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1 Introduction

Correlation functions are the main quantities characterizing quantum theories. From an experi-
mental point of view, measurable physical quantities are directly related to dynamical correlation
functions (or equivalently to their Fourier transform, the structure functions), for example in
neutron scattering experiments on ferromagnetic crystals [1, 2]. In the context of two dimen-
sional integrable models various approaches to the computation of correlation functions and
form factors have been developed over the years. It started first with models equivalent to
free Fermions for which considerable works have been necessary to obtain full answer (see e.g.
[3, 4, 5, 6, 7, 8, 9]). Going beyond the free Fermion case has been a major challenge for the last
twenty years.

For integrable massive 1+1-dimensional quantum field theories, form factors are accessible
(using some hypothesis) from the bootstrap form factor program pioneered in the late 70’s
[10, 11, 12]; the analytical summation of their series corresponding to the correlation functions
of local operators remains however an open question, although accurate numerical results exists
for many theories and correlation functions.

For integrable quantum spin chains [13, 14, 15] and lattice models [16], the first attempts to
go beyond free Fermion models relied on the Bethe ansatz techniques [17, 18] and was undertaken
by A. G. Izergin and V. E. Korepin (see e.g. [13] and references therein). Their approach yields
formulae for the correlation functions [13, 19, 20, 21] written as vacuum expectation values
of some determinants depending on so-called “dual fields” which were introduced to overcome
the huge combinatorial sums arising in particular from the action of local operators on Bethe
states. However these formulae are not completely explicit, since these “dual fields” cannot be
eliminated from the final result.

In the last fifteen years, two main approaches to a more explicit computation of form factors
and correlation functions have been developed, mainly for lattice models.

One of these approaches was initiated by M. Jimbo, T. Miwa and their collaborators [22,
23, 24] and enables, using some hypothesis, to compute form factors and correlation functions
of quantum spin chains of infinite length (and in their massive regime) by expressing them in
terms of traces of q-deformed vertex operators over an irreducible highest weight representation
of the corresponding quantum affine algebra. These traces turn out to satisfy an axiomatic
system of equations called q-deformed Knizhnik-Zamolodchikov (q-KZ) equations, the solutions
of which can be expressed in terms of multiple integral formulae. Using these equations similar
formulae can be obtained in the massless regime. Recently, a more algebraic representation for
the solution of these q-deformed Knizhnik-Zamolodchikov equations have been obtained for the
XXX and XXZ (and conjectured for the XYZ) spin 1/2 chains; in these representations, all
elementary blocks of the correlation functions can be expressed in terms of some transcendental
functions [25, 26, 27]. A detailed review of the approach can be found in [14].

The second approach has been developed by N. Kitanine, J. M. Maillet and V. Terras
[28, 29, 30]. It combines the algebraic Bethe ansatz techniques [17, 18] with the solution of
the so-called quantum inverse scattering problem [28, 29]. It leads in particular to explicit
determinant formulae for form factors of the finite Heisenberg spin 1/2 XXX and XXZ chains
and to their correlation functions as explicit multiple sums. The solution of the inverse scattering
problem means in practice finding an explicit realization of the local operators of a large variety
of quantum spin chains in terms of the quantum monodromy matrix entries appearing in the
algebraic Bethe ansatz framework and containing in particular the creation operators for Bethe
eigenstates of the chain. Hence the computation of elementary blocks of the correlation functions
reduces to a soluble algebraic problem in the Yang-Baxter algebra generated by the monodromy
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matrix entries. Elementary blocks of correlation functions of the infinite XXZ spin 1/2 chain
both in the massive and massless regime as well as in the presence of a magnetic field [30] have
been computed in terms of multiple integrals. At zero magnetic field it gives a complete proof of
the multiple integral representations obtained in [22, 24] both for massive and massless regimes.
Hence, together with the works [22, 24], it also gives a proof that correlation functions of the XXZ
(inhomogeneous) chain indeed satisfy (reduced) q-deformed Knizhnik-Zamolodchikov equations.
In addition this method has proven to be effective in dealing with spin-spin correlation functions
in the presence of a magnetic field [31, 32], dynamical correlation functions [33] and at non zero
temperature [34], cases which were out of reach of the vertex operator method. A recent review
of this approach can be found in [15].

So far, we have only mentioned various works dealing with spin 1/2 chains. However, consid-
erable effort has been made to extend the results mentioned above to the higher spin integrable
chains [35, 36, 37, 38]. Integral formulae for the correlation functions of the spin 1 XXZ chain
have been obtained in [39, 40, 41]. The correlations of spin chains of arbitrary spin have also
been studied: integral formulae for the form factors of local operators of the XXZ chain were
obtained in [42] and for the correlation functions of the XYZ chain in [43]. From the Bethe
ansatz method, the solution of the quantum inverse scattering problem has been given also for
higher spin cases in [29] leading in [44] to integral formulae for the correlation functions of the
spin 1 XXX spin chain.

The aim of the present article is to employ the Bethe ansatz approach and the solution of
the quantum inverse scattering problem for higher spins to obtain determinant formulae for the
form factors of spin operators of general integrable Heisenberg quantum spin chains in arbitrary
(mixed) finite dimensional spin representations. More precisely, we will consider integrable
Heisenberg spin chains with different finite dimensional spin representations at each site. With
regard to their physical properties (in particular the characteristics of the zero temperature
ground state), these “mixed” spin chains can be subdivided into two groups: those where spins
are mixed in fixed proportions and those where a particular type of spin dominates while other
spins can be regarded as impurities. Examples of the first type of chains are alternating spin
chains. The second type are spin chains with magnetic impurities. The eigenstates, spectrum
and thermodynamic properties of both classes of models have been studied within the Bethe
ansatz framework. The alternating spin 1- spin 1/2 chain has been studied in [45, 46, 47]. More
general combinations of spins have been dealt with in [48, 49]. The spin 1/2 chain with one
spin s impurity has been studied in [50] and especially in the context of the Kondo problem
[51, 52]. The more general situation of a spin s XXX chain with one spin s′ impurity was
analyzed in [53] (the special case s = 1 has been studied in [54, 55]). The effect of impurities
in Heisenberg quantum spin chains has also been the object of experimental investigation, as
shown for example in [56].

In this article we will compute the form factors of local spin operators for the general inte-
grable XXX (mixed) spin chains and express our formulae in terms of determinants of elementary
functions, similar to those found in [28] for the spin 1/2 case.

This paper is organized as follows: In section 2 we review the algebraic Bethe ansatz frame-
work for the general XXX quantum spin chains. In section 3 we derive closed formulae for all
form factors of spin operators of the XXX chain in arbitrary spin representations. We employ
our formulae to compute the total magnetization of the chain. In section 4 we give our con-
clusions and discuss some perspectives. Some lengthy computations are given in appendices:
appendix A contains proofs of two identities involving the higher spin eigenvalues of the transfer
matrix which we have employed in our form factor computations and appendix B presents an
alternative formula for the solution of the quantum inverse scattering problem for local spin
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operators useful in form factor computations.

2 Algebraic Bethe ansatz for XXX quantum spin chains

In this paper we will consider general integrable XXX quantum spin chains of length N and
periodic boundary conditions Sα

N+i = Sα
i for α = z,±. From the algebraic Bethe ansatz view

point, the fundamental object characterizing such chains is the quantum monodromy matrix,

T
( 1

2
)

0;1...N (λ; {ξ}) = R
( 1

2
,sN )

0N (λ− ξN ) · · ·R
( 1

2
,sj)

0j (λ− ξj) · · ·R
( 1

2
,s1)

01 (λ− ξ1)

=

(

A(λ; {ξ}) B(λ; {ξ})
C(λ; {ξ}) D(λ; {ξ})

)

0

, (2.1)

given as a tensor product of R-matrices solutions of the Yang-Baxter equations [57, 58] which
express the quantum integrability of the system,

R
( 1

2
,sj)

0j (λ− ξj) ∈ End(V
( 1

2
)

0 ⊗ V
(sj)
j ), (2.2)

where V (s) are (2s+1)-dimensional vector spaces, usually chosen as C
2s+1. The quantities {ξ} =

{ξ1, . . . , ξN} are arbitrary inhomogeneity parameters attached to the sites of the chain. The spins
s1, . . . , sN at each site of the chain are belonging to arbitrary finite dimensional representations in
(2.1) which can be a priori different for different sites of the chain. The auxiliary space, indicated
by the 0 index, has been chosen to be 2-dimensional, which allows us to rewrite T (λ) in the
standard matrix form with operator entries {A(λ), B(λ), C(λ), D(λ)}∗. As a consequence of
the Yang-Baxter equations for the R-matrices, these operators satisfy a Yang-Baxter quadratic
algebra and the traces of the above constructed monodromy matrices, namely the transfer
matrices,

t(1/2)(µ) = (A+D)(µ), (2.3)

commute among themselves for arbitrary spectral parameters µ, λ, namely,

[t(1/2)(µ), t(1/2)(λ)] = 0, (2.4)

leading to a large commutative subalgebra. Thus, the above constructed monodromy matrix
describes a general XXX integrable quantum chain having different (finite dimensional) spin
representations at each site of chain.

A particular example of R-matrices is the one corresponding to the spin 1/2 representation,
the well-known 4 × 4 matrix

R( 1

2
, 1
2
)(λ) =









1 0 0 0
0 b(λ) c(λ) 0
0 c(λ) b(λ) 0
0 0 0 1









, (2.5)

where the functions b(λ) and c(λ) are

b(λ) =
λ

λ+ η
and c(λ) =

η

λ+ η
. (2.6)

∗We will usually not make explicit the dependence of the operators A, B, C and D and the monodromy matrix
(2.1) on the inhomogeneity parameters {ξ}.

3



and η is an arbitrary parameter. The matrix (2.5) is normalized in such a way that the following
unitarity condition is automatically satisfied

R
( 1

2
, 1
2
)

12 (λ)R
( 1

2
, 1
2
)

21 (−λ) = I12, (2.7)

where I is the identity matrix. R-matrices and monodromy matrices of higher spin represen-
tations can be constructed from (2.6) by means of the fusion procedure developed in [35]. It
gives,

R( 1

2
,s)(λ) =

1

λ+ η
(

s+ 1
2

)

(

λ+ η
(

Sz + 1
2

)

ηS−

ηS+ λ+ η
(

1
2 − Sz

)

)

, (2.8)

where S±, Sz are generators of the su(2) algebra in the spin s representation with standard
commutation relations.

2.1 The Bethe ansatz equations

Having introduced R- and T -matrices we can now proceed to characterize the energy eigenstates
of the chain. The key observation there is that the local Hamiltonian operator can be identified as
a simple function of the transfer matrix. Hence finding its spectrum reduces to constructing the
common spectrum of transfer matrices t(1/2)(µ) for arbitrary values of the spectral parameter µ
(since they all commute). The algebraic Bethe ansatz method starts by constructing a particular
eigenstate of the transfer matrix, called the reference state |0〉, which is annihilated by the
operator C(λ). In order to identify such a state we notice that for every vector space Vj one can
find a vector |0〉j of dimension 2sj + 1 which fulfils the following equality

R
( 1

2
,sj)

0j (λ− ξj)|0〉j =





1 ∗

0
λ−ξ−j −sjη

λ−ξ−j +sjη



 |0〉j . (2.9)

Here, and in the following, we use the notation u± = u± η/2 for any complex number u. The
reference state |0〉 is nothing but the tensor product

|0〉 =

N
⊗

j=1

|0〉j with |0〉j =











1
0
...
0











j

, (2.10)

that is a completely ferromagnetic state with all spins up. The monodromy matrix (2.1) acts
on the reference state as

T
(1/2)
0;1...N (λ)|0〉 =

(

1 ∗
0 d(λ)

)

|0〉, (2.11)

namely
A(λ)|0〉 = |0〉, C(λ)|0〉 = 0 and D(λ)|0〉 = d(λ)|0〉, (2.12)

with

d(λ) =
N
∏

j=1

λ− ξ−j − sjη

λ− ξ−j + sjη
=

N
∏

j=1





2sj
∏

k=1

b(λ− ξ−j − (k − sj)η)



 . (2.13)
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It follows from the definition above that d(λ) has zeros at λ = ξ−j +sjη , and poles at λ = ξ−j −sjη
for all j = 1, . . . , N . Let us now proceed to the description of the spectrum. Eigenvectors of the
transfer matrix other than |0〉 will be constructed within the Bethe ansatz framework by acting
successively on |0〉 with operators B(λi). In general such eigenvectors will be of the form

|Ψ({λ})〉 = B(λ1) . . . B(λℓ)|0〉. (2.14)

We want to select out those states (2.14) which are eigenstates of the transfer matrix and hence
of the Hamiltonian. The condition that (2.14) is a common eigenstate of (2.3) for all values of µ
is a set of coupled algebraic equations for the spectral parameters λi describing the state (2.14)
which are known as Bethe ansatz equations

ℓ
∏

k=1

b(λj − λk)

b(λk − λj)
= −d(λj), (2.15)

The eigenvalues of t(1/2)(µ) corresponding to the eigenvectors (2.14) fulfilling (2.15) are given
by

τ (1/2)(µ, {λ}) =

ℓ
∏

j=1

b−1(λj − µ) + d(µ)

ℓ
∏

j=1

b−1(µ− λj). (2.16)

2.2 Fusion

The mechanism of fusion for quantum spin chains was first developed in [35] for the XXX spin
chain (and later on in [59] for the XXZ spin chain). It provides a procedure for constructing
higher spin objects (R-, monodromy and transfer matrices) starting with spin 1/2 objects. The
fusion identities for the quantum monodromy matrix can be written as follows

P12T
( 1

2
)

1 (x− + sη)T
(s− 1

2
)

2 (x−)P12 =

(

T
(s)
〈12〉(x) 0

∗ χ(x+ (s− 1)η)T
(s−1)
(12) (x− η)

)

, (2.17)

where for the sake of simplicity we dropped the quantum indices 1, . . . , N of the monodromy
matrices (2.1) and the monodromy matrix associated to the spin s in the auxiliary (first) space
can be computed as a product over R(s,sj) matrices as,

T
(s)
0;1...N (λ; {ξ}) = R

(s,sN )
0N (λ− ξN ) · · ·R

(s,sj)
0j (λ− ξj) · · ·R

(s,s1)
01 (λ− ξ1)

(2.18)

with,

R
(s,sj)
0j (λ− ξj) ∈ End(V

(s)
0 ⊗ V

(sj)
j ). (2.19)

The matrix
P12 = P+

〈12〉 ⊕ P−
(12) , (2.20)

is a direct sum of projectors P± onto the vector spaces V
(s)
〈12〉 ∼ C

2s+1 and V
(s−1)
(12) ∼ C

2s−1

resulting from the tensor decomposition

V
(s− 1

2
)

1 ⊗ V
( 1

2
)

2 ≃ V
(s)
〈12〉 ⊕ V

(s−1)
(12) , (2.21)
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with V
( 1

2
)

0 ∼ C
2 and V

(s− 1

2
)

0̂
∼ C

2s. Further

χ(u) = A(u+)D(u−) −B(u+)C(u−), (2.22)

is the quantum determinant of the transfer matrix (2.1), which commutes with all operators
A,B,C,D. A completely analog expression holds when replacing T -matrices by R-matrices
which permits the construction of (2.8) starting with (2.5). A direct consequence of (2.17) is
the following recursive relation involving transfer matrices of various spins,

t(s)(x) = t(1/2)(x− + sη)t(s−1/2)(x−) − χ(x+ (s− 1)η)t(s−1)(x− η), (2.23)

and therefore,

τ (s)(x) = τ (1/2)(x− + sη)τ (s−1/2)(x−) − d(x− + (s − 1)η)τ (s−1)(x− η), (2.24)

for the corresponding eigenvalues on a Bethe state |Ψ({λ})〉 and where for simplicity we have
dropped the explicit dependency of the eigenvalues τ on the spectral parameters λ of the Bethe
state. In [59] it was also realized that, as a consequence of (2.23), a generating functional for
monodromy matrices of higher spin could be constructed as

F (z) =
1

1 − zt(1/2)(u) + z2χ(u+)
=

∞
∑

k=0

zkt(k/2)(u− + kη/2). (2.25)

Here we take t(0)(x) = 1 for any values of x, and define z as a shift operator which acts on an
operator t(x) as

t(x)z = zt(x+ η). (2.26)

There are some differences between (2.25) and the formula given in [59], which are due to the
different normalization chosen for the R-matrices in this paper. With the help of (2.23) we can
easily see that indeed (2.25) generates any higher spin monodromy matrices. One must only
match the terms on the l.h.s. and r.h.s. which contain the same powers of z, paying special
attention to the fact that z is a shift operator. For example, expanding the l.h.s. of (2.25) we
find the following first terms

F (z) = 1 + zt(1/2)(u) +
[

zt(1/2)(u)zt(1/2)(u) − z2χ(u+)
]

+ . . . (2.27)

The O(1) and O(z) terms match trivially those on the r.h.s. of (2.25) whereas the O(z2) term
is

[

zt(1/2)(u)
]2

− z2χ(u+) = z2
[

t(1/2)(u+ η)t(1/2)(u) − χ(u+)
]

= z2t(1)(u+), (2.28)

which exactly agrees with (2.23) when taking s = 1. Similarly, one can establish the agreement
with (2.23) at every order in z.

The existence of the generating function F (z) translates into the existence of a generating
function for the eigenvalues of the operators t(s)(u). They appear as coefficients of the corre-
sponding Laurent series in z for the generating function. This allowed the authors of [59] to find
explicit formulae for the eigenvalues which, translated into our present normalization, take the
form

τ (s)(u, {λ}) =
2s
∑

α=0

C(s)
α (u)

ℓ
∏

p=1

(u+ − λp + sη)(u− − λp − sη)

(u+ − λp + (α− s)η)(u− − λp + (α− s)η)
, (2.29)
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with

C(s)
α (u) =

2s−1
∏

k=α

d(u+ + (k − s)η) and C
(s)
2s (u) = 1. (2.30)

It is now easy to check that (2.29) indeed solves (2.24). Similar relations hold for the XXZ case
as well.

2.3 The inverse scattering problem

In the context of the algebraic Bethe ansatz approach, the inverse scattering problem is un-
derstood as the problem of expressing quantum local operators of the chain in terms of the
operators A,B,C,D with generate the Bethe states. The solution to this problem for a large
variety of spin chains was provided in [28, 29]. In particular, the reconstruction formulae for the
spin operators of the XXX chain in an arbitrary spin sj representation were found to be

Sα
j =

[

j−1
∏

k=1

t(sk)(ξk)

]

Λ
(sj)
α (ξj)

[

j
∏

k=1

t(sk)(ξk)
−1

]

, α = ±, z (2.31)

with

Λ(s)
α (u) := Tr0

(

Sα
0 T

(s)
0 (u)

)

=
2s
∑

k=1

t(s−
k
2
)

(

u+
kη

2

)

Λ
( 1

2
)

α (u− + (k − s)η)t(
k−1

2
)

(

u− +
(k − 2s)η

2

)

(2.32)

=
2s
∑

k=1

t(
k−1

2
)

(

u− +
(k − 2s)η

2

)

Λ
( 1

2
)

α (u− + (k − s)η)t(s−
k
2
)

(

u+
kη

2

)

. (2.33)

The expression (2.32) was derived in [29] using (2.17), whereas the non-trivial equivalence be-
tween the expressions (2.32) and (2.33) is established in appendix B of the present manuscript.
The existence of these two expressions will be very useful for later form factor computations.

3 Form factors

Let us start by introducing several formulae which we will use in the course of our computations.
First of all, we will need the action of the operators A and D on a generic quantum state
|Ψ({λ})〉 :=

∏ℓ
k=1B(λk) |0〉,

A(x) |Ψ({λ})〉 =

ℓ
∏

k=1

b−1(λk − x) |Ψ({λ})〉

−
ℓ
∑

p=1

c(λp − x− η)
∏

k 6=p

b−1(λk − λp)B(x)
∏

k 6=p

B(λk) |0〉 , (3.1)

D(x) |Ψ({λ})〉 = d(x)

ℓ
∏

k=1

b−1(x− λk) |Ψ({λ})〉

+

ℓ
∑

p=1

d(λp)c(λp − x− η)
∏

k 6=p

b−1(λp − λk)B(x)
∏

k 6=p

B(λk) |0〉 . (3.2)

7



We see that this action is divided into two kinds of terms, which are traditionally refer to as
“direct” and “indirect” terms. Direct terms are those which leave the original state unchanged
up to a scalar factor while in indirect terms one of the parameters λp has been replaced by the
parameter x.

Secondly, we need to compute scalar products of quantum states, either of two Bethe states
or of one Bethe and one generic state. The formula for the scalar product of two Bethe states was
originally obtained in [60, 19]. Later on it was proven [61] that a completely analog formula also
holds for the scalar product of a Bethe state and an arbitrary state. Finally, the same formula
was re-derived in [28] with the help of the F -basis introduced in [62]. It takes the following form,

〈ψ({µ})|ψ({λ})〉 := Sℓ({µ}, {λ}) =
detH({µ}, {λ})

∏

i<j
(λi − λj)(µj − µi)

= Sℓ({λ}, {µ}), (3.3)

where H({µ}, {λ}) is a ℓ× ℓ matrix of components

Hab =
η

µa − λb





∏

i6=a

(µi − λb + η) − d(λb)
∏

i6=a

(µi − λb − η)



 , (3.4)

and {µ} = {µ1, . . . , µℓ} and {λ} = {λ1, . . . , λℓ} are a Bethe state and an arbitrary state,
respectively.

Finally, we would like to recall a property of determinants which we will employ in the
computation of the magnetization below: given two ℓ× ℓ matrices X and Y such that all rows
of Y are identical (rank 1 matrix) the following equality holds,

det(X + Y) = detX +

ℓ
∑

p=1

detX (p), (3.5)

where

X
(p)
ab = Xab for b 6= p, (3.6)

X (p)
ap = Yap. (3.7)

3.1 The form factors of Sz
j

We define the non-vanishing form factors of the local operator Sz
j in the spin sj representa-

tion as

F z
ℓ (j, {µ}, {λ}) = 〈ψ({µ})|Sz

j |ψ({λ})〉 , (3.8)

with {µ} and {λ} being two sets of ℓ Bethe roots, therefore characterizing two Bethe states.
Inserting (2.31) with (2.32) and α = z into (3.8) we obtain the following sum of matrix

elements

F z
ℓ (j, {µ}, {λ}) =

φj−1({µ})

2φj({λ})

2sj
∑

k=1

[

τ (sj−
k
2
)

(

ξj +
kη

2
, {µ}

)

×〈ψ({µ})| (A−D)(νj(k))t
(k−1

2
)

(

ξ−j +
(k − 2sj)η

2

)

|ψ({λ})〉

]

, (3.9)
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where the functions

φj({µ}) =

j
∏

k=1

τ (sk)(ξk, {µ}), (3.10)

originate from the actions

〈ψ({µ})|

j−1
∏

k=1

t(rk)(ξk) = φj−1({µ})〈ψ({µ})|, (3.11)

j
∏

k=1

t(rk)(ξk)
−1 |Ψ({λ})〉 = φj({λ})

−1 |Ψ({λ})〉 , (3.12)

and we introduced the variable
νj(k) = ξ−j + (k − sj)η. (3.13)

In (3.9) we have not yet replaced the operators t((k−1)/2) by their eigenvalues on the Bethe state
|Ψ{λ}〉 for reasons which will become apparent below. Rewriting now A−D = 2A − (A +D)
and recalling the general action of the operator A on a Bethe state given in (3.1) we find that
(3.9) is equivalent to

F z
ℓ (j, {µ}, {λ}) =

φj−1({µ})

2φj({λ})
[g(j, {µ})Sℓ({µ}, {λ}) (3.14)

−2

2sj
∑

k=1

ℓ
∑

p=1

[

τ (sj−
k
2
)

(

ξj +
kη

2
, {µ}

)

τ (k−1

2
)

(

ξ−j +
(k − 2sj)η

2
, {λ}

)

×
η

µp − νj(k)

∏

k 6=p

b−1(µk − µp)Sℓ({λ}, {µ, µp → νj(k)})







 .

Here g(j, {µ}) is the function defined in equation (A.1) of appendix A. The term proportional to
g(j, {µ}) collects all contributions which are “direct” in the sense indicated after (3.1)-(3.2). The
form of this term results from acting with both operators t(sj−k/2) and t(k−1)/2 on the Bethe state
|Ψ({µ})〉. By carrying out the computation in this way we achieve that the direct contribution
to the form factor is proportional to the function g(j, {µ}) and we can take advantage of the
identity (A.11) proven in appendix A.

The matrix element S({λ}, {µ, µp → νj(k)}) in (3.14) is the scalar product (3.3) with the
parameter µp replaced by νj(k). It can be written as

S({µ, µp → x}, {λ}) =
∏

j 6=p

(µp − µj)

(x− µj)

detH(p)(x)
∏

i<j
(λi − λj)(µj − µi)

, (3.15)

where H(p)(x) is a matrix such that H
(p)
ab = Hab({λ}, {µ}) for b 6= p and

H(p)
ap (x) =

η

λa − x





∏

i6=a

(λi − x+ η) − d(x)
∏

i6=a

(λi − x− η)



 (3.16)

=
t(λa, x)

b(λa − x)

ℓ
∏

i=1

(λi − x)





∏

i6=a

b−1(λi − x) − d(x)
∏

i6=a

b−1(x− λi)



 ,
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with
t(λ, x) =

η

(λ− x)(λ− x+ η)
= −i∂λp

( 1

2
)(λ− x−), (3.17)

and p(1/2)(λ) being the momentum defined in (A.6). Inserting (3.15) into (3.14) with x = νj(k)
we obtain the following expression for the form factors

F z
ℓ (j, {µ}, {λ}) =

φj−1({µ})

2φj({λ})

[

g(j, {µ}) detH − 2
ℓ
∑

p=1

ℓ
∏

k=1

(µk − µp + η) det H̃(p)(ξj)

]

∏

i<j
(λi − λj)(µj − µi)

, (3.18)

where

H̃
(p)
ab = Hab({λ}, {µ}) for b 6= p, (3.19)

H̃(p)
ap = f (p)(j, {µ}, {λ}) (3.20)

and f (p)(j, {µ}, {λ}) and g(j, {µ}) are the functions introduced at the beginning of the appendix
A. Thanks to the identities (A.3) and (A.4) this expression can be simplified to

F z
ℓ (j, {µ}, {λ}) =

φj({µ})

φj({λ})

sj detH −
ℓ
∑

p=1

ℓ
∏

k=1

(µk − µp + η) detZ(p)(ξj)

∏

i<j
(λi − λj)(µj − µi)

, (3.21)

with

Z
(p)
ab = Hab({λ}, {µ}) for b 6= p, (3.22)

Z(p)
ap = −i∂ap

(sj)(λa − ξ−j )

ℓ
∏

k=1

λk − ξ−j + sjη

µk − ξ−j + sjη
. (3.23)

Notice that, since the entries Z
(p)
ap depend on both indices a, p we can not write (3.21) in terms

of a single determinant by employing (3.5). However, the factor
∏ℓ

k=1(µk − µp + η) will be
canceled when normalizing by the norm of the Bethe states, which allows a particularly simple
form for the magnetization. We compute this quantity in the next section. Let us also remark
that the computation of (3.8) can be done in two different ways, which of course must lead to
the same result: in (3.14) we decided to make the operators (A − D)(νj(k)) act on the Bethe
state {µ}, however we could as well have chosen to act on the Bethe state {λ}. If we do that
and employ the same reconstruction formula (2.32) as before, we will obtain an expression which
looks rather different from (3.21) and cannot be simplified in any obvious way. However, we
can alternatively employ the reconstruction formula (2.33) to do the same computation. In that
case we will obtain a formula completely analogous to (3.21) where the roles of {λ} and {µ} are
just exchanged.

3.2 Magnetization

One interesting physical quantity we can now compute is the magnetization at site j which is
defined as

〈Sz
j 〉 =

F z
ℓ (j, {λ}, {λ})

〈ψ({λ})|ψ({λ})〉
, (3.24)
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The norm of the Bethe state is given in terms of the Gaudin matrix Φ′({λ}) as follows [60]

〈ψ({λ})|ψ({λ})〉 = ηℓ
∏

a6=b

b−1(λa − λb) det Φ′({λ}), (3.25)

with

Φ′
ab = −

∂

∂λb
ln









1

d(λa)

ℓ
∏

k=1
k 6=a

b(λa − λk)

b(λk − λa)









, (3.26)

and can be obtained from the scalar product formula (3.3) in the limit λa → µa for all a = 1 . . . ℓ.
In particular, it is easy to prove that for two identical Bethe states, the entries of the matrix
H({λ}) defined in (3.4) become proportional to those of the Gaudin matrix as

Hab =

ℓ
∏

i=1

(λi − λb + η)Φ′
ab. (3.27)

and therefore

detH({λ}) =

ℓ
∏

i,j=1

(λi − λj + η) detΦ′({λ}). (3.28)

Using these identities and (3.18) we obtain

〈Sz
j 〉 =

sj detΦ′ −
∑ℓ

a=1 detM(a)

det Φ′
, (3.29)

where the matrix M(a) is such that

M
(a)
ij = Φ′

ij for j 6= a, (3.30)

M
(a)
ia = −i∂λa

p(sj)(λa − ξ−j ), (3.31)

where p(sj)(λ) is the momentum (A.6) defined in appendix A. Since M
(a)
ia is independent of the

value of the index i, the identity (3.5) can be used to bring (3.29) into the form

〈Sz
j 〉 = sj

det(Φ′ −M/sj)

det Φ′
, (3.32)

where M is a rank 1 matrix whose entries are Mab = M
(b)
ab . The total magnetization of the

chain can be computed as

µtot =

N
∑

j=1

〈Sz
j 〉 = s0

det(Φ′ −Mtot/s0)

det Φ′
, (3.33)

where Mtot is a rank 1 matrix with entries

(Mtot)ia =

N
∑

j=1

−i∂λa
p(sj)(λa − ξ−j ), (3.34)
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and s0 is the total spin of the completely ferromagnetic state |0〉

s0 =
N
∑

j=1

sj . (3.35)

The total magnetization can be computed by noticing the following property of the Gaudin
matrix (3.26)

ℓ
∑

b=1

Φ′
ab = (Mtot)ka. (3.36)

Therefore

µtot = s0 det

(

I −
U

s0

)

= s0 − ℓ, (3.37)

where I denotes the identity matrix and U is the matrix,

Uab = 1 ∀ a, b. (3.38)

This computation provides a consistency check of the general formula (3.18) as it reproduces
the values of the magnetization known for particular cases. For example, for the pure spin 1/2
XXX chain in the ground state we have ℓ = N/2 and s0 = N/2 so that the total magnetization
vanishes (see e.g. [28]). Another well known example is the spin 1/2 XXX chain with one spin
s impurity. In this case the ground state is also characterized by ℓ = N/2 roots, but the total
spin of the chain is s0 = (N − 1)/2 + s. Therefore the total magnetization becomes s− 1/2, in
agreement with the value computed in [52].

3.3 The form factors of S
+
j

In this section we compute the form factors of the operator S+
j of the quantum XXX spin chain.

That is a spin generator sitting at site j of the chain and living in the spin sj representation.
The only non-vanishing form factors are

F+
ℓ (j, {λ}, {µ}) = 〈ψ({λ})|S+

j |ψ({µ})〉 , (3.39)

where |Ψ({µ})〉 and |Ψ({λ})〉 are two Bethe states with ℓ + 1 and ℓ Bethe roots, respectively.
From (2.31) and (2.32) we obtain

F+
ℓ (j, {λ}, {µ}) =

φj−1({λ})

φj({µ})

2sj
∑

k=1

[

τ (sj−
k
2
)
(

ξj + kη/2, {λ}
)

×τ (k−1

2
)
(

ξ−j + (k − 2sj)η/2, {µ}
)

Sℓ+1({µ}, {λ, νj(k)})
]

, (3.40)

where νj(k) is again the variable introduced in (3.13) and Sℓ+1({µ}, {λ, νj(k)}) is the scalar
product introduced in (3.3) with {λ, νj(k)} the set of ℓ + 1 variables {λ1, . . . , λℓ, νj(k)} in the
given order, that is νj(k) is the variable number ℓ + 1 (notice that the ordering of variables is
important in (3.3)). Employing the definition (3.3) we have

Sℓ+1({µ}, {λ, νj(k)}) =
detH({µ}, {λ, νj(k)})

∏

1≤i<j≤ℓ+1

(µj − µi)
∏

1≤i<j≤ℓ

(λi − λj)

ℓ
∏

i=1

(λi − νj(k))
−1, (3.41)
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where H is a matrix with components Hab given by (3.4), except for the column ℓ + 1 whose
entries are given by (3.16) with x = νj(k). This means that (3.40) can be rewritten as

F+
ℓ (j, {λ}, {µ}) =

φj−1({λ})

φj({µ})

detH+(ξj)
∏

1≤i<j≤ℓ+1

(µj − µi)
∏

1≤i<j≤ℓ

(λi − λj)
, (3.42)

where

H+
ab = Hab({µ}, {λ}) for b 6= ℓ+ 1, (3.43)

H+
aℓ+1 = f (a)(j, {λ}, {µ}), (3.44)

with f (a)(j, {λ}, {µ}) being the function (A.2) defined in the appendix. Exploiting the identities
proven in appendix A we can bring the form factors into the simple form

F+
ℓ (j, {λ}, {µ}) =

φj−1({λ})

φj−1({µ})

ℓ+1
∏

k=1

(µk − ξ−j − sjη)

ℓ
∏

k=1

(λk − ξ−j − sjη)

det C(ξj)
∏

1≤i<j≤ℓ+1

(µj − µi)
∏

1≤i<j≤ℓ

(λi − λj)
, (3.45)

with

Cab = Hab({µ}, {λ}) for b 6= ℓ+ 1, (3.46)

Caℓ+1 = −i∂µa
p(sj)(µa − ξ−j ). (3.47)

3.4 The form factors of S
−
j

In this section we compute the form factors of the operator S−
j of the XXX spin chain in the

spin sj representation

F−
ℓ (j, {µ}, {λ}) = 〈ψ({µ})|S−

j |ψ({λ})〉 . (3.48)

We can compute these form factors along the same lines of the previous section. However if we
take (2.31) with (2.32) as starting point for our computations we will obtain closed formulae for
(3.48) which lack the simplicity of (3.45). It is in fact more convenient to use (2.33) instead of
(2.32). Using formula (2.33) and proceeding as in the previous section it is not difficult to prove
that the form factors (3.48) are related to (3.45) as

F+
ℓ (j, {λ}, {µ}) =

φj−1({λ})φj({λ})

φj({µ})φj−1({µ})
F−

ℓ (j, {µ}, {λ}). (3.49)

4 Conclusions and outlook

In this paper we have obtained general expressions for the form factors of all spin operators
{Sz, S±} of the integrable XXX quantum (higher) spin chain. Our formulae hold for any spin
representation of the operators as well as for any spin configuration at the remaining sites of the
chain. These results can be extended to the anisotropic XXZ spin chain as well.

In view of the very general nature of our formulae we expect they will be useful for the study
of a number of interesting physical systems, whose thermodynamic properties have been already
extensively studied in the literature but whose correlation functions remain unknown. Amongst

13



these systems alternating spin chains, first studied in [45, 46, 48] and more recently in [49], and
impurity systems, such as the Kondo model [51, 52] and the systems considered in [50, 53, 63],
seem specially interesting examples.

Recent results for the XXX and XXZ spin 1/2 chain show that determinant formulae for
the form factors, similar to those obtained here, can be successfully employed for numerical
computations of spin-spin dynamical correlation functions of finite chains, which can match
very precisely experimental data [64, 65]. The form factors computed here might serve for the
numerical study of the correlation functions of impurity systems.

From the analytical point of view, the most natural continuation of this work is the com-
putation of correlation functions for mixed spin chains along the lines of [30, 31, 32]. Further
interesting generalizations of this would be the study of dynamical correlation functions in the
spirit of [33] and the computation of correlation functions at finite temperature, generalizing the
program initiated in [34].
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their interest in this work, discussions and the reading of the manuscript, Robert A. Weston for
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A Proof of two identities for the eigenvalues of higher spin

transfer matrices

In this appendix we prove two identities allowing for a compact formula for form factors. Let us
consider two Bethe states {λ} = {λ1, . . . , λℓ} and {µ} = {µ1, . . . , µℓ̃} with ℓ and ℓ̃ Bethe roots
respectively and define the functions

g(j, {λ}) =

2sj
∑

k=1

[

τ (sj−
k
2
)

(

ξj +
kη

2
, {λ}

)

τ (k−1

2
)

(

ξ−j +
(k − 2sj)η

2
, {λ}

)

×





ℓ
∏

p=1

b−1(λp − νj(k)) − d(νj(k))

ℓ
∏

p=1

b−1(νj(k) − λp)







 , (A.1)

and

f (a)(j, {λ}, {µ}) =

2sj
∑

k=1

[

τ (sj−
k
2
)

(

ξj +
kη

2
, {λ}

)

τ (k−1

2
)

(

ξ−j +
(k − 2sj)η

2
, {µ}

)

(A.2)

×
t(µa, νj(k))

b(µa − νj(k))





∏

p 6=a

b−1(µp − νj(k)) − d(νj(k))
∏

p 6=a

b−1(νj(k) − µp)





ℓ̃
∏

p=1
(µp − νj(k))

ℓ
∏

p=1
(λp − νj(k))













.
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with νj(k) given in (3.13). The aim of this appendix is to prove that

g(j, {λ}) = 2sjτ
(sj)(ξj, {λ}), (A.3)

f (a)(j, {λ}, {µ}) =

ℓ̃
∏

p=1
(µp − ξ−j + sjη)

ℓ
∏

p=1
(λp − ξ−j − sjη)

2sj
∑

k=1

t(µa, νj(k)), (A.4)

with,
2sj
∑

k=1

t(µa, νj(k)) = −i∂µa
p(sj)(µa − ξ−j ), (A.5)

and

p(sj)(λ) = i log

[

λ− sjη

λ+ sjη

]

. (A.6)

is the momentum of a spin sj pseudo-particle of “rapidity” λ. In particular, the identities above
imply

f (a)(j, {λ}, {λ}) = τ (sj)(ξj, {λ})
[

−i∂λa
p(sj)(λa − ξ−j )

]

, (A.7)

Let us commence our proof by writing down the explicit expression of the eigenvalues following
from eq.(2.29)

τ (sj−
k
2
)

(

ξj +
kη

2
, {λ}

)

=

2sj−k
∑

α=0

[

C
(sj−

k
2
)

α

(

ξj +
kη

2

)

×

ℓ
∏

p=1

(ξ+j + sjη − λp)(νj(k) − λp)

(νj(k) + (α+ 1)η − λp)(νj(k) + αη − λp)



 , (A.8)

τ (k−1

2
)

(

ξ−j +
(k − 2sj)η

2
, {µ}

)

=

k−1
∑

β=0

[

C
(k−1

2
)

β

(

ξ−j +
(k − 2sj)η

2

)

×

ℓ̃
∏

p=1

(νj(k) − µp)(ξ
−
j − sjη − µp)

(ξ+j − (sj − β)η − µp)(ξ
−
j − (sj − β)η − µp)



 , (A.9)

whose product enters the two formulae we want to prove. Before we insert these formulae in
(A.1)-(A.2) it is useful to note that in (A.8) the only non vanishing term is the one corresponding
to α = 2sj − k. It is easy to see that any other terms will contain a factor d(ξ−j + sjη) = 0 and

never contain the singular factor d(ξ−j − sjη). Likewise it is straightforward to argue that such

factors will never appear in C
((k−1)/2)
β (ξ−j + (k − 2sj)η/2) for any of the allowed values of β and
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k, and therefore each term in the β-sum is non-vanishing and non-singular. Therefore

τ (sj−
k
2
)
(

ξj + kη/2, {λ}
)

τ (k−1

2
)
(

ξ−j + (k − 2sj)η/2, {µ}
)

=

ℓ̃
∏

p=1
(µp − ξ−j + sjη)

ℓ
∏

p=1
(λp − ξ−j − sjη)

k−1
∑

β=0

C
(k−1

2
)

β (ξ−j + (k − 2sj)η/2)

×

[

ℓ̃
∏

p=1
(µp − νj(k))

] [

ℓ
∏

p=1
(λp − νj(k))

]

ℓ̃
∏

p=1
(µp − ξ+j + (sj − β)η)(µp − ξ−j + (sj − β)η)

, (A.10)

where we used the second property stated in (2.30), i.e. C
(sj−k/2)
2sj−k (ξj + kη/2) = 1. Using these

formulae, the equalities (A.1) and (A.2) are equivalent to proving :

2sj
∑

k=1

k−1
∑

β=0



C
(k−1

2
)

β

(

ξ−j +
(k − 2sj)η

2

) ℓ
∏

p=1

(λp − νj(k))
2

h(λp − ξ+j + (sj − β)η)

×





ℓ
∏

p=1

b−1(λp − νj(k)) − d(νj(k))

ℓ
∏

p=1

b−1(νj(k) − λp)







 = 2sj , (A.11)

and

2sj
∑

k=1

k−1
∑

β=0



C
(k−1

2
)

β

(

ξ−j +
(k − 2sj)η

2

) ℓ̃
∏

p=1

(µp − νj(k))
2

h(µp − ξ+j + (sj − β)η)

×





∏

p 6=a

b−1(µp − νj(k)) − d(νj(k))
∏

p 6=a

b−1(νj(k) − µp)





×
t(µa, νj(k))

b(µa − νj(k))

]

= −i∂λa
p(sj)(λa − ξ−j ), (A.12)

respectively, with
h(λ) := (λ)(λ+ η). (A.13)

We commence by establishing (A.11). Let us consider those terms in (A.11) which do not contain
any factors proportional to the function d(x). The only terms of this kind correspond to taking
β = k − 1 and only the first contribution on the second line of (A.11), that is

2sj
∑

k=1

ℓ
∏

p=1

(λp − ξ−j + (sj − k)η)(λp − ξ−j − (k − sj − 1)η)

(λp − ξ+j + (sj − k + 1)η)(λp − ξ−j + (sj − k + 1)η)
= 2sj , (A.14)
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therefore it remains to prove that all remaining terms cancel each other. Those remaining terms
are

2sj
∑

k=2

k−2
∑

β=0

C
(k−1

2
)

β

(

ξ−j +
(k − 2sj)η

2

) ℓ
∏

p=1

h(λp − νj(k))

h(λp − ξ+j + (sj − β)η)

−

2sj
∑

k=1

k−1
∑

β=0

C
(k
2
)

β

(

ξj +
(k − 2sj)η

2

) ℓ
∏

p=1

h(λp − νj(k) − η)

h(λp − ξ+j + (sj − β)η)
, (A.15)

where we have used the identity

C
(k−1

2
)

β

(

ξ−j +
(k − 2sj)η

2

)

d(νj(k)) = C
(k
2
)

β

(

ξj +
(k − 2sj)η

2

)

. (A.16)

Replacing the sum over k by a sum over k′ = k − 1 in the first line of (A.15) we see that both
terms are essentially identical but for the extra term k = 2sj contributing in the second sum.

However such term is vanishing since C
(sj)
β (ξ−j +(k − 2sj)η/2) = 0 and therefore we have proven

that indeed all terms containing the function d(x) in (A.11) cancel each other. With this we
have established (A.11) and therefore (A.1). The proof of the identity (A.12) can be carried out
by following exactly the same steps, namely considering separately those terms which contain
d-functions and those which do not.

B An alternative formula for the solution of the inverse scat-
tering problem for XXX spin chains

The solution of the inverse scattering problem for XXX spin chains and arbitrary spin represen-
tations was given in [29]. This solution was recalled in formulae (2.31) and (2.32) and employed
in order to obtain closed expressions for higher spin form factors of the operators Sz and S+.
However we have observed that in some cases the form factor formulae obtained from (2.32)
simplify considerably (thanks to the identities proven in appendix A), whereas in other cases
such simplifications do not occur. For example, a simple formula for all form factors of the
operator S+ can be obtained form (2.31)-(2.32), but the formula we would obtain for the form
factors of S− from (2.32) is much more complicated. This asymmetry seems rather unnatural
and one may suppose that the formulae for the S− form factors can be further simplified and
recasted into analogous formulae as those for the S+ form factors. This should be doable by
using properties of determinants as well as the Bethe ansatz equations; however it turns out to
be a rather non-trivial proof. An alternative way of finding simpler formulae for the form factors
of S− is to start with a different (but equivalent) reconstruction formula, that is (2.33). In this
appendix we will show that (2.32) and (2.33) are indeed equivalent. The key tool are once again
the fusion relations (2.17) and one particular property of these noticed in [35].

B.1 An alternative version of the fusion relations

Let us start by decomposing (2.17) into the following two equations

P+
a1{a}

T
( 1

2
)

a1
(x− + sη)T

(s− 1

2
)

{a} (x−)P+
a1{a}

= T
(s)
〈a1{a}〉

(x), (B.1)

P−
a1{a}

T
( 1

2
)

a1
(x− + sη)T

(s− 1

2
)

{a} (x−)P−
a1{a}

= χ(x+ (s− 1)η)T
(s−1)
(a1{a})

(x− η). (B.2)
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With respect to (2.17) we have slightly changed our notation and introduced the index {a} to

indicate that the space V
(s−1/2)
{a} ∼ C

2s−1 is isomorphic to the space V
(s−1/2)
〈a2...a2s〉

resulting from the

fusion of 2s− 1 spin 1/2 quantum spaces

V
( 1

2
)

aj ∼ C
2, j = 2, . . . , 2s. (B.3)

We can now employ fusion successively in order to express (B.1) solely in terms of spin 1/2
quantum monodromy matrices. By doing so, we obtain the following expression

P+
a1...a2s

2s
∏

j=1

T
( 1

2
)

aj (x+ + (s − j)η)P+
a1...a2s

= T
(s)
〈a1...a2s〉

(x). (B.4)

It was proven in [35] that, for XXX spin chains, the operator P+
a1...a2s

is a complete symmetrizer
on all indices a1, . . . , a2s. Let us now consider the formula (B.2). We can also express this
relation entirely in terms of spin 1/2 monodromy matrices

P−
a1{a}

P+
a2...a2s

2s
∏

j=1

T
( 1

2
)

aj (x+ + (s− j + 1)η)P+
a2...a2s

P−
a1{a}

= χ(x+ sη)T
(s−1)
(a1{a})

(x). (B.5)

As before the operator P+
a2...a2s

is completely symmetric on the indices {a2 . . . a2s}. On the other
hand the operator P−

a1{a}
is antisymmetric on the index a1 (see [35]). The identities (B.4)-(B.5)

can be further manipulated by employing the following property of the projectors P± which was
stated in [35]

P±
a1...an

R
( 1

2
, 1
2
)

a1an+1(±nη)P
±
a2...an+1

= ±P±
a1...an+1

. (B.6)

This property allowed the authors of [35] to prove that

P+
a1...a2s

2s
∏

j=1

T
( 1

2
)

aj (x+ + (s− j)η)P+
a1...a2s

= P+
a1...a2s

2s
∏

j=1

T
( 1

2
)

aj (x− − (s− j)η)P+
a1...a2s

, (B.7)

and

P−
a1{a}

P+
a2...a2s

2s
∏

j=1

T (1/2)
aj

(x+ + (s− j)η)P+
a2...a2s

P−
a1{a}

= P−
a1{a}

P+
a2...a2s

2s
∏

j=1

T (1/2)
aj

(x− − (s− j)η)P+
a2...a2s

P−
a1{a}

. (B.8)

The equalities (B.7)-(B.8) imply that the fusion relation (2.17) still holds if in the arguments on
the r.h.s. η is replaced by −η, that is

P12T
( 1

2
)

1 (x+ − sη)T
(s− 1

2
)

2 (x+)P12 =

(

T
(s)
〈12〉(x) 0

∗ χ(x+ (s− 1)η)T
(s−1)
(12) (x− η)

)

. (B.9)

This equivalence was stated in equation (18) of [35] for R-matrices, but it is easy to prove that
it implies a similar property of the monodromy matrices.
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The s = 1 case: As an example, let us prove (B.7) for s = 1. In this case (B.4) becomes
simply

P+
a1a2

T
( 1

2
)

a1
(x+)T

( 1

2
)

a2
(x−)P+

a1a2
= T

(1)
〈a1a2〉

(x), (B.10)

and the relation (B.6) can be written as

R
( 1

2
, 1
2
)

a1a2
(±nη) = ±P±

a1a2
, (B.11)

for n = 1. The RTT -relations

R
( 1

2
, 1
2
)

a1a2
(λ)T

( 1

2
)

a1
(λ+ µ)T

( 1

2
)

a2
(µ) = T

( 1

2
)

a2
(µ)T

( 1

2
)

a1
(λ+ µ)R

( 1

2
, 1
2
)

a1a2
(λ), (B.12)

at λ = η and µ = x− imply therefore

P+
a1a2

T
( 1

2
)

a1
(x+)T

( 1

2
)

a2
(x−) = T

( 1

2
)

a2
(x−)T

( 1

2
)

a1
(x+)P+

a1a2
. (B.13)

Multiplying (B.13) from the right and from the left by P+
a1a2

we obtain

P+
a1a2

T
( 1

2
)

a1
(x+)T

( 1

2
)

a2
(x−)P+

a1a2
= P+

a1a2
T

( 1

2
)

a2
(x−)T

( 1

2
)

a1
(x+)P+

a1a2
, (B.14)

which is precisely (B.7) for s = 1.

B.2 An alternative formula for the solution of the inverse problem

In order to solve the inverse problem we need to find a systematic way of computing the traces

Λ
(sj)
α := Tr0

(

Sα
0 T

(sj)
0;1...N (ξj)

)

, α = ±, z. (B.15)

To do that, the key idea [29] is to use the fusion relations (B.9) in order to obtain recursive
formulae similar to (2.23) for (B.15). Recall that for the general XXX chain in finite dimensional
representations, the co-product for local spin operator is trivial and therefore we can write the
spin matrices in the two following ways

Sα
12 = I1 ⊗ Sα

2 + Sα
1 ⊗ I2 ≃ Sα

〈12〉 ⊕ Sα
(12), α = ±, z. (B.16)

Multiplying (B.9) by Sα
12 and taking thereafter the trace over the spaces 1 and 2 on the l.h.s.

and over the fused spaces 〈12〉 and (12) on the r.h.s. we obtain the following relations

t(
1

2
)(x+ − sη)Λ

(s− 1

2
)

α (x+) + Λ
( 1

2
)

α (x+ − sη)t(s−
1

2
)(x+)

= Λ(s)
α (x) + χ(x+ (s− 1)η)Λ(s−1)

α (x− η). (B.17)

In addition, taking directly the trace on (B.9) we obtain also new fusion relations for the traces
of the transfer matrices

t(1/2)(x+ − sη)t(s−1/2)(x+) = t(s)(x) + χ(x+ (s− 1)η)t(s−1)(x− η). (B.18)

The recursive relations (B.17) are solved by

Λ(s)
α (u) =

2s
∑

k=1

t(s−
k
2
)

(

u−
kη

2

)

Λ
( 1

2
)

α (u+ − (k − s)η)t(
k−1

2
)

(

u+ −
(k − 2s)η

2

)

. (B.19)
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This can be proven by substituting Λ
(s−1)
α and Λ

(s−1/2)
α in (B.17) by the corresponding formulae

from (B.19) and using thereafter the fusion relations (B.18). This is exactly the same solution
(2.32) up to the replacement η → −η in the arguments. By introducing a new index p = 2s−k+1
we can rewrite (B.19) as

Λ(s)
α (u) =

2s
∑

p=1

t(
p−1

2
)

(

u− +
(p− 2s)η

2

)

Λ
( 1

2
)

α (u− + (p − s)η)t(s−
p

2
)
(

u+
pη

2

)

, (B.20)

which is identical to (2.32) up to the exchange of the transfer matrices.
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