind 

vibrate and 'sing'. Clearly, the unsteady lift and drag forces, induced by vortex shed­

ding, excite an oscillatory motion of the elastic wires which, in turn, produce acoustical 

tones due to the periodic fluctuation in density and pressure. In his experiments on sound, 

Strouhal (1878) (see, e.g. Sarpkaya, 1979) found that the product of the vortex shedding 

frequency f and the wire diameter D, divided by the wind velocity Ua, was nearly con­

stant for a range of values. This combination of variables is now known as the Strouhal 

number: 

St = f D . 
Ua 

(1.2) 

In 1915, Lord Rayleigh normalized Strouhal frequency data using the St-number versus 

Re-number. Williamson (1996) compared these original data with modern measurements 

and found them to be in remarkable agreement. Benard (1908) (see Coutanceau and 

Defaye, 1991) appears to have been the first to visualize a regular pattern of two rows of 

staggered v0rtices behind a circular cylinder. This pattern is usually called the "Karman 

vortex street". Using inviscid-flow theory, von Karman (1911) (see, for example, Lamb, 

1932, p. 228) analysed the stability of two infinite parallel rows of equidistant vortices. 

Von Karman's analysis described the vortex patterns observed in the wake of bluff bodies 

and attracted many researches concerned with instability of vortex arrays. 

Over the years, the two complementary approaches of experimentation and computa­

tion were used to analyse vortex shedding flow problems. The sections that follow review 

some of the results obtained by these two approaches. 

1.2 Experimental Background 

Several review articles, including those of Lienhard (1966), Berger and Wille (1972), Mc­

Croskey (1977), Sarpkaya (1979), Bearman (1984), Basu (1985, 1986), Sarpkaya (1992), 

and Williamson (1996), report on the measurements of various vortex shedding parame­

ters. This section defines the parameters'that are commonly used and briefly presents the 

various flow regimes observed for fixed circular and square cylinders. 

3 
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Vortex shedding parameters 

The forces acting on a cylinder, and the dimensionless vortex shedding frequency, are a 

function of the Reynolds number. The total, time-dependent force exerted on the cylinder 

consists of the pressure force F p and viscous or friction force F v: 

F = 1 p n dA - 1 Tij nj dA = F p + F v . 
~Yl ~Yl 

(1.3) 

Here P is the pressure, Tij is the viscous stress tensor, dA and n = {nj} denote dif­

ferential surface area and its outward unit vector, respectively. The total force is usually 

decomposed into two components: one in the direction parallel to the oncoming stream 

(the drag force F D) and another in the direction normal to it (the lift force F d. The 

corresponding non-dimensional forces, namely total drag and lift coefficients are defined 

as: 

2FD 2FL 
CD = p U'6 D L' C L = p U'6 D L ' (1.4) 

where L is the cylinder length. Obviously, these coefficients also depend on time, and 

may thus be treated as the sum of a time-averaged and a fluctuating component. These 

quantities will hereafter be denoted by an over-bar - and a tilde - , respectively. Thus, 

for example, the drag coefficient is assembled as: 

- - - 1 l to+T 
CD ::;;: CD + CD, CD = - CD (t) dt . 

T to 
(1.5) 

The time-averaged effect of the fluctuating forces is represented by the root-mean-square 

(r.m.s.) values of the drag and lift coefficients. Thus, for example, the r.m.s. lift coefficient 

C~ reads: 

( 
-=- ) 1/2 [ 1 to+T ]1/2 C~ = Cr = T lo CI (t) dt ( 1.6) 

The static pressure is often made dimensionless through the definition of the pressure 

coefficient Cp: 

P-Po 
Cp = O.5pU'6 . ( 1.7) 

The power spectra of time-dependent quantities, such as the force coefficients or the 

velocity in the wake, can be used to determine the frequency of the shedding process. In 

the literature, the vortex shedding frequency f is generally associated with the dominant 

frequency in the power spectra of the lift fluctuations. Strouhal introduced the dimension­

less vortex shedding frequency, Equation (1.2). 
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Flow regimes 

Circular cylinder. In the case of a circular cylinder, the flow regimes were first defined by 

Roshko in 1954 (see Williamson, 1996) and recently by Williamson (1996). Coutanceau 

and Defaye (1991) gave an extensive description of the flow from the near wake to the far 

wake based on the flow visualizations. In Figure 1.2, the results from different sources 

are assembled to show the variation of C D, C~, and St with the Reynolds number. Note 

that data from other sources, obtained for Re beyond 104
, are considerably more scat­

tered. This is evident when comparing the present figures with ones compiled by Lien­

hard (1966), Ericsson (1980), James et al. (1980), Cantwell and Coles (1983), - all for 

CD and St, and by Basu (1985) and West and Apelt (1993) for C~. In practice, the lift 

?:D 

3 '. 
\ 

\\ 
\ \ 

2 \\ 
\ \ 

\\: 
" " 

" ..... ~ 
--.: 

A 

.-.-. Tritton (1959) 

- Wieselsberger (1923) 
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o Schewe (1983) 

B c 

o~~~~~~~~~~~~~~~~~~ 
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o 
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0.2 
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~ ..... ~ ..... . 

Figure 1.2: Vortex shedding parameters vs. Re for a smooth circular cylinder in a uniform 
low-turbulence stream: the mean drag coefficient (top), r.m.s. lift coefficient (middle) and 
Strouhal number (bottom). 

forces can be measured either over the whole span of a cylinder (Schewe, 1983) or only 
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on the mid-span section (e.g. West and Apelt, 1993). Different results will be obtained 

if there is no perfect correlation between the fluctuating forces along the span, Figure 1.2 

(middle). 

The following flow regimes can be identified (with reference to the labels shown on 
Figure 1.2): 

• Laminar steady flow: Re < 40 (regime up to A). As Re increases, the drag coeffi­
cient decreases. 

• Unstable wake and laminar vortex shedding: Re >::: 40 - 190 (regime A-B). The 
drag coefficient continues to decrease, while the Strouhal number shows a strong 
increase. 

• Wake transitions: Re >::: 190 - 1000 (regime B-C). The wake becomes three­
dimensional and undergoes a transition to a turbulent state. 

• Shear layer transition regime: Re >::: 1, 000 - 3 X 105 (regime C-D). A transition to 
turbulence in the shear layers is the main feature of this subcritical regime. At Re >::: 
10,000 the transition occurs close to the separation point. However, it is preceded 
by laminar separation of the boundary layers. For Re > 104 , the separation point 
has a quasi-constant value of 800 (Achenbach, 1968; Britter et al., 1979). The fairly 
constant values of (CD = 1.0 - 1.2, and St >::: 0.20) correspond with a turbulent 
motion in the vortex street and in the major portion of the shear layers. 

• Asymmetric reattachment (critical regime): Re>::: (3 - 4) x 105 (regime D-E). 

The tr~nsition from laminar to turbulent flow happens just downstream from the 
laminar separation point (Os = 800 - 1000). The critical flow regime appears when 
one of the shear lay.ers reattaches itself to the cylinder wall, forming a separation­
reattachment bubble. The revitalized turbulent boundary layer separates again, only 
much further downstream (Os = 1200 - 1400; Achenbach, 1968). This is followed 
by a significant decrease of the wake width and drag coefficient (the 'drag crisis'), 
and by an increase of St. In this transitional regime, with no regular vortex shed­
ding, the flow is extremely sensitive to three-dimensional disturbances, the free­
stream turbulence and surface roughness . 

• Symmetric reattachment (supercritical regime): Re >::: 4 x 105 
- 106 (regime E-F). 

The mean symmetric flow, with two separation-reattachment bubbles, and nearly 
constant minimal CD>::: 0.22 and maximal St >::: 0.47 characterize more or less 
regular vortex shedding in the supercritical flow regime . 

• Boundary layer transition (postcritical regime): Re > 106 (regime from F). At 
Re above>::: 106 

, the boundary layers become turbulent before separating at Os >::: 
(110 -120)0. For Re > 5 x 106 , the dominant frequency St >::: 0.27 - 0.29 indicates 
a strong vortex shedding process (see also Roshko,1961 and Jones et al., 1969). The 
drag coefficient appears nearly constant (C D >::: 0.5) over this postcritical regime. 
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Square cylinder. In contrast to circular cylinder flows, bluff bodies with fixed sepa­

ration points, like rectangular cylinders, have attracted much less attention. The available 

experimental results for a square cylinder are presented in Figure 1.3. Similarity of the 
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8 g 
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._._. Delany & Sorensen (1953) 
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Re 

Figure 1.3: Vortex shedding parameters vs. Re for a smooth square cylinder in a uniform 
low-turbulence stream: the mean drag coefficient (top) and Strouhal number (bottom). 
Single Re-number results marked as 'others': Pocha (1971), Lee (1975), Bearman and 
Obasaju (1982), Obasaju (1983), Sarpkaya and Ihrig (1986), Durao et al. (1988) and Lyn 
(1992). 

flow evolution here with that of a circular cylinder is obvious. At high Re, the flow does 

not exhibit the remarkable changes associated with a transition phenomenon of the critical 

regime seen for the case of a circular cylinder. According to Okajima (1982), the aero­

dynamic parameters are generally less sensitive to changes in the Re if the flow separates 

at fixed points. At low Re, - Re < 150, Franke (1991), the separation points are fixed 

at the rear corners of the square cylinder. At higher Re, the separation happens at the 

front corners, and as for the circular cylinder, a transition from laminar to turbulent vortex 

street can be expected. For example, the power spectra of the wake velocities measured 

by Okajima (1982) showed secondary frequencies at Re = 250. Beyond Re = 104 , the 

mean drag coefficient and Strouhal number attain nearly constant values (CD = 2 - 2.2 

and St = 0.12 - 0.14). 
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Finally, it should be mentioned that, apart from the Reynolds number, vortex shedding 

from circular and square cylinders is affected by the surface roughness, the free stream 

turbulence, the cylinder aspect ratio and wind tunnel blockage. The influence of the above 

parameters was reviewed by Basu (1985, 1986), Bell (1986), Coutanceau and Defaye 

(1991), and Williamson (1996). 

1.3 Computational Background 

The computational approach has followed the progress of computer technology in terms 

of the computing speed and memory. There are two issues to consider: 

• the definition and closure of the governing transport equations, and 

• the solution of these equations by an appropriate numerical method. 

The first issue deals with turbulence, "the chief outstanding difficulty of our subject" 

(Lamb, 1932, p. 663; Bradshaw, 1994). Turbulent flows are three-dimensional and un­

steady, irregular, rotational, diffusive and dissipative. They are also exactly described by 

the laws of conservation of mass, momentum, and energy. These are non-linear partial 

differential equations whose direct solution is, unfortunately, beyond the capabilities of 

existing computing resources, except, perhaps, for simple geometries and at low Reynolds 

numbers. T~is is due to the wide range of time and length scales that increases with the 

Reynolds number. Direct Numerical Simulations (DNS) must resolve all length and time 

scales. The smallest of these scales correspond to the Kolmogorov length and time scales 

1\ and Tk : 

_ (v3) 1/4 (V) 1/2 
i k - - , Tk = -

E E 
( 1.8) 

where E represents the viscous dissipation rate per unit mass. It is a reasonable prog­

nosis that the computer capacity and speed will always be limited. The alternative to 

DNS, and the efficient way to compute practical turbulent flows at present, is to construct 

statistical models following the suggestion of Reynolds (1895) that dynamical quantities 

(e.g. velocity and pressure) may be split into a mean part and a random, fluctuating part, 

Ui = Ui + U,i, P = p + p. Substitution of these quantities into the conservation equations 

and application of the ensemble averaging procedure leads to the ensemble-averaged or 

Reynolds-Averaged Navier-Stokes equations (RANS). These contain unknown products 

of one-point double velocity fluctuations'- the Reynolds stresses (- (U,iU,j)) - that require 

determination by using a (statistical) turbulence model. Another route, which still re­

quires extensive computational effort, but is potentially the next best alternative to DNS, 
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is Large Eddy Simulation (LES). The LES resolves the large-scale eddy motion spec­

ified by a filtering operation which, like the ensemble-averaging operation, introduces 

unknown sub-grid-scale stresses. These stresses represent the effects of the small-scale 

motion and are modelled by sub-grid scale models. 

Whichever approach is used, the governing equations of the resolved flow need to be 

solved numerically. The governing equations can be formulated either in terms of a stream 

function 'ljJ and vorticity w (for two-dimensional flows w = fh) or in terms of primitive 

variables, i.e. the velocity components and the pressure. Solution methods that have been 

used for vortex shedding calculations include discrete vortex methods, finite difference, 

finite element, and finite volume methods. To our knowledge, Fromm and Harlow (1963) 

were the first to compute the vortex shedding flow. They analysed the uniform laminar 

flow past a normal flat plate. Since then,. a great number of computational studies have 

been done, especially on laminar flows around a circular cylinder. 

1.3.1 Previous studies on laminar vortex shedding flows 

Bibliographical (since 1980) and other notes on the numerical computations of the flows 

around square and circular cylinders are included in Appendix A, Table A.l and Ta­

ble A.2. Studies performed prior to 1980 were restricted to coarse numerical grids and 

those have adversely affected their accuracy. The predictions are typically presented in 

the form of the basic physical parameters such as the Strouhal number, drag and lift co­

efficients, etc. The dependence on Reynolds numbers (for which the flow is laminar ac­

cording to the experimen~al observations) has been investigated (for the circular cylinder) 

by Gresho et al. (1984), Borthwick (1986), Braza et al. (1986), Lecointe and and Piquet 

(1989), Karniadakis and Triantafyllou (1989), Franke et al. (1990), Sa and Chang (1991), 

and Li et al. (1991). Although the grid-size and time-step independent solutions have not 

been reported in all these studies, the numerical results for St and CD are in reasonable 

agreement with the measurements. A similar conclusion can be made for the computa­

tions of the vortex shedding from a square cylinder; here Davis and Moore (1982), Younis 

(1988), Franke et al. (1990), Arnal et al. (1991), Suzuki et al. (1993), H'Yang and Yao 

(1997), and Sohankar et al. (1997) should be mentioned. Comparisons of most previous 

numerical results for St and CD with experiments are presented in Figures 4.26, 4.28, 

4.29 and 4.30. 

Since the pioneering study of Fromm and Harlow (1963), instantaneous streamlines 

and streaklines have been used by many authors. Eaton (1987) produced and analysed the 

sequence of the instantaneous streamlines around a circular cylinder (Re = 110) which 

showed what Perry et al. (1982) called "instantaneous alleyways"; areas through which 

fluid is drawn into the recirculation region. He also demonstrated agreement between 
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his and Gerrard's (1978) experimental streakline plots. Sa and Chang (1991), Wang and 

Dalton (1991a), and Kim and Benson (1992) also produced streakline patterns at Re = 
60 - 150, similar to those depicted in literature (e.g. van Dyke, 1982). For a square 

cylinder, Davis and Moore's (1982) streaklines calculated at Re = 250 showed the centres 

of the shed vortices to lie on the wake's mid-plane. This is contrary to the streakline plots 

of Pereira and Durst (1988) and Kim and Benson (1992) which show these centres to lie 

on either side of the mid-plane. 

1.3.2 Previous studies on turbulent vortex shedding flows 

Previous computations of turbulent vortex shedding flows are summarized in Appendix A, 

Table A.3 and Table A.4. These computations have been performed by employing Rey­

nolds stress models, Large-Eddy Simulations and by solving the Navier-Stokes equations 

without a turbulence model. Various turbulence models were used, e.g. algebraic (zero 

equation), two-equation eddy-viscosity models and differential Reynolds-stress transport 

models. In most cases, the usual wall functions approach was employed to provide the 

boundary conditions. In some cases, the near-wall region was resolved by a one-equation 

model or by using a low Reynolds number closure. 

Studies employing a turbulence model 

The Baldwin-Lomax algebraic model (Baldwin & Lomax, 1978) was used to compute 

vortex shedding flows by Stansby and Smith (1989) and Deng et al. (1993a, 1993b). 

Stansby and Smith calculated the flow past a circular cylinder at Re = 3.6 x 106 (the 

postcritical regime). By introducing in their method an exponential vortex decay, their re­

sults for the mean surface pressure coefficient, the Strouhal number and force coefficients 

followed the measured trends. Similar results for the postcritical regime were obtained 

by Deng et al. (1993b). Their results for lower values of Re, however, did not capture 

the well-known 'drag crisis': the Strouhal number was nearly constant (St = 0.25) while 

the drag coefficient was overpredicted in the critical regime and underpredicted in the 

subcritical regime. This failure of the Baldwin-Lomax model to simulate the separating 

(laminar) boundary layer on a smooth surface is to be expected. Nevertheless, the same 

model applied to the flow around a square cylinder (Re = 22,000), where separation is 

determined by the front corners, produced satisfactory results for both the global param­

eters (St, CD) and for the time-averaged and phase-averaged quantities. 

The widely used k - E model does ~ot perform well in bluff-body flows where the 

normal stresses control the production of turbulence in the stagnation region. The over­

production of the turbulence energy in such regions is often seen as the main reason for the 
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very weak (or even non-existent) vortex shedding obtained when using the standard k - E 

model (Franke and Rodi, 1991; Kato and Launder, 1993). Franke and Rodi (1991) used 

both wall functions and the one-equation Norris-Reynolds model (Norris and Reynolds, 

1975) to bridge the near-wall region and obtained poor results in both cases. Dawes 

(1992), on the other hand, reported satisfactory results by using the low-Re number k - E 

model of Lam and Bremhorst (1981). Dawes simulated the flow around a circular cylin­

der for Re = 4,000, using both fixed and adapted unstructured grids. By contrast, the 

Nagano-Tagawa's low-Re number model (Nagano and Tagawa, 1990) tested by Deng et 

al. (1993b) failed to produce acceptable results for both circular and square cylinders. 

Hadid et al. (1991) showed that vortex shedding from a square cylinder can be sustained 

using the non-linear k - E model with standard wall functions. However, no quantitative 

comparisons were presented and thus no assessment of the real capabilities of that model 

can be made. 

Another industry favourite, the RNG k - E model, usually outperforms the standard 

k - E model in flows where regions of flow separation or stagnation are present. The main 

difference between the standard and the RNG models arises from the way in which the 

production term in the dissipation rate equation is modelled. The RNG production term 

produces smaller levels of the turbulent kinetic energy ahead of the bluff body and this, 

apparently, allows the sustainable development of vortex shedding. This was verified by 

Orszag et al. (1993) for a circular cylinder and by Benodekar et al. (1994) for a square 

cylinder. Note that Orszag et al. reported the use of the low Re number variant of the RNG 

model witho'ut enough details about that variant. They simulated the flow at Re = 14,500 

and obtained the St valu~ of 0.185 which is very close to the experimental value of 0.19. 

Benodekar et al. used the high Re model with wall functions. The calculated results for 

the velocity profiles showed fairly good agreement with measurements. Unfortunately, 

the force coefficients were not reported in either of these two studies. 

Kato and Launder (1993) modified the standard k - E model by introducing the vor­

ticity parameter into the calculation of the turbulent kinetic energy production. In this 

way the spurious production of the turbulent kinetic energy around the stagnation point 

was avoided. Although not consistent with the eddy viscosity modelling of. the Reynolds 

stresses, this modification improved prediction of vortex shedding from a square cylinder 

at Re = 22,000. The Kato and Launder modification was later used by Bosch and Rodi 

(1996) in the simulation of vortex shedding from a square cylinder near a wall. Reason­

able predictions were obtained over the whole range of gap widths between the cylinder 

and wall. 

Physically better sounded (but also more costly) Reynolds stress transport models do 

not produce excessive rates of the turbulent kinetic energy in the stagnation regions since 
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they resolve properly the stress anisotropy. Franke (1991) performed calculations for the 

flow around the square and circular cylinders employing the model of Launder, Reece and 

Rodi (1975). In general, the model used with wall functions produced better results than 

one combined with the two-layer approach. In the case of a square cylinder, the results 

obtained for the time-averaged as well as phase-averaged quantities show reasonably good 

agreement with experiments of Lyn (1992). In comparison with the measured values, 

the periodic fluctuations were overpredicted while turbulent ones were underpredicted. 

However, the predictions of the flow around a circular cylinder at Re = 140,000 were not 

satisfactory. This can be expected since the thin laminar boundary layer, which prevails 

up to the separation point, was not properly resolved. 

LES methods 

Vortex shedding simulations with LES have typically utilized the simple Smagorinsky 

model (Smagorinsky, 1963) for the subgrid-scale Reynolds stresses. LES are, by nature, 

three-dimensional, but some studies were performed as two-dimensional calculations, 

e.g. Song and Yuan (1990), Murakami et al. (1992), and Sakamoto et al. (1993). Song 

and Yuan presented satisfactory results for vortex shedding past a circular cylinder at two 

high values of Reynolds numbers, corresponding to the subcritical and transcritical flow 

regimes. The predicted pressure distributions, drag and lift coefficients, St, and the time­

averaged velocity distributions in the wake compared favourably with the available data. 

However, their approach cannot be regarded as consistent since they fixed the separation 

points empirically. Also, the boundary layers were not resolved, but approximated by a 

combination of slip, partial-slip and no-slip boundary conditions. Murakami et al. and 

Sakamoto et al. applied a "law of the wall" type boundary condition (Launder and Spald­

ing, 1974) and compared results of two- and three-dimensional calculations for the flow 

around a two dimensional square cylinder at Re = 105 . The measured distributions of 

the time-averaged and r.m.s. pressure coefficients on the cylinder walls were reproduced 

quite well in the three dimensional computations. It was concluded that 2D LES calcula­

tions are not acceptable, since the mechanism of vortex stretching, which is an important 

factor in the process of energy transfer, cannot be reproduced in such computations. 

Murakami and Mochida (1995) performed 3D computations of vortex shedding from 

a square cylinder at Re = 22,000. Although the extent of the computational domain in 

the spanwise direction was only 2H (l04x69xl0 grid nodes), the results were similar to 

those of Franke (1991) obtained with a differential Reynolds-stress transport model. The 

LES of Frank and Mauch (1993) were done on the finer grid (128x64x64 cells) using no­

slip conditions at the wall. They presented only St for the flow past a square cylinder at 

Re in the range 110-40,000. At Re = 40,000, the calculated St is slightly higher than its 
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measured value. Finally, the vortex shedding flow from a square cylinder at Re = 22, 000 

was selected as a test case for the Workshop on LES of Flows past Bluff Bodies held in 

Germany in 1995. The results, reported in Rodi et al. (1997), demonstrate the ability of 

LES to reproduce most of the physical features associated with vortex shedding. Never­

theless, there is also evidence from the same studies of significant differences between the 

various LES results. 

Computations without turbulence modelling 

Several authors have assumed flow homogeneity along the cylinder axis and computed 

the high Reynolds-number flow by solving the two-dimensional Navier-Stokes equations 

without the use of a turbulence model. This is clearly a 'hybrid' approach since it is 

neither DNS (in that it is two-dimensional) nor is it LES or unsteady RANS (hence the 

absence of a sub-grid scale or turbulence model). Examples of this approach can be seen 

in the works of Braza et al. (1990, 1992), Tamura and Kuwahara (1990), Tamura et al. 

(1990), Kondo (1993), and Kakuda and Tosaka (1993). 

Tamura and co-workers also investigated the reliability of two-dimensional calcula­

tions by comparing the results of two- and three-dimensional cases obtained under the 

same numerical conditions. They observed important differences between the computed 

2D and 3D flow patterns around circular and square cylinders. In the case of the 3D 

computations, the high-frequency fluctuations of the drag and lift coefficients which char­

acterize the 2D calculations, were absent. The average drag coefficient and r.m.s. lift 

coefficient were smaller than that for the 2D flow, and in satisfactory agreement with the 

experimental results. For the flow past the circular cylinder, the 'drag crisis', where the 

CD is suddenly reduced, has been also successfully simulated. Tamura et al. used a grid 

of 400 x 100 x 40 nodes and a third-order accurate scheme, hence it is unlikely that their 

calculations have succeeded in resolving the small-scale turbulent motion or in capturing 

the laminar/turbulence tra.nsition of the boundary layers ( Franke and Rodi (1991), Deng 

et al. (1993a), Ferziger (1993). It can thus be argued that the surprisingly good pre­

dictions of the drag coefficient were simply an accidental consequence of using ~ coarse 

grid. 

1.4 The Present Approach and Its Justification 

In order to find a serious use in fluid-engineering applications, the numerical simulation 

of vortex shedding flows should be done by an accurate and computationally cost­

effective CFD method. Accuracy of a CFD solution is affected by three groups of sys­

tematic errors (Dernirdzic et al., 1997): 
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1. Modelling errors (modelling of turbulent flows, simplifications of solution domains 

and boundary conditions, etc.), 

2. Discretisation errors (discretisation of space and time), 

3. Convergence errors (the difference between iterative and exact solutions of the dis­

cretised equations). 

The convergence errors can be easily reduced to a negligible level. To ensure small 

spatial discretisation errors, the commonly used second-order accurate methods require 

a large number of computational cells. The reason behind this is a fundamental prob­

lem with the discretisation of convection by second-order accurate central differencing 

(i.e. linear interpolation). Namely, the central differencing often produces unstable and 

unbounded solutions on a coarse numerical grid. Thus, alternative high-order accurate 

and bounded schemes need to be considered. Regarding the time discretisation, the fully 

implicit first-order accurate scheme is usually preferred because of its stability and effi­

ciency. 

The Reynolds stress modelling is an obvious choice to deal with practical turbulent 

flows. Simpler and efficient turbulence models such as the eddy viscosity models intro­

duce, in general, larger modelling errors than more complex Reynolds stress transport 

models. As the review of turbulent vortex shedding simulations shows, the standard k - E 

model is not adequate to capture the realistic vortex shedding process for flows around 

square and circular cylinders. Alternative, the RNG model, as well as the modification 

due to Kato and Launder (1993), seem to perform better in these type of flows. Therefore, 

there is the scope to test and refine the conventional two-equation k - E models in order 

to determine their capabilities and limitations in the area of unsteady computations. In 

this area, however, the turbulence models calibrated against steady-flow data may need to 

be specifically modified to take explicit account of the interactions between the organized 

and the random fluid moti0ns (Younis, 1988). The optimum form of such a modification 

is yet to be determined. 

The main source of the modelling errors is associated with the near-wall tre'atment 

of turbulence. In practice, the wall-function approach (Launder and Spalding, 1974) is 

usually used. The alternatives are low Reynolds-number models (see Jones and Laun­

der, 1972; Patel et aI., 1985; Shih and Mansour, 1990; Rodi and Mansour, 1993) and 

one-equation models that have been used as a near-wall component of the two-layer tur­

bulence models (see Rodi, 1991; Rodi et aI., 1993). The low Reynolds-number models 

need to be integrated down to the wall and have not been sufficiently tested in complex 

flows. Their 'damping functions', for example, which work well for attached bound­

ary layers, are not always suitable for separated flows, Rodi (1991), Ferziger and Peric 
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(1996). In the case of vortex shedding, Deng et al. (1993b) obtained unsatisfactory results 

with the tested low Reynolds-number model. The one-equation models need less com­

putational points in order to resolve the viscous sublayer and seem better placed than the 

two-equation low Reynolds number models. However, Franke (1991) reported that these 

models did not perform better than wall functions in computations of vortex shedding 

from a square cylinder. It can be argued that the present wall functions cannot resolve the 

near-wall modelling problem properly since they are based on the logarithmic velocity 

profile which is not supported by measurements or DNS results in general flow situations. 

However, they offer a simple and computationally economical near-wall treatment. 

1.5 Objectives 

Having in mind the above considerations, the objectives of the present study are: 

1. To develop the (two-dimensional) finite volume numerical method which is at least 
second order accurate in space and can handle complex geometries. 

2. To address the numerical uncertainties that arise from both spatial and temporal 
discretisation errors and from other sources such as a simplification of the solution 

domains and boundary conditions. 

3. To validate the numerical method by established experimental and numerical data 
for various laminar vortex shedding flow configurations (i.e. in the absence of errors 
caused by tu;bulence modelling). These configurations include 

• uniform flow around, single square and circular cylinders, 

• uniform flow around two circular cylinders in tandem, 

• oscillatory flow past a single circular cylinder with or without steady current. 

4. To analyse some physical features of the vortex shedding flows encountered in the 

above (laminar) flow configurations. 

5. To examine modelling unsteady turbulent flows by two-equation k - E models used 
in conjunction with the wall functions and propose adequate modification(s). 

6. To validate appropriate variants of the k - E model through comparisons witfi avail­
able experimental data for vortex shedding from square and circular cylinders. 

1.6 Contents of Thesis 

This thesis is written in six chapters. Chapter 2 presents the mathematical framework 

. which includes the conservation equations of incompressible, unsteady flows, their en­

semble-averaged counterparts and the closure of these averaged equations by the two­

equation k - E models. Several variants of the standard k - E model are analysed and 
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a simple modification, aimed at sensitizing the standard k - E model to the organized 

unsteadiness, is proposed. The wall functions used to bridge the near-wall region are 

outlined. 

Chapter 3 describes the finite-volume numerical method that employs the nonortho­

gonal, body fitted grids, with the colocated variable arrangement. Term-by-term dis­

cretisation of a general transport equation over control volumes (arranged in a structured 

manner) is explained. The first-order accurate fully implicit time differencing is em­

ployed, while spatial differencing is formally second order accurate. For convection, 

the high-resolution bounded schemes such as MINMOD and SMART are formulated for 

non-uniform grids and implemented. A segregated solution algorithm, based on the SIM­

PLE method, is described, including the implementation of various boundary conditions. 

The numerical results for the laminar vortex shedding flows are presented and dis­

cussed in Chapter 4. For single circular and square cylinders, emphases are placed on the 

numerical uncertainties, and benchmarking by available experimental and other numeri­

cal data. The limitations of two-dimensional simulations are also addressed. In the case 

of other flow configurations (uniform flow around two circular cylinders in tandem and a 

single circular cylinder submerged in oscillatory flows), the effects of additional factors 

(apart from the Reynolds number) are quantified and compared with existing experimental 

data. 

Chapter 5 is concerned with the assessment of the k - f turbulence models in turbulent 

vortex shedding flows from square and circular cylinders. After the preliminary assess­

ment, the RNG and the modified, unsteady, k - E model have yielded the most satisfac­

tory results and they are selected for further computations. A number of refinement tests 

is performed to determine the sensitivity of numerical simulations to various numerical 

parameters associated with the temporal and spatial discretisation, and with the solution 

domain size. The results obtained by the selected models are compared with available ex­

perimental data and with other numerical simulations. Comprehensive comparisons are 

made for the case of a square cylinder at Re = 20, 000, for which the measurements of 

e,nsemble-mean flow and turbulence quantities are available. 

The summary of this thesis, its achievements and suggestions for future work are given 

in Chapter 6. 
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Chapter 2 

MATHEMATICAL FORMULATION 

2.1 Introduction 

The basic laws of physics are expressed through the corresponding transport equations 

which accurately describe fluid flows, including the phenomenon of turbulence. There 

is no dispute about the validity of these equations but for the present their complete (nu­

merical) solutions are restricted to simple, low Reynolds number situations. Engineers, 

who are only interested in obtaining the average quantities of a turbulent flow, usually 

use the Reynolds averaged approach. The main difficulty with this (statistical) approach 

comes from the appearance of the turbulent Reynolds stresses that must be modelled. The 

purpose of this chapter is to introduce the Reynolds stress modelling practice and present 

corresponding mathem~tical formulations. 

First, Section 2.2 recalls the fundamental conservation equations in the Eulerian for­

mulation. Then, the ensemble averaging procedure that leads to the Reynolds averaged 

equations is presented in Section 2.3. Features of the averaged equations and the closure 

problem are outlined in Section 2.4. Section 2.5 summarizes the exact transport equations 

for the Reynolds stresses. Then the two-equation k - f models, which will be used in 

this work, are reviewed in Section 2.6. Section 2.7 outlines some deficiencies of the k - f 

!Uodels and presents modifications which can improve predictions of the vortex shedding 

flows. The near-wall treatment by using wall functions is presented in Section 2.8. Cqn­

cluding remarks about this chapter are given in Section 2.9. 

2.2 The Conservation Equations 

In fluid flows, the laws of continuum physics, namely the conservation of mass, momen­

tum, energy and entropy are usually applied to a certain spatial region - control volume 

rather than to a given mass of fluid. For the infinitesimally small control volume the con-
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servation equations can be transformed into either a differential coordinate-free form or 

a form specific to a chosen coordinate system. Here we use the Cartesian coordinate sys­

tem (x, y, z), with the unit base vectors i, j and k along the x, y and z coordinate axes, 

respectively. For compactness, tensor or index notation is employed, where, for instance, 

the position vector r can be written as: 

3 

r = :Ci1i representing r = xi + yj + zk = L .Tiii . 

i=l 

(2.1) 

The instantaneous velocity Oi and pressure P as well as other flow quantities vary both 

with position r and time t. However, for incompressible and isothermal flows of New­

tonian fluids that are considered throughout this work, the density p = p, and dynamic 

viscosity Jl = J-L are constant. The partial differential equations for conservation of mass, 

the continuity equation, and of momentum, the Navier-Stokes equations, can be written 

as follows (cf. Batchelor, 1967 or Schlichting, 1968): 

(2.2) 

(2.3) 

In the above momentum equation, hi denotes body forces per unit mass which are ne­

glected in this work, while Tij is the viscous stress tensor. For Newtonian fluids, the 

viscous stresses are proportional to the rate of deformation (Stokes' law): 

(2.4) 

where Sij is the rate of instantaneous strain tensor defined as: 

S. = ~ (OOi oOj.) 
ZJ 2 ~ + ~ , 

UXj UXi 
(2.5) 

and 6ij is Kronecker symbol. 

2.3 Averaging Concepts 

Osborne Reynolds (1895) introduced the concept of decomposing the instantaneous val­

ues of velocity and pressure into average and fluctuating parts. Average values can be 

defined in different ways, Monin and Yaglom (1971). The time-averaging procedure is 

suitable for flows whose "mean" does not change with time (statistically stationary flows). 
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Accordingly, any flow variable 1)(r, t), which is generally a random function of position 

r and time t, is given as the sum of the time-averaged quantity 1>(r) and the fluctuating 

part 'P' (r, t): 

1)(r, t) 1> ( r) + 'P' ( r, t) 

1>(r) 1 l to+T
/
2 ~ 

lim T 1>(r, t)dt , 
T--+oo to-T/2 

(2.6) 

where T is the averaging interval which, in practice, should be at least two orders of mag­

nitude larger than the characteristic turbulence time-scale (Bradshaw, 1996). The choice 

of the initial time to is usually arbitrary. Since an experiment or a numerical simulation 

defines 1) as a discrete function of t, the average value in Equation (2.6), assuming the 

same sampling interval !::::..t, is redefined as: 

_ 1 N ~ 
1>(r) = lim - 2: 1>(r, tn), tn = to + n!::::..t . 

N--+oo N n=O 
(2.7) 

A general type of averaging is the ensemble averaging and it can be applied to any kind of 

flow. The ensemble average of random functions of space and time is defined as the arith­

metic mean over many macroscopically identical realizations of 1)(r, t), see for example 

Landahl and Mollo-Christensen (1986): 

/1)(r, t)) = lim ~ t 1)(m)(r, t) , 
\ M--+oo,M m=O 

(2.8) 

where the symbol ( ) denotes the ensemble average, and 1)(m) (r, t) is the m-th realization 

of 1)(r, t). For fluid flows, the macroscopically identical realization means that statisti­

cally independent flows are exposed to the same set of initial and boundary conditions. 

Obviously, the ensemble averaged quantity may be time dependent. Using this broader 

definition of the averaging process, any flow variable can be decomposed into the ensem­

ble mean 1> and random fluctuation 'P around the ensemble-mean value 1> : 

. 1)(r, t) 1>(r, t) + 'P(r, t) , 

1>(r, t) (2.9) 

We assume the following averaging rules, Tennekes and Lumley (1972): 

('P(r, t)) = 0 , 

( 'P$) = ('P) 1> = 0 , 

( 1) ~) = (( 1> + 'P)( w + VJ)) = 1> W + ('PVJ) (2.10) 
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Therefore, Equation (2.9) splits the instantaneous motion, represented by the velocity field 

Ui (r, t), into an organized (ensemble averaged) part Ui = (Ui ) and a stochastic, turbulent 

part Ui . The corresponding single-point second moments (UiUj) (see the last term in 

Equation (2.10) ) are rarely zero. They are interpreted as apparent stresses within the fluid 

(known also as the kinematic Reynolds stresses) responsible for momentum transport by 

the turbulence. If one supposes that the coherent structures have their (generally random) 

phases of occurrence f)(m)(t) at location r, then the phase average of any quantity at a 

constant phase '13 and a particular location r is (cf. Minh and Kourta, 1993): 

/<I>(r, f))) = lim ~ t <I>(m) [r,19 + f)(m) (t)] . 
\ M--+oo M m=O 

(2.11) 

For unsteady periodic flows, characterized by the constant period T, the above relation 

implies the periodic phase average given as: 

(<I>(r, f))) = (<I>(r, t)) = J~oo ~ ~O <I>(m) [r, t + m T] , (2.12) 

where t is now the instance corresponding to the particular phase f). The phase-averaged 

quantity (not averaged over the phase but at the particular phase) can be further decom­

posed into a global mean (long time-averaged) component and into a periodic mean com­

ponent: 

(<I>(r, t)) = CP(r, t) = cp(r) + ~(r, t) . (2.13) 

The global mean value ~ is given by Equation (2.6), and assuming the periodic component 

with zero mean (~ = 0) and uncorrelated periodic and random motions (~rp = 0), the 

following relations are obvious: 

<I>(r, t) CP(r) + ~(r, t) + rp(r, t) , 

rp' (r, t) ~(r, t) + rp(r, t) . (2.14) 

In the literature, the above relation is known as the triple decomposition. It shows a way 

to distinguish the periodic, coherent motion from the turbulent motion. 

2.4 Mean-Flow Equations 

The ensemble or phase averaging procedure, based on the decomposition Ui = Ui + 
Ui, P = p + p, and applied to the equations of motion, Equations (2.2) and (2.3), yields 

the following set of the Reynolds-averaged Navier-Stokes (RANS) equations: 

(2.15) 
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(2.16) 

where Tij denotes the mean viscous stress tensor: 

(2.17) 

proportional to the mean strain rate tensor Sij: 

S. = ~ (aUi au.i ) 
7 • .1 2 a + a . X· X· J 7. 

(2.18) 

The last term is an unknown ensemble-averaged product of one-point random velocity 

fluctuations: 

(2.19) 

This term is known as the Reynolds-stress tensor. Physically, the Reynolds stresses rep­

resent the effect of the stochastic turbulent motion on the mean flow. Thus, the mean 

flow, seen as unsteady, usually large-scale, organized motion, and represented by the 

ensemble-averaged quantities, should be resolved numerically, irrespective of its size. 

On the other hand, fluid structures which have a random physical character are modelled 

through the Reynolds stresses. 

In practice, the Rey~olds stresses can be obtained either from the constitutive relation 

analogous to Equation (2.17) for Tij or by solving modelled transport equations for the 

Reynolds stresses. The first approacl) is known as first-order, eddy-viscosity modelling 

(EVM), while the second approach describes second-order or differential Reynolds­

stress models (DSM). Besides the mean-velocity gradients and the Reynolds stresses, 

the turbqlent kinetic energy k and its viscous dissipation rate E are used to determine all 

the unknown higher-order correlations. 

2.5 Thrbulence Transport Equations 

The Reynolds-stress transport equation 

Derivation of the turbulence transport equations can be found in Hinze (1975) or Speziale 

(1991). Subtracting Equation (2.16) from (2.3) one obtains the fluctuating momentum 

equation written in a shorthand form £( Ui) = O. The Reynolds-stress equations result 

from the ensemble average of the produds: 

(2.20) 
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and they are given as: 

(2.21) 

The left-hand side of the above equation represents the local rate of change and convective 
transport of P \'U(Uj). The terms on the right-hand side are: 

• vtt - the diffusion by molecular transport, 

• Pij - the production rate by mean velocity gradients, 

• ITij - the pressure-strain correlation term (the redistribution tensor), 

• ci.i - the dissipation rate tensor, and 

• v~~ - the turbulent diffusion by velocity and pressure fluctuations. 

In order to close the Rexnolds-stress transport equation (2.21), the pressure-strain, dissi­

pation and turbulent diffusion require modelling. 

The turbulent kinetic energy equation 

Contract jon of Equation (2.21) (i.e setting i = j) and division by 2 yields a transport 

equation for the turbulent kinetic energy per unit mass - a scalar defined as half the sum 

of the normal Reynolds stresses: 

Its transport equation is: 

(2.23) 
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Phenomenologically, the local and spatial rates of change of k are balanced by the rates 

of viscous diffusion Dr, production Pk> dissipation E , and turbulent diffusion D[. The 

turbulent kinetic energy, i.e. Jk" has been used to represent the turbulence velocity scale. 

The turbulent dissipation rate transport equation 

Combined with k, the isotropic part of the dissipation rate tensor Eij 

(2.24) 

has been a very popular turbulence quantity to describe the turbulence time and length 

scales. Its transport equation is given as the moment: 

(2.25) 

Thus, E is governed by the following scalar equation: 

(2.26) 

Again,· one can identify the terms on the right-hand side of the E-equation as the viscous 

diffusion D~, the production Pf = Pfl + P; + P: + P; , the viscous destruction YEo and 

t~e turbulent diffusion D;. Tennekes and Lumley (1972) analysed the order of magnitude 

of terms in the transport equation of fluctuating vorticity correlation (WiWi). Note that "'{i 

is a random part of instantaneous vorticity Oi: 

(2.27) 

i.e. Oi = ni + Wi. They have shown that at high turbulence Reynolds numbers Ret» 1, 

where Ret is defined as: 

(2.28) 
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the total rate of change of E , its production by vortex stretching P; and viscous destruction 

YE are of the order of O(Re;1/2), while all other terms are of the order of O(Ret l ) or 

less. Since E = v (WiWi) for homogeneous flows, Tennekes and Lumley's analysis has 

been widely extrapolated to the E-balance, which is therefore at high Ret dominated by 

the difference P; - YE • The DNS data for the core region of the low-Re channel flow, 

Mansour et al. (1988), confirm the analysis of Tennekes and Lumley. However, near the 

wall the production terms by deformation of mean flow Pel and P; are of the same order 

as the P; term. The relatively smaller gradient production term p~3 is comparable to the 

turbulent diffusion V;. 

2.6 Modelling the Reynolds-Stress Tensor 

The ensemble-averaging introduces the unknown Reynolds stresses Rij = - P (UiUj) in 

the momentum equations. Consequently the Reynolds-stress closure problem arises, that 

is, the Reynolds stresses have to be determined by the turbulence model. The current 

turbulence models can be basically classified into three groups (Hanjalic, 1994), namely: 

• Eddy Viscosity Models (EVM), 

• Reynolds stress transport equation models (Differential Stress Models - DSM), and 

• Hybrid models, like Algebraic Stress Models (ASM), that are hierarchically be­

tween EVM and DSM models. 

With the exception of ASM models; both EVM and DSM models have been used to 

compute vortex shedding flows around bluff bodies. In this work, the two-equation EVM 

models are employed and their description is given below. 

2.6.1 The eddy-viscosity formulation 

These models are based on Bousinessq's analogy between molecular and turbulent trans­

port in which the Reynolds stresses are obtained from a "constitutive" equation similar to 

Equation (2.17): 

2 
--pko· + 2I1 t 5·· 3 1J t-'" 1J' (2.29) 

where /1t is the turbulent or eddy viscosity. The first term on the right-hand side of 

Equation (2.29) was added after Boussinesq to ensure that the model contracts properly. 

It represents the mean turbulence pressure which is usually added to the unknown static 

pressure of the resolved motion P by replacing it by the sum (P + ~ pk). By using 
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different arguments - analogy with the kinetic theory of gases, dimensional analysis and 

phenomenological models (see for example Speziale, 1991), the turbulent viscosity is 

taken to be: 

(2.30) 

with £t, tf, and Vt denoting characteristic turbulence length-, time- and velocity scales, 

respectively. 

2.6.2 Two-equation k - E models 

Together with the mean flow equations, transport equations for two turbulence parameters, 

that define characteristic turbulence scales for the turbulent viscosity, Equation (2.30), 

are solved in these models. Since Kolmogorov's pioneering work 1941 (cf. Spalding, 

1991), the turbulent energy k has been used without exception as the first variable in 

two-equation models. 

In order to close the equation of k, one can assume that its spatial gradient drives 

the turbulent transport by triple product of velocity fluctuations. The same assumption is 

physically unsound for the transport by pressure fluctuations, Bradshaw (1994). Since it 

appears that the turbulent transport by the velocity fluctuations is dominant one, modelling 

of both terms by a gradient transport hypothesis: 

T 8 [L ] 8 (ILt 8k) 
1)k = --8 -p (UkUk'Uj) + (pUj) = -8 . --8. ' 

Xj 2 x.7 (Jk xJ 
(2.31) 

can be considered as an intentional approximation. A non-dimensional constant (Jk ~ 1 

is the effective Prandtl number for the diffusion of k. 

Harlow and Nakayama (1967) introduced the turbulent dissipation rate E ex: k3/ 2 I £t 

as the second turbulence scaling variable. Other alternative variables have also been used 

- interesting comments have been given by Spalding (1991) and Wilcox (1993b). Based 

on the work of Davydov (1961),'Hanjalic (1970) (see also Hanjalic and Launder, 1972) 

proposed the modelled E-equation for high Re-number flows. The gradient transport 

hypothesis is used to represent the turbulent diffusion term 1);: 
, 

(2.32) 

At high Re-numbers the source term Sf = Pf - Y f ~ P; - Y f is assumed to be propor­

tional to the production and dissipation of k, scaled by turbulence time scale klE (see for 

example Hanjalic, 1994 or Rodi and Mansour, 1993) 

(2.33) 
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However, other researches, among them Yakhot et al. (1992), Yakhot and Smith (1992), 

Jovanovic et al. (1995), argue that the term Cd PkE/ k approximates the production term 

P}, while the term Cf2 E
2 /k represents the difference of two dominant terms (P; - Yf)' 

Hanjalic (1970) also established empirical coefficients for high Re-number flows that 

differ a little from values proposed by other authors (cf. Jones and Launder, 1972, and 

Launder and Spalding, 1974). Thus the basic k - E model, often referred to as the standard 

k - E model (SKE), is described by the following equations: 

k2 

J-lt = pC!l - , 
E 

(2.34) 

(2.35) 

(2.36) 

where Pk is the production of the turbulent kinetic energy. The production of k is given 

as: 

(2.37) 

with 5 representing the strain tensor invariant defined by 

(2.38) 

The Renormalization Group Theory (RNG) applied to turbulence modelling by Yak­

hot and Orszag (1986), and the modification to E-equation by Yakhot et al. (1992) (not 

strictly based on the RNG theory) offers an alternative RNG k - E model. Compared to 

the basic k - E model, the E-equation has now an additional production term ( - PfR (5*)) 

which is supposed to model the term P; (the production by the mean velocity gradient), 

thus: 

R * ( 5*) 5* 
P f (5 ) = 1 - 50 1 + ;30(5*)3 , (2.39) 

5* = 5~ , (2.40) 
E 

where 50 = 4.38 and;3o = 0.012. The .model coefficients associated with the standard 

and RNG k - E models are given in Table 2.1, where now the coefficient C:1 replaces the 

coefficient Cd in Equation (2.36). 
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k - E model Cf.L ak a f Cd C;l C€2 
Standard 0.09 1.0 1.3 1.45 1.45 1.90 

RNG 0.0845 0.719 0.719 1.42 1.42 - P:-(S*) 1.68 

Table 2.1: Model constants for the high Reynolds number k - E models. 

The above two-equation models represent the simplest and complete turbulence clo­

sures based on the linear relationship between the Reynolds stress tensor and local mean 

strain rate tensor, Equation (2.29), where the proportionality coefficient is a scalar quan­

tity - the turbulent viscosity /1t. This simple framework is computationally efficient but 

has some physical shortcomings. The relation (2.29) can be expressed through anisotropy 

stress tensor bij : 

b. = ~ '( (UiUj) - ~5.) = -C ~s. 
lJ 2 k 3 lJ f.L E lJ' (2.41) 

In reality, the stress anisotropy is far from what is predicted by the above model. Well­

known examples, where the linear relation (2.29) or (2.41) badly predicts the normal 

stresses, are homogeneous shear flows and the fully developed flow in non-circular ducts 

where the turbulence-driven secondary flow is not captured. The linear models work 

well for simple shear flows and even for some recirculating flows dominated by pres­

sure gradients - see the recent review of Hanjalic (1994). However, for complex flows 

(three-dimensional), involving separation, streamline curvature, rotation, buoyancy and 
, 

other effects, the k - E model can give satisfactory results if adequate modifications are 

introduced. Those that can improve the predictions of turbulent vortex shedding flows are 

considered in the next section. 

2.7 Thrbulence Model Development 

Ideally, the turbulence model should be able to describe correctly the flow phenomena 

which take place in characteristic flow areas such as the stagnation region, the bound­

ary layers, the shear layers and the wake (Figure 1.1). Unfortunately, the k - E model 

used in conjunction with the wall functions cannot simulate the transition to turbulence 

in the laminar boundary layers' and/or predict accurately the points of flow separation and 

reattachment. Therefore, there is limited scope to improve the performance of the con­

ventional k - E model in stagnation flows. 'Conventional' is used here to describe models 

that are calibrated with reference to steady-flow data. When separation is unsteady, intu­

ition suggests that the conventional models should be modified for unsteady flows to take 

into account the effects of the organized (periodic) flow structures (Younis, 1988). This 
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section considers modifications related to the conventional k - E model and introduces a 

new, unsteady modification. 

2.7.1 Modifications to the conventional k - E model 

By exploiting the potential flow solution, it can be shown that the flow approaching a 

stagnation point is governed by the normal strains Sxx = ~Syy ex: O.5UoD2 / x 3 (the x­

coordinate has the same direction as the approaching flow and starts from the cylinder 

centre). The shear strain is negligible (Sxy < < Sxx) and so is the vorticity n. The 

production of the turbulent kinetic energy, Equation (2.37), will be incorrectly obtained 

due to the inability of the k - E model to resolve the stress anisotropy there (note that 

the shear stress production in that region is negligible). It was reported that the linear 

RNG model performs better than the standard one in regions around the stagnation point 

(Orszag et aI., 1993), i.e. in front of the bluff body. On the other hand, the standard k - E 

model overpredicts the level of the turbulent kinetic energy, and, transported downstream, 

this excessive level of k can seriously affect the accuracy of model predictions. Illustrative 

examples, apart from those related to vortex shedding (Section 1.3.2), were presented by 

Taulbee and Tran (1988) (flow around a circular cylinder), Launder (1991) (flow over a 

rectangular obstacle at the wall) and Craft et aI. (1993) (impinging jet flow). 

As observed by Durbin (1996), the transport equations for k and E are coupled and 

during an iterative solution the turbulent time scale 

k 
Tt =­

E 
(2.42) 

can be sufficiently large (especially in the case of the standard k - E model) as to diminish 

the production of E: 

(2.43) 

1.'his consequently leads to high levels of turbulent energy. Imposing the realizability 

constraint on the eddy-viscosity relation for the Reynolds stresses, written in the prin-
\ 

cipal axes of Sij, Durbin (1996) derived an upper bound on the turbulent time scale. 

This approach and other strategies which sensibly amplify the production of E will pre­

vent excessive levels of the turbulent kinetic energy in the stagnation flow region. For 

example, in the RNG model the production term in the dissipation equation depends on 

the non-dimensional strain invariant S* = S k / E which provides increased values of the 

E-production (obviously for S* > S~ = 4.38, Equation (2.39)). 

The idea of Hanjalic and Launder (1980) was to promote the influence of irrotational 

deformations or equivalently to augment the effects of normal strains. Their original 
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proposal can be expressed as: 

C* Cf C [22 
d = d - f3 S2 ' (2.44) 

with C~1 = 4.44, CE3 = 3. Note that [2 denotes the mean vorticity tensor invariant, which 

is defined as: 

(2.45) 

where Wi.i is the mean vorticity (rotation) tensor: 

W _ ~ (aUi _ aui ) 
l) - . 

2 ax.i a.'Ei (2.46) 

If one applies the above proposal to the shear flow (as intended by Hanjalic and Launder), 

where [22 ~ S2 - S~n (the strain invariant S2 can be split into the normal (irrotational) part 

S~n and shear (rotational) part S~s), the basic idea of the preferential influence of normal 

strains (stresses) can be clearly demonstrated by assuming that (C~1 - C(3 ) is greater (or 

equal) than the original constant Cd = 1.44, thus: 

(2.47) 

Albeit not tensor-invariant, the above preferential dissipation modification (PDM) can 

be implemented in the streamline direction (2D cases) as proposed by Leschziner and 

Rodi (1981). Various values for the constants C~1 and Cf3 have been reported in the liter­

ature; Leschziner and Rodi used C;1 = 2.24 and CE3 = 0.8 for steady flow computations. 

Due to small rotational strains in the 'stagnation flow region, the effective coefficient C;1 

is much higher (order of 2) than for the standard model. This reduces the levels of k in 

this region. 

Another simple idea, emanating from Kato and Launder (1993), has been exploited 

recently in order to avoid the high levels of k in the stagnation region. Kato and Launder 

calculated the turbulent energy production Pk from the following expression: 

(2.4~) 

As mentioned earlier, [2 is virtually zero at the stagnation point and the Kato-Launder 

modification prevents the excessive growth of k. Applied to the vortex shedding flows 

around a square cylinder in a free stream (Kato and Launder, 1993) and near the wall 

(Bosch and Rodi, 1996) it yielded reasonable predictions. Jin and Braza (1994) consid­

ered a similar idea for unsteady separated flows around airfoils. They calculated Pk by 

using the vorticity invariant only: 

(2.49) 
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The ideas of Kato and Launder and Jin and Braza can be implemented in a consistent way 

by redefining the eddy-viscosity Vt. In this work, a new formulation for the time scale, 

denoted as Tw , which can replace the usual turbulent time scale Tt in an eddy viscosity 

equation l.1t = CJ.Lk 2 IE = CJ.LkTt. will be investigated. This formulation reads: 

(2.50) 

The time scale (here Tw) is probably a more complex function of the turbulent and Kol­

mogorov time scales but the above simple relation achieves similar effects for stagnation 

flows as the modifications of Kato and Launder (1993) or Jin and Braza (1995). 

2.7.2 Unsteady modification 

In the past, turbulence models were developed with reference to statistically steady flows. 

Therefore, there is cause to question whether these models are applicable to the dynamics 

and turbulence of unsteady flows where both organized (periodic) and random turbulent 

fluctuations coexist; see also Younis (1988) and Minh and Kourta (1993). In his comments 

on turbulence, Lumley (1992) considered the most suitable choice for the time scale of 

a material region. He proposed a transport equation for an inverse time scale S and a 

dissipation rate model that depends on the history of this time scale. More precisely, 

only the production term of the dissipation equation differs from the standard modelling 

practice for E. This termjs written as: 

(2.51) 

and for near equilibrium flows the inverse time scale S becomes the strain invariant S. The 

initial results for the plain free jet indicated better agreement with data than the standard 

k - E model. 

Obviously, Lumley's idea focuses on the definition of a time scale that is used to 

calculate the production term of the dissipation rate. Therefore, as suggested earlier by 

Younis (1988), there is the scope to sensitize the production of E to the effects of unsteady 

periodicity while preserving the simplicity and robustness of the k - E model. Aft~r 
various possible strategies, the following functional form for the model coefficient C:1 

was developed: 

C* =C (l+c~la(q+k)latl) 
d d tE q+k ' (2.52) 

where q represents kinetic energy per unit mass of the ensemble-mean flow: 

(2.53) 
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A new coefficient Ct is introduced; its value is taken as Ct = 0.38 assigned by computer 

optimization. Although the physical importance of the above unsteady modification will 

be sought through its results, possible justification for this proposal are given below. 

We recognize the existence of various length and time scales in turbulent flows. In 

order to bring into play the time scale of the organized, periodic motion it is instructive to 

recall the definition of the Taylor micro-scale A (Lesieur, 1987, p. 91): 

A= (2.54) 

By analogy with the above definition, the time scale of periodic motion can be introduced 

as: 

(if) if 
((oq/ot)2) - loq/otl ' (2.55) 

where q is the periodic component of the ensemble-mean kinetic energy. The latter can 

be written as: 

( ~) 1 U2 - -q= q ="2 i =q+q. (2.56) 

The periodic component q is unknown during an iterative solution. Since oq / at = oq / at, 
one can decide to use the,ensemble-mean value q instead of q in Equation (2.55). In order 

to avoid the theoretical singular solution when using q, the turbulent kinetic energy was 

added to the mean flow energy so that,Tp reads in a final form as: 

T, ex q+k 
p lo(q + k)/Dtl 

(2.57) 

It remains to look for a functional form which will take into account both the usual tur­

bulent time scale Tt = k / E and the time scale of periodic motion Tp. A simple linear 

combination of inverse values written below 

(2.58) 

leads to Equation (2.52) for the modified coefficient C;l' 

2.8 Near-Wall Treatment 

The models presented so far are of the 'high Reynolds number' type in that they are not 

applicable in the near-wall region. The latter is characterized by high velocity gradients 
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and dominant molecular effects. In essence, the wall modifies the mean flow and the 

turbulence in its vicinity through viscous as well as non-viscous effects, the latter being 

due to the kinematic blocking of the velocity fluctuations normal to the wall (see, for 

example, Durbin, 1991). Also, the fluctuating pressure field is modified by the presence 

of the wall. In practice, the above effects have been modelled together by using either low 

Reynolds number turbulence models or wall function methods. The wall functions, which 

are used in the present work, are described below. 

The universal velocity profile in the near-wall region, the "law of the wall", forms the 

basis of the 'wall-function' approach. It is given as: 

(2.59) 

(2.60) 

+ pUTy 
Y =-- (2.61) 

fl' 

where U
T 

is the friction velocity, y+ is the non-dimensional distance of the near-wall 

point from the wall and Tw denotes the wall shear stress. Further, K, ~ 0.41 is the von 

Karman constant, while E is another empirical constant whose value depends on the wall 

roughness; for smooth 'Yalls E ~ 9. The logarithmic velocity profile (log-law) exists 

for simple boundary layer flows in local equilibrium, that is when Pk = Eo It is valid 

for turbulent layer (y+ > 30) and also within the buffer zone (5 :S y+ :S 30) where the 

different constants K, and E apply. For convenience, the buffer zone can be excluded by 

extending the viscous and turbulent layers up to their point of intersection (y+ ~ 11.6). 

In terms of Prandtl's mixing-length theory, the log-law can be obtained by assuming that 

the turbulence length scale em in Equation (2.30) is proportional to y: 

(2.62) 

When the turbulent layer is in local equilibrium, the following relations can be derived 

(say at point P within the turbulent layer): 

U C l/4kl/2 k _ U; 
T = " p or p - 0' 

V
C

" 

(2.63) 

Ep 
u3 C3/ 4e/2 

T "p 

K,yp K,yp 
(2.64) 

fl-t C1/ 4kl/2 PK,UTYP = PK,,, p yp. (2.65) 
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The iterative solution of Equation (2.59) yields Tw , and Equations (2.63) and (2.64) can 

be then used to specify the boundary conditions for k and E. 

Most flows,however, do not generally follow the log-law and turbulence is far from 

the local equilibrium. By assuming that Prandtl-Kolmogorov relation for eddy viscosity 

near the wall, Equation (2.65) is valid, an integration of: 

_ au _ 1/4 1/2 au 
Tw - Pt-

a 
- PK,C/1 k V-a ' 

Y Y 
(2.66) 

gives Launder and Spalding's (1974) log-low: 

U ~ In(EY;) , 
UT K, * 

(2.67) 

U* C 1/ 4 k 1/ 2 
/1 ' , (2.68) 

Y* U*YP 
-P 

1.1 
(2.69) 

The ratio (U*/UT ) can be seen as a non-equilibrium index that changes the slope of the 

velocity profile in the turbulent layer (cf. Kim and Choudhury, 1995). For U*/UT = 1 

the universal log-law, Equation(2.59), is recovered. Thus, we use the above equation to 

evaluate, explicitly, the wall shear stress: 

(2.70) 

The value of the turbulence kinetic energy at the node P is obtained from the solution of 

its equation with the production rate calculated from: 

(au) PPk = Tw 8 . 
. Y log-law 

(2.71) 

The value and the diffusion flux of k at the wall are taken to be zero. The transport 

equation of E is not solved for the near-wall cells - its value is fixed according to Equa­

tion (2.64) which assumes that the turbulence is in local equilibrium. The same value IS 
assigned to E which appears in the k-equation. 

Both the traditional, Equation (2.59), and Launder and Spalding's log-law, Equa­

tion (2.67), are based on the assumption of a constant shear stress through the near­

wall layer. However, Launder and Spalding's approach can take into account some non­

equilibrium departures expressed through the ratio (U*/UT ), i.e. when the production of 

k is not in balance with E. Also, the direct relation between the wall shear stress and near­

wall velocity, Equation (2.70), ensures that the correct wall shear-stress sign is obtained, 

33 



MATHEMATICAL FORMULATION 2.9 Closure 

and avoids numerical difficulties associated with the use of the standard logarithmic pro­

file (2.59) near separation points. 

Many alternative variations on the wall function methods have been reported in the 

literature (e.g. Chieng and Launder, 1980; Amano, 1985; Launder, 1988; Ciofalo and 

Collins, 1989; Kim and Choudhury, 1995). They all consider the near-wall cell as one 

divided into the viscous and turbulent layer (two-layer wall function approach). This 

leads to more elaborate reconstructions of the average values of k and E at the near­

wall cells. Note that Kim and Choudhury extended this two-layer approach to include the 

pressure gradient effect. Each of these alternative methods was validated against a limited 

number of experiments, without producing significant improvements to justify its use in 

preference to the standard formulation. 

2.9 Closure 

This chapter presented the basic equations of incompressible, unsteady turbulent flows 

and considered the closure of the ensemble-averaged equations. The mathematical back­

ground of the two-equation k - E models was emphasized, together with the physical ar­

guments that were used to justify these models. Various modifications, related mainly to 

the generation term of the E-equation, and their performances were discussed. It appeared 

that the RNG model could be a good choice to calculate flows that include stagnation and 

recirculation regions. This model, the preferential dissipation modification, originally due 

to Hanjalic and Launder (1980), and two new modifications proposed in this Chapter will 

be tested in Chapter 5. Finally, the important issue of near-wall modelling by the wall 

functions was discussed. 
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Chapter 3 

NUMERICAL METHOD 

3.1 Introduction 

This chapter presents the main features of the numerical method employed in this work. 

As discussed in Chapter 2, description of the flow field requires the solution of a coupled 

system of nonlinear differential equations, together with specified initial and boundary 

conditions. These equations need to be discretised in order to obtain a system of algebraic 

equations at a set of discrete locations in space and time. A typical algebraic equation for 

a general variable ¢ at node P, surrounded by N (internal) neighbouring nodes denoted as 

NJ , .J = 1, N, may be written as: 

N 

ap¢p = LaJ¢N] + Sp, 
J=l 

(3.1) 

where ap and aJ are coefficients, and Sp is the source term. Thus, the discretisation pro­

cess converts the differential transport equations into a set of algebraic equations. Their 

solution describes the flow field by variables values at a finite number of discrete points in 

space and time. The discretisation method selected here is the finite volume method which 

uses the integral form of transport equations applied to a finite set of non-overlapping re­

gions called control volumes (CV) or cells. The Cartesian coordinate system is used and 

the vector and tensor quantities are defined in terms of Cartesian components. In thi~ 

way the strong conservation form of the transport equations can be preserved. The two­

dimensional flow solving code used in this work can handle block-structured grids. It is 

derived from one developed by Peric (1985) for single-block structured grids and steady 

flows. 

The chapter continues with Section 3.2 which considers a generic integral transport 

equation which is the starting point for the finite-volume method. Section 3.3 describes 

the discretisation procedure. It considers first the numerical grid and geometrical data 

. which are required to calculate various surface and volume integrals. Then the time in-
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tegration process is outlined, followed by details about the evaluation of the fluxes and 

the source terms. The central and upwind convective differencing schemes are also con­

sidered here. The resulting system of algebraic equations is then briefly presented. The 

high-resolution schemes are introduced in Section 3.4. The pressure-velocity coupling 

is achieved by the iterative SIMPLE algorithm which is presented in Section 3.5. Imple­

mentation of boundary conditions is explained in Section 3.6. Finally, the overall solution 

procedure is outlined in Section 3.7. 

3.2 General Forms of Transport Equations 

It is convenient to consider a single generic transport equation for a variable cp, where cp 
can stand for a scalar (k, f), vector (Ui ) or tensor ((UiUj)) field. The differential form of 

this equation can be written as: 

(3.2) 

where r ¢ is the diffusion or exchange coefficient for the quantity cp and s¢ denotes the 

specific source or sink of cp. Another, integral, form of the governing equations can be 

obtained by carrying out an integration over a given volume V, bounded by piecewise 

smooth surfaces A with the outward unit normal vector n = nkik. Gauss's divergence 

theorem for the vector field (and its related theorems for scalar and tensor fields) is used 

(Borisenko and Tarapov, 1968): 

Iv \7( .. ·)dV = f~ n(·· ·)dA, (3.3) 

where the \7 operator is \7 = ik -aD and ( ... ) denotes some quantity or expression pre-
Xk 

ceded when necessary by a dot (-) or a cross (x). Thus, the integral form of the general 

equation is: 

:t Iv pcp dV 
'--v----"' 

Rate of change: R 

Iv s~ dV + fA st nk dA . 
, " .. 

Sources: S 

(3.4) 

The source terms in the integral relation (3.4) S are in balance with the terms on the 

left-hand side of the equation representing the rate of change R and the net fluxes by 

convection C and diffusion V. They consist of the real (volumetric) source terms s~ and 

. those ( s: ) that are related to the cell-face area ( the diffusion flux not represented by 
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Cp(Oe/J/OXk) and the pressure forces). The diffusion coefficients and source terms are 

given in Table 3.1 for flow variables which describe the k - E model. Depending on the 

cP rq, SV q, sA q, 

Ui fL + fLt P!bi = 0 (fL + fLt)~~~ - (P + ~pk) 
k fL + l!:l. p(Pk - E) 0 

ak 

E fL + I:!:.!. P(CdPk - Cf2 E)f 0 
a, 

Table 3.1: Source terms and diffusion coefficients in the integral transport equation (3.4). 

type of the field that the variable cP represents, the generic equations (3.2) and (3.4) are 

either scalars or vectors. Note that the continuity equation is not represented by a generic 

equation; combined with the momentum equation it provides an equation for the pressure 

or pressure correction. 

3.3 Discretisation Procedure 

3.3.1 Numerical grids and related issues 

The numerical grid subdivides the solution domain into a finite number of control vol­

umes. The boundary-conforming and non-orthogonal grids are an obvious choice for 

complex geometries since they offer greater flexibility in the distribution of the grid lines. 

Of the different types of grid arrangements (structured, block-structured and unstruc­

tured), the structured and the block-structured grids (both made of quadrilaterals) are 

used in this study. The latter are generated within a number of non-overlapping sub­

domains (blocks) that represent the solution domain of interest. 

A number of possibilities exist regarding the locations on a grid where the various de­

pendent variables may be stored. The present flow solver utilizes a colocated arrangement 

for all the variables solved forand-thus only one set of control volumes is required. Specif­

ic~lly, all the variables are stored at the geometric centre of the CV, denoted hereafter by , 
P. A typical two-dimensional CV surrounding point P is shown in Figure 3.1. The centres 

of the neighbouring CV s to the west, east, south and north are labelled as W, E, Sand N, 

while the lowercase letters denote CV faces. For reasons related to the solution strategy, 

values of the mass fluxes that enter or leave a particular CV are not stored at the centres 

but, rather, at the middle of the east and north faces of each cell. The governing equations 

are solved for all the interior computational nodes, i.e. over all physical CVs. Boundary 

nodes of the exterior CV faces (i.e. those that are adjacent to the exterior boundaries of 

the solution domain) are used for the implementation of the boundary conditions. 
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TJ == e 

y 

j 
x 

Figure 3.1: A typical control volume and the points-of-compass notation used for the 
cell-centred two-dimensional structured grid (., locations of variables solved for; 0, lo­
cations where fluxes are required). 

The control volume is defined by its vertices (Vn , n = 1, Nv , Nv = 4), i.e. by the 

position vectors rn(xd which are defined with respect to a fixed Cartesian coordinate 

frame (x, y). These verti,ces can be also identified by points-of-compass notation (i.e. 

SW, se, ne and nw in Figure 3.1) and they are connected by straight line segments (edges) 

defining four CV faces. 

The numerical grid and related connectivity data (mainly information needed to iden­

tify and connect each grid object - cell, face (edge) and vertex, adjacent to the given 

object) are physically defined by the position vectors of the CV vertices. For block­

structured grids, two types of connectivity are used. Within each block, the connectivity 

is provided implicitly, by simple iqcrement of one of the grid indices (I or J). These indices 

represent the counters along general curvilinear coordinates (~ - e, TJ e), Figure 3.1. 

Along block interfaces, the explicit connectivity data are defined for each block-face ceU 

(node). They provide: 

• indices of cells in the neighbouring block which are located in the first and the 

second row from the common face (first and second neighbours) and 

• the neighbouring face orientation (that is the local coordinate direction associated 

with the west, east, south or north cell-face). 
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Geometrical quantities 

The discretisation procedure requires definition of the coordinates of the cell centres, CV 

face centres, components of surface vectors and the cell volumes. These quantities are 

calculated from the coordinates of the CV vertices which are ordered in the counterclock­

wise direction for each cell. The normal or surface vectors A J and areas A J of the CV 

faces (J stands for e, 'W, s or n): 

(3.5) 

(3.6) 

are defined by the surface vector components: 

(3.7) 

where ]1 and ]2 are the first and last CV face vertices. Note that the surface vector, for 

instance at the face 'e', represents the coordinate surface defined by the local coordinate 

e = ~ = canst. This vector can be denoted as 

(3.8) 

, 

A similar surface vector, representing the area defined by e = TJ = canst, is defined as: 

AJ = (yP - YE) i + (XE - .Tp) J . (3.9) 

The cell volumes can be computed from the following expression: 

, 1 
!:iVp = 2 1(rne - rsw) x (rnw - rse)1 . (3.10) 

Since a quadrilateral cell can be decomposed into two triangles, the coordinates of cell 

centres can be calculated as the average values of the centre coordinates of these triangles, 

weighted by their areas. 

3.3.2 Time discretisation 

For unsteady fluid flow problems, the rate of change term is finite and may be approxi­

mated as: 

d j d1J! - p¢dV~-
dt v dt ' 

p¢!:i V , 

(3.11) 

(3.12) 
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where it is assumed that the value at the centre of CV represents an average over the 

volume ~ V. Next, replacing the fluxes and sources in Equation (3.4) by 

F=C-1)-S, (3.13) 

this equation becomes a first order ordinary differential equation with an initial condition: 

d\II 0 di + F = 0, \II ( to) = \II . (3.14) 

Thus, by dividing time into an arbitrary number of time steps with size ~t, a wide range 

of time discretisation schemes can be employed, Ferziger and Peric (1996). Since the so­

lution method advances in time step by step, the "marching" procedure can be constructed 

by integrating the above equation over each time interval ~t. In implicit procedures, all 

the fluxes and sources contained in F are evaluated at the current (new) time level tn. A 

second order accurate and fully implicit scheme can be defined by using three time levels: 

the current tn, and two previous, tn- l = tn - ~t and tn- 2 = tn- 1 - ~t. Assuming a 

quadratic variation across the three levels, the time derivative in Equation (3.14) can be 

obtained as: 

(3.15) 

Thus, the balance betwe~n the rate of change term and the combined fluxes and sources 

(represented by the quantity F) is given as: 

d i -d p¢ dV + F ~ ,t . v 

In the above equation, a blending factor 0 ::; It ::; 1 is introduced. When this parameter 

is' set equal to zero, the first-order accurate (Euler) formulation is obtained. A value of 

unity gives the second-order accurate formulation, while an intermediate value has th~ 
effect of 'blending' the two formulations. The Euler scheme is unconditionally stable but 

not so accurate for large time steps. The second-order scheme is also unconditionally 

stable (Ferziger and Peric, 1996) but suffers the obvious drawback of requiring the vari­

ables to be stored for all time levels involved. Nevertheless, and because of the memory 

constraints, only the implicit first-order accurate scheme is used in this work. In what 

follows, .all terms are evaluated at their new time level values and the superscript 'n' will 

therefore be omitted for clarity. 
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3.3.3 Discretising the convection and diffusion fluxes 

The sum of convective and diffusive fluxes through all the CV faces (see Equation (3.4)) 

can be written as: 

(3.17) 

where FJ is an integrated flux over the cell face J (J = 1, 4 i.e. = e, w, s, n). The usual 

approximation used to evaluate the surface integral is to assume that the value of the inte­

grand is that which prevails at the face centre. This is sometimes called the single-point 

quadrature (or the midpoint rule) and is formally second-order accurate. An example 

of how this may be done is presented in terms of east ('e') face of a typical Cv. The 

integrated flux across this face is given as: 

Fe = Fe - Fd e e 

(3.18) 

where the superscripts 'c' and 'd' refer, respectively, to convection and diffusion. In order 

to evaluate Fe, we first need to determine the values of the mass flux Cme), the dependent 

variable itself and its gradient across face 'e'. Consideration of how this is done follows 

next. 

Mass fluxes - the continuity equation 

We consider first determination of the mass fluxes across the cell faces. The mass flux 

through the cell face 'e' is evaluated as: 

me = ! pUk nk dA 
Ae 

(3.19) 

The mass fluxes through the other faces are calculated from similar expressions. We adopt 

the convention of assigning the negative sign to the surface vectors and the corresponding 

fluxes on the west and south cell faces which means that the surface vectors at these 

faces are pointed inwards. It therefore follows that the sum of the mass fluxes defines the 

integral form of the continuity equation which is expressed as: 

Lin) = me - mw + mn - ms = 0 . (3.20) 
J 
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In order to determine the cell face velocities (e.g. Ue ) in Equation (3.19), use can be 

made of the values that pertain at the neighbouring nodes and an obvious choice here is 

linear interpolation. However, use of linear interpolation is known to cause the computed 

velocity field to become uncoupled from the computed pressure field. In order to ensure a 

strong pressure-velocity coupling and promote the numerical stability on colocated grids, 

a special interpolation technique is used to determine the interpolated cell face velocities. 

This technique, usually attributed to Rhie and Chow (1983), will be described later. 

The convective fluxes 

In an iterative procedure such as the present one, the convective fluxes at a particular 

iteration are evaluated from the mass fluxes obtained at the previous iteration. In this way 

the nonlinear convective fluxes are linearized, i.e. expressed as a product of the 'known' 

mass fluxes and 'unknown' values of the dependent variable ¢e, thus: 

(3.21) 

On a non-uniform grid, linear interpolation (which amounts to the central differencing 

scheme, CDS) gives: 

¢e = (1 - fe,p) ¢p + fe,P ¢E , (3.22) 

where fe,P is the interpolation factor defined in terms of the distances between the node 

P, the cell-face centre' e' and the neighbouring node E (see Figure 3.1); thus: 

Pe 
fe,P = Pe + eE (3.23) 

The linear interpolation has the same accuracy as the midpoint approximation of the 

surface integrals, thus preserving. second-order accurate spatial discretisation. However, 

us~ of central differencing can generate numerical oscillations yielding unbounded and 

non-monotonic solutions. A well-known remedy is to adopt the (first-order accurate) 

upwind differencing scheme (UDS) whereby the value at face 'e' is taken to be that which 

prevails at the 'upwind' nodes, thus: 

UDS _ {¢p if me 2: 0 ; 
¢e - '" 'f' 0 'f'E 1 me < . 

(3.24) 

The UDS is unconditionally bounded (monotonic) but produces excessive numerical dif­

fusion.} especially if the flow is not aligned with grid lines. In principle, grid refinement 

reduces the numerical diffusion but this is not always a realistic option. 
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A more refined approach is to blend the CDS scheme with some contributions from 

the UDS scheme. To facilitate the implementation of this approach, we define a 'flow­

orientated' interpolation factor which, for face 'e', for example, is given by: 

Ie = { Ie,p if me;:::: 0 
1 - Ie,p if me < 0 

(3.25) 

Equation (3.22) can now be re-arranged as: 

(3.26) 

The second part of the reformulated CDS approximation above is recognizably the differ­

ence between the CDS and UDS contributions. Therefore, a blend of these two schemes 

can simply be obtained by introducing a blending factor 0 ~ 'Yep ~ 1: 

U DS f me (A. A.) cPe = cPe + 'Yep e Imel 'PE - 'PP . (3.27) 

With this blending factor, the convective fluxes are now obtained as: 

(3.28) 

The first term in the above (the upwind contribution) is treated implicitly. The convective 

coefficient associated with node E (appears in the discretised equation (3.1)), is: 

(3.29) 

The second, underlined term, is usuall~ treated explicitly, i.e. evaluated using values from 

the previous iteration. It is then introduced with the negative sign as an additional 'source 

term' (S:P,e)P in the discretised equation (3.1). This separate treatment of the two terms is 

sometimes referred to as the deferred correction approach (e.g. Khosla and Rubin, 1974). 

Since the same flux, but with opposite sign, prevails at the west face of the neighbouring 

node ( i.e. (F::J E = - (Fn p), we can write: 

max(me,O) , 

(S¢,W)E (3.30) 

When a particular value of the blending factor is used throughout the domain, the 

above flux-blending scheme is both simple and efficient. Also, for sufficiently high values 

of 'Yep (e.g. ~ 0.9), the second-order accuracy is not too impaired. This approach has been 

advocated by Demirdzic and Peric (1990) (see also Demirdzic and Muzaferija, 1995; 

Ferziger and Peric, 1996) and is very attractive for unstructured grids. The blending of 

UDS with other higher-order bounded or unbounded schemes can be achieved in a similar 

. manner. These schemes are subject of a separate section (Section 3.4). 
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The diffusive fluxes 

Evaluation of the diffusive flux through the face' e', which is approximated as (see Equa­

tion (3.18»: 

F: ~ (r q/\1 ¢ . A) e = (r ¢ :~ Ak ) e ' (3.31) 

requires determination of the gradient of ¢ at the cell-face centre. 

A coordinate-free representation of the gradient of a scalar field can be obtained by 

applying Gauss' theorem to the infinitesimal volume .6. V (Borisenko and Tarapov, 1968): 

\l ¢ = lim /V 1 1> n dA . 
tl. V -;0 Ll. fA 

(3.32) 

Applying this to the control volume around the cell face centre 'e' (Figure 3.1), the gra­

dient is obtained by: 

(3.33) 

where the surface vectors A~ and A~ are calculated via Equations (3.8) and (3.9), respec­

tively. The gradient given above has a non-conservative form since the surface vectors at 

'e' (rather than at the adjacent nodes) are used. The quantity (1)n -1>s)e is evaluated by 

linear interpolation, thus: 

(3.34) 

The volume .6. Ve is evaluated from: 

.6. Ve = A~ . (r E - r p) . (3.35) 

The diffusive flux can be now expressed as: 

(3.36) 

The term involving the neighbours P and E will be treated implicitly. The diffusive coef­

ficient of the discretised equation for the node Pis: 

r ¢,p(l - ie,p) + r ¢,E ie,p . (3.37) 
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The remaining underlined terms of the diffusive flux (the cross-derivative contribution) 

vanish for orthogonal grids. They are treated explicitly and included in the discretised 

equation as a source term: 

(3.38) 

3.3.4 Source terms 

The volumetric sources (defined in Table 3.1 for each dependent variable) are approxi­

mated by the product of the specific source at the CV centre P and the CV volume (the 

second-order accurate approximation): 

(3.39) 

The velocity gradients at the cell centres are needed to evaluate some of the source 

terms (e.g. those that contain the production of the turbulent kinetic energy, Pk, Equa­

tion (2.37». The approximation to these gradients (similar to Equation (3.33», gives the 

following expression for the derivative of the velocity component cP = Ui with respect to 

where the surface vectors A~, ~i =~; TJ are computed as: 

Af, p 

(3.40) 

(3.41) 

(3.42) 

The velocities at the cell faces are calculated by linear interpolation (CDS approximation). 

When the volumetric source depends on the variable cP itself, it is often linearized as 

suggested by Patankar (1980): 

S~ = S'q, - S:p cP p with' S'q, and S:p 2: 0 . (3.43) 

The negative part of the linearized source is treated implicitly, i.e. S:£ is added to the cen­

tral coefficient of the coefficients matrix to enhance its diagonal dominance. This practice 

is also ,used for the source terms that are always negative since dependence on cP can be ar­

tificially introduced. The linearization of the source terms for turbulence model equations 

is given in Table 3.2. The source terms arising from the diffusive fluxes st, Table 3.1, 

,are calculated in a similar way as the generic diffusive fluxes, see Equation (3.36). 
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S" ¢ 

p!:1Vf/k 

3.3 Discretisation Procedure 

Table 3.2: Linearization of the source terms in the k - f model (all quantities are defined 
at the CV centre P). 

The pressure contribution to the source term of the discretised momentum equations 

is obtained from: 

Se = - J p (n . ii) dA = - r [) P dV 
1 .fA Jv 8Xi 

(3.44) 

Again, the non-conservative form of the gradient at the CV centre (see Equation (3.40)) 

is used, leading to the following pressure source terms in the momentum equations: 

(3.45) 

Note that the cell-face values of the pressure are calculated by linear interpolation. 

3.3.5 Algebraic equations 

After introducing the fluxes and sources of the variable ¢ into the balance equation (3.16), 

the outcome for each CV is the algebraic equation which has been presented earlier, Equa­

tion (3.1). The central coefficient a¢p, the coefficients a¢J associated with values of ¢ at 

neighbouring nodes NJ and the source term S¢p can now be assembled as: 

~ (P!:1 V) n " ~a¢J + --x- + S¢p, 
)=1 t . p 

(3.46) 

(3.47, 

N 

S¢p = S~p + S~p + L (S¢J + S~J + S~) + S~p . (3.48) 
J=l 

For the first-order accurate time-discretisation scheme, the explicit part of the change of 

rate S~p is given by: 

st _ (P!:1 V ,n-1.) ¢p - !:1t qJ , 
p 

(3.49) 

46 



NUMERICAL METHOD 3.3 Discretisation Procedure 

while S~p includes convective and diffusive fluxes at boundary CV faces. 

For a computational domain with M control volumes, a system of M equations like 

Equation (3.1) need to be solved for each dependent variable. This system can be arranged 

in a matrix form as: 

[AJ¢=S, (3.50) 

where [AJ is the M x M coefficient matrix and ¢ and S are vectors of the unknown 

variable cjJ and source terms, respectively. The linearized system of algebraic equations 

is usually solved iteratively (inner iterations) by employing an iterative matrix [PJ = 
[AJ + [NJ which is close to [A J. [NJ must be small if the method is to succeed. Denoting 

by I an iteration counter, the iterative solution can be defined as: 

[PJt5 = R, (3.51) 

where t5 and R are the correction and residual vectors, respectively. They are given as: 

(3.52) 

R S - [AJ¢(l-l) . (3.53) 

The new (inner) iteration starts by calculating the residual vector R, Equation (3.53), 

after which the system (3.51) is solved for t5, and the solution is updated by adding the 

correction vector t5 to the, solution of the previous iteration. 

The matrix [A J is always sparse and for the single block-structured grid the present 

discretisation method leads to the matrix which has non-zero elements on five diagonals 

(in 2D). In such situations, the Strongly Implicit Procedure (SIP) of Stone (1968), based 

on incomplete lower-upper decomposition, is a very effective method. In the case of 

block-structured grids, the conjugate gradient solvers are used: the symmetric conjugate 

gradient solver for the pressure correction equation and the bi-conjugate (Bi-COSTAB) 

solver of Van Der Vorst (1992) for other equations. These solvers are derived from the 

classical conjugate gradient method of Hestens and Stiefel (1952) and they are usually 

used in combination with preconditioning techniques (cf. Meijerink and Van Der Vorst: 

1988). Here, the incomplete Cholesky preconditioning is employed. 

When solving the linearized system (3.50), under-relaxation is usually employed. 

This is done implicitly (Patankar, 1980) by re-defining the central coefficient and the 

source term in Equation (3.1) as shown below: 

S* 
r/> 
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where (0 < G:¢ :s: 1) is the under-relaxation factor and the superscript (k - 1) denotes the 

previous (outer) iteration. For brevity, the modified central coefficient and source term 

will be hereafter denoted as before, without the superscript *. 

3.4 High-Resolution Convective Schemes 

In Section 3.3.3, the concept of 'blending' of the first-order accurate UDS and second­

order CDS scheme was introduced; its function is to eliminate non-monotonic solutions, 

and associated stability problems, from appearing with coarse-grid computations. This 

blending (Equation (3.27» can also be used to avoid similar problems with other well­

known schemes, such as the second-order accurate Linear Upwind Differencing Scheme 

(LUDS) of Warming and Beam (1976) and the third-order accurate Quadratic Upwind 

Interpolation for Convective Kinematics (QUICK) of Leonard (1979). Whilst compu­

tationally attractive, this technique lacks a strict mathematical foundation for assigning 

a value to the blending factor: one attempts to obtain, by trial and error, a converged 

solution with a value as close to unity as possible. 

The blending technique introduces a certain amount of numerical diffusion which 

should ensure a convergent and bounded solution. This diffusion can be controlled by set­

ting different criteria for the computed boundedness of the numerical solution (cf. Gaskell 

and Lau, 1988). These cyiteria and the development of higher-order composite schemes 

based on them are the subjects of this section. Before considering the boundedness crite­

ria, a general form for all schemes of up to third-order accuracy is presented and proper­

ties of most popular schemes are outlined. 

3.4.1 Formulation and properties of high-order schemes 

On non-orthogonal grids, the high-order schemes are usually defined along the grid lines. 

Thus, by considering the transport of a scalar ¢(x, y, t) along the local direction ~, three 

computational nodes may be needed to approximate the CV face value ¢e: the upstream~ 

central and downstream, denoted as U, C and D, respectively. The actual labelling of 

tliese nodes depends on the velocity direction, i.e. mass flow rate me: 

{ 
(W, P, E) 

U C D -( , , ) - (EE, E, P) 
if me ~ 0 ; 

if me < O. 

This situation is illustrated in Figure 3:2. 'Upstream' and 'downstream' interpolation 

factors for node C can be defined with the aid of the interpolation factors introduced in 
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e E 
-·_·_·e-·_·_·- -'_._ EE 

C ·-·-e·-. 
U 

Figure 3.2: Definition of upstream, central and downstream cells. 

Equation (3.23),thus: 

fD = { 
fe,? if me ~ 0 

1 - fe,? if me < 0 
(3.56) 

fu = { 
1 - fe,W if me ~ 0 

fe,E if me < 0 ' 
(3.57) 

Now, a Taylor-series expansion around 'e' is used to obtain three equations for ¢ 

at U, C and D. When these equations are solved for ¢e (cf. Gaskell and Lau, 1988 for 

the case of a uniform, orthogonal grid) a general upstream-weighted approximation for 

convection can be obtained: 

(3.58) 

The above downstream and upstream geometric factors G D and Gu are defined as: 

CD 
fD 

Gu = gu + CYe , (3.59) - gD - CYe fu ' 

fb(1+fu) 
gu = 

f8(1 - fD) 
(3.60) gD -

fD + fu JD +fu 

They contain the parameter CYe which defines a family of the second and third-order ac­

.curate schemes (see Table 3.3 below). 
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Instead of using the dimensional variable cP, it is more convenient to work with the 

normalized variable cP as proposed by Leonard (1988): 

~ cP - cPu 
cP=--­

cPD - cPu ' 
~ ~ 

(3.61) 

so that cPu = 0 and cPD = 1. In this way, the general equation (3.58) can be simplified as: 

cPe ¢c + GD(1- ¢c) + Gv¢c 

¢c + <Pe(1- ¢c) , 

where <p(~ is given by: 

(3.62) 

(3.63) 

The quantity <p(re) can be interpreted as a flux limiter. It depends on the quantity re which 

is defined as: 

cPc r - -----;;::-
e - 1 - cPc 

cPc - cPu 
rPD - cPc 

(3.64) 

The convective schemes in Table 3.3 are expressed in both the un normalized and normal­

ized forms. A graphical r.epresentation of these schemes takes the form of a 'Normalized 

Variable Diagram' (NVD). This diagram presents ¢e versus ¢c and is shown in Fig­

ure 3.3. All the schemes from Table 3.3 depend linearly on cPc. The higher-order schemes 

pass through point Q which has the coordinates [J D / U D + Iv) , (1 + Iv) I D / U D + Iv) J 

which do not depend on eYe. 

Desirable properties of a discretisation scheme are discussed, among others, by Peric 

(1985) and Gaskell and Lau (1988). These are: accuracy, conservativeness, convective 

stability and boundedness and they are summarized in Table 3.3. While most schemes 

are conservative (ensuring the relation ap = LJ aJ), only upwind biased schemes (UDS" 

LUDS, QUICK) ensure convective stability, indicated by the negative sign of 8( cPw -
cPe) /8cPc, see Gaskell and Lau (1988). Note tl1at the CDS scheme exhibits neutral con­

vective stability. The numerical upwinding reflects the nature of convection, where the 

convective transport of the flow properties is always done from upstream to downstream, 

along the direction of flow. In general, the grid lines do not follow the flow direction and 

the positive effects of upwinding on the numerical stability are weakened. Unfortunately, 

only the first-order accurate upwind scheme is unconditionally bounded and there is an 

unavoidable conflict between the accuracy and boundedness. Note that the second-order 

CDS satisfies an interpolative boundedness criterion which simply requires that the value 
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Convective Expression for ¢e Normalized form: Order of trunca- Convective Boundedness 

scheme (non-uniform grid) ¢>e = f(¢>c) tion error term stability Interpolative Computed 

UDS ¢c ¢c ex: ~~c,(a¢/ac')e Stable Yes Yes 

CDS ¢c + fD(¢D - ¢c) ¢>c + fD (1 - ¢>c) ex: -l~e (~) 8 8e e Neutral Yes No 

¢C + fu (¢C - ¢u) 
- -

ex: ~~e (8
2¢) VI LUDS ¢C + fu¢c Stable No No ....... 8 8f,2 e 

QUICK ¢c + gD(¢D - ¢c) ¢>c + gD(l - ¢>c) 1 ~e (8
3¢) ex: - 16 8f,3 e Stable No No 

+gU(¢C - ¢U) +gU¢c 

~c, = c'E - c,p = Pe + eE 

Table 3.3: Definition and properties of various convective schemes. 
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Figure 3.3: NVD diagram for several convective schemes. 

of (Pe lies within the values at the neighbouring nodes ¢D and ¢c. However, this criterion, 

expressed also as (Gaskell and Lau, 1988): 

;.. {[¢c, 1] if ¢c E (-00, 1] 
'f'e E - -

[l,¢cJ i~ ¢cE[l,oo) 
(3.65) 

does not secure the computed boundedness. In what follows, different boundedness crite­

ria will be considered and the construction of higher-order accurate and bounded schemes 

based on them will be demonstrated. 

3.4.2 _ Roundedness criteria 

Two boundedness criteria, one based on the total variation diminishing concept (TVD) 

(Harten, 1983; Sweby, 1984) and another based on the convection boundedness criterion , 
(CBC) of Gaskell and Lau (1988) , offer great flexibility in the construction and imple-

mentation of the higher-order bounded schemes. 

In terms of normalized variables, the TVD constraints read as: 

,..... ....... ....... ....... 

¢e < 1 and ¢e ::; 2¢c and ¢e 2: ¢c, if 0 < ¢c < 1 , 

¢c if ¢c ::; 0 or ¢c 2: 1 . (3.66) 

LeonaI'd (1988) has shown that the TVD schemes, popular in unsteady compressible 

flows, can be used with the control volume methods designed for steady flows. The 
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1.5 1.5 

1.0 1.0 f----I--!---""-...." 

: _ MINMOD : _ SMART 

¢c 

-0.5 0.5 1.5 

-0.5 (a) TVD -0.5 (b) CBC 

Figure 3.4: Graphical representation of TVD (left) and CBC (right) criteria and NVD 
characteristics of some bounded schemes. 

physical understanding of the boundedness problem guided Gaskell and Lau to propose 

the following boundedness constraints: 

- - -
CPe < 1 and CPe 2: CPc) if a < CPc < 1 ) 

- - -
CPc if CPc ~ a or CPc 2: 1 . (3.67) 

From the graphical representation of the TVD and CBC conditions (depicted in Fig­

ure 3.4) it follows that the cell-face values ¢>e should lie within the shaded areas in the 

monotonic range a < ¢>c < 1, and on the line ¢>e = ¢>c outside the monotonic range. 

Note that the TVD-derived constraints are more stringent than the CBC constraints. 

Obviously, the simple schemes with linear characteristics in the NVD diagram (see Fig­

ure 3.3) may violate the boundedness criteria (with the exception of the first order UDS) 

and some form of a non-linear or piecewise linear scheme must be used. It is also evident 

that in the case of non-monotonic variable profiles, the use of the UDS scheme is the 

only possible choice in order to satisfy the above boundedness constraints. Gaskell anci' 

Lau demonstrated the validity of their CBC in multi-dimensional cases and both CBC 

and TVD one-dimensional schemes can be applied in each (local) direction in multi­

dimensional problems. This will produce less accurate results when the local direction 

along the grid lines departs significantly from the flow direction. 

3.4.3 . A choice of bounded schemes 

A number of upwind TVD schemes have been used in compressible flow solvers for 

capturing shocks and flow discontinuities. These schemes may be written in a form given 
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NUMERICAL METHOD 3.4 High-Resolution Convective Schemes 

by Equation (3.62) where the flux limiter fPe(Te) ~ 0 limits the flux of the variable cP to 

a level that ensures the bounded solution. Among different limiters (see Sweby, 1984), 

Roe's MINMOD limiter (also called as the SOUCOUP scheme by Zhu and Rodi, 1991) 

is a piecewise combination of the LUDS and CDS schemes in the monotonic range (¢c E 

(0,1)). Gaskell and Lau (1988) proposed the SMART scheme (Sharp and Monotonic 

Algorithm for Realistic Transport) which coincides with the QUICK scheme over a large 

part of the monotonic range. Mathematical formulations of these two bounded schemes 

are given below in terms of the normalized variable ¢c: 

{

(I + fu )¢c 

MINMOD: ¢e = ~D + (1 - fD)¢C 

cPc. 

f3cPC if 

9D + 9ccPc if 
SMART: cPe = 

1 if 

cPc if 

O<¢ <J.lL C (3-ge 

J.lL < ¢ , < I-aD 
(3-ge C ge 

I-9D < ¢c < 1 
ge - -

cPc ::; 0, cPc ~ 1 

In the SMART scheme, the coefficients 9c and f3 are: 

gc = 1 - 9 D + gu., f3 = 9c (1 + ~~) ; for TVD SMART f3 = 2 . 

(3.68) 

(3.69) 

(3.70) 

The corresponding flux limiters fPe(Te ), where Te is defined by Equation (3.64), are defined 

as: 

MINMOD: fPe = max [0, min (JUTe, fD)] , (3.71) 

SMART: fPe = max {O, min [(f3 - 1) Te , 9D + 9u Te , I]} (3.72) 

The NVD characteristics of these simple but bounded schemes are presented in Figure 3.4., 

The SMART scheme violates the TVD constraints. Lien and Leschziner (1994) suggested 

a inodified version of SMART (rVD SMART) which was later applied by Zijlema (1996) 

and C-H Lin and Lin (1997). 

As a consequence of the flexible TVD and CBC constraints, various schemes have 

been proposed and tested. Examples were the scheme of Lin and Chieng (1991), the 

HLP A scheme of Zhu (1992) (which is the same as the CLAM TVD scheme of Van Leer, 

1974), the STOIC scheme of Darwish (1993), UMIST (another monotonic version of 

QUICK, but with symmetric limiter) of Lien and Leschziner (1994) and Zijlema's (1996) 

ISNAS scheme. In terms of accuracy, none of the new schemes performed better than 
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NUMERICAL METHOD 3.5 Pressure-Velocity Coupling 

the SMART scheme. The MINMOD scheme is more diffusive than the SMART scheme 

but the MINMOD scheme, with its good convergence properties, is well-suited for the 

use on the refined numerical grids. Therefore, the SMART and MINMOD schemes were 

implemented in the present flow solver. 

By recasting the bounded schemes in terms of the flux limiter i.(Je (see Equation (3.62» 

and then using unnormalized variables, the cell-face value is approximated as: 

¢e = ¢c + i.(Je(re)(¢D - ¢c) 

¢~DS + i.(Je('re) 1::1 (¢E - ¢p) . (3.73) 

The above relation has the same form as Equation (3.26) for the pure CDS or blended 

CDS and UDS schemes. The corresponding flux is then: 

where "Ie/> is now used to make a choice between the UDS and high- resolution bounded 

scheme. Comparing the above expression with Equation (3.28), it is clear that the TVD 

formalism enables an easy implementation of the bounded high-resolution schemes if 

one uses the deferred correction approach. The source term pertaining to the deferred 

correction is computed from the following equation: 

(3.75) 

3.5 Pressure-Velocity Coupling 

The principal difficulty in solving the momentum equations for incompressible flows lies 

in the determination of the pressure. The 'correct' pressure field is one which allows 

the velocity components, when obtained from the solution of the momentum equations, 

to satisfy, simultaneously, the continuity equation. This can be achieved by using the' 

iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm of 

Patankar and Spalding (1972) wherein the continuity equation is manipulated to obtain 

an equation for the pressure correction. The SIMPLE method has been developed with 

reference to the staggered-grid arrangement whereby the velocities and the pressure are 

stored at different locations. Application of this method to colocated grids leads to non­

physical oscillations. These are due to the use of linear interpolation to obtain the pressure 

and velocities at the cell faces - something which leads to the de-coupling of the two 

fields. In order to overcome this problem, the method of Rhie and Chow (1983) is used. 

This method will be considered first. 
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The discretised momentum equations can be re-written in a vector form as: 

/:1Vp 
Up = hp - -- ('v P)p , aU p 

where the quantity h p is defined as: 

Note that the source term Su does not include the pressure terms. 

A similar equation for the CV around the cell-face centre 'e' reads: 

(3.76) 

(3.77) 

(3.78) 

If the variation of the velocity field and the pressure gradient between nodes P and E is 

linear (as would be the case on very fine grids), then vector he, denoted for this case as 

h~O), would be given as: 

(3.79) 

where the over-bars denote linear interpolation between neighbouring cells. By replacing 

the value of he in Equatjon (3.78) by h~O), an expression for the cell-face velocity is 

obtained: 

(3.80) 

As the pressure gradient calculated at the cell-face (\7 Pe) involves the pressure values at 

neighbouring nodes P and E (see Equation (3.82) below), this ensures that the pressure 

and velocity fields would be coupled when the SIMPLE algorithm is used. The 'correc­

tion term', represented by the difference between the pressure gradient evaluated at the 

cell-face and the gradient interpolated from the adjacent nodes, vanishes if the final pres-, 

sure gradient variation is linear. When the computed pressure gradient is not linear, the 

correction term is finite and acts to prevent the development of non-physical oscillatory 

profiles by smoothing pressure oscillations whose period is twice the cell width. 

Note that the converged cell-face velocities may depend on the definition of the coef­

ficient (/:1V /ap)e. This coefficient is usually obtained as: 

(3.81) 

The first option above is used in the present work. 
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Since the coefficients ap contain the under-relaxation factor, the converged solutions 

would also depend on this parameter. This is a clearly undesirable feature but one that 

can be simply avoided by excluding the the under-relaxation factors from ap. 

Finally, it should be mentioned that the basic idea of Equation (3.80) has been im­

plemented in various ways, depending mainly on the type of numerical grid being used 

(see, for example, Rhie and Chow, 1983; Peric, 1985; Demirdzic and Muzaferija, 1995; 

Ferziger and Peric, 1996; Davidson, 1996; Mathur and Murthy, 1997; Rahman et aI., 

1997). When fine grids are used, the contribution of the 'correction term' remains smaller 

than the discretisation error (Ferziger and Peric, 1996). Here, the equation for the cell­

face velocity (3.80) is written in terms of the Cartesian velocity components Ui as sug­

gested by Peric (1985): 

U. =(0.) - (_1) A~.i.(PE-PP)+ [_1 ACi.(P _P)] 
l,C Z e Ui e 1. Ui 1, e w 

ap e a p e 
(3.82) 

In the SIMPLE algorithm, the discretised momentum equations are solved for Vp by 

using the existing pressure P*. The mass fluxes, computed using the cell-face velocity 

components from Equation (3.82), do not generally satisfy the continuity equation (3.20). 

A 'mass source' would thus result, defined by: 

(3.83) 

The basis of the SIMPLE algorithm is to drive this mass source to a negligibly small 

value. This is achieved by introducing the corrections: 

v p = Up + U~ and Pp = P; + P~ . (3.84) 

The discretised momentum equation for Up (see Equation (3.76)) provides the link be­

tween the velocity and pressure corrections at the node P: 

V' = - 6Vp (\1pl) . 
p aU p 

p 
(3.85)' 

In a similar way, the cell-face velocity corrections are obtained as: 

(3.86) 

After simplification the above relation becomes: 

(3.87) 
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The simplified expression is used in the present work. It takes into account only the 

pressure difference across the cell-face. This simplification is justifiable by the fact that 

all the pressure (and velocity) corrections become negligible when a converged solution 

is obtained. 

The cell-face velocity corrections give the mass flux corrections as: 

. I [( 1) 2 ( 1) 2] (' ') me = -Pe ap eAex + ap eAey PE - Pp (3.88) 

The new mass fluxes: 

(3.89) 

must satisfy the continuity equation (3.20) which now takes the form: 

(3.90) 

From the above equation, the pressure correction equation is obtained: 

4 

apP;, = I: a)P'rv] - S:n . (3.91) 
)=1 

where, for example, the C'oefficient related to the east neighbour is given as: 

(3.92) 

After the solution of the algebraic equations for pI, the nodal velocities, pressure and mass 

fluxes are corrected according to Equations (3.84) and (3.89). The pressure is corrected 

only by a fraction of P', i.e. P = P* + O!pP' , where O!p is the under-relaxation factor for 

the pressure. 

3.6 Boundary and Initial Conditions 

The convective and diffusive fluxes through the boundaries of the solution domain must 

be evaluated in order to close the generic balance equation (3.16). These fluxes can be 

discretised in the same manner as for the inner cell faces, Equations (3.28) and (3.36), 

respectively. For the convective fluxes, the UDS scheme is usually employed, thus Equa­

tion (3.28) is rewritten as: 

(3.93) 
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NUMERICAL METHOD 3.6 Boundary and Initial Conditions 

where the subscript 'b' signifies the boundary cell-face with the outward surface vector 

A b• The diffusive flux at the (east) boundary face becomes: 

(3.94) 

The above expressions accommodate both Dirichlet conditions (specified boundary val­

ues) and Neumann conditions (prescribed boundary fluxes). In the latter case, Equa­

tion (3.94) for the boundary diffusive flux is used to compute the boundary value (:Pb. 

The boundaries of a solution domain are either natural (walls and free surfaces) or arti­

ficial in the sense that they are truncated parts of the physical domain through which fluid 

may enter or leave. The latter comprise the inlet, outlet and symmetry planes. Treatment 

of each of these types will be discussed below. 

Inlet boundaries 

The values of the velocity components and of the turbulence quantities are usually pre­

scribed at the inlet. The turbulent kinetic energy may be known from measurements or, 

more often, is estimated from knowledge of the relative free-stream turbulence intensity 

~t. The Kolmogorov relation ( E :::::; k3
/

2 
/ LE) can be used to estimate the dissipation rate 

at the inlet by specifying the length scale LE as a fraction of the characteristic (inlet) di-
, 

mension. Equivalently, a ratio of the turbulent and molecular viscosity at the inlet may be 

prescribed. 

Outlet boundaries 

A condition of zero gradient, in general along the grid line connecting the interior node P 

and boundary node 'b', is commonly used to specify the boundary conditions at the outlet. 

Since this condition is strictly valid only for the fully developed flow (no diffusive fluxes), 

the outlet boundaries should be placed sufficiently far downstream from the regions wher~ 

the flow exhibits significant changes. The first order backward approximation for the 

gradient can be used, leading to CPb = cpp. Note that the diffusive fluxes, calculated 

from Equation (3.94), are zero only if the grid lines are normal to the outlet boundary. 

Before solving the pressure-correction equation, the extrapolated velocity components 

Ui,b = Ui,P are corrected in such a way that the total mass flux at exit exactly equals its 

value at the inlet. 

The condition of zero gradient is often called a free open boundary condition (OBC) 

and has been employed for both steady and unsteady flows. For the latter, several non­

reflective OBC (based on the Sommerfeld radiation condition) have been proposed (Sani 
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and Gresho, 1994; Nakamura et aI., 1993). Nakamura et al. (1993) and Ferziger and Peric 

(1996) suggest the following simple unsteady condition: 

a¢ a¢ 
at + Uout an = 0 , (3.95) 

where Uout can be taken to be either the free stream velocity or the averaged outlet veloc­

ity. 

Wall boundaries 

The walls are assumed to be smooth and impermeable. The no-slip wall boundary con­

dition applies, meaning that the velocity of fluid in contact with the wall is equal to the 

wall velocity. The diffusive fluxes across the wall are evaluated differently for each of the 

dependent variables. This is explained next. 

For the momentum equations, the diffusive fluxes at the walls are the components of 

the resultant shear force exerted by the wall. To demonstrate this, a local Cartesian system 

defined by the unit vectors t and n, Figure 3.5, will be used. 
,N 

~ WN 

........•....... 

:W 

Figure 3.5: Application of the wall boundary conditions. 

The unit vector t can be defined by the velocity V t which is parallel to the wall 

boundary, thus: 

V t 
t. = U

t 
' Ut = IV t I . (3.96) 

The velocity vector V t is evaluated at the near-wall node P from the following relation: 

(3.97) 
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where Un denotes the velocity component normal to the wall. With the help of the conti­

nuity equation, it can be shown that only the wall shear stress ttn is finite at the wall. The 

resulting shear force can be then approximated as: 

(3.98) 

By neglecting possible changes in the velocity vector direction between the wall and the 

node P, the wall shear stress is evaluated as: 

(3.99) 

where !J..np is the normal distance from the wall. This distance is given by 

!J..np = (rw - rp) . n . (3.100) 

Equation (3.99) for the wall shear stress, with f-Lw = f-L, is valid for laminar flows and 

for the thin viscous sublayer in turbulent flows. When the 'wall functions' approach is 

used for turbulent flows (see Section 2.8), a different expression is used to evaluate the 

wall shear stress, see Equation (2.70). Note that all the relations presented in Section 2.8 

are applicable to a general wall topology if the velocity Up and the coordinate y (y p ) 

are replaced by the velocity parallel to the wall (Ut)p and by the coordinate n (!J..np), 

respectively. For example, the non-dimensional wall unit (Equation (2.69)) is given as: 

v* _ U* !J..np 
ip -

V 

By defining the effective near-wall viscosity f-Lw as: 

{ 
f-L , Yp < 11.6 

f-Lw = px;U*!J..np/ln(EYp ) , Yp 2: 11.6 

(3.101) 

(3.102) 

the waH shear stress can be computed from Equation (3.99) for both laminar and turbulent 

flows . 

. Considering now a non-moving wall, and by introducing t (Equation (3.96)) and 7tn , 
(Equation (3.99)) into Equation (3.98), the wall shear force can be written in terms of the 

Cartesian components as: 

(F) = - f-LwAw (U) + f-LwAw (U) n· 1; . lw A lp A np , unp _u~n~p ________ __ 
(3.103) 

It is customary to treat the first term on the right hand side of the above equation implicitly 

as this will allow the coefficient ap to remain the same for all velocity components. The 

underlined term is treated explicitly. 

The wall boundary conditions for k and E are presented in Section 2.8, in conjunction 

with the wall function approach. 

61 



NUMERICAL METHOD 3.6 Boundary and Initial Conditions 

Symmetry planes 

There are many steady flows whose solution is symmetrical around 'natural' symmetry 

planes or axes. For such flows, the velocity component normal to the plane is zero, yield­

ing zero convective fluxes. In addition, the normal derivatives of the velocity components 

parallel to the plane are zero. This is also true for the scalar variables k and E. By setting 

the diffusive flux to zero, Equation (3.94) can be used to determine the boundary values. 

Since the normal stress at the symmetry plane, approximated as: 

(7) ""' 2 ( ) (Un)p 
nn S1lm ""' - /1 + /1t ( )' rsym - rp . n 

(3.104) 

is finite, the corresponding force is given by 

(3.105) 

The components of this force, that replace the diffusive fluxes at the symmetry planes in 

the momentum equations, can be cast in a form which ensures the same central coeffi­

cients 0,/::' for all velocity components. This form is: 

(Fe-) ~ 2 [(/1 + /1t)A]sym (U _ ) ... 
z "11m. ( ) • sym Up lz· r sym - rp n 

(3.106) 

The above velocity vector at the symmetry plane U sym is updated before solving the 

momentum equations in prder to satisfy a condition of the zero shear stress, thus: 

U sym = Up - (Up· n) n. (3.107) 

The symmetry boundary conditions are very often applied at boundaries which are not 

natural symmetry planes. Examples are the boundaries parallel to uniform free streams. 

Boundary conditions for the pressure 

T~e pressure must be specified at all the domain boundaries in order to calculate the 

pressure forces at the boundary cell-faces. Generally, linear extrapolation of the pressure' 

values from the interior nodes can be used for all types of boundaries (e.g. inlets, outlets, 

walls, symmetry planes). At all these boundaries, the velocities are known before solving 

the pressure correction equation, and the mass flux corrections m~ there are therefore zero. 

This implies that the normal gradients of the pressure correction (Pi) are also zero. This 

condition is enforced directly when calculating the mass imbalance S:n (Equation (3.83)). 

To evaluate the gradients of pi at the near-boundary cells, the boundary values of pi 

are linearly extrapolated from inside the ·solution domain. Note that the pressure must be 

fixed at one CV in order to obtain the unique solution (Patankar, 1980; Ferziger and Peric, 

1996). 
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Initial conditions 

Equation (3.14) for the rate of change shows that each dependent variable must be pre­

scribed at the initial time (to) over the whole solution domain. In many cases, arbitrary 

initial values can be used (as in this study), usually taken to be those prescribed at the 

inlet. An initial perturbation in the initial velocity field is often used to trigger the vortex 

shedding process (Section 4.3.1). 

3.7 Overall Solution Procedure 

The solution method is an iterative one and involves the following main steps: 

1. Provide the numerical grid and calculate geometrical quantities. 

2. Initialize the field values of the dependent variables (at the initial time to). 

3. Begin the time stepping loop. Save the current variable values as the old ones. 

4. Assemble and solve Equation (3.50) for the velocity components using the available 

values for the mass fluxes and the pressure. 

5. Calculate the cell-face velocities using Equation (3.82). Determine the mass im-
.-

balance, Equation (3.83). 

6. Assemble and solve the pressui"e-correction equation (3.91). Use the outcome to 

update the velocity components, the pressure and the mass fluxes. 

7. In t~e case of turbulent flow, assemble and solve Equation (3.50) for k and Eo Update 

the eddy viscosity. 

8. Repeat the procedure from the Step 4 until a converged solution (for the current 

time level) is obtained. This is defined as when the sum of absolute values of , 
the residuals for each variable (normalized by the appropriate inlet flux) has fallen 

below a pre-specified level (typically below 10-4
). 

9. Return to Step 3 and repeat up to the prescribed number of time steps. 

For each dependent variable, the system of linearized algebraic equations (3.50) is solved 

only to a certain level of convergence. Iterations performed within the linear equation 

solver are called inner iterations. The sequence that consists of Steps 4 to 8 is termed as 

the outer iteration. 
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Note that for the case of block-structured grids, the solution of each variable is car­

ried out on the globally unstructured grids, i.e. block by block without imposing boundary 

conditions at block interfaces. In this way, the implicitness of the method is preserved. 

The implementation of this strategy requires neighbourhood connections for the cells ad­

jacent to the internal block faces (see Section 3.3.1). 

3.8 Closure 

In this chapter, a description has been provided of the finite-volume method used in this 

work to solve the two-dimensional Reynolds-averaged Navier-Stokes equations for in­

compressible flows. 

It was shown how the differential equations were discretised by their formal inte­

gration, term-by-term, over control volumes arranged in a structured or block-structured 

form. A colocated storage arrangement for all dependent variables is employed. The mid­

point rule integration of the surface and volume integrals was employed wherein a linear 

distribution was assumed for the variable values at locations between the cell centres. 

Therefore, the spatial discretisation is formally second-order accurate. Occurrence of 

non-physical oscillations requires the evaluation of the convective fluxes by the blending 

of the first-order accurate upwind and the second- order central-differencing scheme. 

Apart from this, the fOPmulation and implementation of the high-resolution bounded 

MINMOD and SMART schemes is presented. The first-order Euler temporal discreti­

sation is adopted in this work. The most frequent types of boundary conditions (and their 

numerical treatments) are also described. The outcome of the discretisation procedure is a 

set of linearized algebraic equations that are solved here using either the SIP procedure of 

Stone (1 %8) or conjugate gradient solvers. The overall solution algorithm is sequential 

and iterative and utilizes the SIMPLE method to couple the computation of the pressure 

and velocity fields. The pressure-velocity decoupling problems on the colocated grids are 

avoided by adopting the practice suggested by Rhie and Chow (1983) and Peric (1985). 

The numerical solution method has been implemented in a computer code which is 

used to compute the laminar and turbulent vortex shedding flows. The results of these 

computations will be analysed in the following two chapters. 
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Chapter 4 

LAMINAR FLOW PREDICTIONS 

4.1 Introduction 

In this chapter, the present finite volume method is validated against experimental and nu­

merical data for vortex shedding from square and circular cylinders in laminar flow condi­

tions. Attention is focused on issues affecting the accuracy and validity of the numerical 

solutions. Some physical features of vortex shedding, encountered in the considered flow 

configurations, are discussed. 

The chapter is organized as follows. In Section 4.2, the numerical aspects of the pre­

diction of flows around single square and circular cylinders are presented. These include 

the size of the computational domains and grids, the boundary and initial conditions and 

other numerical details. In the next section, the results for the flow around a circular 

cylinder at the Re = 105 are used to emphasize common features of the periodic vortex 

shedding flows, Section 4.3. In Section 4.4, attention is focused on the sources of nu­

merical uncertainties and an effort is made to quantify these uncertainties. After that, the 

results for the single cylinders are presented and discussed in Section 4.5. Suitable exper­

imental and numerical results are used to check the present predictions. The remaining 

Se.ctions 4.6 and 4.7 are organized in a similar way as the previous section and include 

simulations for: 

• uniform flow past two circular cylinders in tandem, 

• oscillatory flow past a single circular cylinder with or without steady current. 

The main results to emerge from this phase of the work are summarized in a concluding 

section. 
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4.2 Numerical Considerations 

4.2.1 Solution domains and grids 

Numerical grids employed for the predictions of laminar vortex shedding flows were gen­

erated within a single block. A schematic representation of the uniform flow around a 

square cylinder is shown in Figure 4.1. The size of the solution domain is described by 

three characteristic dimensions: Xi, Xo and Ys' These specify, respectively, the locations 

of the inlet, outlet and symmetry boundaries. These dimensions are usually given in terms 

of the cylinder's height H (or diameter D for a circular cylinder). The extent of the com­

putational domains and the geometric parameters of all grids used for the case of a square 

cylinder are presented in Table 4.1. 

SYMMETRY 

U = Uo, V = 0 Ys fJ(f> / fJx = 0 

H (f> = U, V 

---------~H----------------------------
~Yi ~Yo 

.. .. 

, fJU/fJy=O,V=O 

SYMMETRY 

Figure 4.1: Typical solution domain and boundary conditions. 

Grid [Domain-NIxNJ] XdH Xo/H Ys/H fex = fey !J.nc/ H 

Dl - 136 X 118 12 30 12 1.125 5 X 10-3 

Dl - 160 X 142 12 30 12 1.125 2.5 X 10-3 

D2 - 123 X 106 6 30 6 1.125 5 X 10-3 

D2 - 169 X 150 6 30 6 1.10 2.5 X 10-3 

D2 - 167 X 140 6 30 6 1.08 5 X 10-3 

D3 - 134 X 112 9 31 9 1.125 5 X 10-3 

D4 - 139 X 122 15 31 15 1.125 5 X 10-3 

Table 4.1: Domain size and grid parameters for a square cylinder. 
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Figure 4 .2: Representative numerical grid of D1 - 136 x 118 for a square cylinder. 

Two parameters have been chosen to describe the grid resolution: 

1. The smallest (non-dimensional) distance !J.nc/ H between the cylinder wall and the 

centre of the first adjacent cell, 

2. the grid expansion factor, f e. Note that the same factors were used in the :r and ?! 

directions. 

Thus, all grids are non-uniform, expanding in each direction away from the cylinder 

corners. This is illustrated in Figure 4.2. The walls of the square cylinder in that figure 

are subdivided into 32 cells. The circular cylinder flows were also computed with several 

grids, on two domains, Table 4.2. The expansion factors in the x and y directions are not 

identical. The grid D1 - 143 x 98 with 1.56 cells over the cylinder surface is displayed in 

Figure 4.3. 
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Grid [Domain-NI x NJ] Xd D Xo/D Ys/D f ex f ey 6.nc/ H 

D1 - 143 X 98 12 30 12 1.18 1.10 5 X 10- 3 

D1 - 170 X 98 12 30 12 1.15 1.10 5 X 10-3 

D2 - 134 X 88 5.5 24.5 6 1.18 1.10 5 X 10- 3 

Table 4.2: Domain size and parameters for a circular cylinder grid. 

Figure 4.3: Representative numerical grid D1 - 143 X 98 for a circular cylinder. 
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4.2.2 Boundary and initial conditions 

The boundary conditions for the velocity components are also shown in Figure 4.1. At 

the inlet plane, a uniform profile was specified for the axial velocity (U = Uo) and the 

normal component was set equal to zero. Symmetry boundary conditions were applied at 

the two free-stream boundaries: V = 0, au / ay = O. For the present, the issue of open 

or outflow boundary conditions (aBC) still raises many questions, see Sani and Gresho 

(1994). Free or zero gradient aBe: 

au av 
-=-=0 ax ax ' (4.1) 

and the Sommerfeld radiation conditions (based on the free stream velocity components 

Uoo ;::::: U(), Voo = 0): 

au au av av 
~ + Uoo -;::;- = 0; ~ + Uoo -;::;- = 0 
ut ux ut ux 

(4.2) 

have been the most popular and in many cases successful aBC's for the finite difference 

and control volume methods. Nakamura et al. (1993) showed clearly that the free out­

flow condition deforms the velocity and pressure fields near the outflow boundary. The 

Sommerfeld condition, Equation 4.2, had the least influence on the flow. However, the 

influence of all types of aBC conditions tested by Nakamura et al. (free aBC and three 

variants of the Sommerfeld radiation conditions including the above one) was confined 

to a zone of approximately (6 - 8)H upstream from the outflow boundary. The integral 

vortex shedding parameters (e.g. the lift and drag coefficients and the Strouhal number) 

and the flow variables in the near-wake of a cylinder are not affected significantly by the 

type of aBC for long distances Xo/ D. Consequently, the free aBC's imposed at outflow 

boundaries located at Xo/ H ;::::: 30 have been used in this study. On the cylinder surface, 

zero veloCity was specified. 

To start vortex shedding calculations, one of the following two initial conditions was 

employed: 

• A uniform (symmetric) velocity field or 

• an asymmetric velocity field in order to trigger vortex shedding earlier and reduce 

the 'start-up' time needed to obtain a cyclical solution. 

4.2.3 Computational details 

The time-step size 

At each new time-step, the governing equations are solved iteratively till the sum of ab­

'solute normalized residuals for all variables fall below 1 x 10-4
. The time-step size 
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depends on the grid spacing, which should be small enough to resolve accurately the 

variable gradients, particularly near the walls. This dependence can be established con­

sidering some physical restrictions imposed on the time7step size (cf. Mukhopadhyay et 

ai., 1992 and Anderson, 1995, p.457). First, the time-step size should be smaller than the 

local convective time scale Tcon and viscous time scale T vis : 

tlt = 

( ~+~)-1 tlx tly 

( )

-1 
2v 2v 

tlx2 + tly2 . 

By defining a non-dimensional time-step (tlt*) as: 

tlt* = tlt Ua 

H 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

and by approximating tlx and tly in the above by the smallest grid spacing tlh, and U and 

V by the reference velocity Ua, one can arrive at variants of the Courant-Friedrichs-Lewy 

(CFL) condition: 

;\ * 1 tlh 
ut <--

2H' 

and the Fourier-number condition: 

1 (tlh) 2 tlt~ <"4 H Re. 

(4.7) 

(4.8) 

By reducing the time-step size below the values imposed by the above (approximate) CFL 

or the Fourier-number conditions; the need for using under-relaxation factors was avoided. 

For the calculations reported below, tlt* varied from 1 x 10-3 to 5 X 10-3
. The number , 

of time steps required to advance the calculations over a complete vortex shedding period 

was generally of the order of 1,000. Note that the number of the time steps per vortex 

shedding cycle is given as l/(tlt* St). Typically 3-5 outer iterations per time-step were 

required once a periodic or quasi-periodic solution was established. 

Presentation of results 

In order to analyze the vortex shedding results, values of the force coefficients (CD, CDv , 

CL, CLv ), pressure coefficient Cp at the stagnation point, and the velocity components at 

't~o locations on the centreline of the cylinder wake, were stored periodically. In the case 
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of a circular cylinder, the separation angle ()s, measured from the stagnation point along 

the upper wall, was also monitored. The time histories of these quantities were used to de­

termine the appropriate time-averaged and root-mean-square values and the characteristic 

frequencies. A simple method was devised to calculate the vortex shedding frequency of 

the purely periodic fluctuations. Use was also made of a Fast Fourier Transform algo­

rithm, adopted from Press et al. (1988), to calculate the power spectrum (PS). 

Streakline plots were constructed to allow for the tracking of the motion of different 

fluid structures. This is analogous to the use in experiments of dye continuously injected 

from a fixed point. Construction of these streaklines is straightforward. Initially (i.e. at 

time t=O), a number of massless particles is introduced upstream of the cylinder. Then, 

with knowledge of the local velocity field, the new positions of these same particles are 

obtained from integration of the velocity equation, thus: 

.6.r = Up .6.t i + Vp .6.t j. (4.9) 

The particle velocities Up and Vp in the above are calculated as averages over the time-step 

.6.t and over the distance l.6.rl. The locus of positions of particles injected from the same 

initial location constitutes a streakline. 

The time histories of the monitored quantities as well as other results obtained for 

square and circular cylin~ers, reflect some common features of the periodic vortex shed­

ding phenomenon. These features are described in the following section. 

4.3 Periodic Vortex Shedding: Common Features 

4.3.1 Initiation 

The present numerical method does not require the introduction of a disturbance to trig­

ge,r vortex shedding. However, tests were conducted in which the initial flow field was 

perturbed in one of two ways. The top half of the flow domain was assigned a certairt 

value of streamwise velocity «(Uup = Uo)). The velocity in the bottom half «(Ulo )) was 

assigned a value that is either 5% greater or less than this value. The results of these tests 

are shown in Figure 4.4 where the resulting time histories of the drag and lift coefficients 

for a circular cylinder at Re = 100 are plotted. Both methods of perturbation produce the 

same time histories of the drag coefficients, while the lift-coefficient curves are shifted 

by a half of the vortex shedding period. These results can be expected since the initial 

asymmetric velocities Ulo are 'symmetric' around the free-stream velocity Uo. 
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Figure 4.4: Circular cyli~der at Re = 100. Time histories of the drag coefficient (top) and 
lift coefficient (bottom) as obtained with two initial asymmetric perturbations. 

4.3.2 Development 

By using suitable initial perturbations it is possible to reduce the 'start up' time needed 

to arrive at a periodic solution. This is clearly seen from Figure 4.4 where perturbation 

was used, and Figure 4.5 where no initial perturbation was applied. For the latter case, 

calculations were started with a .uniform symmetric velocity field (U = Uo) V = 0) 

everywhere. The computational grid consisted of D1 - 170 x 98 nodes (similar to that 

shown in Figure 4.3). The spatial and temporal resolutions (SMART convective schem~ 
and !:It = 0.5 s or !:It* = 0.00082) were selected in accordance with the numerical 

uncertainty experiments conducted in Section 4.4. 

The time histories of the drag and lift coefficients and separation angle (Figure 4.5) 

show different transient phases of the vortex shedding development. During the first, rela­

tively short period, characterized by no lift force and by decrease of the drag coefficient, a 

quasi-steady flow with two symmetric vortices is established at t* ~ 10. This is illustrated 

by the streamlines in Figure 4.6(a). After that, asymmetry was introduced by numerical 

roundoff effects and two slightly asymmetric vortices evolved behind the cylinder, Fig-
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Figure 4.5: Time histories for the flow past a circular cylinder at Re = 105: drag coeffi-
cient (top), lift coefficient (middle), and angle of separation (bottom). 

ure 4.6(b). There is strong evidence to consider the appearance of the asymmetric field 

as a continuous process (for example, the lift coefficient has insignificant but oscillatory 

non-zero values). However, the swift changes are visible after the drag coefficient attain~ 

its minimum value (t* ~ 62) and after that point vortex shedding begins to develop. 

The streamlines appropriate to the first phase of the vortex shedding development (ap­

proximately two vortex shedding cycles after the end of symmetry) are shown in Figure 

4.7. During this transition period, large quasi-standing vortices elongate and then detach. 

At the end, the progressively reduced standing vortices disappear and the alternate shed­

ding of vortices from the cylinder starts, Figure 4.7(d) (one pair of vortices over the vortex 

shedding cycle). This marks the second' phase in the vortex shedding development. Its 

principal characteristics are the gradual reduction of the recirculation region and the in­

'c~ease of the drag coefficient and of the amplitudes of other flow parameters such as the 
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(a) t' = 8.25, CL = 0 

(b) t' = 61.96, min(CD) 

Figure 4.6: Streamline patterns for the flow past a circular cylinder at Re = 105: (a) 
symmetrical wake at t* = 8.25; (b) asymmetrical vortices at the instant t* = 61.96 when 
the drag coefficient has a minimum value (see also Fig. 4.5). 

lift coefficient and separation angle. Another important change, related to reduction of 

the recirculation zone, is the disappearance of existing shed vortex before a new one is 

shed, Figure 4.8. 

4.3.3 The Karman vortex street 

A sequence of streamline patterns for a fully periodic flow is given in Figure 4.9. This 

sequenc~ covers one complete vortex shedding cycle of period T. The first plot (at tiT = 

0) corresponds to the instant where the lift coefficient is at maximum. Eaton's sequence 

of streamlines (Eaton, 1987), computed at Re = 110, is very similar to the present one. 

However, the start of the vortex shedding cycle was not referred to any easily identifiable 

event (e.g. the point of maximum lift coefficient as is done here). 

Figure 4.10 is constructed in order to understand the process of vortex formation. 

It is based on the sequence of streamlines shown in Fig. 4.9. This process has been 

interpreted in terms of separatrices, which are the streamlines that contain either a viscous 

or an inviscid saddle point (cf. Perry et al., 1982). A loop formed by a separatrix bounds 

the area with closed streamlines (a vortex) whose centre is the inviscid critical point. The 

streamline plots in Figure 4.9 and vortex formation model in Figure 4.10 confirm the main 

features of the model proposed by Perry et al. (1982). When a vortex has been shed from 

the cylinder, for example the upper vortex A in Figure 4.1O(b), an "alleyway" would be 

,opened. This has the effect of drawing fluid from below the cylinder (around the growing 
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(a) t* = 66.69 , max(Cr) 

(b) t* = 70.83 , min(Cr) 

(c) t* = 74.93 , max(CL ) 

(d) t* = 79.01 , min(CL ) 

Figure 4.7: Development of vortex shedding past a circular cylinder at Re = 105. Stream­
line patterns showing the time evolution of the flow regimes after the onset of vortex 

shedding. 
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(a) t* = 82.92 

(b) t* = 89.97 

(c) t* = 96.54 

(d) t* = 114.9 

Figure 4.8: Development of vortex shedding past a circular cylinder at Re = 105. Stream­
line patterns obtained at moments when the lift coefficient has maximum values illustrate 
reduction of the recirculation region and disappearance of two coexisting shed vortices. 
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Figure 4.9: Periodic vortex shedding from a circular cylinder at Re = 105. Streamlines 
in tl~e near wake representing a complete shedding cycle (successive plots at intervals of 

TI8). 
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~s 

Figure 4.10: Model of periodic vortex shedding using topology of instantaneous stream­
lines (separatrices). 

vortex B) into the upper recirculation region (instantaneous alleyways are indicated by 

bold lines in Figure 4.10). As vortex A is convected away, vortex B increases in strength 

and size, as shown in Figure 4.1O(c,d) and Figure 4.9 for tiT = 3/8. Before the instant 

tiT = 4/8, a new vortex C is born and at this instant the vortex B is about to be shed from 

the cylinder. Note that at tiT = 4/8, the lift coefficient attains the minimum value, see 

Figure 4.13 below. After shedding, vortex B is convected away, and the shedding process 

is repeated. Now, however, the instantaneous alleyway is opened above the cylinder and 

carries fluid to the bottom of recirculation region, Figure 4.1O(f-h). 

Perry et al. (1982) did not explain the precise mechanism of the transition processes 

during which one alleyway, for instance from below the cylinder, closes, and a new one, 

from above the cylinder, opens, and vice versa. This was tackled by Eaton (1987) who 

produced streamline plots at intervals of T 1124, covering the shedding process around the 

present phase tiT = 4/8. Based on these plots, Eaton concluded that an existing alleyway 

closes and new one opens at the instant when the vortex is shed from the cylinder. The 

present streamlines at tiT = 0 (at maximum CL ) and tiT = 4/8 (minimum CL ) indicate 

that the vortices A and B have reached their maximum sizes. This means that the instant of 

transition, analysed by Eaton, can be associated with the maximum or minimum values of 

the lift coefficient. According to Eaton, at the instant of transition, separatrices are similar 

to ones for a closed recirculation region containing two counter-rotating vortices; they are 

drawn in Figure 4.1O(a,e), where new saddle points are marked as S. Eaton also showed 
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0 -
L -
~ -

Figure 4.11: Karman vortex street for a circular cylinder at Re = 105. Streamlines using 
fixed frame of reference (top) and with frame of reference in translation at velocity 0.85 Uo 
(bottom). 

that a new vortex (C), always with opposite circulation than existing one, is formed before 

the existing vortex (B) is shed (approximately before T /40 units). 

The general vortex ,shedding model of Perry et al. (1982) is not reproduced com­

pletely here, nor by Eaton (1987). Compared to the model given in Figure 4.10, Perry 

et al.'s model shows one more vortex being convected away before a new vortex is shed 

from the cylinder. This situation appears during the vortex shedding development, Fig­

ure 4.7(d) and Figure 4.8(a-c), where the recirculation region is longer than in the case of 

the developed vortex-shedding process. 

Streamline patterns in Figure 4.9 suggest that the shed vortices (A and B in Fig­

ure 4.10(d,h)) 'disappear' after .leaving the recirculation region. This, however, is due 

to the difficulties involved in defining a vortex by streamlines (Lugt, 1983, Ch. 2), which 

are not invariant if the reference frame changes. By adopting a moving frame of refer­

ence, the shed vortices become visible again (Figure 4.11 (b)) in the form of the Karman 

vortex street, which comprises two parallel and symmetrical rows of staggered vortices 

.of opposite sign. The use of streaklines is often the clearest way to visualize the shed 

vortices. The computed streaklines are shown in Figure 4.12(a). Immediately noticeable 

is the close resemblance between the computed streaklines and the flow visualizations of 

Tanida (as reported in van Dyke, 1982), Figure 4.12(b). The streaklines look like spirals, 

directed from the outer edge of the vortex towards its interior. The streaklines in Fig­

ure 4.12( a) reveal that the fluid entrained into the recirculation region from one side of the 

79 



LAMINAR FLOW PREDICTIONS 4.3 Periodic Vortex Shedding: Common Features 
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Figure 4.12: Streaklines for a circular cylinder at Re = 105: (a) computed at t* = 204.9 
(where the lift coefficient is at maximum); (b) photograph from experiments by S. Taneda, 
van Dyke (1982). 

cylinder remains on that side and does not find its way into vortices generated from the 

opposite side. 

When a fully periodic vortex shedding flow is established, all the flow parameters 

fluctuate periodically around a mean value. Further, the mean lift coefficient becomes 

zero. This is illustrated in Figure 4.13. It is interesting to examine the relative phase 

between the parameters plotted in Figure 4.13 . It is clear that the lift coefficient and 

. separation angle have the same period of oscillation, but are not in the phase. The relative 

phase between them is about a quarter of the vortex shedding period. Further, the petiod 

of oscillation of the drag coefficient is exactly one half that of the lift coefficient. When 

the upper separation angle attains a maximum, the drag coefficient is at minimum. There 

is no such cOlTespondence between the drag and lift coefficients; the shift in their phase 

is about 1/8th of the vortex shedding period. 

Plots of the power spectra (Figure 4.14) show the sinusoidal nature of the flow since 

only one dominant peak (which defines the dimensionless frequency, i.e. the Strouhal 

number) exists in all the plots. The fundamental vortex shedding frequency corresponds 

to the frequency of the lift fluctuations, and it is apparent from the above figures that 
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Figure 4.13: Developed vortex shedding from a circular cylinder at Re = 105: the drag 
coefficient (top), lift coefficient (middle), and angle of separation (bottom). 

the drag coefficient oscillates at twice the fundamental frequency. This result is due to 

tl:Ie fact that the pressure fluctuations at the rear of the cylinder go through a full cycle 

each time the vortex is shed either from the upper or lower part of the cylinder. Note 

that the pressure drag and the lift coefficients, C Dp and C Lp' and therefore their viscous 

counterparts, oscillate with the same frequencies as the total coefficients CD and CL . 

Figure 4.14 shows that the separation angle oscillates with the fundamental vortex 

shedding frequency. This is also the case for the stagnation pressure and for the V-velocity 

component at the monitoring point in the wake. The V-velocity component, however, 

has the same frequency as the drag forces. All these frequencies are very close to each 

other, and all yield a Strouhal number value of 0.1668. It is noted that all the Strouhal 

numbers values reported in the present study have been obtained as the non-dimensional 

frequencies for the total lift coefficient. In literature, the contribution of the viscous forces 
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to the total forces is often neglected. For low Reynolds-number flows, this is not always 

justifiable as the viscous contribution can be quite substantial (in this flow, for example, 

CD = 1.3483 and C Dv = 0.3349 so the viscous contribution is 24.84% of the total drag). 
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Figure 4.14: Power spectra for the flow past a circular cylinder at Re = 105: drag coeffi­
cient (left), lift coefficient (middle), and angle of separation (right). 

It should finally be noted that a similar picture emerges from the analysis of the flow 

around a square cylinder. This was done in the course of the present study as well as by 

Franke (1991) and Kim and Benson (1992). In all cases, plots of the velocity vectors and 

streamlines over a vortex shedding cycle for both circular and square cylinders showed 

the growth and shedding of the two "classical", alternating vortices at Re ~ 100 - 200. 

At the end of each half of the cycle, the attached vortex, generated either from the top 

or from the bottom of the cylinder, reaches almost cylinder size before it is shed into the 

wake. The main differences between the square and circular flows are attributed to the 

fact that the separation points in the former are essentially fixed and occur near either the 

rear or front corners depending on whether Re is less or greater than 150. 

4.4 Numerical Uncertainties 

Although the vortex shedding problem has been investigated by many authors, the numer­

ical errors (uncertainties) have been only rarely addressed. Rosenfeld (1994) studied the 

flow over a circular cylinder at Re = 200, and obtained a grid-converged solution over 

the whole domain using the grid with 51.3 x 513 nodes. He found that the effects of grid 

resolution are more paramount in determining the phase, rather than the magnitude of the 

oscillations. The magnitude of parameters such as the force coefficients can be computed 
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with coarser grids, while very fine grids are required to resolve the characteristics of the 

far-wake region. Closely related to the grid resolution effects are temporal resolution ef­

fects and the use of high-order accurate convective schemes. Besides these factors, the 

vortex shedding results can be affected by the size of the computational domain (Behr et 

aI., 1991; Karniadakis and Triantafyllou, 1992; Zhang et aI., 1995) and by implemented 

boundary conditions at the outlet plane (Sani and Gresho, 1994; Abarbanel et aI., 1991; 

and Nakamura et aI., 1993). 

While the sources of the numerical errors have been identified, it is not always clear 

how estimates of such errors can be obtained. In this section, the Richardson error esti­

mator (cf. Roache, 1994), described in Appendix B (Equations (B.5) and (B.9», is used 

to quantify and report on the grid and time refinement tests. Detailed assessment of the 

numerical uncertainties is presented below for vortex shedding from single square and 

circular cylinders. 

4.4.1 Time discretisation 

The effect of the time-step size was investigated for the flow past a square cylinder at 

Re = 200. The SMART convective scheme was used. Having in mind the grid refinement 

test of Rosenfeld I (1994) and the effect of the domain size reported by Karniadakis 

and Triantafyllou (1992») a grid (D1) of 136 x 118 nodes was employed. The Strouhal 

number and force coefficients were computed for four values of the time step and the 

results are presented in Table 4.3 and Figure 4.15. It is clear that the use of smaller 

Test ~t(s) ~t* x 103 St CD Cb x 102 ct 
1 0.325 1.01 0.1541 1.4606 2.739 0.4079 

2 0.65 2.02 0.1543 1.4575 2.695 0.4034 

3 1.30 4.04 0.1543 1.4535 2.619 0.3972 

4 1.95 6.06 0.1541 1.4506 2.549 0.3919 

Elt (%) 0.13 -0.21 -1.61 -1.10 

E3t (%) 0.17 -0.65 -5.84 -3.49 

Table 4.3: Temporal refinement tests for the flow past a square cylinder at Re = 200 (grid 
D1 - 136 x 118; SMART scheme). 

time-step sizes slightly increases the force coefficients, while the changes in the Strouhal 

numbers are practically negligible. In addition to the integral parameters, the above Table 

I Rosenfeld considered the flow around a circular cylinder at Re = 200. For a mesh of 129 x 129 nodes, 
he reported a maximal error of 16 and 33 % for the pressure and U-velocity, respectively, at a distance of 

. 12 D in the wake. In the vicinity of the cylinder, the errors were negligible. 

83 



LAMINAR FLOW PREDICTIONS 4.4 Numerical Uncertainties 

0.155 '--""---',""---'--',--'--""T""""""" I 1.4 7 .-....---.,--.~,--.--~ I 

~ 1.46f-~-
~ 0.154 f- - ~~ 

1.45 f- -

0.153 I I I 1.44 I I I 

0.42 I I I 2.8 

r~-
N 2.7 
0 

L"I0.40 .-4 
x 
.~ 

tJ 2.6 

0.38 I--i--L'---L._....L...-1.L...-1...-J1 2.5 L..-Ji--L---L.--L.--I........J--l 

o 2 4 6 o 2 4 6 

M*xl03 

Figure 4.15: Flow past a square cylinder at Re = 200. Effect of the time step size on the 
vortex shedding parameters (grid DI-136xI18, SMART scheme). 

Test ~t(s) ~t* x 103 St CD ±CD ±c\ 
I 1.2 1.867 0.1744 1.451 0.010 0.3416 

2 2.~ 3.733 0.1741 1.449 0.010 0.3387 

Elt (0/0) -0.17 -0.14 -0.85 

E2t (0/0) -0.34 -0.28 -1.70 

Table 4.4: Temporal refinement tests for the flow past a circular cylinder at Re = 100 
(grid D2 - 134 x 88; SMART scheme). 

contains the estimated errors Elt for the smallest time-step size ~t = 0.325 s, and the 

estimated errors E3t for the ~t. = 1.3 s. For this Reynolds number, the approximate 

Fourier-number condition, Equation (4.8), gives a time-step size close to the value for 

which E3t is reported. 

The time resolution tests for a circular cylinder at Re = 100 are presented in Table 4.4. 

In this table, the estimated temporal errors E2t correspond to the time-step sizes that are 

slightly larger than the values obtained from Equation (4.8). 

4.4.2 Spatial discretisation 

The spatial discretisation error is analysed by grid refinement tests and by use of higher 

order convective schemes. 
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Effects of convective schemes 

A variety of convective differencing schemes have been implemented in the present code, 

while the central differencing scheme is used for the diffusion terms. Therefore, the 

overall accuracy of the spatial discretisation can be the second order. All the implemented 

schemes were used to compute the flow past a square cylinder at Re = 250. The grid 

D1 - 136 x 118 was employed and the time-step size was !:It* = 3.89 x 10-3 . 

Figure 4.16 depicts the time evolution of the drag and lift coefficients for the differ­

ent convective schemes. The computed streaklines are shown in Figure 4.17. Both the 

time histories and the streakline plots show that the Upwind scheme (UDS) and Central 

Differencing Scheme (CDS) are inadequate for the present purposes. The unbounded 

Linear-Upwind scheme (LUDS) is formally second-order accurate and produces a von 

Karman vortex street with regions of concentrated vorticity preserved well downstream 

of the shedding points. The centres of vorticity are displaced further from the centreline 

than has been obtained with other schemes. Accordingly, the mean drag coefficient, am­

plitudes and r.m.s. values of the drag and lift coefficients attain their highest values, which 

is also evident from Table 4.5. The bounded MINMOD scheme, as a combination of the 

Scheme St CD Cb CL C~ ±CL 

SMART 0.1381 1.520 5.12 x 10-2 -1.52 X 10-4 0.686 0.975 

QUICK 0.13"87 1.520 4.88 x 10-2 -1.63 X 10-4 0.674 0.960 

MINMOD 0.1442 1.507 4.39 x 10-2 -1.22 X 10-4 0.549 0.779 

LUDS 0.1364 1.625 '7.04 x 10-2 -4.69 X 10-4 0.884 1.260 

CDS 0.1664 1.444 1.44 x 10-2 -9.59 X 10-4 0.321 0.529 

UDS 0.1269 1.383 1.35 x 10-2 -2.31 X 10-4 0.280 0.397 

Table 4.5: Flow past a square cylinder at Re = 250. Strouhal number and force coeffi­
cients computed with different convective schemes. 

CDS and LUDS schemes, gives satisfactory results that lie in between those of the tv<o 

schemes. The undesirable properties of CDS and LUDS are eliminated, when necessary, 

by switching to the UDS scheme. The third-order accurate QUICK scheme is also un­

bounded with the result that calculated values may over- or undershoot their appropriate 

levels - sometimes with quite unphysical results. Here, it seems to predict the centres of 

the shed vortices to lie too close to the centreline, a result which is not supported by ex­

periments, see Figure 4.12(b). The SMART scheme can be seen as the bounded QUICK 

scheme, thus formulated so as to be of third-order accuracy and dropping to first-order 

if necessary to preserve boundedness. Its predicted streaklines reveal patterns similar to 

those visualized in physical experiments. Comparing the time evolution of the drag and 
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Figure 4.16: Flow past a square cylinder at Re = 250. Time history of the drag (left) and 
lift (right) coefficient as obtained with various convective schemes (grid Dl-136xl18, 
llt* = 3.89 x 10-3). 

lift coefficients and integral parameters, it is clear that the SMART and QUICK schemes 

produce very similar results. That the same results obtained with other schemes differ 

more is not surprising, since they are less accurate than SMART and QUICK. 

To summarize, vortex shedding flows can be computed by the simple and bounded 

upwind convective scheme but it will require a large number of the grid nodes but then the 

~DS scheme can also be used. This number is significantly reduced by using the higher 

order schemes. Physical considerations have emphasized the necessity to use bound~d 

convective schemes. Among the two bounded schemes tested here, the SMART scheme 

needs less grid nodes than MINMOD to achieve grid-independent solutions. 

Grid refinement 

Grid refinement tests have been carried out with reference to the Strouhal number and 

the force coefficients. The SMART scheme was used throughout. As already mentioned, 

the grid density was varied by changing the grid expansion factor and non-dimensional 

distance of the near-wall cells from the wall. The last parameter determines the resolution 
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Figure 4.17: Flow past a square cylinder at Re = 250. Streaklines computed with differ­
ent convective schemes. 
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Domain-Grid Ie St CD C' D C' L 

D3 - 134 X ll2 1.125 0.1473 1.498 4.53 X 10-3 0.181 

D3 - 169 X 150 1.080 0.1488 1.508 4.96 X 10-3 0.187 

El [fine grid] (%) -1.47 -0.96 -12.58 -4.66 

E 2 [coarse grid] (%) -2.48 -1.62 -21.26 -7.88 

D2 - 123 X 106 1.125 0.1539 1.589 4.57 X 10-3 0.173 

D2 - 167 X 140 1.080 0.1554 1.597 4.96 x 10-3 0.179 

El [fine grid] (%) -1.21 -0.63 -9.91 -4.22 

E 2 [coarse grid] (%) -2.17 -1.13 -17.77 -7.57 

Table 4.6: Flow past a square cylinder at Re = 100. Influence of the grid expansion factor 
on the integral parameters (t:1nc / H = 0.005, t:1t* = 0.78 x 10-3). 

Domain-Grid t:1nc/ H st CD Cb C~ 

D1 - 136 x ll8 0.005 0.1381 1.520 5.12 x 10-2 0.686 

D1 - 160 x 142 0.0025 0.1375 1.527 5.46 x 10-2 0.707 

El [fine grid] (%) 0.96 -1.11 -14.91 -6.97 

E 2 [coarse grid] (%) 1.36 -1.57 -21.11 -9.87 

Table 4.7: Flow past a square cylinder at Re = 250. Influence of the near-wall distance 
on the integral parameters (fe = l.125, t:1t* = 0.38 x 10-3). 

of a boundary layer generated on the cylinder surface. 

The influence of the grid expansion factors can be deduced from Table 4.6, where the 

results are given for Re = 100. This effect is also shown in Figure 4.18 which includes 

the additional results for the grid D2 - 169 x 150 with t:1nc/ H = 0.0025 and Ie = l.1O. 

Note that a very small time-step size was used in order to minimize the time resolution 

errors. It is obvious that for this Re all the global parameters increase on the finer grids, 

obtained here by using smaller grid expansion factors. A similar trend characterizes the 

effect of the near-wall distance t:1nc / H on the force coefficients at Re = 250, while the 

Strouhal number slightly decreases on the finer grid, Table 4.7 and Figure 4.19. Thus, 

one can expect very close results when they are obtained on relatively fine grids, refined to 

Domain-Grid Ie t:1nc/ H St CD C' x 103 
D C' L 

D2 - 167 x 140 1.08 0.005 0.1554 1.597 4.96 0.179 

D2 - 169 x 150 1.10 0.0025 0.1548 1.598 4.92 0.178 

Difference X (%) - - 0.39 -0.06 0.81 0.56 

Table 4.8: Comparison of two types of the grid refinement for the flow past a square 
cylinder at Re = 100. 
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Figure 4.18: Flow past a square cylinder at Re = 100. Effect of the grid expansion on the 
drag coefficient (above)' and lift coefficient (below). 

the similar size by reducing either the grid expansion factor or the near-wall distance. The 

results for two fine grids at Re = 100, shown in Table 4.8, confirm the above conclusion. 

Both Tables 4.6 and 4.7 include the estimated errors for the fine and coarse grids. For 

these errors, Equations (B.5) and (B.9) were used with the order w = 2 and the grid 

refinement ratio r was computed from Equation (B.8). 

4.4.3 Size of the computational domain 

.In Figure 4.1, three parameters Xi, X o , and Ys are used to describe the size of the compu­

tational domain. Behr et al. (1991) analysed the influence of the location of the outflow 

boundary Xo for the flow past a circular cylinder at Re = 100. For both types of outlet 

boundary conditions used in that study, the force coefficients and Strouhal number did 

not show significant variations for the Xo/ D > 14.5. The same conclusion was drawn 

by Nakamura et al. (1993) who computed the flow past a square cylinder at Re = 100 

(uniform grids- ~nc/ H = 0.05, ~t* = 0.01) with four types of outlet boundary condi­

tions and for two locations Xo/ H = 28 and Xo/ H = 68. They found that the differences 

between the results for the force coefficients and Strouhal numbers were less than 1 %. 
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Figure 4.19: Flow past 'l square cylinder at Re = 250. Effect of the near-wall distance on 
the drag coefficient (above) and the lift coefficient (below). 

As the tests of Karniadakis and Triantafyllou (1992) have indicated, the placement of 

symmetry boundaries is more critical. Table 4.9 summarizes the effects of the dimensions 

Ys / Hand Xd H (see also Table 4.1) on the vortex shedding parameters for the flow 

around a square cylinder at Re = 100. Four cases were computed with the confinement 

or blockage factor: 

H 
B f = 2Y

s 
(4.10) 

ranging from 8.33 to 3.33 %. It is obvious that the values of the vortex shedding pa­

rameters decrease for smaller values of the blockage factor B f· The placement of the 

symmetry boundaries closer to the cylinder reduces the effective flow area around it and 

increases local velocities. Accordingly, the force coefficients are greater than those in a 

large (unbounded) domain. 

The estimated uncertainties due to the domain sizes Ed[domain] are also given in 

Table 4.9. In order to calculate them, variations of the vortex shedding parameters with 

the blockage factor B f are plotted in Figure 4.20. Essentially, the plotted results, with the 

,exception of the ct, exhibit linear dependence on the blockage factor for small values of 
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Domain-[Grid size] Bf (%) St CD Cb X 103 C' L 

D2 - 123 x 106 8.333 0.l539 1.5899 4.577 0.1733 

D3 - 134 x 112 5.556 0.1473 1.4981 4.531 0.1813 

D1 - 136 x 118 4.167 0.1444 1.4614 4.214 0.1690 

D4 - 139 x 122 3.333 0.1430 1.4430 4.085 0.1689 

Extrapolated values 0 0.1374 1.3694 3.569 0.1685 

Ed[D2] (%) 12.00 16.10 28.24 2.85 

Ed[D3] (%) 7.21 9.40 26.95 7.60 

Ed[Dl] (%) 5.09 6.72 18.07 0.30 

Ed[D4] (%) 4.08 5.37 14.46 0.24 

Table 4.9: Domain size effect on the vortex shedding parameters for the flow past a square 
cylinder at Re = 100 (!::.t* = 0.778 x 103

, !::.nc/ H = 0.005, fe = 1.125) 

this factor. This is in agreement with theoretical and empirical correction formulae for the 

wall effects on unsteady forces of two-dimensional bluff bodies; see for example Ota et 

al. (1994). Thus, uncertainties presented in Table 4.9 are calculated from Equation (B.4), 

where the extrapolated value for the zero blockage ratio is treated as the exact solution 

<Po· 

The reported domain size uncertainties should be regarded as approximate. Firstly, 

they were calculated neglecting the influence of the dimension Xd H. Secondly, the 

resolution near the domain boundaries was inadequate. For reasons of expediency, most 

of the earlier vortex shedding studies were done using solution domains similar to D2 

and, more rarely, D3. In such cases one can expect much higher uncertainties due to the 

domain size (say of around 10% for the St-number and mean-drag coefficient) than due 

to either temporal or spatial resolutions. 

4.4.4 Summary 

The intriguing fact that the domain size errors in many cases cancel the time and space 

.discretisation errors further complicates quantification of the numerical uncertainties. The 

previously reported errors have been used to establish approximate error bands for the 

. integral vortex shedding parameters computed here 

• on the grids generated inside domains D1 (see Table 4.1 and 4.2), 

• by using the SMART convective scheme, 

• with !::.nc/ H ~ 0.005, fe ~ 1.125, 
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Figure 4.20: Flow past a square cylinder at Re = 100. Variations of the Strouhal number 
(top, left), the mean drag, (top, right), r.m.s. drag (below, left) and r.m.s. lift (below, right) 
coefficients with the blockage factor. 

Estimated errors for St CD Cb C' L 

Time discretisation, Elt (%) <1. <1. -6. -3.5 

Space discretisation, E 1xy (%) ±2. -2. -20. -8.5 

Domain size, Eld (%) 5. 7. 18. <1. 

Table 4.10: Estimated error bands for the laminar vortex shedding results (!~.nc/ H :::::: 
0.005, Ie :::::: 1.125, domain D1, SMART). 

• with time-step sizes chosen according to the Fourier number condition, Equation (4.8), 

or to the CFL condition, Equation (4.7), 

• and for the Reynolds numbers up to Re = 250. 

These error bands, are given in Table 4.10. The signs of errors have been entered as they 

were obtained for the computed Re-values and cylinder geometries; for other conditiOJ~s 

the signs may change. 

4.5 Single Cylinders in Uniform Flows 

The principal parameter that determines the flow regimes in the case of smooth square 

and Circular cylinders is the Reynolds number. Different vortex shedding regimes for 

. these geometries have been discussed in Introduction, Section 1.2. It appears that the 

wake becomes three-dimensional at Re :::::: 200 and the transition to turbulent state can be 

,expected for Reynolds number values in the range 200 - 1000. The present predictions 
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were obtained for Reynolds number values up to 1000 for the case of a square cylinder 

and up to 2000 for the circular cylinder. The grids used were D1 - 136 x 118 for the 

square, and D1 - 143 x 98 for the circular cylinder. It is expected that the uncertainties 

associated with these predictions will be of the same order as shown in Table 4.10. 

4.5.1 Square cylinder: results and discussion 

Simulations were carried out for Reynolds numbers in the range 70 - 1000. The calculated 

integral parameters are presented in Table 4.11. It is seen from this Table that the average 

Re !:::.t* . 103 St CD C' D CDp C L C' L ±CL 

70 0.82 0.129 1.533 0.0015 1.423 2.6.10-5 0.109 0.156 

100 2.49 0.144 1.460 0.0042 1.412 -1.9.10-5 0.169 0.238 

150 3.73 0.156 1.426 0.0124 1.436 1.6. 10-4 0.257 0.364 

200 4.04 0.154 1.454 0.0262 1.492 1.1 . 10-4 0.397 0.564 

250 3.89 0.138 1.520 0.0512 1.569 -1.5.10-4 0.686 0.975 

300 3.49 0.134 1.629 0.1410 1.679 2.3.10-4 0.945 ~ 1.7 

500 3.11 0.139 1.750 0.4110 1.781 -3.7.10-:3 0.982 ~ 2.30 

1000 3.11 0.129 2.337 0.6780 2.349 -7.7.10-2 1.535 ~ 3.07 

Table 4.11: Square cylinder. Predicted integral parameters as obtained with grid D 1-
136x 118 and the SMART scheme. 

drag coefficient CD decreases with Reynolds number (in the range 70 - 150) but thereafter 

starts to increase. At Re = 150, the pressure drag coefficient C Dp is larger than the total 

drag coefficient indicating that the viscous forces change sign (becomes negative) at this 

Reynolds number. This implies that the separation points move from the rear to the front 

corners of the cylinder. 

The velocity vectors for Re = 100, plotted in Figure 4.21(top), show that the flow 

separates at the rear corners. At Re = 150, Figure 4.21 (bottom) shows that separation 

occurs from the front corner of the upper surface, and from the rear corner of the bottom 

surface. Since the flow is periodic, this means that the separation points alternate between 

. the front and rear corners. 

The effect of Reynolds number on the time histories of the drag and lift coefficients 

can be seen from Figure 4.22. The amplitudes of the force coefficients increase mono­

tonically with Reynolds number. Periodic vortex shedding is strongly in evidence for 

Reynolds numbers up to 250. For Re =·300, repeatable patterns are evident (i.e. quasi­

periodic vortex shedding). The lift coefficient exhibits an asymmetrical pattern, although 
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Figure 4.21: Velocity vectors around a square cylinder as calculated at two Reynolds 
numbers: (top) Re = 100, (bottom) Re = 150 (grid Dl-136xI18, SMART scheme). 

its long-time mean value is still close to zero, Table 4.11 . There is still some evidence of 

repeatable patterns for R e = 500, while for the higher Re-value of 1000 the behaviour 

appears to be somewhat chaotic. 

As can be seen from Table 4.11 , the long-time mean of the lift coefficient is not neg­

ligible for Re = 500 and 1000. Obviously, when the value of R e exceeds a certain limit, 

. which is close to the one when the three-dimensionality appears, the flow does not ex­

hibit symmetry in a sense that the flow patterns above and below the centre line repeat, 

with a 1800 phase difference. This feature has been reported by other researchers. Asym­

metrical vortex shedding from a square cylinder was noticed at R e ~ 500 by Arnal et 

al. (1991), Lin (1991) (Re = 1000). It can also be seen in Franke's study (1991) (at 

R e = 300) from examination of the time history of the lift coefficient. Those authors 

(and others, e.g. Davis and Moore (1982), Ramaswamy and Jue (1992) and Okajima et 
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a1. (1992)) reported cycle-to-cycle variations in their results, with multiple frequencies 

becoming apparent at the Reynolds numbers after the onset of three-dimensionality. Ad­

ditional frequencies occurred at different Reynolds numbers and this can be explained by 

different grid resolutions, especially near the walls. The tests carried out in this work 

confirm that with increased near-wall grid resolution, the additional frequencies appear 

at lower Reynolds numbers. This also occurs when computations are performed in the 

narrower solution domains. Thus, for example, the onset of asymmetric shedding was 

shifted from Re = 300 to Re = 250 when the domain (D2) i.e. the grid D2 - 123 x 106 

was used. 

A question arises here as to whether there exists a direct connection between the addi­

tional frequencies and the occurrence of asymmetrical vortex shedding. At present, there 

is no satisfactory answer to this question. However, it is worth looking for the origins 

of cycle-to-cycle variations in the force coefficients that produce additional vortex shed­

ding frequencies. A change from a periodic to quasi-periodic and eventually irregular 

behaviour of the force coefficients must be associated with changes of the flow structures 

around the cylinder. As can be seen in Figure 4.23, the flow reattachment at the cylinder 

sides is a new and important feature which certainly affects the time evolution of the flow 

quantities for Reynolds number values greater than 300. Although the plots in Figure 4.23 

were not obtained at the same phase of the shedding cycle, one can easily notice an in­

crease of the reattachruent zone with the Reynolds number (the reattachment happens at 

lower side of a square for all plotted cases) . For Re = 300, a very small reattachment 

zone originates close to the rear corner (this was detected by an enlarged plot not shown 

here). For higher Reynolds numbers, the reattachment point moves towards the centre of 

the bottom side, and the detached vortex is clearly visible for Re = 1000. 

Lin'(l991) reported an asymmetrical vortex shedding pattern for a square cylinder at 

Re = 1000 (a quite coarse grid 70 x 47 was used) and a non-zero value of the mean 

lift coefficient. Another asymmetrical pattern, a mirror-image counterpart to the first 

,one, was obtained by inverting the initial perturbation method. Similar mirror-image 

time records of the lift coefficients are depicted in Figure 4.24(top). Two initial per-

, turbations, explained in Section 4.3.1, were used. The patterns of the lift coefficient, 

computed without any artificial perturbation, show a close resemblance to the patterns 

obtained with the second perturbation (Ula = 1.05 Uo), Figure 4.24(bottom). As in the 

case of truly periodic flow (see Figure 4.4), the same time records were obtained for the 

drag coefficient, Figure 4.25(top). A comparison with the case without initial disturbance, 

Figure 4.25(bottom), suggests that for this Reynolds number the drag coefficient is prac­

ticaJly not affected by the initial perturbations. Further remarks on this phenomenon will 

be presented in Section 4.5.3. 
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Figure 4.22: Time histories of the drag coefficient (left) and the lift coefficient (right) 
for the flow around a square cylinder as calculated at different Reynolds numbers (grid 

, Dl-136xl18, SMART scheme). 
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Figure 4.23: Velocity vectors and streamlines around a square cylinder showing the flow 
reattachment at the cylinder sides: (top) Re = 300, (middle) Re = 500, and (bottom) 
Re = 1000 (grid DI-136x1l8, SMART scheme). 
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Figure 4.25: Flow around a square cylinder at Re = 300. Time traces of the drag coeffi­
cient as calculated with two initial perturbations (top) and without it (below). 
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The present predictions for the mean drag coefficient and the Strouhal number are 

compared with the results of others in Figure 4.26. 
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Figure 4.26: Square cylinder. Predicted and measured mean drag coefficients and 
. Strouhal numbers (grids Dl-136xl18 and D2-123x106; SMART scheme). 

Two sets of the present results, obtained with different solution domains ( represented 

by the blockage factor B f) are included. The effect of the placement of the symmetry 

boundaries is clearly illustrated by these sets. Both the drag coefficient and the Strouhal 

number are increased when the width of the solution domain is reduced. This conclusion 

is supported by the Strouhal-number results of Mukhopadhyay et al. (1992) calculated 

, for Bf = 12.5%. Franke (1991) performed calculations on a solution domain similar to 
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the present one (grid D2 - 123 x 106) and his results agree well with the present results 

(Ej = 8.3%) for most Reynolds numbers. 

There is good agreement between the present results for the mean drag coefficient 

(E j = 4.2%) and those of Sohankar et al. (1997). When both results are compared with 

the measured data of Okajima (1995) , satisfactory agreement exists only for Re-numbers 

from 150 to 500. Considering other results, note that Hwang and Yao (1997) used the 

grids of similar fineness as here, while Davis and Moore (1982) employed coarser grids. 

Four sets of experimental results exist for the Strouhal number. Gerrard's (1978) 

data have been rarely acknowledged by CFD researchers, while the results of Okajima 

(1982) and Davis and Moore (1982) have become a standard reference. However, the 

large discrepancies between the measurements of Okajima and Davis and Moore, ranging 

from 14% to 21% for Re > 250, pose many questions. After analysing all possible 

sources of experimental uncertainties, Li and Humphrey (1995) suspected "that at least 

one of the two experiments was affected by unknown systematic error(s)". The present 

results as well as the results of Franke (1991) and Sohankar et al. (1997) display a clear 

maximum at Re ~ 150 - 200. Excluding the results for Re = 250 and 300, the present 

predictions for a large domain (E j = 4.2%) agree well with the recent measurements of 

Norberg (1996). 

4.5.2 Circular cylinders results and discussion 

The predicted vortex shedding parameters in the range 50-2000 are summarized in Ta­

ble 4.12. In contrast to the square cylinder, the total drag coefficient here is always greater 

than the pressure drag. The latter quantity increases monotonically with Reynolds num­

ber. The total drag coefficient displays a minimum value around Re = 150 (as was 

the case for the square cylinder) but the Strouhal-number maximum is shifted now from 

Re = 150 to Re ~ 1000 -2000. This is in agreement with the measurements (see 

.Figure 4.28 below). The amplitudes of all the force coefficients increase with Reynolds , 
number whilst the angle of separation Os decreases. Turning now to the time evolution of 

. the drag and lift coefficients, plotted in Figure 4.27, it is noted that symmetric, periodic 

patterns prevail, even for Reynolds number of 1000. Asymmetric vortex shedding is ev­

ident for Re = 2000. Note that this flow shares certain features with the flow around a 

square cylinder at Re = 300, e.g. repeatable patterns in the time records and an asym­

metrical behaviour for the lift coefficient. In addition, the use of two initial asymmetric 

perturbations produced qualitatively the same results as those presented in Figures 4.25 

and 4.24 for a square cylinder at Re = 300. 

The relatively recent data of Williamson (1989, 1996) for Strouhal number (given in 
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Figure 4.27: Time history of the drag coefficient (left) and the lift coefficient (right) for 
vortex shedding from a circular cylinder as a function of Reynolds numbers (grid D 1-

, 143x98, SMART scheme). 
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Re 6.t* . 103 St CD C' D CDp CL C' L ±CL Os ,0 

50 0.78 0.124 1.465 0.0031 0.993 -2.4.10-4 0.020 0.028 123.4 

80 0.78 0.153 1.373 0.0029 0.995 2.1 . 10-5 0.168 0.238 118.8 

105 0.78 0.165 1.341 0.0075 1.007 -1.2.10-6 0.247 0.349 116.4 

150 1.52 0.181 1.325 0.0182 1.041 4.6.10-5 0.369 0.523 113.6 

200 2.49 0.191 1.329 0.0312 1.079 -2.0.10-4 0.482 0.683 111.6 

300 2.33 0.203 1.359 0.0568 1.149 -7.4.10-4 0.645 0.914 109.2 

500 2.49 0.214 1.409 0.0982 1.244 8.5.10-5 0.819 1.158 108.7 

1000 2.49 0.223 1.527 0.1690 1.407 -1.6.10-3 1.047 1.459 107.5 

2000 2.49 0.223 1.688 0.2300 1.601 -3.8.10-2 1.277 ~ 1.78 107.4 

Table 4.12: Flow around a circular cylinder. Predicted integral parameters as obtained 
with the grid D1-143x98 (see Table 4.2) and the SMART scheme. 

a tabulated form) provide an excellent benchmark case for the numerical simulations of 

vortex shedding from circular cylinders. The measurements are in the Reynolds number 

range 50 - 450. This range spans both the unstable wake and periodic laminar vortex 

shedding regime (Re = 40 - 190) and the wake transition regime (Re = 190 - 1000). 

Table 4.13 shows that the present results for periodic vortex shedding stand in good com­

parison with the measurements of Williamson. This table also includes the drag co­

efficient values obtained from the high-resolution numerical simulations of Henderson 

(1995). Henderson reported that his results were fitted well by the following function: 

CD~ CDv 
A A 

CD ='i.4114 - 0.2668Reo.1648 exp( -0.003375Re)' + 2.5818/ Re°.4369' (4.11) 

The relative errors presented in Table 4.13 are smaller than the estimated error bands 

given earlier in Table 4.10. This does not necessarily mean the estimated errors are too 

conservative since cancellation. of errors is always possible. 

The computed Strouhal numbers and the drag coefficients versus Reynolds number , 
are shown in Figures 4.28 and 4.29. Also plotted there are the 'benchmark' solutions of 

. Rosenfeld (1994) (obtained for Re = 200 on a large domain equivalent to the present 

D1) and Engelman and Jamnia (1990) (Re = 100, domain D2). The present predictions 

agree well with those results. The influence of the distance between the cylinder and the 

symmetry boundaries (i.e. the blockage effect B f) is again quantified by comparing the 

results for domains D1 (Bf = 4.2%) and D2 (Bf = 8.3%). Domain sizes typically 

used in most of earlier studies (e.g. Gresho et aI., 1984; Karniadakis, 1989; Zhang 

et at, 1995) - domains like D2 with a distance Ys ~ ±6D - produce artificially high 

values for the drag coefficient and the Strouhal number. The simulations of Zhang (1995) 

. are very close to the present ones for the narrower domain D2. The Strouhal-number 
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Strouhal number Differ. Drag coefficient Differ. 

Re Williamson (1989) a Present % Henderson (1995) b Present % 

50 0.1231 0.1237 0.49 10449 1.465 +1.10 

80 0.1528 0.1515 -0.85 1.373 1.373 +0.02 

105 0.1667 0.1652 -0.90 1.346 1.341 -0.39 

150 0.1834 0.1806 -1.53 1.333 1.325 -0.63 

"Experiment 
"Simulations 

Table 4.13: Flow past a circular cylinder. Comparison of the computed Strouhal number 
and the drag coefficient (DI-143x98, SMART scheme) with data of Williamson (1989) 
and simulations of Henderson (1995), respectively. 

results of Karniadakis (1989) and Gresho et aI. (1984) fall a little above those of Zhang 

and the present results, along the upper experimental bounds. Other numerical results, 

where the blockage factor is unknown but might be insignificant (Li et aI., 1991; Sa and 

Chang, 1991; Braza et aI., 1986; Borthwick, 1986), are in general within the experimental 

uncertainty range. Focusing again on the present predictions for a large domain Dl, 

they are in a good agreement with the predictions of Henderson (1995) and Franke et aI. 

(1990). 

All recent two-dimensional simulations at Reynolds numbers above the one for which 

the experimental flow becomes three-dimensional (Re ~ 200) have inaccurately predicted 

the vortex shedding parameters, especially the force coefficients. Thus, for example, 

while measured drag coefficient (e.g. Wieselsberger, 1923) continuously decreases up to 

Re = 2000 (as shown in Figure 4.29), the computed values start to increase at Re ~ 180 

where a transition from a two-dimensional to a three-dimensional wake begins. Three­

dimensional effects on the vortex shedding flow are the subject of the next section. 

4.5.3 Three-dimensionality and limitations of 2-D simulations 

The onset of three-dimensipnal motions, for nominally two-dimensional cylinder ge­

ometries, has been the most challenging and problematic aspect of vortex shedding flows. 

We assume that the three-dimensional flow is caused by natural flow instabilities (in­

trinsic three-dimensionality) and not by geometry or boundary conditions (extrinsic ef­

fects). The critical Reynolds number Re~D, where a secondary flow instability of the 

two-dimensional wake develops, varies with the cylinder geometry but usually occurs at 

around 200. 

Williamson (1988, 1996) associated the onset of three-dimensionality at Re = 180 -
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Figure 4.29: Flow past a circular cylinder. Comparison of the computed mean drag coef­
ficients (the grids D 1-143x98 and D2- 134x88; SMART scheme) with others. 
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194 with the generation of large spanwise patterns - vortex loops and pairs of stream­

wise vortices whose spanwise wavelength is between 3 and 4 diameters. In a transi­

tion, the above shedding mode (Williamson's mode A) is accompanied by large structures 

known as vortex dislocations. Zhang et al. (1995) interpreted the vortex dislocations 

as a vortex adhesion mode. They visualized vortices which appeared to be glued to the 

body (giving an impression of no shedding) through a number of vortex-adhesion points 

along the cylinder span. At Re = 230 - 250 there is another change to the finer-scale 

streamwise vortices with a span wise wavelength of about one diameter and without vor­

tex dislocations (a mode B). According to Williamson (1996), the natural wake transition 

involves first mode A with vortex dislocations (his flow state A*) and then the mode B. 

This transition is manifested by discontinuities in the St - Re relationship as shown in 

Figure 4.30(top) by Williamson's results. Note that the first transition is hysteretic while 

the second is not. Apart from this natural wake transition path 2D --+ A * --+ B, 

Williamson (1996) and also Zhang et al. (1995) recognize other transient or unstable flow 

states which can occur in experimental and numerical studies. 

The results of several three-dimensional simulations of the flow around two- dimen­

sional bluff bodies appeared recently. The three-dimensional predictions of the Strouhal 

number and the mean drag coefficient in the case of a circular cylinder are displayed as the 

bold symbols in Figure 4.30. Henderson (see Williamson, 1996) reproduced the Strouhal 

numbers close to the measured values that describe the first natural transition (the lower 

experimental curve after the first discontinuity in Figure 4.30(top)). This transition is 

labelled as a "hard" transition (HT) by Zhang et al. (1995). In order to simulate the 

hard transition they had to introduce strong localized spanwise perturbations in the initial 

conditions. Also, a large enough span wise domain had to be used (24D). With nearly 

two-dimensional initial conditions, they reproduced modes A and B or a "soft" transition 

(ST). In this case the vortex shedding parameters depend continuously on Reynolds num­

ber which is the characteristic; of two-dimensional computations. The two-dimensional 

. results, including the present ones, are shown by open symbols in Figure 4.30. 

As mentioned earlier, in comparison with the experimental results, the mean drag 

coefficient is overpredicted by the two-dimensional simulations for Re > Re~D. In con­

trast, the three-dimensional predictions match fairly well with experimental results and 

follow their trend. Mittal and Balachandar (1995) studied in details the differences be­

tween the results of two- and three-dimensional simulations for flows past elliptic and 

circular cylinders. They found higher levels of the Reynolds stresses and shorter wakes 

in the two-dimensional cases. The latter are the main cause for the overprediction of the 

drag coefficient and the amplitudes of the lift coefficient. Bluffer bodies produced larger 

differences between the two- and three-dimensional results for the drag coefficients. Na­

jjar and Vanka (1995) investigated the effects of intrinsic three-dimensionality on the flow 
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past a normal flat plate at Re = 1000. Their two- and three-dimensional computations 

produced markedly different results for the drag coefficient and the flow structures. Close 

agreement was reported between the three-dimensional results for the drag coefficient and 

experimental values. Finally, the DNS study of Karniadakis and Triantafyllou (1992) for 

the flow around a circular cylinder at Re up to SOO needs to be mentioned. They showed 

that a secondary instability of the 2-D vortex street induces three-dimensionality in the 

wake. Further, additional bifurcations have led to a chaotic flow state at Re around SOO. 

They concluded that 3D flow oscillates at the fundamental vortex shedding frequency 

around a spanwise modulated time-average flow. 

A question arises as to the interpretation of some of the interesting phenomena realized 

in two-dimensional simulations. The previous Section 4.S.1 described the asymmetric 

vortex shedding process for the flow past a square cylinder at Re ~ 300. The same pro­

cess was encountered in the case of a circular cylinder (Section 4.S.2) at Re above 1000. 

Arnal et al. (1991) and Lin (1991) also captured the occurrence of asymmetrical vortex 

shedding for a square cylinder: the time-averaged lift coefficient had a non-zero value. 

Further, Karniadakis and Brown (199S) computed the flow past a half-cylinder with its 

flat surface facing downstream. The instantaneous vorticity field for the two-dimensional 

case, at Re = 250, showed an asymmetric vortex street. The attainment of two asymmet­

ric vortex shedding patterns by inverting the initial perturbations motivated Lin (1991) to 

relate this process to .the bifurcation theory and chaos. Similarly, a simple explanation 

could be that additional vortex shedding frequencies, closely related to the asymmetric 

shedding, indicate the wake transition processes towards three-dimensionality and turbu­

lence. However, the problem is that one can elucidate the phenomenon that might be the 

aftermath of two-dimensional numerical approach. In the worst case, unsteady solutions 

obtained by some numerical methods can be contaminated by numerical diffusion, see 

Breuer et al. (1993). Although the present results and those of Karniadakis and Brown 

(199S) (fine-resolution simulations using two different spectral element codes) were ob-

. tained with an acceptable level of numerical diffusion, further high-resolution computa­

tions with different numerical algorithms will help to assess the influence of numerical 

diffusion on vortex shedding solutions. 
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4.6 Two Cylinders in Tandem 

The flow around two circular cylinders in a tandem arrangement is considered in this 

section. This case provides a good approximation to the flows around chimney stacks, 

offshore structures and in-line heat exchanger tubes. 

4.6.1 Background 

Zdravkovich (1977) and Ohya et al. (1989) reviewed the experimental work concerned 

with the flow around two cylinders of equal diameters in the various arrangements, includ­

ing the tandem one. A spacing ratio L / D, where L is defined as the distance between the 

cylinders' centres, is a new parameter, which, together with Reynolds number, influences 

the vortex shedding from this arrangement. At smaller distances, a critical spacing ratio 

exists, whereby the separated shear layers from the upstream cylinder attach on the down­

stream one. This ratio may range from 1.9 to 3.8, depending on the Reynolds number 

and the free-stream turbulence. For a spacing ratio below the critical, the vortex shedding 

from the upstream cylinder is suppressed. Many investigators found abrupt changes in the 

Strouhal number and the force coefficients in the proximity of the critical spacing ratio, 

Ohya et al. (1989). 

Numerical studies,on the laminar flow past two circular cylinders in tandem are re­

viewed in Table 4.14. They show the existence of the critical cylinder spacing ratio and 

two distinct flow regimes. The numerical values of Strouhal number obtained by Stansby 

and Slaouty (1991), and the mean pressure distribution around the downstream cylinder 

calculated by Li et al. (1991, 1992) were compared with Ishigai et al.'s (1972) measure­

ments for Re = 3900. In spite of the large Reynolds number differences, a qualitatively 

similar behaviour of the numerical results and the experimental data was evident. 

Authors & year Numerical Re LID Remarks 
method , 

Stansby & Vortex-in-cell; 200 1.2; 1.5; 2; St in general agreement with 
Siaouti, 1991 w,7/J 3;4;5 experiments obtained at higher 

Re-numbers. 

Li et aL, 1991; Li Finite element; 80; 100 2.2-8 The critical spacings are 
et aL, 1992; Sun primitive well-defined: 3.7 at Re = 80 
et aL, 1993 variables and 3.0 at Re = 100. 

Table 4.14: Previous predictions of the flow around two circular cylinders in tandem. 
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4.6.2 Discussion of results 

The flow around two circular cylinders in tandem, placed in a uniform stream, was cal­

culated for Reynolds numbers of 200 and 500, and for various spacing ratios L/ D. The 

effects of these parameters were quantified for the force coefficients induced on each 

cylinder and the corresponding Strouhal numbers. The numerical grids were generated 

inside domains defined by the following distances: (i) from the inlet boundary and the 

centre of the upstream cylinder Xi = 5.5D, (ii) from the centre of the downstream cylin­

der and the outlet boundary Xo ~ 15D, and (iii) from the centre-line and the symme­

try plane 1~~ = 6D. The non-dimensional distance from the wall to the near-wall cells 

f1nc/ D = 0.01 and the expansion factors fex = 1.15 and fey = 1.09 resulted in the grids 

with typically 114 and 70 cells in the x and y directions, respectively. Thus, the grids 

were coarser than those used for the single cylinders. A representative computational grid 

is displayed in Figure 4.31. All results were obtained by using the linear upwind scheme 

(LUDS) and are summarized in Table 4.15. 

An overall impression of the predicted flow field around the two cylinders in tandem 

is given by streaklines in Figure 4.31. The figure also shows the predicted time history of 

the lift and drag coefficients on the two cylinders. For this particular case, the parameter 

L / D was set to 4 and Reynolds number was 200. It is immediately obvious that the 

downstream cylinder experiences a 'shielding' effect evidenced by the marked reduction 
, 

in the mean value of its drag coefficient. This beneficial effect does not extend to the 

peak-to-peak variations in the in-lil.1e and transverse components of force, both of which 

are seen to increase significantly. 

The effects of Reynolds number and the spacing between the two cylinders can be 

seen from Figure 4.32. Note the dramatic changes in the values of Strouhal number and 

the lift and drag coefficients at L / D of about 2.4 (for Reynolds number of 200) and 1.9 

(Re = 500). This is the critical spacing ratio which signals a sudden change between two 

. very different flow patterns, namely between the vortex suppression regime (at least in 

the near-wake region) and the vortex formation regime, Sun et ai. (1993). At L/ D of 5, 

both the mean drag coefficient on the upstream cylinder and the value of the lift coefficient 

amplitude revert to levels appropriate to an isolated cylinder at the same Reynolds number. 

However, the effects of the wake interaction on the downstream cylinder are still quite 

profound at this separation. On the other hand, the mean drag on the downstream cylinder 

may become negative for values of L / D smaller than the critical spacing. This is due to 

the strength of the interaction with the low pressure region generated behind the upstream 

cylinder. The present results (together with those of Sun et ai. (1993) and Li et al. (1992), 

Figure 4.33) confirm the experimental finding (e.g. Ohya et aI., 1989) that the critical 

spacing reduces with increasing Reynolds number. 
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(a) Re = 200 

Spacing Upstream Cylinder Downstream Cylinder 

LID St CD ±CL St CD ±CL 

1.2 0.1660 1.184 0.051 0.1660 -0.197 0.105 

1.8 0.1435 1.165 0.047 0.1435 -0.205 0.180 

2.0 0.1425 1.163 0.046 0.1424 -0.202 0.222 

2.2 0.1417 1.162 0.045 0.1415 -0.184 0.275 

2.5 0.1447 1.335 0.787 0.1447 0.665 1.322 

3.0 0.1640 1.337 0.782 0.1640 0.884 1.579 

4.0 0.1854 1.381 0.769 0.1854 1.032 2.012 

5.0 0.1862 1.396 0.758 0.1861 1.120 2.082 

6.0 0.1852 1.386 0.708 0.1852 1.169 2.029 

Single cylinder: CD = 1.400; St = 0.193. 

(b) Re = 500 

Spacing Upstream Cylinder Downstream Cylinder 

LID St CD ±CL St CD ±CL 

1.2 0.1674 1.106 0.196 0.1674 -0.263 0.380 

1.8 0.1524 1.074 0.143 0.1524 -0.274 0.401 

2.0 0.1561 1.379 1.208 0.1561 0.852 1.596 

2.2 0.1673 1.398 1.149 0.1673 0.954 1.738 

2.5 0.1782 1.377 1.213 0.1783 1.004 1.885 

3.0 0;2008 1.407 1.246 0.2004 1.165 2.103 

4.0 0.2157 1.401 1.140 0.2155 0.831 2.360 

5.0 0.2099 1.442 1.185 0.2099 0.548 2.100 

6.0 0.2096 1.430 1.170 0.2097 0.569 1.940 

Single cylinder: CD = 1.467; St = 0.220. 

Table 4.15: Predicted vortex shedding parameters for the flow around two circular cylin­
ders in line as a function of LID: (a) Re = 200, (b) Re = 500. 
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4.7 Oscillatory Flows 

Two-dimensional, oscillating flows, with both a zero and a non-zero value of the time­

mean inlet velocity, are the subject ofthis section. Attention is confined toa single circular 

cylinder. An oscillatory flow past a circular cylinder is a representation of the wave action 

on the offshore platform leg, away from the free surface. 

In a general case of uniform current (Ua) with superimposed sinusoidal oscillations, 

the time-dependent inlet (incident) velocity is given as: 

(4.12) 

where Urn is the maximum velocity and Tos is the period of oscillations. The inverse 

value of the Strouhal number which is based on the free stream oscillating frequency 

fos = l/Tos is known as the Keulegan-Carpenter number K c. From the definition of 

Reynolds number Rem: 

(4.13) 

and the Stokes parameter (3: 

(4.14) 

Kc can be expressed as a combination of the Reynolds number Rem and parameter (3: 

Kc= c;,~r (3 
(4.15) 

Another parameter is needed to scale the current velocity Ua. The usual choice is to define 

a 'relative velocity' Ur as: 

U = Ua 
r U

m
' ( 4.16) , 

The instantaneous forces on a circular cylinder can be normalized in the usual way, 

Equation (1.4). The maximum oscillating velocity Um is employed instead of Ua so that 

the total drag (in-line) force is given as: 

(4.17) 

Ho~ever, the in-line force is traditionally expressed by Morison's equation (cf. Sarpkaya 

and Isaacson, 1981), which may be written as: 

(4.18) 
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The above equation takes into account two contributions to the in-line force: first from a 

drag part (proportional to the squared velocity), and second from the inertial part (propor­

tional to the fluid acceleration). Corresponding coefficients are Morison's drag coefficient 

Cdm and inertia coefficient Cm. By introducing a new variable: 

27r 
19 = T t, 

os 
( 4.19) 

and with the incident flows used here (Equation (4.12», Morison's equation in dimen­

sionless form reads: 

2 

CD = Cdm(Ur + sin 19) IUr + sin 191 + Cm ;c cos 19 . (4.20) 

The drag and inertia coefficients are then derived as the Fourier averaged coefficients: 

(4.21 ) 

(4.22) 

(4.23) 

In the case of a pure oscillatory flow (Ur 0) the quantity I r , which depends on the 

relative velocity Un reduces to 8/3 so that the drag coefficient takes a form: 

(4.24) 

Note that one can derive the Morison root-mean-square drag coefficient by exploiting 

Equation (4.20). For a purely oscillatory flow, this coefficient, denoted as C~, is given as: 

C~ (4~25) 

4.7.1 Background 

Several experimental studies (Williamson, 1985; Bearman et ai., 1985; Sarpkaya, 1986; 

Obasaju et ai., 1988; Tatsuno and Bearman, 1990) highlighted the physical features of 

pure oscillatory flows. Since the flow changes its direction during each period of os­

cillations, the wake properties are carried with the vortices as they move backwards and 

forwards around the cylinder. At a given location, different flow regimes (laminar, laminar 

- turbulent, and turbulent) may evolve over the oscillation period. For smooth cylinders, 
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the flow structure and force coefficients are functions of Rem and {J. Most authors used 

K c-number instead of Rem (K c = Rem/ (J). At very small values of K c (K c < < 1), 

the laminar boundary layer is attached to the cylinder and the flow is stable and symmet­

rical. As K c increases, for a given (J, the flow becomes unstable and then separates. The 

instability which precedes the flow separation has a three-dimensional character and was 

first observed by Honji (1981). According to Sarpkaya, above the critical K c-number, 

and for {J ~ 2600, the boundary layers undergo laminar separation followed by transition 

to turbulence. For {J > 2600, the transition occurs before the separation of the boundary 

layers. At higher Kc-numbers, K c ~ 3 - 4, a number of vortex shedding patterns has been 

identified across the ranges of the K c and (J: Williamson (1985), Obasaju et al. (1988), 

and Tatsuno and Bearman (1990). Tatsuno and Bearman reported three-dimensional in­

stabilities along the cylinder span for most of their flow patterns. 

Earlier experimental studies of the combined mean current and oscillatory flow were 

reviewed by Sarpkaya and Isaacson (1981). Later, the forces on a circular cylinder have 

been measured by Sarpkaya and Storm (1985) and Bearman and Obasaju (1989). Sarp­

kaya and Storm (1985) reported that the vortex-shedding patterns were affected even by 

a very small current (Ur = 0.05). For example, the precarious transverse vortex street 

pattern, found in the pure oscillatory flow, quickly evolved into another - the diagonal 

type pattern. An increase in the relative current velocity Ur was followed by a decrease 

of the drag coefficient for small current velocities. 

Previous numerical studies, summarized in Table 4.16, were performed for the two­

dimensional laminar flows. In some computations the Reynolds number was beyond the 

upper bounds, where the 3-D effects and turbulence become important. The computed 

force coefficients of the pure oscillatory flow - usually Fourier averaged drag and inertia 

coefficients or the r.m.s. drag and lift coefficients, have shown satisfactory agreement 

with the measured values in the studies referred to in Table 4.16 . 

. 4.7.2 Numerical considerations 

All the present calculations of oscillatory flows are carried out for a circular cylinder 

placed symmetrically in a rectangular domain. The upstream and downstream boundaries 

are located at distances of Xi = Xo = 20D from the centre of the cylinder. The width of 

the computational domain, defined by the positions of the symmetry boundaries, is 2Ys = 

12D (the domain dimensions are defined in Figure 4.1). A relatively coarse numerical 

grid is used, with 98 x 64 cells in the x and y directions, respectively. The cylinder itself is 

covered with 56 cells. 
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Authors & year Numerical method Kc- Parameter f3 Ur = UO/Um Rem 
number 

Baba and Miyata, Finite difference; 5;7 200;100 0 1000;700 
1987 primitive variables 

Murashige et aL, Finite difference; 5; 7; 10 2000; 1429; 0 10000 
1989 primitive variables 1000 

Stansby and Random vortex; w, 1jJ 0.2-6 483; 1035 0 97-2898; 
Smith, 1989 207-2070 

Graham et aL, Cloud-in-cell; w, 1jJ 0.5-6 196;483 0 98-2898 
1989 

Skomedal et aL, Vortex-in-cell; w, 1jJ 0.5-22.5 534 0 267-12015 
1989 

Wang and Finite difference; 1-12 8.3-300 0 100-3000 
Dalton, 1991b w,1jJ 

Justesen, 1991 Finite difference; 0.2-26; 196 0 39.2-5096; 
w,1jJ 0.2-3 483; 1035 96.6-3105 

Sarpkaya and Finite difference; 4 200 0.2-1.1 160-880 
Dalton,1992 w,1jJ 

Yeung et aL, Random vortex; w, 1jJ 0.25-6 483 0 121-2898 
1992 

Graham et aL, Cloud-in-ceIl/Finite 0.2-26 200 0.25-1 10-5200 
1993 volume; w, 1/) 

Table 4.16: A survey on the numerical studies for oscillating and combined uniform cur-
rent and oscillating flows around a circular cylinder. 

The correct choice for velocity boundary conditions at the inlet and exit planes is not 

obvious. The values of velocity at both inlet and exit may be prescribed as a function of 

time (see Equation (4.12)). Alternatively, the values at only one plane may be prescribed 

while the gradient across the other plane is set to zero. Both approaches were tried and 

produced similar results for the drag and inertia coefficient. It was concluded that the 

prescribed velocities at both the inlet and exit are the simpler of the two alternatives, and 

. produced good convergence rates, and were therefore selected for further numerical runs. 

In regard to the initial conditions, the computations were started with a zero oscillatory 

contribution as it follows from Equation (4.12) for {} = 27ft/Tos = O. When the accel­

erated inlet velocity reaches the maximum value (t/Tos = 1/4) an asymmetric velocity 

field is introduced in a form Uio = O.95Uin (see Section 4.3.1). 

The time-mean and root-mean-square force coefficients (CD, Cb, CD are calculated 

by averaging the instantaneous values over at least last five oscillating periods. In the case 

of Morison's coefficients, Equations (4.21) and (4.23) are integrated numerically for each 

period and the values then averaged. 

Simulations with finer grids and wider domains for the number of planned runs were 

116 



LAMINAR FLOW PREDICTIONS 4.7 Oscillatory Flows 

not affordable. In order to gain an insight into the possible numerical uncertainties, ad­

ditional calculations were performed on a finer grid with 126 x 116 cells (88 cells over 

the cylinder surface) generated inside a square domain of width of 2Ys = 40D. The force 

coefficients calculated for the grids 98 x 64 and 126 x 116 at K c = 8 are compared with 

the experimental data of Bearman et al. (1985), Table 4.17. This table also includes a 

fJ = 196, Ur = 0 

Force Kc= 2 Kc= 8 

Coeff. Data Grid 1 Error, % Data Grid 1 Error, % Grid 2 Error, % 

Cdm 1.73 1.48 -14.5 2.00 1.789 -10.55 1.748 -12.60 

Cm 2.17 2.12 -2.30 1.50 1.488 -0.80 1.752 +16.80 

C~ 7.65 7.45 -2.61 1.79 1.698 -5.14 1.866 +4.25 

Data: Bearman et al. (1985); Grid 1: 98 x 64; Grid 2: 126 x 116 

Table 4.17: Oscillatory flow past a circular cylinder. Estimated numerical uncertainties 
for the Morison force coefficients (fJ = 196, flt* = 3.66 x 10-3 , QUICK scheme). 

comparison of the results for K c = 2 calculated on the grid 98 x 64. The relative er­

rors are calculated by using the experimental results as reference values. Assuming the 

experimental data as reliable, the level of estimated errors of 10 % indicates that the use 

of the coarser grid (98 x 64) constitutes a reasonable compromise between accuracy and 

computational effort. 

4.7.3 Results and discussion 

Oscillatory flows without current 

A pure oscillatory flow around a circular cylinder was computed with fJ = 196 and K c 

in the range 0.5-22, Table 4.18. This value of fJ was selected in order to attain smaller 

Reynolds numbers, especially for high K c. For those computations, the QUICK schtme 

was used. Beside Morison's force coefficients, Table 4.18 contains the root-mean-square 

values of the conventional drag and lift coefficients. The values of C~ and Cb are very 

close to each other, an indication of how well the force time histories reconstructed from 

Morison's equation (4.20) reproduce the statistical properties of the computed time histo­

ries. The time-mean values of the drag and lift coefficients (not shown) are in most cases 

negligible (being of the order of 10-2
). As for the period of drag oscillations, its value is 

statistically equal to the period of the free-stream oscillations. 

Inspection of the time evolution of the force coefficients over the range of K c numbers 

investigated here reveals the presence of a number of distinct flow regimes. At low K c 
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(3 = 196 

J(c Rem D..t* X 103 Cdm Cm C' F C' D C' L 

0.5 98 5.0 2.802 2.090 29.22 29.270 0 

2 392 0.49 1.477 2.119 7.450 7.450 0 

3 588 5.0 1.298 2.061 4.860 4.879 0.015 

4 784 3.66 1.484 1.976 3.565 3.582 0.669 

8 1568 3.66 1.789 1.488 1.698 1.756 1.384 

10.9 2134 3.32 2.168 1.112 1.483 1.551 1.068 

16 3136 2.93 1.476 1.323 1.072 1.125 0.995 

22 4312 2.0 1.107 1.337 0.799 0.852 0.677 

Table 4.18: Circular cylinder in laminar oscillatory flows. Predicted force coefficients in 
terms of the J( c-number (Tas = 327.9888, grid 98 x 64, QUICK scheme). 

values (J{ c < 3 for this value of (3), the flow is symmetric and the lift coefficient is 

negligible. 

1.6~ ':::J~ 0.8 

') 0.0 

':::J -0.8 

-1.6 L-~_--L-_~---'-_~---' 

o 2 4 6 

tiT .. 

Figure 4.34: Circular cylinder in pure oscillatory flows. Computed drag coefficients ver­
sus time at J( c = 0.5, 3, and 4 and (3 = 196 (the top curve shows the inlet velocity 
variation). 

The drag coefficient time histories, depict~d in Figure 4.34, exhibit a sinusoidal behaviour, 

with the maximum and minimum amplitudes nearly in phase with the zero incident ve-
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Figure 4.35: Circular cylinder in pure oscillatory flows. Computed drag (left) and lift 
(right) coefficients versus time at various higher K c-numbers for /3 = 196 (top curves 
show the inlet velocity variation). 

locities. These amplitudes progressively decrease with increasing K c. For higher K c 

values (K c ~ 4), lift is no longer zero - an indication of the onset of vortex shedding. 

The time traces of the force coefficients are no longer sinusoidal, as Figure 4.35 displays. 

Increased randomness at higher K c-numbers (16 and 22) are in evidence. It is possible 

that, in the real flow, the wake becomes turbulent in these conditions but this is not likely 

to be captured in the present, laminar and two-dimensional, simulations. 

Finally, Figure 4.36 compares the predicted and measured variation of Moris~n's 
drag and inertia coefficients as well as the root-mean-square lift coefficients with K c 

(/3 = 196). The figure also includes the numerical predictions of Justesen (1991) obtained 

by using a finite-difference method with a grid of 128 x 80 nodes. The computed drag 

and inertia coefficients show satisfactory agreement with the measurements of Bearman 

et al. (1985) and Obasaju et al. (1988). Overall, the present predictions are closer to the 

experiments than those of Justesen, particularly with respect to the maximum and mini­

mum values of the force coefficients observed at K c = 10.9. As K c increases above this 

value, the predictions for Cdm (present) and Cm (Justesen's) depart from the experimental 

data. The data for C~ show significant scatter and it is therefore difficult to assess the ac-
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Kc = 4, f3 = 200 

Ur Cdm Cm CD C' D C~ 

0 1.484 1.976 0.043 3.582 0.669 

0.2 1.443 1.905 0.057 3.456 0.671 

0.4 1.647 1.796 0.367 3.307 0.483 

0.6 2.236 1.683 0.803 3.260 0.067 

0.8 2.538 1.616 1.132 3.235 0.097 

1.0 2.906 1.537 1.560 3.250 0.668 

Table 4.19: Circular cylinder in current plus oscillations. Predicted variation of force 
coefficients with velocity ratio. 

2 
4 

0 0 

-4 

-8 -2 
4 

0 0 

-4 
Ur=O.4 

-8 -2 
4 

CD 
0 CL 0 

-4 

-8 -2 
4 

0 0 

-4 

~8 -2 
4 

0 
0 

-4 
Ur=1.0 

-8 
0 4 8 12 4 8 12 

tiT •• tiT •• 

Figure 4.37: Circular cylinder in current plus oscillations. Time histories of the drag (left) 
and lift (right) coefficients as a function of velocity ratio. 

Figure 4.37 shows the time histories of the drag and lift coefficients as a function of 

the velocity ratio. For the drag coefficient, the computed time records are periodic for 

all values of Ur and with the (positive a,nd negative) peaks of CD very well preserved. 

At Ur ::; 0.2, the drag coefficient is periodic and symmetric with a zero long-time av­

erage (see also Figure 4.38). At Ur > 0.2, the drag coefficient oscillates around the 
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Figure 4.38: Circular cylinder in current plus oscillations. Morison's inertia coefficient 
(top) and other force coefficients (bottom) as obtained with K c = 4 and j3 = 200 (present 
results: grid 98 x 64, ~t* = 2.5 .10-3 , SMART scheme). 

time-mean values CD which continuously increase with Ur (Figure 4.38). Morison's drag 

coeffiCient Cdm also shows a monotonic increase, while the inertia coefficient Cm and 

Cb decrease with Ur. In sharp contrast to the periodic behaviour of the drag coefficient, 

the time histories of the lift coefficient, Figure 4.37(right) are largely non-repetitive. The 

. results for Ur = 0.6 and 0.8 are quite spectacular as they suggest the possibility of ~ero 

(or negligible) lift coefficient going hand in hand with quite large periodicity in the drag 

coefficient. The existing experimental results lack sufficient detail to support or contra­

dict this finding. Note that Sarpkaya and Dalton (1992) visualized, numerically, and at 

the same K c and j3 used here, a symmetric three-row vortex street only in the range of 

Ur = 0.6 - 0.7. Finally, Figure 4.38(top) compares the computed and measured inertia 

coefficients Cm. The results from all three numerical studies (Sarpkaya and Dalton, 1992; 

Graham et aI., 1993, and the present) resemble the trend shown by the experimental data 

of Verley (1979). Verley's measurements were for the higher j3 value of 600 and hence it 

is difficult to make definite conclusions about the present predictions. 
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4.8 Closure 

Several important issues regarding the numerical prediction of laminar, two-dimensional 

vortex shedding flows have been addressed in this chapter: 

• numerical uncertainties, 

• physical aspects, 

• validation against experimental data, and 

• limitations of two-dimensional laminar computations. 

The numerical uncertainties arise from well-known discretisation errors (both spatial 

and temporal) as well as from the presence of blockage effects akin to those present in 

wind-tunnel tests. These uncertainties were quantified for the case of vortex shedding 

from single cylinders by using an error estimator based on the Richardson extrapolation. 

The principal difficulty is associated with the fact that errors arising from the choice of 

domain size very often cancel errors arising from the other sources. Detailed comparisons 

of results from various schemes have demonstrated the advantages of higher-order and 

bounded schemes such as SMART and MINMOD. 

Accurate simulati-ons of the periodic vortex shedding from a circular cylinder (Re = 

105) were used to analyse some physical aspects of the vortex shedding process. In the 

real flows, a number of different sources of small disturbances can introduce asymmetric 

flow field and lead to periodic vortex shedding. As these disturbances are stochastic, this 

suggests that the magnitudes of vortex shedding quantities do not depend on the nature 

of the disturbances. In consequence, a variety of artificial disturbances used in numerical 

studies should influence the vortex shedding until the periodic state is reached. This 

conclusion is supported by the present computations which were conducted both without 

. initial perturbation as well as with two initial asymmetric perturbations. 

For a single cylinder, laminar vortex shedding is only affected by the Reynolds num­

ber. At Re < Re~D, periodic vortex shedding is always established and characterized by 

the two-dimensional von Karman street (visualized by streaklines in Figure 4.12). The 

sequence of streamlines covering one vortex shedding cycle was analysed in order to ver­

ify the vortex formation model of Perry et al. (1982). The outcome was a model shown 

in Figure 4.10 which confirms the main features of Perry's model. Similarities between 

vortex shedding from the square and circular cylinders are identified, as well as certain 

differences. These differences were associated with the location of the flow separation 

points, which in the case of a square cylinder jump between the rear and front corners 

at Re = 150. The flow reattachment at the cylinder sides was observed at Re > 300 
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for a square cylinder as well as additional vortex shedding frequencies and asymmetric 

vortex shedding with non-zero lift. Qualitatively, the same features were also obtained 

for the flow past a circular cylinder at Re = 2000. Predicted integral vortex shedding 

parameters s~ch as the Strouhal number and the mean drag coefficient stand comparison 

with experimental data and numerical results obtained with alternative CFD methods 

Numerical predictions are reported for the magnitude and frequency of the forces 

induced on two circular cylinders in tandem. The effects of the cylinders' spacing and 

mean-flow Reynolds number are quantified. The latter were shown to be particularly 

important in determining the position of the critical spacing ratio. 

The simulations carried out for an oscillatory flow around a circular cylinder repro­

duced many of the salient features observed in experimental studies. In the case of pure 

oscillatory flows, the flow is predicted to be symmetrical at small K c or Rem numbers 

(here for Rem < 600 and f3 = 196), with no lift and no vortex shedding. Above the 

certain critical number (Rem = 600 - 800), the vortex shedding process is in strong ev­

idence. A fairly good agreement among the predicted and measured Morison's drag and 

inertia coefficients is found in the range 0.5 ::; K c ::; 12. Numerical experiments with 

combinations of small steady current and oscillatory flow confirmed the significant influ­

ence of the current velocity ratio on the force coefficients. An interesting flow feature was 

observed for the ratio Ur = 0.6 - 0.8 at K c = 4 and f3 = 200; namely flow conditions 

giving rise to negligible lift forces on the cylinder. The predicted inertia coefficients agree 

reasonably well with those obtained from other numerical and experimental studies. 

The effects of three-dimensionality were discussed in detail in Section 4.5.3. The 

onset of three-dimensional motion at low Reynolds numbers (for steady flow around a 

single cylinder at Re~D ~ 200) reduces the applicability of two-dimensional (laminar) 

simulations to a Reynolds number range that is not relevant to most engineering situations. 

Thus, the use of two-dimensional laminar vortex shedding results alone (obtained at high 

Reynolds numbers) in order to understand some real physical processes can be regarded 

. as inappropriate. The next chapter focuses on the validity of two-dimensional methods 

that include turbulence models. 
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Chapter 5 

TURBULENT FLOW PREDICTIONS 

5.1 Introduction 

In this chapter, the two-dimensional, turbulent vortex shedding flows around single square 

and circular cylinders are investigated. Since the numerical results are verified by com­

parisons with experimental data, homogeneity of the experimental mean-flow along the 

cylinder axis is the crucial assumption. Thus, the mean-flow periodicity caused by large 

scale vortex shedding remains two-dimensional, while the small scale three-dimensional 

turbulent fluctuations are accounted for by the turbulence models. The k - E models in 

conjunction with the'wall functions are employed. 

The chapter is organized as follows. Section 5.2 presents experimental evidence which 

is relevant to the definition of boundary conditions and validation of turbulence models. 

Section 5.3 deals with numerical details of the vortex shedding simulations, such as the 

domains and grids used. Then, the preliminary assessment of several variants of the k - E 

model, reviewed in Section 2.7, is done in Section 5.4. The RNG and unsteady variants 

of the standard model are selected for further predictions. Numerical uncertainties associ­

ated with the prediction of turbulent vortex shedding flows are considered in Section 5.5. 

The vortex shedding results for the flow past a square cylinder are presented and discussed 

in Section 5.6. Section 5.7 presents the results for a circular cylinder. 

5.2 Experimental Evidence 

Evolution of flow regimes with the Reynolds number for smooth circular and square cylin­

ders in low-turbulence free streams was discussed in Section 1.2. The force coefficients 

and Strouhal numbers, presented there in Figures 1.2 and 1.3, as well as other quantities 

obtained by long-time averaging, are very good benchmark tests for turbulence mod­

els. However, the conventional long-time averaging hides the nature of the flow fluc-
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tuations. For example, the global 'Reynolds stresses' obtained by this procedure (see 

Equation (2.14)) contain the contributions from the periodic and random motions: 

(5.1) 

Similarly, the global fluctuating kinetic energy k f consists of the periodic component q 
and the turbulent kinetic energy k, thus: 

q+k, (5.2) 

Therefore, experimental turbulence statistics are meaningful if the experimental method 

correctly separates and quantifies the periodic (quasi-periodic) and random turbulent fluc­

tuations. 

Because of experimental difficulties, there have been only few such experimental stud­

ies. The turbulent near wake of a circular cylinder was analysed by Cantwell and Coles 

(1983) at Re = 1.4 x 105, and by Owen and Johnson (1980) at Re = 1.67 x 105 . Mat­

sumura and Antonia (1993) investigated the turbulent intermediate wake of the circular 

cylinder (5 < x/ D < 50, x - the streamwise distance measured from the cylinder cen­

tre) at Re = 5830, including both momentum and heat transfer. In the case of a square 

cylinder, Lyn and others (Lyn, 1992; Lyn and Rodi, 1994; Lyn et aI., 1995) presented the 

near wake results of the phase-averaged velocity components and turbulence quantities 

for various phases during a vortex' shedding cycle at Re = 21400. Although these results 

are reliable, the remark of Rodi et ai. (1997) about some modulation of the wake peri­

odicity in the experiments questions the reported periodicity in the original papers. Less 

detailed measurements at Re = 14000 were carried out by Durao et aI. (1988). They also 

claimed that the periodic and turbulent fluctuations have been separated using band-reject 

filtering of the velocity time series. However, Lyn and Rodi (1994) and Lyn et ai. (1995) 

suspected the correctness of this method. 

All the studies indicate the importance of both periodic (organized) and random (tur­

bulent) fluctuations. In regions of the highest velocity fluctuations, the turbulence kinetic 

energy can contribute up to 40 % of the global or total fluctuating kinetic energy; Lyn 

(1992). Note that for two-dimensional flows, the turbulent kinetic energy k can be esti­

mated by assuming (w 2
) = 2k/3 which gives: 

(5.3) 

By analogy, the total fluctuating kinetic energy, Equation (5.2), is calculated as: 

k 3 (-2 -2) k f=4"U+V,+ . (5.4) 
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Experimental study Re x 10-3 B j ,% Tu,% Lx/H St CD Ct 
D Ct 

L 

Pocha (1971 ) 91 - - - 0.120 2.06 0.18 1.40 

Bearman & 20-70 6.0 0.30 - 0.123* 2.19* - -
Trueman (1972) 

Lee (1975) 176 3.6 0.5 0.7-1.1 0.122 2.05* 0.23 1.22 
4.4 1.98* 0.18 1.00 

Bearman & Obasaju 20 5.5 0.04 - 0.130 - - 1.20 
( 1982) 

Obasaju (1983) 47.4 5.5 0.04 - 0.124* 2.17* - -

Gartshore (1984) - 8.3 0.5 0.2-0.5 - - - 1.I 
4.0 1.01 

Igarashi (1987) 20 7.5 0.5 - 0.139 2.24 - -

Durao et al. (1988) 14 13.0 6.0 - 0.138 - - -

Cheng et al. (1992) 27.4 1.7-4.2 4.0 l.l - 1.73 0.07 0.225 
3.75 2.05 1.85 0.05 0.10 

Lyn (1992) 21.4 7.0 2.0 - 0.132 - - -

Norberg (J 993) 13 1.6 0.06 - 0.132 2.16 - -

Note: Data denoted by an upper index * are corrected for the blockage. 

Table 5.1: Experimental conditions and measured integral vortex shedding parameters for 
the flow over a square cylinder. 

In the case of the measured data, the turbulent kinetic energy can be deduced from Equa­

tion (5.3) as done by Lyn (1992). In this (numerical) study, the same equation (5.4) for k f 

is used but k is the solution of its transport equation. 

The case of a square cylinder will be analysed in more details in the following sec­

tions.' For this case, the turbulent vortex shedding results practically do not depend on 

the Reynolds number, Figure 1.3. However, these results depend on the free stream tur­

bulence and experimental conditions (the cylinder aspect ratio, end conditions, and the 

wind tunnel blockage). The effects of these factors, including experimental uncertainties, 

are well illustrated by dispersion of the results for a square cylinder, Table 5.1. This table 

includes data from several experimental studies in which the relative turbulence intensity 

Tu was less than 5 %. Note that two quantities, namely the relative turbulence intensity: 

_ U '_---:2 , 0i 
T;L--'U- U 

Uo 
(5.5) 

(here U represents velocity fluctuations around the steady i.e. long-time averaged stream­

wise component U), and the integral length scale ratio of turbulence Lxi D (Lxi H) are 

usually used to quantify the free stream turbulence. The third parameter, the turbulence 

spectrum, can also be important (e.g. West and Apelt, 1993). A limited number of the 
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results in the above table (Lee, 1975; Gartshore, 1984; Cheng et al., 1992) indicates the ef­

fects of the free stream turbulence. Regarding the blockage effect, Bearman and Trueman 

(1972) and Obasaju (1983) corrected the time-mean drag coefficient and Strouhal num­

ber for this effect. Lee (1975) also reported the corrected values only for the mean drag 

coefficient. According to Lee (1975) and Obasaju (1983), the corresponding corrections 

reduced the measured values typically for 7 and 5 %, respectively. 

5.3 Numerical Considerations 

5.3.1 Solution domain and grids 

The unsteady flow around a square cylinder was computed at Re = 20 , 000. The numeri­

cal grid used for most of the present computations is presented in Figure 5.1. The figure 

also shows the extent of the solution domain in terms of the cylinder's height, H . A total 

of 139 x 122 cells was used, with the grid lines concentrated near the cylinder walls (24 

cells per side, t:mc / H = 0.014) and expanding away from it with an expansion ratio of 

7.5 % in each direction. The blockage effect produced by using the above solution domain 

was B J = 4.17 %. The selection of this value has been guided by the values obtained 

in the experiments of Lee (1975) and Bearman and Obasaju (1982), although the higher 

values would be more suitable regarding the data of Lyn (1992), Table 5.1. Other grids 

U ~ Uo 

V =0 

V .= 0, 8¢/8y = 0 

¢= U,k,f. 

Xo = 30H 

S;; 8¢/8x = 0 
'It ~ 
~ 8V/8y = 0 
N 

Figure 5.1: Numerical grid D1 - 139 x 122(a) and boundary conditions for the flow 
around a square cylinder. 

were also tested, including the grid D2 - 114 x 92 with the blockage of 8.33 % and 24 

nodes per cylinder side. Parameters of all the grids are given in Table 5.2. 
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Grid [Domain-NIxNJ] XdH Xo/H Ys/H fex fey t::..nc/H B f ,% 

D1 - 139 X 122(a) 12 30 12 1.075 1.075 0.014 4.17 

D1 - 139 X 122(b) 12 30 12 1.0635 1.062 0.02 4.17 

D1 - 106 X 108 12 30 12 1.10 1.10 0.02 4.17 

D2 - 114 X 92 5.5 29.5 6 1.076 1.076 0.02 8.33 

Table 5.2: Parameters of numerical grids used for computations of the turbulent flow past 
a square cylinder. 

Vortex shedding from a circular cylinder was computed for various Reynolds numbers 

by using the domain Dl. The employed grids are described in Section 5.7. 

5.3.2 Boundary and initial conditions 

The boundary conditions used here are also shown in Figure 5.1. In specifying the inlet 

boundary conditions for the flow past a square cylinder, reference is made to the mea­

surements of Lee (1975) and Gartshore (1984) (see also Table 5.1). These measurements 

show that the global parameters are practically insensitive to the levels of turbulence in­

tensity ~L in the approach stream provided that 0 < ~L ~ 0.02. The higher limit was 

chosen for this study - a level similar to that obtained in Lyn's (1992) experiments. The 

turbulent kinetic energy is deduced from the isotropic relation: 

(5.6) 

The inlet values for the dissipation rate E were determined by inverting the eddy-viscosity 

relation (2.34) and using Kolmogorov expression for E: 

(5.7) 

According to Bearman and Morel (1983), the dissipation scale Lf/CJL is about twice the 

integral scale Lx and the above equation gives: 

(5.8) 

For Lx/ H ;::::; 1 the inlet value of (vt/v)o is 88, which is close to the selected value for 

present computations of (vt/v)o = 100. 

In the case of a circular cylinder, the low values for Tu (from 0.5 to 1 %) and for 

(vt/v)o (from 1 to 10) were used, in accordance with the turbulence level encountered in 

majority of the experimental studies. 
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The symmetry boundary conditions were applied at the lateral boundaries, while the 

zero gradient conditions were used at the outlet plane. The usual wall function bound­

ary conditions were applied at the walls. Actual implementation of all these boundary 

conditions is explained in Section 3.6. 

Regarding the initial conditions, the computations were usually started from a sym­

metric velocity field. In some cases the asymmetric velocity field was used in order to 

obtain periodic vortex shedding earlier, see Section 4.3.1. 

5.3.3 Computational details 

As for laminar calculations, at each new time step the iterative solution of the discretised 

equations was stopped when the sum of normalized absolute residuals for each variable 

became smaller than 10-4 • For the first-order accurate fully-implicit temporal differenc­

ing, small time steps must be used. For instance, the non-dimensional time-step size tlt* 

of 0.0078 was found necessary for the flow around a square cylinder at Re = 20000, 

requiring 909 time steps to cover a complete vortex shedding cycle. No under-relaxation 

was used and 3-5 outer iterations were required to satisfy the prescribed convergence 

criterion within each time step. Several convective schemes were evaluated earlier, in 

Section 4.4.2. Most of turbulent flow results reported in this chapter were obtained with 

the SMART scheme. 

5.4 Assessment of Thrbulence Models 

Several variants of the k - E model were discussed and selected for further testing in 

Chapter 2. These are: 

• Standard k - E model (SKE), 

• RNG k - E model (RNG), 

• Modified, unsteady k - E model (UKE), Equation (2.52), 

• Modified k - E model, with the preferential dissipation modification (PDM), Equa­

tion (2.47), 

• Modified k - E model, with a new definition of the time scale Tw, Equation (2.50). 

Behaviour of the above models is first examined in the stagnation flow region. After that, 

the models are validated for the vortex shedding flow from a square cylinder. 
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5.4.1 Conventional k - E models 

The flow approaching a circular cylinder at Re = 27,400 is considered. For this flow 

experimental data of Britter et al. (1979) exist. Predictions with severalk - f models and 

with the SSG Reynolds stress transport equation model of Speziale, Sarkar and Gatski 

(1991) are depicted in Figure 5.2. The turbulence intensities of the axial (71,' = [0ii)) 
and normal (v' = ~) velocity components, normalized by the inlet values, are given 

as a function of the relative distance from the cylinder frontal point. Plotted experimental 

values were obtained for Lxi D = 1.43 and Tu = 0.057. Only half of the solution domain 

was considered since the steady solution was appropriate for the comparison of different 

models. The computations were carried out by using wall functions on the numerical grid 

with 134 cells (6.ncl D = 0.0055) and with the SMART convective scheme. Notably, 

8~--~--~---.----.---~--~---.--~ 

6 

2 

Circular Cylinder 
Re=27400 

-- Standard k-E 
....... RNG k-E 
._._. k-E PDM 
--_. Modified k-E 
-- RS SSG 

o Exp.: Britter et al. 

o~--~--~--~----~--~--~--~--~ 

4'---~---'---'----,---'----r--~--~ 

.\ 

2 

-2 

_4~ __ ~ __ ~ __ ~ ____ L-__ ~ __ -L __ ~~~ 

-2.0 -1.5 -1.0 

x/D 
-0.5 0.0 

Figure 5.2: Effects of turbulence models on the turbulence intensities as calculated along 
the stagnation line for the steady flow approaching a circular cylinder. 

only the present k - f model with a new time scale Tw shows good agreement with mea­

surements for both intensities u' and v'. The results for the u' component obtained by 

other k - f models depart much more from the experiments than those calculated by the 

Reynolds stress equation model. Inability of eddy viscosity models to cope with stress 
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anisotropies is clearly demonstrated by the results for the v' intensity, where non-physical 

(negative) values were obtained. As expected, the Reynolds stress equation model per­

forms well in this case. In summary, the standard k - E model produced the worst results, 

while the RNG model gave slightly better results than the PDM modification. Note that 

the PDM model constants were C;l = 2.30 and Cf3 = 0.85. These values were found 

after vortex shedding experiments with the PDM modification. 

The behaviour of turbulence models in the stagnation region certainly influences the 

flow development downstream. This is obvious after testing the above k - E models for the 

vortex shedding flow past a square cylinder. Time histories of the drag and lift coefficients, 

depicted in Figure 5.3 for the standard and RNG model, show that the high levels of k 

(and hence the eddy viscosity) transported from the stagnation region tend to suppress 

vortex shedding in the case of the standard model. Obviously, in this case the RNG 

2.4 r---,-----,---,----,-__ ...---..,----., 

Re=20,000 

2.0 

1.6 --------------

1.2 '--_.....1.-_----"-__ ..L.-_-"'-__ '--_-'-_---' 

2.4 ...----r----,--___..,.---,----,.----,----, 

1.2 

-1.2 

-2.4 '--_.....1.-_----L __ ..L.-_--'-__ '---_....1--_---' 

25.0 50.0 75.0 100.0 

t 
Figure 5.3: Turbulent flow past a square cylinder at Re = 20,000. Time evolution of 
the drag (top) and lift (bottom) coefficients as predicted by the standard and RNG k - E 

mooels (grid D1 - 139 x 122(a), SMART scheme). 

model produces the mean-drag coefficient and force oscillations close to the experimental 

observations. However, the next Figure 5.4 reveals the high sensitivity of this model to 
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the near-wall grid resolution. Two grids were selected (D1 - 139 x 122(a) and D1 -

139 x 122(b». These grids have the same number of cells but the near-wall distances are 

larger in the second grid. While the amplitudes of the drag and lift oscillations are not 

too affected by the near-wall distances, the mean-drag coefficient is significantly lower 

for tlnc = 0.02 in comparison to tlnc = 0.014. 

CL 

2.0 

Re=20,OOO 
RNG lc-E 

1\1' ,r\ 1\ f\ I' f\ I' '\ I' r\ I' rJ~ ~\j\/lj\fv\J,,\JIJ\ 
1.5 '\ j'f" 

_/ 

\ I -- tmc/H=0.014 
\) - - t::.nc/H =0.02 

3 

2 

1 

0 

-1 

-2 

-3 
20 40 60 80 100 

t 
Figure 5.4: Turbulent flow past a square cylinder at Re = 20,000. Time evolution of 
the drag (top) and lift (bottom) coefficients as predicted by RNG k - t: model with two 
near-wall cell distances (grids D1 - 139 x 122(a, b), SMART scheme). 

The k - t: model with the PDM modification was also extensively tested. The main 

finding is sensitivity of the model to the constants C~l and C{3. The tests with vortex 

shedding from a square cylinder suggested the following values: C~l = 2.30 and C{3 = 
0.85. With these constants, the PDM model is capable of delivering the results of the same 

quality as the RNG model or unsteady k - t: model developed in this work. However, since 

the' PDM modification does not satisfy the tensor invariance and there is no obvious way 

to implement it in the streamline direction in the 3D flow situations, the RNG model 

seems a better choice for many practical flow calculations. Preliminary vortex shedding 

results obtained by using the modified time scale Tw in the eddy viscosity formula were 
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satisfactory and very encouraging. Because of its implications on the wide range of steady 

complex flows this proposal needs to be verified first for such types of flows. 

5.4.2 Unsteady modification 

The consequences of the unsteady modification on both the average and peak-to-peak 

levels of the lift and drag coefficients are clear from Figure 5.5. However, we should 

2.4 Re=20,OOO 
Grid: Dl-139x122(a) 
SMART; at =0.0078 

2.0 
CD 

1.6 -----
Standard k-£ Modified k-£ 

1.2 

3 I I I 

2 -

, 1 -

CL 0 A~rfJVV'~ArJ~JV~ 
-1 -

-2 I-

-3 I I I 

40 120 200 280 

t 
Figure 5.5: Turbulent flow past a square cylinder at Re = 20,000. Time evolution ~f the 
drag (top) and lift (bottom) coefficients as predicted by the k ~ £ model before and after 
the unsteady modification. 

not expect too much from the present unsteady modification. By its nature, it does not 

influence steady flows. In a stagnation flow region, the turbulent kinetic energy is still 

overestimated, especially when compared with the RNG model, Figure 5.6. This sug­

ge~ts the ability of the proposed modification to remove (at least partly) the negative ef­

fects of the stagnation point anomaly when turbulence properties are transported towards 

the upper and lower cylinder wall sides. A more subtle relation than usually anticipated 

might exist between the (high) levels of k and £ leading to more correct levels of the 
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Figure 5.6: Effects of the k - E turbulence models on the time-averaged centreline distri­
bution of the turbulent kinetic energy for the flow past a square cylinder at Re = 20000. 
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Figure 5.7: Wall units Y* versus time as predicted by the k - E models (Re = 20000). 
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eddy viscosity Vt. Paradoxically, the shear layers formed after flow separation from the 

forward corners can benefit from the convected higher levels of k since the tested mod­

els generate too low levels of k in these zones. This is illustrated by the time-averaged 

Reynolds stress (u2
) profile shown later in Figure 5.18(top) where the present and RNG 

model results are compared with experimental data. The time histories of dimensionless 

wall units Y* = C2· 25 kO. 5 ~nc/ v, displayed in Figure 5.7, also reflect effects of the stag­

nation point anomaly on models' performances. The wall units Y* were monitored at the 

cylinder side centres. Periodic behaviour is in evidence and nearly constant values in the 

case of the standard model indicate its failure to simulate correctly vortex shedding. The 

higher mean and peak-to-peak. values were calculated by unsteady modification in com­

parison with the RNG model. In contrast to the RNG model, the present model predicts 

incorrectly the higher mean values at the west side than at the east side. 

Based on the above tests, the unsteady and RNG model are selected for further com­

putations of vortex shedding flows in this chapter. The next section, which considers 

the effects of numerical parameters on the calculated results, will show that the unsteady 

model performs significantly better in terms of larger near-wall distances ~nc than the 

RNG model. 

5.5 Numerical Uncertainties 

In comparison with laminar flows, it is even more important to solve the governing equa­

tions accurately in both time and space since differences between two numerical solutions 

with the same turbulence model can be as large as the differences between two turbulence 

models. Analysis of numerical uncertainties presented in this section follows the prac­

tice employed for laminar flows, Section 4.4. In most of computed cases the present 

k - E model with the modified E-production term is used to predict vortex shedding from 

a square cylinder. Apart from integral vortex shedding parameters, the mean and root­

mean-square pressure coefficient distributions around the cylinder walls as well as the 

time-averaged velocity and global fluctuating kinetic energy along the centreline are com­

pared. The point in the wake where the mean centreline axial velocity changes the sign 

defines the time-averaged length of a recirculation region Lr . This length, measured from 

the rear cylinder wall, will be used as an additional bulk parameter. 

5.5.1 Temporal resolution 

Temporal resolution effects have been investigated by computing two cases with smaller 

time-step sizes than the reference one (~t* = 0.0078), Table 5.3. The moderate increase 
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Figure 5.8: Effects of the time-step size on the distribution of time-averaged flow vari­
ables: (left) the pressure coefficients, (right) the streamwise velocity and fluctuating ki­
netic energy. 

of the St-number and the drag coefficients is evident for the reduced time-step sizes, 

while the r.m.s. lift coefficient first increases and then decreases. The table also includes 

the errors calculated for the smallest time-step size from Equation (B.5) and for the largest 

(reference) from Equation (B.9). These errors are denoted as Elt and E3t , respectively. In 

both cases the first order accuracy is assumed, with 'W = 1 in the above equations. Not all 

~t(s) ~t* x 103 st CD C' D C' L C L X 103 Lr/H 

0.025 7.77 0.1414 2.199 0.186 1.386 -8.0 0.654 

0.015 4.66 0.1435 2.226 0.201 1.398 -7.9 0.644 , 

0.0075 2.33 0.1440 2.253 0.207 1.376 -16.4 0.577 

E3t (%) -2.41 -3.20 -13.53 0.97 17.8 

Elt (%) 1 -0.35 -1.12 -2.89 1.60 11.6 

Table 5.3: Temporal refinement tests for the turbulent flow past a square cylinder at Re = 

20000 (grid D1 - 139 x 122(a); SMART scheme). 

quantities (CD, C~, Lr) show an expected convergence trend (the progressively reduced 

differences between successive refinement tests). The tests with even smaller time-step 

sizes or the second order accurate time schemes should be useful. However, the averaging 
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procedure itself (for instance, the length of an averaging period and cycle-to-cycle vari­

ations of considered quantities) will always contaminate the final, time-averaged values. 

More detailed are comparisons for the distributions of various time-averaged flow quanti­

ties depicted in Figure 5.8. In terms of the result convergences, similar conclusions can be 

drawn as for the comparisons of integral vortex shedding parameters. An interesting trend 

should be noticed: the smaller pressure coefficient values along the cylinder side and rear 

walls correspond to the shorter recirculation region and higher (maximum) values of the 

fluctuating energy in the wake. Note that lower pressure coefficients at the rear wall are 

responsible for the higher mean drag coefficients. The above trend characterizes also the 

spatial refinement tests which are considered next. 

5.5.2 Spatial resolution 

Regarding the spatial discretisation, it is always beneficial to employ the high order con­

vective schemes and refined numerical grids, particularly in regions where the intensive 

turbulence generation orland laminar to turbulent transition take place. 

Effects of convective schemes 

Deductions from laminar flow predictions suggest the use of the SMART bounded con­

vective scheme. He(e, we again examine effects of two bounded schemes- SMART and 

MINMOD, and the most accurate but unbounded QUICK scheme. The reference grid 

D 1 - 139 x 122 (a) with llt* = 0.0078 is used. The time traces of the drag and lift coef­

ficients displayed in Figure 5.9 show larger cycle-to-cycle oscillations for more accurate 

schemes but more or less repeatable patterns are preserved for all three schemes. The pre­

dicted bulk parameters are given in Table 5.4 together with their relative differences with 

reference to the results obtained by the SMART scheme. The SMART and MINMOD 

Scheme St CD Ch C~ 

SMART (S) 0.1414 2.199 0.186 1.386 

MINMOD(M) 0.1425 2.118 0.163 1.270 

QUICK(Q) 0.1396 2.023 0.152 1.176 

(M-S)/S, % 0.78 -3.68 -12.37 -8.37 

(Q-S)/S, % -1.27 -8.00 -18.27 -15.15 

Table 5.4: Turbulent flow around a square cylinder at Re 
convective schemes on the integral parameters. 

CL x 104 Lr/H 

-80 0.654 

-2.4 0.850 

-5.5 0.657 

- 29.9 

- 0.5 

20000. Effects of three 

schemes behave in the same way as for laminar cases (see Table 4.5): the more diffusive 
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Figure 5.9: Turbulent flow around a square cylinder at Re = 20000. Time traces of the 
drag (left) and lift (right) coefficients as calculated by three convective schemes. 
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Figure 5.10: Effects of convective schemes on the distribution of time-averaged flow 
quantities: (left) the pressure coefficients, (right) the streamwise velocity and fluctuating 
kinetic energy. 
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MINMOD scheme gives smaller force coefficients and higher Sf-numbers. While the 

SMART and QUICK schemes produced very close results in the case of laminar flow, 

their results now show larger discrepancies than between the SMART and MINMOD 

schemes. Actually, the Sf-number and force coefficients have the smallest values when 

the QUICK scheme is employed. The larger differences between the SMART and QUICK 

schemes in this case certainly indicate existence of the flow regions where the grid res­

olution is not adequate and where the QUICK scheme may produce unphysical results. 

If compared with experimental data, Table 5.1, the force coefficients calculated by the 

QUICK scheme seem underestimated. This is also suggested by the mean pressure co­

efficient distribution shown in Figure 5.10. Note that results for the centreline velocity 

profiles, presented also in this figure, may suggest better predictions by QUICK scheme 

than by others. This is not the case since the underestimated values of the drag coeffi­

cient are linked with the longer recirculation zones. Also, the QUICK scheme in this case 

underestimates the levels of fluctuating kinetic energy. 

Effects of grid resolution 

Three grids, described in Table 5.2, are used to investigate the effect of grid resolution. 

When using wall functions, the smallest cell size in a direction normal to the wall is usu­

ally limited by the non-dimensional distance Y* ~ 11.6. The grids D1 - 139 x 122(a) 
, 

and D1 - 139 x 122(b) have similar expansion factors but different wall distances, while 

the coarsest grid D1 - 106 x 88~as the larger expansion factors and the same wall dis­

tances as the grid D1 - 139 x 122(b). The time histories of the drag and lift coefficients, 

calculated by using these grids and the present k - E model, are presented in Figure 5.11, 

while Table 5.5 shows the results for the bulk parameters. One can notice different be­

haviour of the unsteady and RNG models in regard to predictions of the length of the 

time-mean recirculation zone. With finer grids, this length increases for the RNG model 

but decreases in the case of the unsteady dissipation modification. A tendency of the 

numerical diffusion (with higher levels for the coarser grids) to diminish intensity of the 

vortex shedding process is in strong evidence. Its manifestations are reduced mean and 

r.m.s. values of the force coefficients as it is shown by comparison of the results for two 

coarser grids. While the present unsteady modification shows acceptable sensitivity to the 

wall distances, the RNG model simulates the vortex shedding process properly only for 

the wall distances that give wall units y* close to the lower limit of ~ 11.6 (according 

to Figure 5.7 between 11 and 30). The mean value of the drag coefficient is particu­

larly sensitive to the wall distances so we should avoid assessments of turbulence models 

based only on the Strouhal number values and/or some velocity distributions, which was 

the case in some of published vortex shedding studies. For instance, the Strouhal num-
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Figure 5.11: Turbulent flow around a square cylinder at Re = 20000. Time traces of the 
drag (left) and lift (right) coefficients as obtained on three different numerical grids (the 
present k - E model with the SMART scheme and fj.t* = 0.0078). 

(~) Present k - E model 

Grid St CD Cb C~ CL X 104 Lr/H 
139 x 122(a) (A) 0.1414 2.199 0.186 1.386 -80.0 0.654 

139 x 122(b) (B) 0.1413 2.093 0.157 1.202 +6.9 0.801 

106 x 88 (C) 0.1412 1.972 0.110 1.009 -7.9 0.912 

(B-A)/A, % '-0.07 -4.8 -15.6 -13.3 - 22.5 

(C-A)/A, % -0.14 -10.3 -40.9 -27.2 - 39.4 

(b) RNG k - E model 

Grid St CD Cb C' L CL x 104 Lr/H 

139 x 122(a) (A) 0.1387 2.064 0.092 1.369 -7.1 0.590 

139 x 122(b) (B) 0.1207 1.722 0.082 1.048 -3.2 0.540 

(B-A)/A, % -12.98 -16.6 -10.9 -23.45 - -8.5 

Table 5.5: Turbulent flow around a square cylinder at Re = 20000. Grid refinement 
effects on the bulk parameters as obtained by present (a) and RNG (b) k - E models 
(fj.t* = 0.0078, SMART scheme). 
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Figure 5.12: Grid resolution effects on the distribution of time-averaged flow quantities: 
(left) the pressure coefficients, (right) the streamwise velocity and fluctuating kinetic en­
ergy. 

, 
ber computed by the present modification is practically insensitive to the grid refinement, 

Table 5.5(a). The pressure coeffi(;ients distributions and the centreline velocity and fluc­

tuating kinetic energy profiles, given in Figure 5.12, also emphasize importance of the 

proper grid resolution. That the results for the mean U -velocity component for the coars­

est grid show very good agreement with measurements is not surprising in the light of the 

remark upon the results obtained by using the QUICK scheme. 

5.5.3 Size of the solution domain 

Considerations of laminar flows have shown a significant influence of the solution domain 

size, where the placement of lateral boundaries or the blockage effect is the most impor­

tant factor. Here, the grids generated within two domains D1 and D2, Table 5.2, are used 

to investigate the blockage effect. In terms of the wall units Y*, it is appropriate to assess 

the blockage effect by comparing the results calculated on the grids D1 - 139 x 122(a) 

and D2 -114 x 92. The bulk parameters predicted by using the present E-production mod­

ification are given in Table 5.6. The relative differences between the calculated values are 

also included. With exception of the r.In.s. lift coefficient, other predicted parameters 

increase for the smaller domain D2. This trend is demonstrated by the distributions of 
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Domain-[Grid size] Bf (%) St CD Cb X 103 C' L CL X 104 Lr/H 
D1 - 139 x 122(a) 4.17 0.1414 2.199 0.186 1.386 80. 0.654 

D2 -114 x 92 8.33 0.1442 2.239 0.186 1.247 -4.8 0.846 

(D2-Dl)/Dl (%) 1.9 1.8 0.0 -10.0 - 29.4 

Table 5.6: Influence of domain size on the vortex shedding parameters for the turbulent 
flow past a square cylinder at Re = 20000 (the present k - f model, SMART scheme, 
!::J,.t* = 0.0078, !::J,.nc / H = 0.02). 

1.0 - Grid: 01-139.122(0) 
....... Grid: 02-114.92 

0 Bearman '" Obasaju (1982) 

0.0 0 Lee (1975) 

?!p -1.0 

.. -a,"tl o ." 0"0" 
0 0 .. 

-2.0 

-3.0 

1.0 

C' p 

0.5 

, 
B C 

~ -ADD 't-i~ 
0.0 

A B C 

1.0 0 

'. 

0.8 

0.6 

IJ 0.4 

Uo 0.2 

0.0 

-0.2 

-0.4 

1.0 

O.B 

0.6 

~ 
0.4 

0 0.2 

0.0 

-0.2 

-0.4 

D -2 

0 

•••• 0 

",0 

-1 0 

. .... a.. .• ~_ ..•. _ ..••.. 

o 

- Grid: 01-139.122(a) 
....... Grid: 02-114.92 

o Lyn (1992) 
o Ouroo et 01. (1988) 

2 3 4 5 6 7 8 

x/H 

Figur.e 5.13: Domain size influence on the distributions of time-averaged flow quanti­
ties: (left) the pressure coefficients, (right) the streamwise velocity and fluctuating kinetic 
energy. 

the mean and r.m.s. pressure coefficients in Figure 5.13(left). The mean pressurf co­

efficient values are smaller everywhere for the smaller domain D2. Consequently, the 

reduced values at the rear wall result in the higher value of the mean drag coefficient. For 

the smaller domain, the pressure r.m.s. values are reduced along the side walles) giving 

smaller values for the C~. On the other hand, differences between C~ along the rear wall 

cancel each other out so that apparently the blockage does not influence the r.m.s. drag 

coefficient. The results for Lr/ H, Table 5.6 and Figure 5. 13(right), show a large differ­

ence and obviously the length of the recirculation zone predicted for the narrow domain 

D2 agrees well with the measured value of 0.88. By contrast to the trend encountered 

in the time and spatial refinement tests, now the mean drag coefficient increase corre­

sponds to the longer recirculation zone. The time-averaged fluctuating kinetic energy is 
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not significantly influenced by the blockage effect. 

5.5.4 Summary 

In summary, the sensitivity of numerical solutions to the time and space discretisation was 

clearly demonstrated. The simple relative difference between two numerical solutions (X 

in Equation(B.6)) is not the best estimate of the actual error. However, for a number of 

refinement tests reported here it is a suitable choice. In regard to reference computational 

parameters, Table 5.7 summarizes these estimated errors for the integral quantities and 

also reports on the total estimated errors. The total errors are calculated as the root-mean­

square values of individual errors, a practice usually employed in experimental studies. 

Estimated errors for St CD Cb ct Lr/H 

Time discretisation, Xt (%) -2.4 -3.2 -13.5 1.0 17.8 

Space discretisation, Xxy (%) -0.1 -4.8 -15.6 -13.3 22.5 

Domain size, Xd (%) 2.0 1.8 0.0 -10.0 29.4 

Total, Xrms (%) 3.1 6.1 20.6 16.7 41.1 

Table 5.7: Estimated numerical errors for the turbulent vortex shedding results predicted 
by the present k - ~ model, the grid Dl - 139 x 122(a), t::..t* = 0.0078 and SMART 
scheme. 

5.6 Square Cylinder: Results and Discussion 

In ihis section, computational results from this work and from other numerical studies are 

compared against experimental data in order to assess performances of various turbulence 

models. Present results, based on the RNG and unsteady k - E models, were computed by , 
using the reference numerical parameters for which possible numerical errors have been 

summarized in Table 5.7. Three groups of data, namely integral vortex shedding parame­

ters, time-averaged and phase-averaged flow quantities ensure a comprehensive compari­

son. Before presenting this comparison, it is useful to have an overall impression of the 

flow features around a cylinder. Figure 5.14 shows plots of the instantaneous streamlines, 

velocity vectors and contours of the turbulent kinetic energy, all taken at a phase when 

the lift coefficient has a maximum value. In present simulations this phase corresponds to 

a minimum value of the pressure coefficient Cr: monitored at the centre of a square top 

side and it is equivalent to the phase 12 in Lyn (1992) experiments. The streamlines and 

velocity vectors indicate a vortex centre behind the cylinder at (x, y) ~ (0.9H, -O.lH) 
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TURBULENCE INTENSITY 
KEY TO CONTUOR VALUES 
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Figure 5.14: Instantaneous streamlines (top), velocity vectors (middle) and turbulent ki­
netic energy contours (bottom) as computed by the present k - E model at the phase 
corresponding to the maximum CL · 
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relative to the centre of a cylinder. Regarding the turbulence kinetic energy contour plots, 

the highest levels of k appear above the upper cylinder side, within the separated shear 

layer. 

5.6.1 Integral parameters 

In several previous numerical studies vortex shedding from a square cylinder (Re 

20000 or 22000) has been extensively investigated. For these studies, the employed tur­

bulence models, wall boundary conditions and other numerical conditions are reviewed in 

Table 5.8. Next Table 5.9 compares the predicted and measured values of the five impor-

Authors Model Time Cony. Wall Grid ~nc/H B j ,% 
scheme scheme b.c. 

This work SKE EU(1st) SMART WF 139 x 122 0.014 4.17 

UKE-I EU(1st) SMART WF 139 x 122 0.014 4.17 

RNG EU(1st) SMART WF 139 x 122 0.014 4.17 

UKE-2 EU(1st) SMART WF 114 x 92 0.02 8.33 

Deng et al. BL EU(2nd) CPI(2nd) No slip 121 x 94 0.0015 1.67 
(1993a) 

Franke (1991) DSM-I EU(lst) QUICK WF 70 x 64 0.022 7.14 

DSM-2 EU(1st) QUICK 2L 186 x 156 0.00125 7.14 

Kato & Launder KL EU(1st) QUICK WF 104 x 70 7.14 
(1993) 

Rodi et al. (1997) LES AB(2nd) CDS WF 146 x 7.14 
146 x 20 

Legend: UKE=Unsteady k - f, BL=Baldwin-Lomax, DSM=Differential Reynolds stress, 
KL=Modified k - f, EU=Implicit Euler, AB=Adams-Bashforth, WF=wall functions, 
2L=two-Iayer, 1st=first order accurate, 2nd=second order accurate. 

Table 5.8: Summary of computations on the turbulent vortex shedding from a square 
cylinder (Re ~ 20000): authors, turbulence models and numerical parameters. ' 

tant bulk parameters: the Strouhal number, the mean drag coefficient, r.m.s. values of the 

drag and lift coefficients, and the time-mean length of the recirculation region. Compared 

with Table 5.1, the ranges of the measured values for St and CD are updated to allow 

for the blockage effects in studies that were mentioned in Table 5.1. All predictions are 

brQadly in agreement with each other and with the consensus of the experimental data. 

However, some discrepancies are obvious, most notably the overestimation of the St­

number and the drag coefficient by DSM model with the two-layer near-wall approach, 

Franke (1991). Also, the Baldwin-Lomax model, Deng et al. (1993a), gives higher r.m.s. 
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Contribution St CD C' D C' L Lr/H 

Experiments (B j > 1.6%) 0.13-0.139 2.16-2.28 0.18-0.23 1.1-1.4 0.88-1.0 

Present, SKE 0.118 1.544 0.0008 0.088 2.39 

Present, UKE-1 0.141 2.199 0.186 1.386 0.65 

Present, RNG 0.139 2.064 0.092 1.369 0.59 

Present, UKE-2 0.144 2.239 0.186 1.247 0.85 

Deng et al. (1993a), BL 0.133 2.242 0.320 0.982 0.74 

Franke (1991), DSM-1 0.136 2.150 0.48 

Franke (1991), DSM-2 0.159 2.43 0.48 

Kato & Launder (1993), KL 0.145 2.050 1.25 

Rodi et al. (1997), LES 0.130 2.300 0.140 1.150 0.96 

Table 5.9: Present and previous predictions and measurements of integral parameters for 
the turbulent flow around a square cylinder. 

values for the drag and lower values for the lift force than in other studies. The present 

unsteady modification of the E-production term produces results close to the experimen­

tal ones. For instance, for the basic computational case UKE-l, relative differences with 

reference to the average experimental values are 5.1, -1.0, -9.3, 10.9, and -25.7 % for the 

Strouhal number, the mean drag coefficient, r.m.s. drag and lift coefficients, and the recir­

culation zone length: respectively. It looks that the RNG model slightly underestimates 

the mean and r.m.s. drag coefficients and the length of the recirculation zone. Previ­

ous comparisons found in literature did not point out the data that were corrected for the 

blockage effect. For example, the corrected value for CD = 2.05 from Lee's (1975) study 

suggested that, in general, the numerical simulations overpredicted the mean drag coef­

ficient. Therefore, it is not surprising that LES simulations produced CD slightly above 

the upper experimental values. Among all presented bulk parameters, the length of the 

recirculation zone behind a cylinder shows the largest variations. Computations from this 

study indicate its sensitivity to all numerical parameters and to the turbulence models,em­

ployed. However, for the well resolved time and space computations the blockage ratio 

seems to have conclusive influence on the recirculation zone length. This is supported 

by two results: Lr = 0.88 for B j = 7%, and 1.0 for B j = 14%, extracted from the 

measured data of Lyn (1992) and Durao et al. (1988), respectively. The present model 

with unsteady modification reproduces fairly well the length measured by Lyn when the 

solution domain implies a similar blockage ratio. For the computed case UKE-2 the rel­

ati~e difference is -3.9%; the LES simulations of Rodi et al. (1997) also predicts a value 

close to the measured one, with the difference of 9%. 
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5.6.2 Time-averaged distributions 

Pressure coefficients distributions around the cylinder together with the centreline ve­

locity and total fluctuating kinetic energy profiles have been already used in analysis of 

numerical errors. Figure 5.15 compare the predicted and measured mean and root-mean­

square pressure coefficients on the cylinder's surface. The Reynolds stress model results 

of Franke (1991) with wall functions and LES simulations are also included. Measure­

ments were performed at somewhat higher Reynolds numbers and with different block­

ages (see Table 5.1) but they are not corrected for the blockage effects. On the upstream 

face (AB in Figure 5.15), the mean pressure is predicted quite well by all models but 

significant differences exist on the other faces. These differences are within experimental 
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Figure 5.15: Predicted and measured time-averaged (top) and r.m.s. (bottom) pressure 
coefficients around a square cylinder (Re = 20000). 
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variations on the back (base) face (CD) and they cause the variations in predicted mean 

drag coefficients as discussed earlier. Although the present unsteady model predicts fairly 

well the mean drag coefficient, the mean pressure near the rear corner (C) exhibits a high 

maximum after which the pressure decreases faster than the data suggest. This is probably 

a consequence of the continuous pressure increase along the top face (BC). Clearly, the 

subtle experimental variation on the top face is captured fairly well by the RNG model 

and less successfully by the DSM model. The LES method follows the experimental 

trend but the mean pressure coefficient is too much underestimated along the top face. 

Only the present predictions of the r.m.s. pressure coefficient are compared with the mea­

sured data, Figure 5. 15(bottom). Both the unsteady and RNG model predict the r.m.s. 

values on the upstream and back faces satisfactory. As for the mean pressure along the 

top face, the RNG model resembles the trend observed in Bearman and Obasaju's (1982) 

measurements. 

Figure 5. 16(top ) is a plot of the time averaged streamwise velocity along the centre­

line. The size of the recirculation zone downstream of the cylinder is captured quite well 

by the present unsteady model when the domain D2 is used, providing a similar blockage 

ratio as in the Lyn's (1992) experimental study. Also the LES method predicts the size of 

zone fairly well. The other two cases from this work (Dl and RNG) were computed with 

the smaller blockages and this explains somewhat shorter recirculation zones, although 

the RNG model under-predicts the size of zone in comparison to the present unsteady 

model. However, the DSM model obviously underestimates the size of the recirculation 

zone. Further downstream, the data of Lyn (1992) and Durao et al. (1988), both with 

Laser Doppler Anemometry, are significantly at variance and it is therefore difficult to 

assess whether either model, including LES, is successful in reproducing the correct re­

covery. For the specified inlet conditions, the velocity distribution in front of the cylinder 

seems to be influenced by the blockage effect. This is suggested by the present predictions 

obtained with domains Dl (Ef = 8.33%) and D2 (Bf = 4.17%) as well as by the mea­

sured data of Durao et al. (1988) (Bf = 14%). Note that the DSM and LES resultsJnot 

shown in this region by above figure) are very close to the present ones for the domain 

D2. 

The total fluctuating kinetic energy, defined by Equation (5.4), is plotted in Fig­

ure 5. 16(bottom). Upstream of the cylinder, the present unsteady k - t model produces 

larger levels of this quantity which, as discussed in Section 5.4.2, do not cause the sup­

pression of the vortex shedding process. Both computed cases with the unsteady model 

(D 1 and D2), as well as the Reynolds stress model (DSM) reproduce the measured distri­

bution fairly accurately. This is an interesting result since the DSM model under-predicts 

the size of the recirculation zone. The RNG model predictions are also close to the ex­

periments, particularly in the far wake region. On the other hand, the LES method under-

149 



TURBULENT FLOW PREDICTIONS 5.6 Square Cylinder: Results and Discussion 

1.0 

c 
0.8 

0.6 

U 0.4 

Uo 0.2 

0.0 

-0.2 

-0.4 

0.8 

0.6 

kf 0.4 

U2 
0 

0.2 

0.0 

-0.2 
-2 -1 0 1 

-----------
".,;"" - ... --~~~--Q-_-~--..:..-.. -..:..---~---~---

// " "':-;:- 0 __ -
I ,/ c-~ 

I /. /" 
/ ;':' c/ 0000000000 0 0 0 
/ .: ¢oo 

/ .' :,a:P 
1/:&7 
// /J)I_- Present k-e (01) 
/f tl ------. Present k-e (02) 
Ii kI ----- RNG k-e (01) 
'" ,'1[] I"~ ---- OSM. Franke (1991) 

~I.' : LES. Rodi et al. (1997) 

'·.l~c 0 Lyn (1992) 
~6 0 Ourao et al. (1988) 

2 3 4 5 6 7 8 

x/H 

Figure 5.16: Predicted and measured time-averaged velocity (top) and total fluctuating 
kinetic energy (bottom) along the centreline (Re = 20000). 

estimates considerably the total kinetic energy fluctuations. Note that both the unsteady 

model results and LES results exhibit similar peaks near the cylinder's back face. 

The sum of apparent normal Reynolds stresses (see Equation. (5.1» defines the fluc­

tuating kinetic energy k f and it is of interest to show their individual contributions to k f' 

Figure 5.17. Only the predictions from this work with two k - E models are displayed. 

Both the unsteady and RNG models underestimate the axial normal stresses which are 

in general much smaller than the transversal ones. The present unsteady model performs 

well in capturing the peak values of the measured stresses in the y direction. The results 

for two domains D 1 and D2 indicate the blockage effect which can be used to explain 

variations of two experimental sets of data. The computed results for two domains show 

a shift between locations of peak values which is also present in the measured data for the 
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Figure 5.17: Centreline distributions of predicted and measured time-mean apparent nor­
mal Reynolds stresses in x (top) and y (bottom) directions (Re = 20000). 

axial normal stresses. 

Capabilities of the present unsteady model and RNG model can be further assessed by 

analysing their predictions in the shear layer region, above the top face of a square cylin­

der, Figure 5.18. In this figure, the results for the large domain Dl are compared with 

two sets of Lyn's (1992) data. The measurements were generally obtained with a two­

component laser-Doppler system (two-component data denoted as 2CD in the figure), but 

in the near-wall region only one-component measurements (lCD) were possible. The 

evolution of the normal Reynolds stresses in the x direction, Figure 5. 18(top), shows that 

the tested models fail to match the levels of the experimental normal stresses. The pre­

dic"ted levels are underestimated by an average factor of 3. Behaviour of the models along 

the. first half of the face is obviously affected by levels of turbulent fluctuations transported 

from the stagnation region. As in the wake region, the measured levels of the total fluctu­

ations are captured reasonably well by both models as the results for the apparent normal 
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Figure 5.18: The time-averaged profiles of the Reynolds stress component (u2
) (top), 

apparent component (U
I2

) = (u2 + i;,2) (middle) and global fluctuating kinetic energy kf 
(bottom) at several lateral cross-sections along the upper side of a square cylinder. 
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stresses, Figure 5.l8(middle), and the total kinetic energy, Figure 5. 18(bottom), suggest. 

However, more or less good results for the fluctuating energy hide the fundamental 

problem with current RANS and to some extent with LES methods (if we do not question 

the ability of experimental studies to separate accurately the stochastic and periodic fluc­

tuations). Turning to the earlier presented Figure 5.6, it is clear that the predictions of k 

show too low levels of turbulent fluctuations in the near wake region (a factor of 6). Other 

RANS models also experience the same weakness, Franke and Rodi (1991). This means 

that tested RANS methods severely overestimate the periodic fluctuations. The LES re­

sults of Rodi (1997), displayed also in Figure 5.6, suggest an overall better position of the 

LES methods. 

5.6.3 The phase-averaged results 

Lyn (1992) used a pressure signal, taken from a tap at the middle of the top face of 

a cylinder, to obtain phase information. A typical low-pass filtered pressure signal is 

given in Figure 5.19(a). The computed signals in a form of the pressure coefficient C[:r 
are depicted in Figure 5.19(b) as obtained by using unsteady and RNG models with the 

reference numerical parameters. Based on the pressure signal, Lyn (1992) defined the 

(a) 

Time (s, 

(b) 

Present k-£ RNG k-£ 

-1 

-2 

-3 '---",----'-""","---'---,--...J.....J 
530 570 610 650 80 85 90 95 100 105 

t· t· 

Figure 5.19: Time traces of the pressure signal monitored at the middle of the top face: 
(a) measurements ofLyn (1992), (b) present computations. 
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local period for each vortex shedding cycle using a peak-finding algorithm. Then each 

period was divided into 20 intervals or phase bins and the phase-averaged velocities were 

calculated as averages of the values sorted into corresponding phase bins. Thus, the phase 

o should correspond to the beginning of the shedding cycle (i.e. to the maximum value of 

the pressure coefficient C::), phase 1 to T /20, etc. Note that in the present computations 

the maximum pressure coefficient at the middle of the top face is related to the minimum 

(negative) value of the lift coefficient. The phase-averaging procedure for the present 

numerical results was designed in a similar way as in the measurements. However, it has 

appeared that the numerical results for a particular (numerical) phase do not correspond 

to the measured results for that phase, probably because of the low-pass filtering of the 

pressure signals in experiments. Franke (1991) and Deng et al. (1993a) preferred to 

match their numerical and experimental results at a single phase to determine the phase 

shift for comparisons of the results for other phases. A similar practice is used here so that 

present numerical results are shifted three phases backwards when they are compared with 

the Lyn's measurements. In the following presentation of the phase-averaged results the 

phases are those from the measurements. The number of shedding cycles used to calculate 

the phase-averaged results is shown in Figure 5.19(b) (17 and 3 for the unsteady and RNG 

model, respectively); for another case with domain D2 seven cycles were used. With these 

numbers of cycles the uncertainties arising from the phase-averaging procedure are less 

than 1%. 

Figure 5.20 presents predicted and measured distributions of the phase-averaged axial 

and vertical velocities along the centreline. The present predictions for two phases 1 and 

9 are accompanied by the LES results for the phase 1. The comparison of the predicted 

results for the U-velocity component with experiments in general shows poor agreement. 

The velocity predicted by all models is overestimated in the far wake region. The present 

results for two domains D 1 and D2 indicate the blockage effect in the near wake region. 

In this region, the predictions with the smaller domain D2 are closer to the measured 

values, particularly for the phase 1. For this phase, the LES results over-predict the size , 
of the recirculation zone. By contrast, the vertical velocity profiles predicted by the k - E 

models are in fairly good agreement with the measurements, especially in the near wake 

region. The zero velocity cross-points are close to those found in the experiments which 

is not the case if the LES results are considered. Similar results for both axial and vertical 

velocities were obtained by the DSM model (Franke, 1991). 

Finally, Figures 5.21 and 5.22 show the phase-averaged results for the axial and verti­

cat' velocity components at five lateral cross-sections along the top cylinder's face. Three 

phases I, 9 and 17 are considered. At the top of these figures, the time-averaged profiles 

are displayed. Clearly, both unsteady and RNG models predict the time-averaged velocity 

distributions fairly well and manage, varying degrees of success, to reproduce most of the 
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Figure 5.20: Predicted and measured phase-averaged (phases 1,9) axial (top) and vertical 
(bottom) velocity profiles along the centreline (Re = 20000). 

variations observed in the phase-averaged experimental profiles. In general, the values 
, 

predicted by the RNG model seem to fall closer to the measured data. 

5.7 Circular Cylinder: Results and Discussion 

The turbulent flow over a circular cylinder was computed at various Reynolds numbers, 

ranging from 27,400 to 3.5 x 106 • In this way, behaviour of the RNG and the unsteady k-f. 

models can be scrutinized against the measured integral parameters which clearly indicate 

different flow regimes, Figure 1.2. For each Reynolds number, the flow is computed , 
by employing the grids specified in Table 5.10. Given there are the relative near-wall 

distances, the number of cells defining the cylinder surface and the total number of cells 

within the flow domain. Figure 5.23 shows the block-structured grid used to compute the 

flow at Re = 1.4 x 105
. For all the grids, the solution domain (defined in Table 5.2 as 

D1) was decomposed into three blocks. 

Preliminary tests have shown the vortex shedding results to be very sensitive to the 

near-wall grid resolution. For this reason, it was appropriate to adopt the smallest practi­

cal values for the relative near-wall distances (6.nc / D). This, however, would mean that 

for some near-wall cells the wall units y* (Equation (3.101)) may fall below the values 

for which the logarithmic velocity profile is not justified (i.e. below Y* < 11.6, Sec-
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Figure 5.21: Computed and measured time-averaged and phase-averaged (phases 1,9 and 
17) axial velocity profiles at several lateral cross-sections along the top face of a square 
cylinder. 
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Figure 5.22: Computed and measured time-averaged and phase-averaged (phases 1,9 and 
17) lateral velocity profiles at several lateral cross-sections along the top face of a square 
cylinder. 
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tion 2.8). Note that the similar practice was employed by Hanjalic and Jakirlic (1998) in 

their computations of flows over backward-facing steps. 

Figure 5.23: Numerical grid G1 used for the flow past a circular cylinder at Re = 1.4 x 
105,. 

Regarding the inlet conditions, profiles appropriate to ' low' turbulence levels were 

used. In order to ensure stable solutions when using the high-Reynolds number models, 
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Grid 6.nc/ D 

GO 5.75 X 10-3 

G1 3.45 x 10-3 

G2 1.38 x 10-3 

G3 5.75 x 10-4 

Cells/cylinder Active cells Computed Re 

160 14000 27400;45000;90000 

192 20736 1.4 x 105 

240 

288 

31800 

45936 

5.0 X 105 

1.0 X 106 ; 3.5 x 106 

Table 5.10: Parameters of numerical grids used to compute turbulent flows past a circular 
cylinder. 

the following values for Tu and (vt!v)o were chosen, respectively: 0.005 and 1. for 

Re :S; 1.4 x 105 , and 0.01 and 10. for Re ~ 5.0 x 105 . 

Re 

27400 

45000 

90000 

1.4 X 105 

5.0 X 105 

1.0 X 106 

3.5 X 106 

Re 

27400 

45000 

90000 

1.4 X 105 

5.0 X 105 

(0 X 106 

3.5 X 106 

3.41 

2.80 

2.80 

2.18 

3.11 

1.56 

, 2.72 

(a) Unsteady k - E model 

y* 

2-17 

2-28 

10-50 

7-42 

8-66 

0.290 1.171 0.134 1.016 126.7 

0.287 1.117 0.115 0.999 127.7 

0.298 1.001 0.099 0.939 130.2 

0.286 1.162 0.178 1.006 124.1 

0.263 0.963 0.262 1.019 117.6 

5-52 0.266 0.792 0.120 0.776 115.9 

7-176 0.277 0.715 0.103 0.743 119.6 

(b) RNG k - E model 

3.41 2-18 0.297 0.967 0.094 0.926 125.1 

2.80 2-30 0.305 0.887 0.089 0.888 127.4 

2.80 

1.52 

3.11 

0.78 

1.36 

3-46 0.322 0.738 0.076 0.795 131.6 

3-52 0.301 0.926 0.101 0.932 125.1 

5-68 0.294 0.753 0.071 0.740 116.6 

5-52 0.270 0.650 0.058 0.687 119.6 

3-169 0.281 0.557 0.048 0.603 122.3 

Table 5.11: Turbulent flow around a circular cylinder. Predicted integral parameters as 
obtained with the unsteady (a) and the RNG (b) k - E model. 

Table 5.11 summarizes the results for the integral parameters calculated by the present 

and the RNG k - E models. It also specifies the time-step size and the range of y* -values 

encountered in these computations. In comparison to the RNG model, the unsteady model 

produces consistently higher values for the force coefficients and lower values for the 
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Strouhal number. 

The time histories of the force coefficients and the angle of separation are shown in 

Figure 5.24 for three values of Re: 27,400; 1.4 x 105 and 1.0 x 106. 
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Figure 5.24: Circular cylinder. Time histories of the drag coefficient (right), the lift coef­
ficient (left) and the separation angle (bottom) as calculated by the present k - E model. 

These histories illustrate that the periodiC vortex shedding process is in strong evidence. 

In the case of subcritical regime (Re :S (3 - 4) x 105
), the angle of separation varies 
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significantly, with maximum values up to 1550
• Having in mind the experimental values 

of the flow separation points, the separation is delayed by up to 45 0 for the subcritical 

regime. It is fairly well predicted for the postcritical regime (Re 2: 1.0 x 106 ), where data 

suggest Bs ~ 115 - 1220 (Achenbach, 1968). 

\Telocity magnitude 
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Figure 5.25: Flow past a circular cylinder at Re = 1.4 x 105 . Velocity vectors (top) 
and pressure contours (bottom) as computed by the unsteady k - E model at t* = 117.6 

(minimum Cd· 

.Figure 5.25 gives some insight into the instantaneous near-wake flow field, which was 

computed at Re = 1.4 x 105 . The velocity vectors show delayed separation and the quite 

narrow wake. The pressure contours form a typical pattern that characterizes the vortex 

shedding process. 
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Figure 5.26: The predicted and measured time-averaged centreline velocity (top) and the 
wall pressure coefficient (bottom) for a circular cylinder (Re = 1.4 x 105

). 

The consequences of the erroneous prediction of the flow separation for the subcritical 

regime are well illustrated in Figure 5.26. The figure depicts the predicted and the mea­

sured time-averaged velocities along the centreline and the wall pressure coefficients, all 

obtained at Re = 1.4 x 105
. The tested k - E models produce much shorter time-averaged 

recirculation zones than the experiments suggest. Distributions of the pressure coefficient 

also indicate failure of these models to match the measured data. Much better results 

were obtained by Franke (1991) who employed the differential Reynolds stress transport 

equation model with the two-layer near-wall treatment. However, Franke improved the 

prediction of the flow separation by switching off the turbulence model upstream of the 

experimental separation point. It is interesting that the present pressure distributions give 

reasonable values for the mean drag coefficient, Figure 5.28. Obviously, details of the 

pressure distributions are such that 'cancellation of the errors' takes place. 

The principal assumptions behind high-Reynolds number models are more likely to 
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Figure 5.27: Predicted and measured time-averaged wall pressure coefficient for a circu­
lar cylinder (Re = 3.5 x 106

). 

be valid for the postcritical flow regime. This is illustrated by Figure 5.27 which displays 

the time-averaged wall pressure coefficient computed by the UKE and RNG models at 

Re = 3.5 x 106 . There is satisfactory agreement with experiments of Achenbach (1968) 

obtained at Re = 3.6 x 106
. 

In Figure 5.28, the present results for the mean drag coefficient and the Strouhal num­

ber are compared with the measured data and with data from other numerical studies. In 

the subcritical regime, the drag coefficient is underpredicted by the tested k - E models 

as well as by the Baldwin-Lomax: model employed by Deng et al. (1993b). The same 

models over-predict the drag in the critical regime so that the drag crisis is not repro­

duced. The Strouhal number does not exhibit large changes and it varies between 0.25 

and 0.30. The two-layer DSM model used by Franke (1991) at Re = 1.4 x 105 predicts 

fairly well the Strouhal number but overpredicts the drag. The two-dimensional LES 

predictions of Song and Yuan (1990) agree well with the measurements. Note that they 

introduced many ad hoc assumptions, see Section 1.3.2. In that section, the computations 

. of Tamura et al. (1990) are also reviewed. Their three-dimensional quasi-LES results 

(i.e. without a turbulence model being used) seem to reproduce the drag behaviour quite 

well. Unfortunately, the Strouhal number values were not reported. 

5.8 Closure 

In this chapter, the k - E eddy-viscosity models described in Chapter 2, were applied to 

vortex shedding flows from single square and circular cylinders. 

The inability of most of the tested models (the standard, RNG and PDM modification) 

to reproduce the proper levels of the normal Reynolds stresses in the stagnation flow 
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5.8 Closure 

Figure 5.28: Turbulent flow around a circular cylinder. Comparison of the computed 
mean drag coefficient (top) and the Strouhal number (bottom) with others. 

region was demonstrated. For this, experimental data for the flow approaching a circular 

cylinder at Re = 27,400 were used as a benchmark. Only the k - € model with a new 

definition of the turbulent time scale (Tw , Equation (2.50)) predicted the normal stresses in 

agreement with measurements. This definition was specifically devised for the stagnation 

flow region, where the normal stresses govern the production of the turbulent ki~etic 

energy. Although encouraging vortex shedding results were obtained, it needs first further 

improvements and testing in other steady flow regions. 

In spite of the incorrect behaviour in the stagnation region, the k - € models were 

able to capture the vortex shedding process itself. This was evident after preliminary 

tests for the case of a square cylinder at Re = 20, 000. While predictions by the RNG, 

PDM and unsteady model were satisfactory, the standard model produced much higher 

levels of k and the turbulent eddy-viscosity, which adversely affected the strength of the 

vortex shedding process. As a result, the mean drag coefficient was predicted too low and 

the amplitudes of both the lift and drag coefficients were grossly underestimated. This 
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renders the standard model inapplicable to flows past square and circular cylinders. The 

preferential dissipation modification (PDM) to the standard model was quite sensitive to 

its model constants. Thus, subsequent computations were done by using the RNG and the 

present unsteady k - t model. 

Before detailed verification of the selected models, the numerical uncertainties for 

the present computations have been specifically addressed for the vortex shedding from a 

square cylinder at Re = 20,000. The unsteady k - t model was employed for most com­

puted cases. Grid and time-step refinement tests were carried out in conjunction with the 

SMART convective scheme. The effects of alternative schemes, as well as of the block­

age, were also assessed. In summary, the Strouhal number, the mean drag coefficient and 

its root-mean-square value increased with better spatial and time resolutions, while the 

length of the recirculation zone behind the cylinder was reduced. A similar trend was 

experienced when the blockage effect increased, with the exception that now the recircu­

lation zone became longer. Regarding the r.m.s. lift coefficient, its values were reduced 

for smaller time-step sizes and for higher blockages. The opposite situation appeared 

when fine grids were used. The numerical uncertainties for the integral parameters were 

quantified for the reference numerical parameters and presented in Table 5.7. With regard 

to the near-wall grid resolution, the unsteady model was not too sensitive to the relative 

near-wall distances !::1nc / H, i.e. to the non-dimensional wall units Y*. The opposite 

behaviour has characterized the RNG model and this model can severely underestimate 

the drag coefficient if the near-wall zone is not resolved well in terms of Y*. 

The well-documented measurements (Lyn, 1992; Bearman and Obasaju, 1982; Lee, 

1975) were used to validate the present unsteady modification and RNG model for the 

flow over a square cylinder at Re = 20,000. It was found that these models produce 

acceptabLe results for integral parameters and for most of the time-averaged and phase­

averaged flow quantities. However, there is a fundamental problem with the RANS meth­

ods, particularly in the wake region. This was first recognized by Franke and Rodi (1991) 

. after using the Reynolds stress transport model. That model, and the k - t models ~m­

ployed in this study, simulate the total fluctuations correctly but at the expense of consid­

erably overestimated periodic fluctuations and underestimated turbulent fluctuations. In 

this respect, the LES results of Rodi (1997) and Rodi et al. (1997) indicate more realis­

tic predictions of the turbulent kinetic energy (Figure 5.6) although the total fluctuating 

energy is still underpredicted (Figure 5.16). 

The principal shortcomings of the k - t models (and other Reynolds stress models) are 

exposed by the results for the flow past a circular cylinder. These high Reynolds-number 

models, used in conjunction with the wall functions, fail to predict correctly the boundary 

layer separation from a smooth surface such as a circular cylinder. This failure can be 
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expected for Re < 1.0 x 106
, i.e. for the subcritical, critical and supercritical regimes, 

where the boundary layers are still laminar before separation. The use of high Reynolds 

number models implies the turbulent boundary layers and strong mixing, which shifts the 

separation point considerably downstream. Thus, the wrong prediction of the separation 

points leads to erroneous vortex shedding results. In the postcritical regime, the boundary 

layers before separation are fully turbulent, and the separation is predicted fairly well. 

Consequently, the mean drag coefficient and the Strouhal number show better agreement 

with the experimental data. 
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Chapter 6 

CLOSURE 

The present study was intended to determine what can and cannot be achieved in the 

numerical modelling of vortex shedding flows from two-dimensional square and circular 

cylinders by using the two-dimensional finite volume method. Both laminar and turbulent 

flows were considered, the latter simulated by the k - E models used in conjunction with 

the wall function approach. The outcome of this work has been already described in 

concluding sections of each chapter. This chapter summarizes the present study and its 

achievements in the light of the initial objectives and outlines suggestions for future work. 

6.1 Summary and Achievements 

1) The finite volume method for unsteady flows 

The first objective was to develop the second order accurate finite volume flow solver 

for incompressible, steady and unsteady flows. In the present solver, the vector and ten­

sor quantities in the governing equations are defined in terms of Cartesian components. 

These equations are solved on" non-orthogonal curvilinear grids, arranged in a structured 

" or block-structured fashion. Temporal discretisation is the implicit, first-order accurate 

Euler. Spatial discretisation is by choice of first- (UDS) and higher-order accurate un­

bounded (CDS, LUDS and QUICK) and bounded schemes (MINMOD, SMART). The 

high Reynolds-number k - E models are implemented; the assumption being that the flow 

under consideration is everywhere turbulent. Thus, no laminar-turbulence transition is 

allowed and the wall function approach is used to bridge the near-wall region. 

2) Numerical uncertainties 

For both laminar and turbulent simulations, attention was focused on the numerical uncer­

tainties arising from spatial and temporal discretisation and from the size of the solution 
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domain (the blockage effect). These uncertainties were quantified for some cases, i.e. 

for laminar and turbulent vortex shedding from a square cylinder (see Table 4.10 and Ta­

ble 5.7). It emerged, particularly in laminar flow situations, that the blockage effect very 

often cancels errors due to space and time discretisation. Several alternative schemes for 

convection were evaluated for their performance in laminar vortex shedding conditions. 

With regard to their accuracy and boundedness, the bounded and formally third-order 

accurate SMART scheme was used for the majority of the present predictions. 

3) Validation for unsteady laminar flows 

The present finite-volume method has been validated against experimental and other nu­

merical data for vortex shedding encountered in various (laminar) flow configurations. 

The principal comparisons were with integral vortex shedding parameters such as the 

Strouhal number, averaged and root-mean-square drag and lift coefficients, and other 

force coefficients specific to some investigated flow cases. Careful literature review was 

carried out to identify suitable experimental and numerical results which were all then 

included in the comparisons. The outcome of comparisons were in all cases either on par 

or better than those obtained with alternative CFD methods. This conclusion is supported 

by the following figures related to: 

, 
1. Uniform flow around a square cylinder: Figure 4.26; 

2. Uniform flow around a circular cylinder: Figures 4.28, 4.29, and 4.30; 

3. Uniform flow past two circular cylinders in tandem: Figure 4.33; 

4. Pure oscillatory flow around a circular cylinder: Figure 4.36; 

5. Combined oscillatory flow with steady current past a circular cylinder: Figure 4.38 . 

. In addition, Table 4.13 (related to the computation of vortex shedding from a circular 

cylinder) proves the capability of the present method to produce very accurate results, in 

this case for truly laminar vortex shedding. 

4) Physical aspects of laminar vortex shedding 

Some physical aspects of the periodic vortex shedding process were analysed for the case 

of a circular cylinder at Re = 105. The overall process was divided into three stages: (i) 

initiation, (ii) development, and (iii) developed stage. For the present method, there is no 

need to perturb the initial (uniform) velocity field. It was concluded that the magnitudes 

, of vortex shedding quantities for the established (periodic) vortex shedding should not 
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depend on the nature of initial disturbances. When a fully periodic vortex shedding flow is 

established, all the flow parameters fluctuate periodically around their mean values, while 

the mean lift coefficient becomes zero. The period of oscillation of the drag coefficient is 

exactly one half that of the lift coefficient. The vortex formation procesS was analysed in 

terms of streamlines and separatrices, Figure 4.10. 

For single cylinders, submerged in a uniform stream, the flow features depend on 

the Reynolds number. This dependence, expressed through the mean drag and Strouhal 

number, was accurately reproduced in the present simulations for Re-numbers below 

Re~d :::::: 200. Above this number, the three-dimensionality occurs in experimental flows. 

In regard to this, the limitations and reliability of the two-dimensional simulations were 

discussed (see Figure 4.30). In other flow configurations, the effects of Reynolds num­

ber and additional factors (i.e. the cylinders' spacing ratio for two cylinders in tandem 

and f{ c-number and the velocity ratio Ur for oscillatory flows) were also reproduced in 

accordance with other numerical studies and/or experimental data. 

5) Development of a turbulence model 

The important issue of how to model the turbulence in the presence of organized mean­

flow periodicity was addressed and a modification to the standard k - E model was pro­

posed. This modificat-ion is based on Younis' idea (Younis, 1988). It was also influenced 

by Lumley's proposal (Lumley, 1992) who introduced a transport equation for the inverse 

time scale which was used to calculate the production term of the dissipation rate E. In­

stead of solving such an equation, the present work introduces the time scale of periodic 

motion and formulates an overall inverse time scale as a linear combination of the in­

verse values of the turbulent time scale (k / E) and the periodic time scale. In addition, 

the modifications that can improve on the predictions of conventional k - E models, in 

particular in the stagnation flow region, were considered. After preliminary tests, none of 

. these modifications performed better than the RNG k - E model, if the latter is used with , 
a sufficiently fine mesh. 

6) Validation of the k - E models 

The new, unsteady, model and the RNG model were validated against data for the vortex 

shedding flows from a square and circular cylinders. In the case of a square cylinder, 

both models produced acceptable results. In many aspects, the unsteady flow features 

were reproduced either on par or better than those obtained by other models or with LES 

methods. The support for this is given in the following table and figures which present: 

• Integral vortex shedding parameters: Table 5.9; 
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• Time-averaged and r.m.s. pressure coefficient distribution along the wall: Fig­

ure 5.15; 

• Time-averaged centreline velocity and total fluctuating kinetic energy: Figure 5.16; 

• Phase-averaged centreline velocity components: Figure 5.20. 

Generally successful simulations in the case of a square cylinder can be attributed to the 

fact that the flow is turbulent before separation, which is , in addition, imposed by the 

geometry itself, i.e. by the upstream corners. For a circular cylinder, the high Reynolds­

number turbulence models cannot cope with transition from laminar to turbulent condi­

tions. This inability adversely leads to wrong predictions of the flow separation points for 

a wide range of Reynolds numbers (Re < 106
) and the overall results are consequently 

not satisfactory. Realistic predictions characterize the postcritical flow regime (Re ;::: 106 ) 

where the flow is turbulent before separation. 

6.2 Future Research 

This study has shown that CFD is a powerful and reliable tool for understanding the 

nature of vortex shedding flows. In order to improve the accuracy of vortex shedding 

results, fruitful research may be conducted in the following areas: 

• Provision of the second-order accurate time discretisation scheme (eg. a three time 

level implicit scheme). 

• Use of 3D simulations since 3D effects cannot be reproduced in 2D calculations. 

• Assessment of the k - t models with the non-linear stress-strain relationship and 

Reynolds-stress transport closures. 

• Alternative treatment of the near-wall region. This may be done by employing some 

existing low-Reynolds number models (eg. Hanjalic et aI., 1997) or by relaxing the 

'fully-turbulent flow'assumption and the logarithmic law of the wall invoked in 

wall functions. The latter should allow for the slope and intercept of the log-law to 

adjust according to the local state of the flow (Younis, 1998). 

• New modelling practices for unsteady flows dominated by organized (periodic) flow 

structures. 
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Appendix A 

Previous Numerical Studies 



Previous Numerical Studies 

Author(s) & year Reynolds Numerical Remarks 
numbers method and 

formulation 

Davis and Moore 100-2800 2D-FV-PV The QUICKEST scheme was used for the 
(1982) spatial and temporal discretisation. 

Younis (1988) 250-2800 2D-FV-PV Good results for laminar flows 
(Linear-Upwind scheme was used). 

Pereira and Durst 250,500 2D-FV-PV Among various convective schemes only the 
(1988) QUICK yielded the reliable results. 

Franke (1991) 40-300 2D-FV-PV Satisfactory results for St and CD; a second 
vortex shedding frequency was found at 
Re;::: 250. 

Arnal et al. (1991) 100,500, 2D-FV-PV Additional frequencies at Re ;::: 500. 
1000 

Carey et al. (1992) 500 2D-FV-PV A new skew-upwind corner convective 
scheme was able to sustain vortex shedding. 

Kim and Benson 190 2D-FV-PV SMAC, PISO and ITA temporal schemes 
(1992) produced similar results. 

Kelkar and Patankar 40-100 2D-FV-PV Unsteady flow was risen by the linear 
(1992) stability analysis of a steady flow. 

, 

Ramaswamy and Jue 250 2D-FE-PV The time history of CD shows 
(1992) cycle-to-cycle variations (additional 

frequencies). 

Okajima et al. 1000,4000, 2D-FV-PV Laminar flow results compare well with 
( 1992) 7000 experiments. 

Mukhopadhyay et al. 60-800 2D-FV-PV The St-number was computed for a 
( 1992) cylinder in a channel (blockage 12.5%). 

Suzuki et al. (1993) 70-250 2D-FD-PV The St-number results are close to 
Okajima's data (1982) for Re ::; 150. 

Nakamura et al. 100 2D-FD-PV The effects of four outflow boundary 
(1993) conditions were investigated. 

, 

Hwang and Yao 500,1000, 2D-FV-PV Ground effects for a cylinder in a laminar 
( 1997) 1500 boundary layer were analysed. 

Sohankar et al. 45-250 2D-FV-PV Strong influence of numerical parameters on 
(1997) the results was found. 

Table A.l: Summary of two-dimensional numerical simulations of nominally laminar 
flows around a square cylinder (FD-finite difference, FE-finite element, FV-finite volume, 
PV-pressure-velocity). 
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Previous Numerical Studies 

Author(s) & year Reynolds Numerical Remarks 
numbers method and 

formulation 

Gresho et al. (1984) 25 -400 2D-FE-PV St and CD were higher than experimental 
data. 

Borthwick (1986) 40-400 2D-FD-w,'lj; Two differencing schemes were compared. 

Braza et al. (1986) 100,200, 2D-FV-PV Secondary vortices were identified and 
1000 analyzed. 

Eaton (1987) 110 2D-FE-PV Analysis of streamlines and streaklines. 

Lecointe and Piquet 140- 2000 2D-FD-w,'lj; St-numbers were slightly overpredicted for 
(1984, 1989) Re> 200. 

Karniadakis and 40- 250 2D-SE-PV A continuous variation of St with Re. 
Triantafyllou (1989) 

Franke (1991) 50- 5000 2D-FV-PV St and CD agree well with the experiments 
for Re < 1000. 

Engelman and 100 2D-FE-PV The grid-converged results were obtained. 
Jamnia (1990) 

Sa and Chang (1991) 50-200 2D-FD-w,'lj; St and CD are lower than experimental 
data. 

Li et al. (1991) < 500 2D-FE-PV Large time steps were used 
(ll.t* = 0.1 - 0.3) with the Crank-Nicolson 
temporal scheme. 

Behr et al. (1991) 100 2D-FE-w,'lj; The effect of the outflow boundary location 
, was examined. 

Ji and Wang (1991) 40, 70 3D-FD-PV 3-D simulations were done using the 
QUICK convective scheme. 

Wang and Dalton 102, 140, 200 2D-FD-w,'lj; Impulsively started and decelerated flows 
(I991a) were computed. 

Karniadakis and up to 500 3D-SE-PV The wake velocity fluctuations indicate a 
Triantafyllou (1992) transition to turbulence at Re = 500. 

Rosenfeld (1994) 200 2D-FV-PV A grid refinement study was conducted on 
four meshes up to 513 x 513 points. 

Behr et al. (1995) 100 2D-FE-PV The influence of the placement of lateral 
boundaries on the vortex shedding results. 
was investigated. 

Henderson (1995) 25-1000 2D-SE The drag and base pressure coefficients 
were presented emphasizing the distinct 
change from a steady to unsteady wake. 

Mittal and 525 2D& 3D-SE The effect of three-dimensionality on the lift 
Balachandar (1995) and drag was investigated. 

Zhang et al. (1995) 40-300 2D& In 3D, four different instabilities were found 
3D-FD-PV for Re = 160 - 230, each leading to 

different transition scenarios. 

Table A.2: Summary of numerical simulations of the nominally laminar flows around a 
circular cylinder (FD-finite difference, FE-finite element, FV-finite volume, SE-spectral 
element, PV-pressure-velocity). 
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Previous Numerical Studies 

Author(s) & year Reynolds Numerical Turbulence modelling & comments 
numbers method 

Majumdar and Rodi 105 , 1.4 x 2D-FV-PV Standard k - t+WF & Steady flow; at 
( 1985) 105 , 3.6 X 106 Re:S 1.4 x 105 , f.tt was effective only in 

the separated flow region. 

Stansby and Smith 3.6 x 106 2D-RV-w,'l/; Algebraic Baldwin-Lomax & Artificial 
(1989) vortex decay was used to improve the 

results. 

Tamura et al. (1990) 103 , 104
, 2D&3D-FD- None. & The 'drag crisis' was successfully 

105 , 106 PV simulated by 3D simulations. 

Song and Yuan 1.4 x 2D-FV-PV Pseudo LES, Smagorinsky subgrid model & 
(1990) 105 , 8.4 X 106 The use of several ad hoc assumptions 

produced satisfactory results. 

Braza et al. (1990, 2 x 103 - 2D-FV-PV None. & Frequencies of transition waves in 
1992) 3 x 104 the separated shear layers were in good 

agreement with experiments. 

Franke (1991) 1.4 x 105 2D-FV-PV Two-layer k - f and Reynolds-stress 
transport models & Generally poor results; 
the turbulence models were switched on 
after the separation point. 

Dawes (1992) '4000 2D-FV-PV Low-Re Lam-Bremhorst k - f & 
Simulations on both fixed and adapted 
unstructured grids yielded the correct 
St-number (0.20). 

Kondo (1993) 105 , 106 2D-FE-PV None. & Similar values of CD as obtained 
by Tamura et al. (1990) in 2D calculations. 

Kakuda and Tosaka 104 , 105 ,5 x 2D-FE-PV None. & The results for CD agree well with 
(1993) 105 , 106 , 107 similar calculations of other authors 

(Tamuraet aI., 1990, Kondo, 1993). 

Deng et al. (I993b) 6 x 103 -.-: 2D-FV-PV Algebraic Baldwin-Lomax and Low-Re 
3.6 x 106 k - f models. & None of the turbulence 

models produced satisfactory results. 
, 

Orszag et al. (1993) 14,500 2D-PV Low-Re RNG k - f & At this Re-number, 
the model was capable to predict vortex 
shedding correctly (St = 0.185 is close to 
the experimental value of 0.19). 

Table A.3: Summary of previous numerical simulations of turbulent flows past a circular 
cylinder (FD-finite difference, FE-finite eiement, FV-finite volume, RV-random vortex, 
PV~pressure-velocity). 
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Previous Numerical Studies 

Author(s) & year Reynolds Numerical Turbulence modelling & comments 
numbers method 

Sarpkaya and Ihrig 20,000 2D-RV None. & Amplitudes of CD and CL were 
(1986) too high but the St-number was correctly 

predicted. 

Younis (1988) 3x103,8x 2D-FV-PV k - €+WF. & An unsteady modification of 
103, the dissipation rate source was proposed. 
1.4 x 104 

Tamura and 10,000 2D&3D-FD- None. & The 3D-results for the drag and lift 
Kuwahara (1990) PV and St-number are closer to the 

experimental values than 2D-results. 

Hadid et al. (1991) 14,000 2D-FV-PV Nonlinear k - f+WF. & Slightly improved 
predictions when compared to the standard 
k - f model. 

Franke (1991) 22,000 2D-FV-PV Standard k - f and Reynolds-stress 
transport models with the WF or two-layer 
approach. & The Reynolds-stress transport 
model yielded relatively good results; the 
periodic fluctuating motion was 
overpredicted. 

Deng et al. (1993a,b) 22,000 2D-FV-PV Algebraic Baldwin-Lomax. & Successful 
results have been obtained with this simple 
model. 

Kato and Launder 22,000 2D-FV-PV Standard k - f+WF, modified production of 
(1993) k. & The proposed modification gives 

, predictions similar to that obtained by the 
Reynolds-stress transport model, Franke 
(1991). 

Frank and Mauch 40,000 3D-FV-PV LES. & A bit higher St-number than the 
(1993) experimental one was obtained. 

Sakamoto et al. 105 2D&3D-FV- LES, Smagorinsky subgrid model. & Truly 
(1993) (also PV LES predictions are in good agreement with 
Murakami and experiments. The differences between 2D 
Mochida, 1995) and 3D simulations are clarified. 

Murakami and 22,000 3D-FV-PV LES, Smagorinsky sub grid model. & The 
Mochida (1995) results on the grid with 104 x 69 x 10 

nodes show good agreement with , 
experiments of Lyn (1992). 

Benodekar et al. 14,000 2D-FV-PV Standard and RNG k - f + WF. & Only the 
(1994) (STAR-CD) RNG model produced closer agreement 

with data of Durao et al. (1988). 

Bosch and Rodi 22,000 2D-FV-PV k - f+ WF, Kato and Launder (1993) 
(1996) modification. & Reasonable good 

predictions were obtained for a cylinder in 
the presence of an adjacent wall, including 
the case without the wall. 

Table A.4: Summary of previous numerical simulations of turbulent flows past a 
square cylinder (FD-finite difference, FV-finite volume, RV-random vortex, PV-pressure­
velocity). 
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Appendix B 

Richardson Error Estimator 

For the exact solution <Po, one can assume series expansion around the approximate dis­

crete solution <Pi as (Roache, 1994): 

(B. 1) 

where h is a characteristic discretisation parameter, and ai, a2, a3, ... are functions that 

do not depend on the parameter h. Then Richardson extrapolation for the w-th order 

accurate discretisation method is based on a calculation of two numerical solutions <Pi 

and <P2 with different" discretisation parameters hi and h2. Elimination of the coefficient 

aro of the leading order terms leads to the generalized Richardson extrapolation: 

<Po 
<Pi - <P2 

(B.2) '" <Pi + ro l' '" r -

h2 
(B.3) r -

hi· 

The Actual Fractional Error of the fine solution <Pi is defined as: 

(1S.4) 

It can be shown (Roache, 1994) that an Estimated Fractional Error for the fine solution, 

derived from Equation (B.2) as: 

(B.5) 

x = (B.6) 

is an Error estimator for the actual error Ai as long as El « 1. Note that the quantity X 

in the above equation, which is often reported in refinement studies, is not always a good 



Richardson Error Estimator 

estimate for the actual error. Equation (B.5) is valid in all space and time directions if the 

same refinement ratio r and order ware applied. For independent coordinate refinements 

in time and space (for example rt -I- r x -I- r y -I- r z, and uniform w in each coordinate 

direction) the resulting estimated error is obtained as the sum of the individual coordinate 

estimates: 

(B.7) 

However, we often perform just two calculations (on the coarse and fine grid) with differ­

ent r used in different coordinate directions, and in the case of time-dependent computa­

tions, with mixed-order methods. For this situation, Roache (1994) suggests a calculation 

of the conservative estimated error based on the smallest directional refinement ratio r 

and the smallest order w. When the grid stretching is not analytical the effective grid 

refinement ratio: 

r = ((NI*NJ)I)I/2 
(NI * NJh 

(B.8) 

can be used. For a combination of the higher order convective scheme and the second 

order scheme for the diffusion the formal order of the method is w = 2. Similarly, if we 

have two time-dependent numerical solutions on the fine and coarse grid, obtained with 

different time-step sizes, a conservative approach would be to calculate EI with w = 1. 

Very often we need the estimated fractional error for the coarse grid solution. Denoting 

as before the solution with the smallest parameter hI as <PI and other "coarser" solutions 

with h2 = rhl' h3 = r 2h l , ... , hm = r m
-

I hI as <P2, <P3,"" <Pm respectively, an error 

estimator for the solution <Pm is given as: 

<P - <P r(m-l)tiJ 
E - m I --:--_-:--__ 

m - <PI r(m-l)tiJ - 1 . (B.9) 

Finally, Roache (1994) discussed the advantages and disadvantages of using Richard­

son extrapolation and derived Error estimator E I . In some cases, the conditions behind 

this theory simply do not hold and one might be concerned over the actual order of the 

method. Further, Roache proposed uniform reporting of grid refinement studies based on 

a Grid Convergence Index (GCI) which has been defined as: 

1 
Gel = 31 EII = 3Ixl--

rtiJ - 1 
(B.IO) 

The'idea is to relate the results (more precisely the X) from any grid refinement study to 

the expected results from a grid doubling (r = 2) using a second-order accurate method 

(w = 2). In this study, only the Richardson Error estimates for the fine (EI ) or coarse 

(Em) grid and time refinement tests are reported. 
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