

City, University of London Institutional Repository

Citation: Krotsiani, M. & Spanoudakis, G. (2014). Continuous certification of non-

repudiation in cloud storage services. Proceedings - 2014 IEEE 13th International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
6, pp. 921-928. doi: 10.1109/trustcom.2014.122

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/7629/

Link to published version: https://doi.org/10.1109/trustcom.2014.122

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Continuous Certification of Non-Repudiation in Cloud Storage Services

Maria Krotsiani, George Spanoudakis
Department of Computer Science,

City University London, UK
{Maria.Krotsiani.1, G.E.Spanoudakis}@city.ac.uk

Abstract— This paper presents a certification model for Non-
repudiation (NR) of cloud storage services. NR, i.e., the possession of
proofs that certain exchanges have taken place amongst interacting
parties, is a significant security property for cloud data storage
services but is less studied than other security properties (e.g.,
integrity, confidentiality). Our model for certifying NR is based on a
continuous monitoring approach, i.e., a 3rd level certification in the
reference certification framework of the Cloud Security Alliance.

Keywords— non-repudiation; cloud; security certification;
continuous monitoring;

I. INTRODUCTION
Despite the fast growth of cloud services, security is still a
main barrier for their adoption. Cloud computing is aimed at
providing users with efficient and flexible services. At the
basic cloud infrastructure layer, these services include compute
and data storage services [4][5]. Both these types of services
must be secure [4][5][11][13]. Nevertheless, storing data in
clouds is still a concern from a security point of view, as
several incidents cast doubt on the level of security offered by
cloud storage services. Examples of such incidents include the
corruption of Amazon Simple Storage Service (S3) leading to
stored files no longer matching customers' hashes [6] and an
access-control bug in Google Docs that allowed unauthorized
access to documents [14]. Although security properties as
confidentiality, authentication, access control, and availability
have been studied thoroughly for clouds, non-repudiation has
only been recently investigated in this context [9].

Non-repudiation (NR) is a property of data storage,
requiring that when a data owner (consumer) sends a request to
a cloud provider for uploading (downloading) data, the data
uploading (downloading) transaction should be conducted in a
way such that neither the data owner (consumer) nor the cloud
data storage provider could deny having participated in a part
or the whole of this transaction. Several protocols have been
proposed to realise non-repudiation (e.g.,
[4][7][11][12][15][16]). The basic principle that underpins
these protocols is that along with a data uploading
(downloading) request the data owner (consumer) sends a
“Non-Repudiation of Origin” (NRO) token, i.e., a proof of
sending the request, and expects to receive evidence of “Non-
Repudiation of Receipt” (NRR) from the cloud provider,
acknowledging that the specific request was received.

Whilst these protocols have been proven to provide NR
under given assumptions their implementation can have bugs
or suffer from attacks, such as man-in-the-middle, replay or

timeline attacks [4]. Therefore, certifying the correct
implementation of protocols and the robustness of their
implementation to these types of attack is necessary for giving
cloud customers the assurances required for NR.

In this paper we present an approach for certifying the
implementation of a NR protocol mechanism that is based on
the fair multi-party non-repudiation (MPNR) scheme proposed
in [4]. Our certification scheme is based on a continuous
monitoring approach that we introduced in [10], as part of the
CUMULUS project [3]. More specifically, it is based on
monitoring the actual operations of cloud services to gather
evidence enabling a continuous assessment of the satisfaction
of the security property of interest. Under this approach, a
certificate for the security property is issued when the
accumulated evidence is sufficient (e.g., it covers a required
spectrum of service usage scenarios) and there is no violation
of the security property within the monitoring period. Hence,
our approach is compatible with certification of level 3
maturity in the reference certification maturity model of the
Cloud Security Alliance [18].

The use of a monitoring based certification approach is
necessary for assessing NR in cloud storage services, as the
provision of this property depends on the correct realisation of
an NR protocol not only by the cloud provider but also by the
data producers/owners and consumers interacting with it.
However, as the latter two partners are not under the control of
the cloud provider and may change dynamically, they
introduce uncertainties that require a dynamic form of NR
assessment and certification.

The rest of the paper is structured as follows. Sect. II
overviews related work. Sect. III presents the NR Protocol for
cloud services assumed by the certification model. Sect. IV
gives an overview of the specification of certification models.
Sect. V presents the certification model for NR. Sect. VI gives
an overview of the CUMULUS framework that is used to
implement the NR certification model. Finally, Sect. VII
provides concluding remarks and directions for future work.

II. RELATED WORK
There are two strands of research related to this paper: (a)

research on NR protocols and (b) research on certification.
While non-repudiation can be achieved by standard

cryptographic mechanisms, one of the key issues in NR
protocols is that of fair message transfer between the involved
parties, i.e., ensuring that the communication parties follow the
rules of the protocol and do not abandon execution

intentionally. An approach addressing fairness by using an
inline trusted third party (TTP), i.e., a TTP participating in
every transmission of the protocol is presented in [2].
However, the constant involvement of TTP can lead to
bottlenecks and reduced availability. Hence, other protocols
use online TTPs, i.e., where TTPs that do not participate in all
transmissions [15]. A further improvement is the use of offline
(aka optimistic) TTPs [1], which are TTPs involved only in
cases of disputes or network failure. This approach has been
also adopted in [8][16]. Other work focuses on securing cloud
storage. Popa et al. [13] presented an NR protocol for cloud
storage and Feng et al. [5] introduced four variants of NR
protocols, based on digital signature and authentication code.

Research on certification has traditionally produced
methods based on the Common Criteria model [17]. These
models use Evaluation Assurance Levels (EALs) to reflect any
added assurance requirements in order to achieve a CC
Certification. More recently the Cloud Security Alliance
(CSA) has proposed the Open Certification Framework (OCF)
[18]. OCF provides different maturity levels of certification.
The 3rd maturity level of OCF refers to certification based on
continuous monitoring, which is compatible with the approach
we advocate in this paper.

III. NON- REPUDIATION PROTOCOL FOR CLOUD SERVICES
Our certification model aims to certify adherence to the

enhanced NR Protocol for clouds presented in [4]. To enable
the reader understand this model, in this section, we give an
overview of the underpinning NR protocol.

This protocol involves four parties: (i) a data
owner/provider (“A”), (ii) a data user (“B”), (iii) the Cloud
Provider (“C”) and (iv) a Trusted Third Party (TTP). These
parties interact through three phases of the protocol, which are
shown in Figure 1. These phases are: (1) the data upload
phase, (2) the data download phase, and (3) a recovery phase.

Before describing these phases, we provide some basic
definitions necessary for understanding them:
• NRO: Evidence of Non-Repudiation of Origin, sent by a

sender to a receiver. The receiver will hold this evidence as
proof if the sender denies having sent the message.

• NRR: evidence of Non-Repudiation of Receipt, sent by the
receiver to the sender. The sender will hold this evidence as
a proof if the receiver denies having received the message.

• fM: Flag indicating the intended purpose of a message M.
• l: Unique label chosen by A to link all messages.
• M: Message sent from a sender to a receiver.
• H(M): Hash function applied to message M.
• K: Message key defined by the sender.
• BL: Group of data users Bi who are authorised to download

message M and are capable of decrypting it.
• Seqi: Unique sequence number of each message.
• EGB(): Group encryption scheme known only to BL group.
• EX(Y): Asymmetric encryption of message Y produced by

party X’s public key.
• SX(Y): signature of message Y produced by X’s private key.

The three phases of the protocol are described below.

A. Upload Phase
In this phase the data owner A sends a request to the cloud

provider C, for uploading data. Firstly, A encrypts a message
M (i.e., the data) with a key K and generates two different
NROs: NROAB and NROAC. NROAB will be used by data users
B to get the key K required to decrypt M and SA(H(M)) to
verify the data integrity after downloading M from C. A
encrypts NROAB using the group encryption scheme EGB() to
guarantee that only the intended recipients of the BL can have
access and decipher NROAB and M. NROAC is the proof of
evidence that A sent the request to C and is encrypted with C’s
public key. This step is defined as:

Figure 1. Non-Repudiation Protocol for Clouds

AàC: RQSAC = {fRQSAC
, l, A, C, TTP, H(M), H(BL), Seq1, Tg1,

T1, EGB(NROAB), EC(NROAC)}
Where:
• T1 is the maximum time that the sender will wait for an

NRR to RQSAC.
• Tg1 is the time of the generation of RQSAC.
• NROAB is an NRO sent from A to B users through C. It is

visible to all BL recipients, but not to C itself.
NROAB = {K, l, SA(H(M))}

• NROAC is an NRO sent from A to C, defined as	

NROAC={SA(H(M),H(BL),EGB(NROAB),H(l,Seq1,Tg1, T1))}.	

When C receives a RQSAC it must produce a response to A.

This step is defined as:
CàA: RSPCA = {fRSPCA

, l, A, C, TTP, H(M), H(BL), Seq2, Tg2,
TS, EA(NRRCA)}

Where:
• TS is time when data is stored
• Tg2 is the time of the generation of RSPAC.
• NRRCA is the NRR sent from C to A, defined as	

NRRCA = {SC(H(M)), SC(H(l, Seq2, Tg2, TS, NROAC))}.	

B. Download Phase
In this phase, the data user B downloads data from the

cloud provider C. To do so, B sends a request with an NROBC
to C. The request should include B’s identity to enable C verify
whether the B is authorised to download the requested data.
This is done by checking B’s identity against the BL received
for M from the data owner A. If B is in BL, C will send the

requested data along with the encrypted NROAB
(EGB(NROAB)) received from A and its own non-repudiation
evidence NRRCB. These exchanges are defined below:
BiàC: RQSBiC = {fRQSBiC

, li, A, C, Bi, TTP, Seq3, Tg3, T2,
EC(NROBC)}

Where:
• li= H(A, C, Bi, TTP)
• NROBC is the NRO sent from B to C, defined as

NROBC = {SB(H(li, A, C, TTP, Seq3, Tg3, T2))}.

CàBi: RSPCBi = {fRSPCBi

, l, A, C, Bi, TTP, H(M), Seq4, Tg4,
EGB(NROAB), 𝐸!!(NRRCB)}

Where:
• NRRCB is the NRR sent from C to B, defined as
 NRRCA={SC(H(M)),SC(EGB(NROAB)),SC(H(l,Seq4,Tg4))}.

When B gets the data and the EGB from C, it will obtain K
and H(Data) by decrypting the NROAB and check the integrity
of the data and the validity of NRRCB.

C. Resolution of Disputation
If A does not receive the expected response from the C, it

sends a request to TTP with its identification and the NROAC.
TTP will subsequently send this request to C and C should
respond with a corresponding NRRCA. The latter exchanges are
defined as:
TTPàC: RQSTC = {fRQSTC

, l, A, C, TTP, Seq5, Tg5, T3,
EC(NROAC), EC(NROTC)}

CàTTP: RSPCT = {fRSPCT
, l, A, C, TTP, Seq6, Tg6, TS,

EA(NRRCA), ET (NRRCT)}
Where:
• T3 is the maximum time that the sender will wait for an

NRR to RQSTC.
• Tg5 (Tg6) is the time of the generation of RQSTC (RSPCT).
• TS is the time when data was stored by C.
• NROTC is the NRO sent from TTP to C to resolve a

disputation regarding an uploading session of A, defined as
NROTC={ST (H(l, A, C, TTP, Seq5, Tg5, T5, EC(NROAC)))}.

• NRRCT is sent from C to TTP, defined as
NRRCT ={SC(H(l, Seq5, Tg5, NRRCA))}.

IV. CERTIFICATION MODEL FOR NON-REPUDIATION
In CUMULUS, certificates may be generated on the basis

of evidence gathered through continuous monitoring from the
cloud provider. The cloud provider (i.e., the target of
certification) and the security property to be certified, the
extent of the monitoring evidence to be collected, and the
process of certification are specified according to a monitoring
based certification model (MBCM). This model drives the
operation of the CUMULUS framework, which produces
certificates that can are signed off by a certification authority
that accepts MBCM either automatically or following some
audit. In the following we present an MBCM for the NR
property following an overview of the schema for specifying
such models that is used by CUMULUS.

A. Monitoring based certification models: Background
A monitoring based certification model is specified in an

XML based language whose top-level structure is shown in
Figure 2. According to this schema, an MBCM specifies: (1)
the cloud service to be certified (i.e., a Target of Certification
(ToC)); (2) the security property to be certified for ToC; (3) the
certification authority who will sign the certificates generated
by the model; (4) an assessment scheme defining general
conditions regarding the evidence that must be collected for
being able to issue a certificate; (5) further validity tests
regarding the configuration of the cloud provider and the
CUMULUS framework itself that must be satisfied prior to
issuing certificates; (6) the monitoring configurations that will
be used in order to collect the evidence required for generating
certificates; (7) the way in which the collected evidence will be
aggregated in certificates (evidence aggregation); and (8) a life
cycle model that defines the overall process of issuing
certificates.

Figure 2. Monitoring Based Certification Model (MBCM) schema

In MBCMs, a ToC is specified as a concrete endpoint with a
set of service interfaces that are offered by it to external parties
(provided interfaces) and a set of interfaces required of
external parties (required interfaces). The security property to
be certified is specified by assertions expressed in EC-
Assertion, i.e., an XML language based on Event Calculus[18].

The assessment scheme defines conditions regarding the
evidence that must be collected in order to be able to issue a
certificate. These conditions are related to (i) the sufficiency of
the collected evidence, (ii) the expiration period for
certificates, and (iii) anomalies and conflicts that should be
monitored during the certification process. The evidence
sufficiency conditions may relate to the minimum required
period of time that the ToC should be monitored and the
minimum number and representativeness of events (i.e.,
instances of ToC operations) that should be gathered before a
certificate can be issued.

In an MBCM, anomalies refer to: (1) potential attacks on
TOC, (2) other suspicious behaviour or (3) operational
conditions related to the security property that is to be certified,
which despite not having caused any violation of it, they may
potentially affect its satisfiability and, therefore, lead to the
suspension or revocation of certificate generated by the model.
The definition of the potential “anomalies” that should be
monitored as part of a certification model should be based on

an analysis of whether potential attacks, the ways in which the
behaviour of different external actors that interact with TOC,
and the overall operating conditions of the interaction between
TOC and these actors may affect the satisfaction of the given
security property by the TOC. Like security properties,
anomalies are also specified as EC-Assertions, except that their
violation does not lead automatically to the
suspension/revocation of a certificate.

Conflicts aim to capture cases where a given security
property would not be satisfied if it were to be assessed over
different monitoring aggregation periods. The availability of a
service may, for instance, be above 99% if assessed on a
monthly basis by certification model whose security property
refers to this period of assessment but be below this threshold
if shorter/longer assessment intervals are considered. In an
MBCM conflicts are defined by alternative assessment periods
for the security property.

A life cycle model defines the process by which certificates
of a given MBCM can be generated and managed (e.g.,
suspended, revoked). In an MBCM, a life cycle model (LCM)
is defined by a state transition model expressed in XML, as
shown in Figure 3.

Figure 3. Life cycle models

In particular, a life cycle model is defined by a set of states
and transitions between them. States can be composite or
atomic. Composite states are refined into parallel or mutally
exclusive substates. All state types can be associated with
actions that are executed upon entry to or exit from the state,
Transitions are associated by call events or triggering
conditions (when-conditions). They can also be guarded by
further conditions and be associated with actions that are
executed when a transition is to be traversed and prior to
arriving at the destination state. Actions correspond to
invocations of operations in required and provided interfaces
that are defined as part of an LTM. Provided interfaces include
operations offered from the CUMULUS framework and
required interfaces define operations of external tools.

Further details regarding the specification of MBCMs are
available from [20].

V. CERTIFICATION MODEL FOR NR

A. Security property assertions for NR Protocol
In order to certify a cloud provider C for NR, we should

monitor the responses (NRR) that C makes to NROs received
from A, B and TTP during the different phases of the NR
protocol shown in Figure 1. In particular, it is necessary to
gather evidence demonstrating that, for every NRO that C
receives from an NR party, C produces an NRR to it in a
timely manner (i.e., without a delay that would make the
relevant external party to be timed out).

In the case of NROs sent during the upload phase of the
protocol, the assertion in the NR MBCM contains the
monitoring rule R1 and the monitoring assumptions R1.A1-
R1.A4 listed below (for readability purposes we specify all
assertions in the high level syntax of EC-Assertion rather than
its XML counterpart. A detailed account of EC-Assertion is
given in [18]):
SECURITY	
 PROPERTY	
 MONITORING	
 RULE:	

R1:	
 Happens(e(_id1,_A,_C,	
 RQSAC,_C),_tAReq,[_tAReq,	
 _tAReq])	
 ∧	

¬	
 HoldsAt(ResUpReq(RQSAC,_X,_t),	
 _tAReq)⇒	

Happens(e(_id2,_C,_A,RSPCA,_C),_tg2,[_tAReq,_tAReq+f(_t1)])	
 	

WHERE:	
 	

RQSAC	
 =	
 {_fRQS

AC
,	
 _l,	
 _A,	
 _C,	
 _TTP,	
 _H(M),	
 _H(BL),	
 _Seq1,	

_tg1,	
 _t1,	
 _EGB(K,	
 l,	
 SA(H(M))),	
 _EC(SA(H(M),	
 H(BL),	

_EGB(K,	
 l,	
 SA(H(M))),	
 H(l,	
 Seq1,	
 tg1,t1)))}	
 	

RSPCA	
 =	
 {_fRSP

CA
,	
 _l,	
 _A,	
 _C,	
 _TTP,	
 _H(M),	
 _H(BL),	
 _Seq2,	

_tg2,	
 _ts,	
 _EA(SC(H(M)),	
 SC(H(l,	
 Seq2,	
 tg2,	
 tS,	
 (SA(H(M),	

H(BL),_EGB(K,	
 l,	
 SA(H(M))),	
 H(l,	
 Seq1,	
 tg1,	
 t1))))))}	

SECURITY	
 PROPERTY	
 ASSUMPTIONS:	

R1.A1:	
 Initially(UplReq(_C,	
 0,	
 systime()))	

R1.A2:	
 Happens(e(_id1,_A,_C,RQSAC,_C),_tAReq,[_tAReq,_tAReq])	

∧	
 ¬	
 HoldsAt(ResUplReq(RQSAC,_X,	
 _t),	
 _tAReq)	
 ∧	

Happens(e(_id2,	
 _C,	
 _A,	
 RSPCA,	
 _C),_tg2,	
 [_tAReq,	
 _tAReq	
 +	

f(_t1)])∧	
 HoldsAt(UplReq(_C,	
 _UPN,	
 _ST),	
 _tAReq))	
 ⇒	

Terminates(e(_id1,	
 _A,	
 _C,	
 RQSAC,	
 _C),	
 UplReq(_C,	
 _UPN,	

_ST),	
 _tAReq)	
 ∧	
 Initiates(e(_id1,	
 _A,	
 _C,	
 RQSAC,	
 _C),	

UplReq(_C,	
 _UPN+1,	
 _tg2),	
 _tg2)	
 ∧	

Initiates(e(_id1,	
 _A,	
 _C,	
 RQSAC,	
 _C),	

	
 	
 	
 	
 	
 ResUplReq(RQSAC,	
 RSPCA,	
 _tg2),	
 _tg2)	
 	

R1.A3:	
 Happens(e(_id1,_A,_C,RQSAC,_C),_tAReq,[_tAReq,	
 _tAReq])	

∧¬	
 HoldsAt(ResUplReq(RQSAC,_X,	
 _t),	
 _tAReq)	
 ∧	

¬	
 Happens(e(_id2,	
 _C,	
 _A,	
 RSPCA,	
 _C),	
 _tg2,	
 [_tAReq,	
 _tAReq	

+	
 f(_t1)])	
 ⇒	
 Initiates(e(_id1,	
 _A,	
 _C,	
 RQSAC,	
 _C),	

	
 	
 NoResUplReq(RQSAC,	
 _tAReq),	
 _tAReq	
 +	
 f(_t1))	

R1.A4:	
 Happens(e(_id1,_A,_C,RQSAC,_C),_tAReq,[_tAReq,_tAReq])	

∧¬	
 HoldsAt(ResUplReq(RQSAC,_X,	
 _t),	
 _tAReq)	
 ∧	

Happens(e(_id2,	
 _C,	
 _A,	
 RSPCA,	
 _C),	
 _tg2,	
 [_tg2,_tg2])	
 ∧	

_tg2	
 >	
 _tg1	
 +	
 f(_t1)	
 ⇒	
 Initiates(e(_id2,	
 _C,	
 _A,	
 RQSAC,	

C),	
 LateUplReq(RQSAC,	
 RSPCA,	
 _tg2),	
 _tg2)	

Rule R1 checks if for every request (RQSAC) made by a
data owner (_A) for uploading data to a cloud provider (_C) at
some time _tAReq (i.e., the time that the request was received by
_C) and for which there is no previous request with the same
sequence number received by _C from _A, _C sends a

response to _A acknowledging the request (RSPCA) within at
most f(_t1) time units after _tAReq, where _t1 is the time that the
data owner will wait for the response. f(_t1) is a function that is
provided by _C and should satisfy the constraint f(_t1) < _t1 in
order to minimise the likelihood of _A be timed out due to a
delayed response from _C.

The certification model keeps also a record of:
(a) Requests (RQSAC) for which a matching response (RSPCA)

was produced within the required time period and when
no other previous request was made with the same
sequence number,

(b) Requests for which no matching response was produced
within the required time period,

(c) Requests that had the same sequence number with
requests responded previously, and

(d) The total number of responded and non-responded
requests made from A to C for uploading data.

To keep these records it uses the monitoring assumptions
R1.A1–R1.A4. R1.A1 is used to initiate the fluent UplReq(_C,
_UPN, _ST), which keeps the total number of the responded
requests between _A and _C (i.e., the value of the variable
_UPN and systime() is a standard system call that is executed
by the monitor to obtain the current time of the system where
the monitoring service is running. R1.A2 updates the fluent
UplReq(_C, _UPN, _ST) in order to increase the number of the
successfully responded request for uploading data made from
A to C (_UPN+1). It also initiates the fluent
ResUplReq(RQSAC, RSPCA, _tg2), in order to record details of
the data upload request that was responded in time. The third
assumption (R1.A3) keeps a record of data upload requests that
were not responded in time, using the fluent
NoResUplReq(RQSAC, _tAReq). These correspond to violations
of the monitoring rule R1. R1.A4 monitors and keeps a record
of data upload requests that were responded but not within the
required time limit. The assumption initiates the fluent
LateUplReq(RQSAC, RSPCA, _tg2) to keep record of the
requests responded with delay.

The records of responded, non-responded and not in time
responded requests are used as detailed evidence by the
certification framework, in order to be able to demonstrate the
correctness of the protocol implementation by a cloud provider
to relevant stakeholders and inform further analysis related to
anomalies that may be detected (see Sect. V.B). These
stakeholders could be: (a) a cloud provider who might have
failed to obtain a certificate or a cloud provider who has
obtained a certificate and wishes to provide detailed evidence
about it, (b) a data producer who wishes to choose a cloud
provider that is certified for the NR security property by
checking the evidence, or (c) an auditor who can use these
evidence for auditing purposes of a cloud provider.

Keeping these records is necessary as the information
recorded can be used as evidence in the recovery phase, when
a TTP sends a request to C for resolving a disputation between
C and A. More specifically, if C receives a request from a TTP
regarding a previous request RQSAC from A to C, having this

information the framework will be able to check whether a late
response RSPCA from C to A lead to the resolution phase.

The certification model for NR includes monitors also the
responses that C provides to data download requests received
from data users B. The monitoring rules and assumptions for
this are similar to R1 and R1.A1-R1.A4, expect that that the
monitor RQSBC requests and RSPCB responses.

The NR certification model monitors also the behaviour of
C in response to requests by the trusted third party (TTP), in
order to resolve disputations that might occur between C and A
or B. For this purpose, it uses the following EC-Assertion
formulae:
SECURITY	
 PROPERTY	
 MONITORING	
 RULE	

R2:	
 Happens(e(_id1,_TTP,_C,RQSTC,_C),_tTReq,[_tTReq,_tTReq])	

∧	
 ¬	
 HoldsAt(ResTReq(RQSTC,	
 _X,	
 _tg6),	
 _tTReq)	
 ⇒	

Happens(e(_id2,_C,_TTP,RSPCT,_C),_tTRes,[_tTReq,_tTReq+f(_t3)]	

WHERE:	
 	

RQSTC	
 =	
 {_fRQS

TC
,	
 _l,	
 _A,	
 _C,	
 _TTP,	
 _Seq5,	
 _tg5,	
 _t3,	

_EC(SA(H(M),H(BL),_EGB(K,l,SA(H(M))),H(l,Seq1,tg1,t1))),EC(
ST(H(l,A,C,TTP,Seq5,tg5,t5,EC(ST(H(M),H(BL),_EGB(K,l,SA(H(M
))),H(l,Seq1,tg1,t1))))))}	

RSPCT	
 =	
 {_fRSP

CT
,	
 _l,	
 _A,	
 _C,	
 _TTP,	
 _Seq6,	
 _tg6,	
 _tS,	

_EA(SC(H(M)),SC(H(l,	
 Seq2,	
 tg2,	
 tS,	
 (SA(H(M),H(BL),_EGB	

(K,l,SA(H(M))),H(l,Seq1,tg1,	
 t1)))))),	
 _ET(SC(H(l,	

Seq5,tg5,	
 (SC(H(M)),SC(H(l,	
 Seq2,	
 Tg2,	
 TS,	
 (SA(H(M),	

H(BL),_EGB(K,	
 l,	
 SA(H(M))),H(l,Seq1,Tg1,	
 T1)))))))))}	

SECURITY	
 PROPERTY	
 ASSUMPTIONS	
 	

R2.A1:Initially(RecReq(_C,	
 0,	
 systime()))	

R2.A2:	
 Happens(e(_id5,	
 _TTP,	
 _C,	
 RQSTC,	

_C),_tTTPReq,[_tTTPReq,	
 _tTTPReq])	
 ∧	
 ¬	

HoldsAt(ResRecReq(RQSTC,_X,	
 _t),_tTReq)	
 ∧	

Happens(e(_id1,_A,_C,	
 RQSAC,	
 _C),	
 _tAReq,	
 [0,_tTTPReq])	
 ∧	

Happens(e(_id6,	
 _C,	
 _TTP,	
 RSPCT,	
 _C),	
 _tg6,	
 [_tTReq,	
 _tTReq	
 +	

f(_t3)])	
 ∧	
 	
 ∃	
 _RPN:	
 HoldsAt(RecReq	
 (_C,	
 _RPN,	
 _ST),	

_tTTPReq))	
 ⇒	
 Terminates(e(_id5,	
 _TTP,	
 _C,	
 RQSTC,	
 _C),	

RecReq	
 (_C,	
 _	
 RPN,	
 _ST),	
 _tTTPReq)	
 ∧	
 Initiates(e(_id5,	

_TTP,	
 _C,	
 RQSTC,	
 _C),	
 RecReq	
 (_C,	
 _	
 RPN+1,	
 _ST),	
 _tTTPReq)	

∧	
 Initiates(e(_id5,	
 _TTP,	
 _C,	
 RQSTC,	
 _C),	

ResRecReq(RQSTC,_X,	
 _t),	
 _tTTPReq)	

R2.A3:	
 Happens(e(_id5,	
 _TTP,	
 _C,	
 RQSTC,	
 _C),	
 _tTTPReq,	

[_tTTPReq,	
 _tTTPReq])	
 ∧	

¬	
 HoldsAt(ResRecReq	
 RQSTC,_X,	
 _t),_tTTPReq)	
 ∧	

Happens(e(_id1,	
 _A,	
 _C,	
 RQSAC,	
 _C),_tAReq,[0,_tTTPReq])	
 ∧	

¬	
 Happens(e(_id6,	
 _C,	
 _TTP,	
 RSPCT,	
 _C),	
 _tg6,	
 [_tTTPReq,	

_tTTPReq	
 +	
 f(_t3)])	
 ⇒	
 Initiates(e(_id5,	
 _TTP,	
 _C,	
 RQSTC,	

_C),	
 NoResReq(RQSTC,	
 _tTTPReq),	
 _tTTPReq	
 +	
 f(_t3))	

R2.A4:	
 Happens(e(_id5,	
 _TTP,	
 _C,	
 RQSTC,	
 _C),	

_tTTPReq,[_tTTPReq,_tTTPReq])	
 ∧	

¬HoldsAt(ResRecReq	
 RQSTC,_X,	
 _t),	
 _tTTPReq)	
 ∧	

Happens(e(_id6,	
 _C,	
 _TTP,RSPCT,_C),_tg6,[_tg6,_tg6])	
 ∧	

_	
 tg6>	
 _tg5	
 +	
 _f(t3)	
 ⇒	
 Initiates(e(_id5,	
 _TTP,	
 _C,	
 RQSTC,	

_C),	
 LateRecReq	
 RQSTC,	
 RSPCT,	
 _tg6),	
 _tg6)	

R2 checks if every request RQSTC made from a TTP to a

cloud provider (_C) for resolving a disputation between A and
C, at some time (_tTReq), for which there was no previous
request from the same TTP that has already been responded,

there is a response RSPCT from C to the TTP that matches with
RQSTC within at most f(_t3) time units where f(_t3) < _t3 (_t3 is
the time that TTP will wait for a response).

As in the case of the interactions with the data owner, the
certification model uses the following assumptions to keep
record of (a) every request (RQSTC) for which a matching
response (RSPCT) was produced within the required time
period, (b) every request RQSTTPC for which no matching
response RSPCTTP was produced within the required time
period, (c) every request made with a same sequence number
of a previous responded request, and (d) the total number of
responded and non responded requests made from TTP to C
for resolving a disputation between the other parties. To keep
this record it uses the following monitoring assumptions:

B. Anomaly Detection
In the following we present anomalies of three different

types introduced in Sect. IV.A for the NR certification model.
1) Potential attacks
In the case of NR, As and Bs may be non trusted parties.

Both of them, for instance, may try to launch a denial-of-
service attack on C. This may happen directly by, for example,
issuing a high volume of data uploading and downloading
requests to C and/or re-issuing previous requests (replay
attack). It should be noted that the monitoring rule R1 in the
certification model would require C to respond only to a
request from a data provider only if this request has not been
responded before. Hence, the certification model assumes that
C should not respond to repeated requests. However, even if no
response of C is expected in such cases, high volume of
repetaed requests may escalate to a DOS attack that will
prevent C from satisfy the NR property.

Hence the purpose of anomaly monitoring is not to detect the
individual instances of repeated requests from A to C but to
detect whether this unexpected activity appears in high
volume. To monitor and keep a record of the repeated requests
from particular data owners, the NR certification model should
include the following anomaly detection monitoring
assumptions:
ANOMALY	
 ASSUMPTIONS	
 	

A.A1:	
 Initially(RepeatedUplReq(_A,	
 systime()))	

A.A2:	
 Happens(e(_id1,_A,_C,RQSAC,_C),	
 _tAReq,[
 _tAReq,	

_tAReq])	
 ∧	
 HoldsAt(ResUpReq(RQSAC,_X,_t),	
 _tAReq)⇒	

Terminates(e(_id1,	
 _A,	
 _C,	
 RQSAC,	
 _C),	

RepeatedUplReq(_A,	
 _N),	
 _tx)	
 ∧	

Initiates(e(_id1,	
 _A,	
 _C,	
 RQSAC,	
 _C),	

	
 RepeatedUplReq(_A,	
 _N	
 +	
 1),	
 _tx)	

The first of these assumptions initialises the counter of
repeated requests from a given data owner _A to 0 and the
second increases it whenever a new previously responded
requests is re-played by _A.

Further to these anomaly-monitoring assumptions, the NR
certification model can include a warning to the certification
authority regarding the potential compromise of NR as soon as
the number of repeated data upload requests exceeds a given

threshold (i.e., N repeated data upload requests per minute).
This is specified in the life cycle model of the NR certification
model, as indicated in Figure 4 below.

To cover the potential of a similar type of attack from data
users (B), the NR certification model includes also anomaly-
monitoring assumptions similar to those listed above for data
downloading requests RQSBC.

2) Suspicious behaviour
An example of suspicious behaviour that the NR certification

model should monitor is the receipt of requests for recovery
from TTP corresponding to requests for data uploading
(downloading) from A (B), which have been acknowledged by
C. Such requests are suspicious since, in normal circumstances,
TTP should not be asking for a recovery of a request that has
been acknowledged by C (i.e., a request from A or B for which
C has sent an NRR).

This anomalous behaviour from TTP may be due to different
reasons. To issue a recovery request, TTP should know the
details of the original data uploading (downloading) request
from A (B). There are four different ways in which TTP can
obtain this knowledge: (i) A or B might have sent the original
request to TTP and ask it to initiate the recovery phase, (ii) an
attacker, who has managed to obtain the details of the original
request of A and B and impersonate them, sends it to TTP, or
(iii) TTP has itself acted as an attacker (as in (ii)), obtained the
details of the original request from A or B and sent the
recovery request to C.

Case (i) itself may be the result of a malicious attempt to
initiate the recovery phase by A or B. The reason for this could
be, for example, to test via TTP how C and TTP would react to
such non normal requests and whether it would be possible to
launch some DoS attack onto C (via TTP) or onto TTP itself.
However, (i) can also be the result of A or B being timed out
due to a (non malicious) delay in the arrival of the NRRA(B)
sent to them by C caused by the network connection between
A(B) and C.

To monitor requests for recovery from TTP corresponding
to already responded requests for data uploading from A, the
NR certification model uses the following monitoring
assumption:
ANOMALY	
 ASSUMPTIONS	
 	

TTP.A1:	

Happens(e(_id1,	
 _TTP,	
 _C,	
 RQSTC,	
 _C),	
 _tTReq,	
 [_tTReq,	

_tTReq])	
 ∧	
 HoldsAt(ResUpReq(RQSAC,_X,_t),	
 _tTReq)	
 ⇒	

Initiates(e(_id1,	
 _TTP,	
 _C,	
 RQSTC,	
 _C),	
 	

SuspTTPReq(_TTP,	
 RQSTC,	
 _tTReq),	
 _tTReq)	
 	

WHERE	

RQSTC	
 =	
 {_fRQS

TC
,	
 _l,	
 _A,	
 _C,	
 _TTP,	
 _Seq5,	
 _tg5,	
 _t3,	

_EC(SA(H(M),H(BL),_EGB(K,l,SA(H(M))),H(l,Seq1,tg1,t1))),EC(
ST(H(l,A,C,TTP,Seq5,tg5,t5,EC(ST(H(M),H(BL),_EGB(K,l,SA(H(M
))),H(l,Seq1,tg1,t1))))))}	

RQSAC	
 =	
 {_fRQS

AC
,	
 _l,	
 _A,	
 _C,	
 _TTP,	
 _H(M),	
 _H(BL),	
 _Seq1,	

_tg1,	
 _t1,	
 _EGB(K,	
 l,	
 SA(H(M))),	
 _EC(SA(H(M),	
 H(BL),	

_EGB(K,	
 l,	
 SA(H(M))),	
 H(l,	
 Seq1,	
 tg1,t1)))}	
 	

3) (Anomalous) Operating conditions

An example of an operating condition that should be
monitored by the NR certification model is the average time
that it takes for a response from C to reach its intended
recipient party (i.e., A, B or TTP). Monitoring this time is
important as it might indicate that responses to A, B or TTP
reach them with delays that can get them timed out, despite C
having issued these responses within the time period required
by the NR protocol (i.e., within the period [_tAReq,_tAReq+f(_t1)]
required by rule R1 in the case of NRRs from C to A). Such
delays might be due to network delays or some man-in-the-
middle attack on the communication C and A, B and TTP.

Monitoring the exact average time of the arrival of a NRR
from C to A, B or TTP is not possible as in general the
monitoring framework of the certification authority that
realises the NR certification model does not have access to
events occurring at A and B. An approximate estimate of this
average time is, however, possible by monitoring the average
time of network traffic in the opposite direction, i.e., the
average time that it takes for RQSAC, RQSBC and RQSTC to
reach C after being dispatched by A, B or TTP.

The following anomaly monitoring assumptions show how
the NR certification model monitors the network delay for
traffic from A to C:
ANOMALY	
 ASSUMPTIONS	
 	

A.A3:	
 Initially(avgAC(_A,_C,	
 0,0),	
 systime())	

A.A4:	
 Happens(e(_id1,_A,_C,	
 RQSAC,_C),_tAReq,[_tAReq,	
 _tAReq])	

∧	
 HoldsAt(avgAC(_A,_C,	
 _avg,_N),	
 _tAReq)	
 ⇒	

Terminates(e(_id1,_A,_C,	
 RQSAC,_C),	
 avgAC(_A,_C,	

_avg,_N),_tAReq)	
 ∧	

Initiates(e(_id1,_A,_C,	
 RQSAC,_C),	
 avgAC(_A,_C,(_avg*_N	

+	
 (_tAReq	
 –_tg1))/(_N+1),(_N+1)),	
 _tAReq)	

The anomaly assumption A.A3 initiates the fluent
avgAC(_A,_C, _avg,_N) that is used to keep a record of the
average time that it takes for data upload requests RQSAC to
reach C from A; _avg is the variable keeping the average value
and _N is the variable keeping the number of requests that
have been taken into account for calculating this average. The
second formula updates this fluent by re-calculating the values
of _avg to take into account the travelling time of the last
RQSAC , i.e., _tAReq – _tg1 (_tg1 is recorded in RQSAC as shown
in the specification of rule R1). In this case, the certification
model should raise a warning to the certification authority in
cases where _avg > f(t1), as this would lead to A being
systematically timed out due to delays in the network traffic
between A and C. This warning is also shown in the NR
certificate life cycle model in Sect. IV.3. The NR certification
model includes also anomaly-monitoring assumptions similar
to Anomaly.A.A3 and Anomaly.A.A4 for Bs and TTPs.

C. Life Cycle model
The life-cycle model of the NR certification model is shown

in Figure 4. According to this model, the first state in the
certificate’s lifecycle is called “Activated”, where the
certification process i activated. After being activated, the
certificate process moves to the state Continuous Monitoring.
Whilst being in this state, the security property and anomaly
detection monitoring rules and assumptions of the model are

being monitored (by the monitor of the CUMULUS platform)
and the related monitoring evidence is sent to the framework
(see transition evidence(e:MonResult)). When the accumulated
evidence meets the sufficient conditions of the model and the
security property monitoring rules are satisfied, the process
moves to the state Pre-Issued (see transition when(sec-
assertion-satisfied AND sufficiency-conditions-satisfied) from
D1 to Pre-Issued). At this state, the framework will check if
the extra validity conditions for the certificate type (see action
CheckValidityConditions) and, if they are satisfied, the process
will move to the state Issued, at which a concrete certificate for
NR of the specific provider is generated internally by the
platform and can be obtained by an interested external party
upon request (see transition retrieveCertificate).

Figure 4. Monitoring-based CM: UML diagram of Life Cycle Model

Whilst in Issuing state, if an anomaly is detected, the
certification process will move to the state Anomaly-Audit, (see
transition when(unresolved-anomalies)) where all the detected
anomalies must be selected (see state AnomalySelection) and
inspected (see state AnomalyInspection) one by one. This is the
responsibility of the certification authority that will sign off the
certificates. If all the detected anomalies can be resolved, the
process moves back to History state, i.e., the state where it was
prior to moving to Anomaly-Audit. Otherwise, if there are
anomalies that cannot be resolved (i.e., accepted as affordable
risks), the process moves to the state Revoke, where any
certificates issued for the particular TOC will be revoked and
no further certificates will be issued.

When the expiration date of an issued certificate is reached,
as stated in the ExpirationCondition of MBCM, the
certification process will move to state D1 (see the transition
when (expiration-conditions)). At this point if a sufficient body
evidence has already been accumulated for issuing a new
instance of the certificate, the process will move automatically
to the state Issuing or otherwise it will continue gathering
evidence until a new certificate instance can be issued.

VI. CUMULUS FRAMEWORK
MBCMs are enacted by the CUMULUS framework to

produce and manage certificates. The CUMULUS framework
consists of a certification communicator (CC), a certificate

generator (CG), a monitoring manager (MM), and a
certification models (MBCM), an evidence (EDB) and a
certificate database (CeDB). It also interacts with external
monitors (MON), as shown in Figure 5.

The monitoring manager (MM) is responsible for creating
and modifying MBCMs according to the actors’ requirements,
and for managing the monitoring process for certifying a
specific security property. Moreover, MM provides the
monitoring configuration of an MBCM to MON, and polls the
monitor at regular intervals in order to collect monitoring
results. Once retrieved, these results are stored in EDB. The
certification communicator (CC) allows external actors to
retrieve generated (issued) certificates. CC retrieves such
certificates from the CeDB. The certificate generator (CG) has
responsibility for enacting MBCMs in order to generate and
manage certificates. CG acts as an executor of the life cycle
model of MBCM. During this execution it also access and
updates information in EDB. When a certificate is generated, it
is stored in the CeDB.

Figure 5. CUMULUS Framework

The monitor (MON) is responsible for monitoring the
security property and anomaly assertions specified in MBCM.
To do so, it is given these assertions by the framework and
checks them against cloud event streams that are generated by
event captors (EC) placed on cloud infrastructures. The
communication between EC and MON is based on an event
bus, which is implemented as a pub/sub infrastructure.

VII. CONCLUSION
In this paper, we have introduced a certification model

(CM) for the NR protocol of cloud services that is based on
continuous monitoring. The CM defines the conditions that
should be monitored at runtime in order to confirm that a cloud
provider adheres to the protocol and therefore offers the NR
property. Furthermore, it defines conditions regarding the
sufficiency of monitoring evidence for issuing certificates,
anomalies that should be monitored during the certification,
and the overall life cycle model (process) for generating NR
certificates. Our model has been implemented using the
CUMULUS certification framework.

Currently, we are conducting an evaluation of the
performance of this model and investigate how to deploy
model checking techniques in order to statically verify certain
properties of it (e.g., soundness) and more generally of
certification models following the CUMULUS approach, prior

to putting them in operation. This work is exploring the use of
model checking techniques for this purpose.

ACKNOWLEDGMENT
This work has been partially funded by the EU FP7 project

CUMULUS [3] (grant no 318580).

REFERENCES
[1] Asokan, N., Schunter, M. and Waidner, M., “Optimistic protocols for

fair exchange”, 4th ACM Conf. on Computier and Communications
Security, vol. 6, pp. 8-17, 1997.

[2] Coffey, T. and Saidha, P., “Non-Repudiation protocol with mandatory
proof of receipt”, SIGCOMM Computer Communication, Review,
26(1):6-17, 1996.

[3] CUMULUS project, http://www.cumulus-project.eu/
[4] Feng, J., Chen, Y. and Summerville, D. H., “A Fair Multi-Party Non-

Repudiation Scheme for Storage Clouds”, Int. Conf. on Collaboration
Technologies and Systems (CTS), pp. 457-465, May 2011.

[5] Feng, J., Chen, Y., Ku, W. and Liu, P., “Analysis of Intergrity
Vulnerabilities and a Non-Repudiation Protocol for Cloud Data Storage
Platrforms”, 39th Int. Conf. on Parallel Processing Workshops, 2010.

[6] Ferdowsi, A., S3 data corruption?, 2008, available from
https://forums.aws.amazon.com/thread.jspa?start=0&threadID=22709&ts
tart=0, 2008

[7] Gurgens, S., Rudolph, C. and Vogt, H., “On the Security of Fair Non-
Repudiation Protocols”, Int. Journal of Information Security, 4(4): 253-
262, 2005.

[8] Kremer, S. and Markowitch, O., “Optimistic non-reputiable information
exchange”, In: Biemond, J. (Ed), 21st Symposium on Information Theory
in the Benelux, Wassenaar (NL), pp. 126-132, 2000.

[9] Kremer, S., Markowitch, O., Zhou, J., “An intensive survey of fair non-
repudiation protocols”, Journal of Computer Communications 25:17, pp.
1606- 1621, 2002.

[10] Krotsiani, M., Spanoudakis, G. and Mahbub, K., “Incremental
Certification of Cloud Services”, 7th Int. Conf. on Emerging Security
Information, Systems and Technologies, 2013.

[11] Ma., W., Wu, Q. and Tan, Y., “A TPA Based Efficient Non-Repudiation
Scheme for Cloud Storage” 2nd Int. Conf. On Systems Engineering and
Modeling (ICSEM -13), pp. 1630-1635, 2013.

[12] Markowitch, O. and Roggeman, Y., “Probabilistic Non-Repudiation
without trusted third party” 2nd Conf. on Security in Communication
Networks, 1999.

[13] Popa, R.A., Lorch, J. R., Molhan, D., Wang, H. and Zhuang, L.,
“Enabling Security in Cloud Storage SLAs with CloudProof”, Microsoft
Tech Report, 2010.

[14] Thomson, T., Google docs leaks private user data online, available from
http://www.v3.co.uk/v3-uk/news/1951954/google-docs-leaks-private-
user-online, 2009.

[15] Zhou, J. and Gollmann, D., “A Fair Non-Repudiation Protocol” In Proce.
of IEEE Symposium on Security and Provacy, pp. 55-61, 1996.

[16] Zhou, J. and Gollmann, D., “An Efficient Non-Repudiation Protocol”,
10th Computer Security Foundations Workshop, pp. 126-132, 1997.

[17] Common Criteria, v3.1, Parts 1, 2 and 3, 2012.
[18] Open Certification Framework, Vision Statement, Rev.1, Cloud Security

Alliance. Available from
https://downloads.cloudsecurityalliance.org/initiatives/ocf/OCF_Vision_
Statement_Final.pdf, August 2013.

[19] Spanoudakis, G., Kloukinas, C., & Mahbub, K. “The SERENITY
runtime monitoring framework”. In Security and Dependability for
Ambient Intelligence, pp. 213-237, Springer US. 2009.

[20] CUMULUS Deliverable D2.3, “Certification Models v2”, May 2014.
Available from: http://www.cumulus-project.eu/

