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Abstract

This paper is concerned with developing a semiparametric panel model to explain the trend in
UK temperatures and other weather outcomes over the last century. We work with the monthly
averaged maximum and minimum temperatures observed at the twenty six Meteorological Office
stations. The data is an unbalanced panel. We allow the trend to evolve in a nonparametric
way so that we obtain a fuller picture of the evolution of common temperature in the medium
timescale. Profile likelihood estimators (PLE) are proposed and their statistical properties are
studied. The proposed PLE has improved asymptotic property comparing the the sequential

two-step estimators. Finally, forecasting based on the proposed model is studied.
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1 Introduction

The partially linear regression model was introduced in Engle, Granger, Rice and Weiss (1986),

y=B"X+0(7)+e (1)

where 6(.) is an unknown scalar function and ¢ is a zero mean error orthogonal to both X and
0(.). This model embodies a compromise between employing a general nonparametric specification
g(X, Z), which, if the conditioning variables are high dimensional, would lead to serious loss of preci-
sion, and a fully parametric specification which may result in badly biased estimators and inconsistent
hypothesis tests. The implicit asymmetry between the effects of X and Z may be attractive when
X consists of dummy or categorical variables, as in Stock (1989, 1991). This specification arises in
various sample selection models, see Ahn and Powell (1993), Newey, Powell, and Walker (1990), and
Lee, Rosenzweig and Pitt (1992). It is also the basis of a general specification test for functional form
introduced in Delgado and Stengos (1994). The model has been used in a number of applications.
We will use a panel data version of this model to model climate change.

The issue of global warming has received a great deal of attention recently. This paper is concerned
with developing a semiparametric model to describe the trend in UK regional temperatures and other
weather outcomes over the last century. The data we work with conditions the analysis we propose.
We work with the monthly averaged maximum and minimum temperatures observed at the twenty
six Meteorological Office stations. The data is an unbalanced panel. We propose a semiparametric
partial linear panel model in which there is a common trend component that is allowed to evolve in
a nonparametric way. This permits the most general possible pattern for the evolution of a common
secular change in temperature. We also allow for a deterministic seasonal component in temperature,
since we are working with monthly data. Gao and Hawthorne (2006) used a univariate partially linear
model to explain annual global temperature in terms of a nonparametric time trend and a covariate
the southern oscillation index (SOI). They applied existing theory to deduce the properties of their
estimators and developed a new adaptive test of the shape of the trend function. See Campbell and
Diebold (2005) for some alternative analysis of multivariate climate time series data. Peteiro-Lopez
and Gonzalez-Manteiga (2006) worked with a multivariate model with cross-sectionally correlated
errors and different trends for each series. They establish distribution theory for the parametric
components and derive the bias and variance of the nonparametric components. Their setting is
similar to ours except that we impose a common trend structure. Furthermore, the covariates in our
parametric part are also common and deterministic, as they represent seasonality. Most importantly
we allow for unbalanced dataset, which is important in applications. This difference has important

implications for efficient estimation. The asymptotic framework we work with allows a non-trivial



fraction of the data to be missing. We propose to use a profile likelihood method, which in the
unbalanced case is different from the sequential two-step squares method proposed by Robinson
(1998) in the univariate case and employed by Peteiro-Lopez and Gonzalez-Manteiga (2006) in the
multivariate case. This method is fully efficient in the Gaussian case as established in Severini and
Wong (1992). Finally, we allow for heteroskedasticity and serial correlation in the error terms.

We apply our methods to the UK dataset. We show the nonparametric trend in comparison
with a more standard parametric approach. In both cases there is an upward trend over the last
twenty years that is statistically significant. We compare our results with those obtained by Gao and

Hawthorne (2006). We also use our model to forecast future temperature.

2 Model and Data

The subject that we are interested are monthly temperatures {y;; }, where i signifies different stations
and t is the corresponding time when the temperature is recorded, t = 1,...,T and ¢ = 1,...,n.
In practice, there may be missing data in the sense that some stations began keeping records before
other stations. In our application, Oxford started in 1857, while Cardiff Bute Park only began in
1977. So we suppose that station ¢ starts at time ¢;, ¢ = 1,...,n, thus records for station i are only
available from time ¢; to T. Order the stations by their starting point so that t; <t, <--- <t, <T.
The complete record occurs after ¢,. At any point in time there are n, stations available with n,

varying from one to n. The most general model we consider is of the following form
Yir = i + B Dy + v Xuo + g:(t/T) + ea,

where i =1,...,nand t = t;,...,T. Here, D, € R? is a vector of seasonal dummy variables, X;; are
a vector of observed covariates, and the error terms ¢;; satisfy E(e;|X;;) = 0 a.s.. The functions g;(-)
are unknown but smooth. These represent the trend in temperatures at location . We shall further
assume that g;(-) = g(-), so that there is a single common trend, which imposes a standard way of
thinking about climate change. For simplicity we also dispense with the additional covariates X (in
our application we are concerned with documenting the temperature record rather than assigning
changes to particular causes). The parameter vector 0 = (aq, ..., qy,, 61, . .BZ)T is unknown and
describes the seasonal and level effects for the different locations. The model is not identified as
it stands, since one can add a constant to each «; and subtract the same constant from g(-). For
identification we suppose that )", a; = 0, in which case the function g(.) represents the common

level of average temperature relative to average seasonal variation. According to Wikipedia (2009):

"Climate change is any long-term significant change in the “average weather" of a region or the earth



as a whole. Average weather may include average temperature, precipitation and wind patterns."
Our model directly permits the measuring of this average weather trend through the function g(-).
In doing the asymptotics we suppose that " — oo but 7 is fixed (in fact n = 26 in our application).

In conclusion the model we adopt for the application is as follows
Yir = a; + B Dy + g(t/T) + ea, (2)

where the error term may be heteroskedastic across ¢ and serially correlated over time. Let 5; =
(Bi1s- - -+ Biq)- We can write the model as

d
y:Aa+ZCjﬂj+Bg+e, (3)

j=1
where y, € is the nT x 1 data,error vector with zeros in place of missing observations, while o € R",
g = (9(1/T),...,g9(1))" € R" , and 8; = (By;,...,53,;) € R". In this case, A, B are matrices
of conformable dimensions of zeros and ones that reflect the commonality and missingness as well,
see below. The matrices C; contains the dummy variable D;. This representation is different from
equation (2) of Peteiro-Lopez and Gonzalez-Manteiga (2006); it allows for the "missingness" of data
in some observation units and preserves a simple algebraic structure that is useful in the sequel.

Suppose n = 2 and T' = 3 and for simplicity that d = 0, i.e., no seasonal effect. Then

Y11 10 1 00 €11

Y12 1 0 O 1 0 £12
g1

Y13 10 (05} 0 0 1 €13

= + g2 | +
0 00 Q9 0 0O 0

g3

Y22 01 010 £929

Yos3 01 0 01 £93

3 Profile Likelihood Estimation

Our model may be estimated using different nonparametric methods. We consider in this paper the
widely used kernel estimators. Specifically, we consider the Gaussian profile likelihood procedure for
the general unbalanced case - see additional discussions in Remarks 2 - 3 for advantages of using
profile likelihood estimation. This in general leads to semiparametrically efficient estimators, Severini
and Wong (1992).



3.1 The Estimator of ¢

We first define the local profile likelihood in the local parameter n € R:

E(T],t/T) = ZZ Yis — O — D )2Kh<<t_8)/T)

s=1 =1

= ZZ yis — i — B} Dy — )" Ky((t = $)/T),

=1 s=t;

where I, denotes the set of stations available at time s, which is of cardinality n, and we assumed
the ordering of the stations is consistently chosen. Here, K is a kernel function and A is a bandwidth
so that K3(.) = K(./h)/h. The first derivative with respect to 7 is given by

W/T 93 (s B D) Kal(t— /7).

s=1 1€l
so that
5 = ) = T i Zam (i — 0i = B D) Kallt — 5)/T)
= o - .
T3 Y, Kn((t = 9)/T)
TS Kt = 8)/T) 300, (is — i — B D)
T-13 o Kn((t = 5)/T)ny
Notice that if we standardize the kernel so that T—*>>"_ K}, (u — s/T) = 1, then, when T is large,
my = m, where my =T 13" Zfzti Ky((s —t)/T), for all t with t,,/T < t/T < tyi1/T.

3.2 The Estimator of ¢

The global profile likelihood in the parameter vector 6 is given by

=35 (s — oy — 8] D= Golt/T))”.

j=1 t=t;
n

We maximize this subject to the constraint that Zai = 0, equivalently finding the first order
i=1
n

condition of the Lagrangian L(0,\) = L(0;7y) + A Z ;.

The first derivatives of £ with respect to 6 are:

OL(0; G, L N (/)
28 53 S zn B KB 5330 )
J=1 t=t; v j=1 t=t; v



where €,(6) = y; — oj — BJTDt — 9o(t/T) and

_ 0Ge(t/T)
Oay;

02;1(0) {—Dt——f"§%<;{T> if j=i

else

P(6) {—1——8§%<;{T> if j=i

apB; —%é/_:r) else
fori=1,...,n, where
OGo(t/T) 11¢ —y i <my
S = LY Kt s)/T) g cas T — oo.
80[,‘ my T pry 0, 1> my

95(t/T) 11w gz, <y

AN e K, ((t —s)/TYDy — 12my ,as T — oo
IB,; my T ; o\ /7) 011, L > my

do not depend on the unknown parameters. The profile likelihood equations are linear in # and can

be solved explicitly to give the constrained estimators 6. We then define the nonparametric estimator

~

g(u) = gg(u).

3.3 In Matrix Notation

We may re-write the vector of 7] as
d
9 = (9e(1/T),...,5(1)) " = (i), ®K) <y — Ao — chﬁj) : (4)
j=1

where K is the 7" x T smoother matrix with typical element K;s = K, ((t — s)/T)/m,T, and m; =

T Y, Kal((s = 1)/T).

In matrix notation the profile likelihood estimator solves

d T d
9:5%?:1 (y —Aa - Z Cjﬁj - ng> (y — Ao — ZCjﬁj _ Bga)
j=1 1
or equivalently, since gy is linear in ,

~\T ~

min (5 X6) (5-X0),
O:ali,=1

where § = (o', 3, ,...,5,)" € R and X = (;L Ciy..o, az) is nT by n(d + 1), while: y = My,

A= MA, and @ = MC; with M = I,,r — B(i, ® K). Ignoring the restriction we can write the above

first order conditions in the following matrix form X' X0 = X7, except that X ' X is singular.

Define ¢" = (1,...,1,0,...,0), then the linear restriction is represented as ¢' 6 = 0. Then define the

6



matrix R, which is a k£ X (k — 1) matrix, where & = n(d + 1), such that (¢, R) is non singular and
R"q =0, Amemiya (1985, §1.4). In this case, we can take

R Ry
Rs Ry

o In—l

) R1:

. ] ) R4 = [ndxnd>

— Uy

n—l nxn—1

where 7,,_1 is the n—1 x 1 vector of ones, and Ry, R3 are matrices of zeros of conformable dimensions.

It follows that for the profile likelihood estimator subject to the linear restriction ¢'6 = 0, we have
—~ e N1
0—R(RTXTXR) R'XT,

where RTXTXR is non-singular.! Then,

d
g="(0' ®K) <y— Ad — chﬁj) .
j=1

In computing the least squares estimators in our application we make some additional steps because
T is very large, 1858 in fact. We partition A = (A],...,A")" and B = (B/,...,B/])", where
A; and B; are T' x n matrices and 7' x T" matrices respectively. Then, for example, MA = A —
(BIKY " AT, (BuK YT A)T)T, where ByKA; is a T' x n matrix. In this way one can

avoid matrices of dimensions nT" x nT or even nT' x T', which are too large to fit into memory.

4 Asymptotic Properties

In this section we present the asymptotic properties of the estimators defined above. The follow-
ing conditions are quite standard in kernel estimation. For the convenience of asymptotic analy-
sis, we introduce (-mixing (absolutely regular), which is defined as follows. A stationary process
{(&;, Fi), —o0 < t < oo} is said to be S-mixing (or, absolutely regular) if the mixing coefficient 5(n)
defined by

Bn) = B{ suwp |P(A| FL..) = P(A)]}

t+n
converges to zero as n — 00. [-mixing includes many linear and nonlinear time series models as
special cases; see Doukhan (1994) for more discussion on mixing.

ASSUMPTIONS A.

Note that RJa = (a1,...,a,—1)". We can interpret the above as a reparameterizion to 6 =

(aq,... ,an,l,ﬂlT, . .ﬁT)T with o, = — Z?;ll «; and then changing A — A* in (3) to reflect the different struc-

n
ture. For example, in the special case given above, A* = (1,1,1,0, —1, —1)T. Then compute 0 by an unconstrained

regression.



1. For each i, ey is a stationary [5-mixing with mizing decay rate 3, with lim sup, b* maxi<;<p 5, <
0o for some b > 1, Y70 E(eqcpsn) = w? and s? = Y oo FE(cuitr1oc) with 0 < w <

minlgign w; < maxj<j<n Wi <w < oo.
2. The function g : [0, 1] =R, is continuously differentiable up to the order T > p.

3. The kernel K has support [—1,1] and is symmetric about zero and satisfies [ K(u)du =1. In
addition, [ W K(u)du=0,j=1,...,p—1, and [u’K(u)du # 0. Define j1,(K) = [ uP K (u)du
and ||K||3 = [ K*(2)dz.

4. The bandwidth satisfies:

(a) As T — oo, h — 0, and Th — oo, Th** — 0

(b) h = epT7Y/2P+1 with 0 < lim infep < limsuper < oo.

T—o00 T—00

Assumptions Al is a typical assumption in the time series literature and ensures that ¢; is sta-
tionary with weak dependence and that appropriate limiting theory can be applied. This condition
is useful in our technical development and, no doubt could be replaced by a range of similar assump-
tions. Assumption A2 concerns about the smoothness of the trend function and ensures a Taylor
expansion to appropriate order. Assumption A3 for the kernel function and Assumption A4 for the
bandwidth expansion are quite standard in nonparametric estimation: in part a, the bandwidth is
chosen to ensure root-1" asymptotics for parametric quantities; in part b, the bandwidth is chosen to
be optimal for estimation of the nonparametric component.

The asymptotics depends on our assumptions about t; < t, < --- < t,. In the simplest case when
t; <ty <-..<t, are finite numbers, the asymptotic results are the same as those with complete data
- the differences in the starting dates are asymptotically ignorable, thus the asymptotic distributions

are unaffected by the difference of starting dates. We shall assume that t; — oo in such a way that
t; = |r;T], where r; € (0,1), (5)

fori =1,...,n, (and r,41 = 1) in which case the starting time affects the estimators asymptotically.

To present the main result we need some notation. Let ay; = Z::j (reg1 —1s) /5%, k=1,2,3,4,

(Si = (1 — T, — QGM -+ a27;), fz = (n -+ 2)61,2,i — 2&171' — nas, and )\1, = (n2a47i - 471&3’1' + 4@271'), and let

17 )

O, = diag | 5w . Gk 0wl |,
S, = diag[élsf,
A, = diag{l,....,1—ry,....1—r,}.



In addition, let A,, be the n x n symmetric matrix whose (i, j)-th element is

i1 " o
[A,], = Ai Zj:l w? T Zj:i—i-l /\ngz‘a 1=
v fi (W§ +w?) + A D itz Wi 4 Y A, g <

(a21 — 2&11 + 2?22 agl) Ce (iagi — 2@12' + Z?:iJrl agl) Ce (nagm — 2&17,1)
G = (’iam’ — 2a1; + Z?:i_g_l a2l) (mm — 2ay; + Z?:i+1 a2l) (na2,n - 2G1,n)
I (nag, —2a ) (nag, —2a ) (nag, — 2a1,) |

Then define the matrices:

Q=

A, + G, (A, + Gp) ® i
(A, +G) @i, A @5l +G, @ dn |

Q.+ A, ® 1—12i1Tl Sp ® %Iu +A,® ﬁju ’

where 711 is a 11 x 1 vector of ones, and J;; = illilTl is a 11 x 11 matrix of ones, and

b ) T
g = ], :[b, b bn} ,
b® Lin | '
. 1 1
1
bi = —pu, (K /5sg(p)sds — /g(p)sds
o) (32| f o615 ) (5
T T4
and d(s) is a weighting function on [0,1], §(s) = 1/7,if r; < s < rjy1, j = 1,2,...,n. We summarize

the limiting distributions as follows.
THEOREM 1. Suppose that Assumptions A1 - A4 hold, and assume that the initial observation

condition are given by (5). Then, as T — oo,

VT (RT9— R0+ (RTQR) " R'g") = N (0, (R"QR) " R'QR (RTQR) ).
REMARK 1. The asymptotic distribution of the profile likelihood estimator is complicated largely
due to the unbalanced data structure, which affects the limiting distributions under our assumptions.
REMARK 2. The partial linear model that we study in this paper may be estimated by other
methods - see an early version of this paper ALX(2008) for studies of other methods. Comparing the
profile likelihood estimator with the other estimators, the profile likelihood estimator is a joint esti-

mation for the nonparametric and parametric parts, while the other estimators such as the traditional



methods used in the literature of partial linear regressions are sequential two-step estimators. It’s
easy to see that the profile likelihood estimator has a smaller bias term than the two step estimator.
REMARK 3. Heteroskedasticity across i, weak correlation over ¢, and seasonality all affect the

limiting results. These effects are reflected through w? and s? in the limits.

If we consider the special case with complete data, all observations start at ¢ = 1, then r; = 0,
i=1,...,n, 41 = 1, and we have 6(s) =1/n, for 0 < s <1, j =1,2,...,n. Consequently

1 1
n

b=l | [ o0 @ ds | = | [a” @)as| | =0

=1"\0 0
This cancellation occurs because of the recentering due to the parametric part of the model.

Thus we have the following simplified asymptotic results for the profile likelihood estimator with

complete data. Let

1 *
Q: Yix — EEXv (8)

5 I, &1, @1, . In %J ® i

X = . X = . )

%In ® 111 1_12[11n %Jn ® lirl 122 Jlln
and  is defined by the same formula (7) with

0O = di 1\2 2 1\2, 2 1\2, 2

n = dlag (1—’;) Wi, .., (1—E) Wiy, oy (1—7;) Wy, 5
So o= diag| (1-1)s . (-7 L (-1

and the (i, j)-th element of A, is given by
A,] . = 7 2 1=
s _% (1 - %) (w? + ‘%2) + n_12 Zl;ﬁj,i wi, j<i

COROLLARY 1. Suppose that Assumptions A1 - AJ hold, in the case with complete data, the

profile likelihood estimator has the following asymptotic distribution as T — oo,

VT (R'0-R"0) = N (0,(R"QR) " R"QR(R"QR) ).
If we further assume that ¢;; are iid distributed with mean zero and variance o2, Q, = S, =

(1- %)2 o?I,where I, is the n-dimensional identity matrix, and the (i, j)-th element of A, is given
by
[An].._{ n(l=q) ot =y
M -te? j#i

10



We next analyze the estimator of the trend function. The asymptotic results of this estimator is
summarized in Theorem 2 below whose proofs are again given in the Appendix.
THEOREM 2. Suppose that Assumptions Al - A4 hold, and assume that the initial observation

condition are given by (5). Then, as T — oo,
— 1
Th [/g\(U)—g<U)—hpb(U)] = N(()?EmeKH%) ) fOI'UE [Tmarm-i-l)? m = ]-a"'7n_17
1
VThlg(u) — g(u) — h’b(u)] = N (0, EWQHKH%) , for u > r,.

where b(u) = ﬁg(p)(u),up(K), while @2, = m™ 'Y " Wi w? =n"t Y0 wi
In the special case with complete data, we have the following special result.
COROLLARY 2. Suppose that Assumptions Al - A4 hold and all observations start at t = 1.

Then, as T — oo,

VIR [3(0) ~ gfu) ~ 120)) = V (0, 2| 13). )

REMARK 4. It is possible to extend the above results to allow for cross-sectional dependence as
well, since the CLT is coming from the weak dependence in the large time series dimension. Suppose
instead that e, = (ey,...,em)" = Z(t/T)Y?n,, where the vector n, = (9y;,...,7,;)" is stationary
[-mixing with the same decay rate as in assumption A1, while Z(u) is a symmetric positive definite
matrix of smooth functions. Let ¥(s) = En,n,., and ¥oo = > oo W¥(s). Then the asymptotic
variance in (9) becomes || K||2i"Z(u)Y?W = (u)?i/n, where i = (1,1,...,1)". However, the results
for § are much more complicated in this case.

REMARK 5. One can also expect that Theorem 2 continues to hold in the case where n — oo.
In this case, the rate of convergence of §(u) is of order 1/v/T'mh, and if u > r,, this rate is 1/v/Tnh.
The precise rates attainable depend on the distribution of the sequence 7,75, ... throughout [0, 1].
However, the asymptotic distribution is the same regardless of whether n is large or not. The
corresponding results for 6 have to be rethought in this case because the dimensions of this parameter

vector increases.

5 Forecasting

In this section we consider forecasting based on the semiparametric model (2). In particular, we
consider g-step forecasting, i.e. forecasting of y; 14, based on information upto time 7. Our primary
interest is to forecast y; 4, with finite g, although our analysis allows for forecasts with ¢ — oo
under appropriate expansion rate of ¢. The common structure in our model allows us to exploit the

forecasting gains entailed by these restrictions (reduction in forecasting variance), which amount to

11



homogeneity restrictions in a panel-data environment. These restrictions were found to be helpful
in the empirical application of Hoogstrate, Palm, and Pfann (2000) for GDP forecasts. In a recent
paper, Issler and Lima (2009) have a theoretical explanation of why these restrictions might work in
practice.

Notice that

Yirsq = @ + B Drig + 9(1+q/T) + €iq-

Therefore, a simple forecast for y; 744, that ignores the error dynamics, can be obtained based on
estimators for «;, 3, and a predictor of g(1 + ¢/T) based on observations i = 1,...,n and t < T.
Since estimators for «;, 3, are studied in the previous sections, we study forecasting of g(1+ ¢/7T) in
this section and construct a predictor of y; 1+, using the predicted g(14 ¢/T"). We are also interested

in forecasting the average temperature, Y., = > Yir+q/m, given by
_ il —
Uriq =08 Driq+9(1+4q/T) +5, (10)

ST n = n
where 8 =3 1_, B;/n, and Eriq = Y 1L €i g/
We first consider the simple case when {¢;, }, are martingale difference sequences. Since forecasting

of g(1 + ¢q/T) is the key issue, we note that

ETyi,TJrq =o; + Bz‘TDTJrq + g(l + Q/T>a

where Fp denotes conditional expectation given the data.

We make the following assumptions to facilitate forecasting the common trend.

A1’ For each i, 4 is a martingale difference sequence, F (é‘?t) =02 and 0 < g < min<j<, 0; <

79

maXxj<i<n 0; <o < o0.
A2’ The function g : (0,1 + €] =R, some € > 0, is continuously differentiable up to the order T > p.

A5 K is a one-sided kernel satisfying (a) KK and K' are continuous on [—1,0]; (b) u{(K) > 0 and
ps (K3 (K) = pi (K)2 > 0, where 113(K) = [°) w/K(u)du

A6 The bandwidth h satisfies A4(a) and the bandwidth hy satisfies h/hy — 0 as T — oo.

We construct a local polynomial predictor for g(1 + ¢/T"). Notice that g (-) is a smooth function
under Assumption A2’; therefore, when 7" — oo, q/T — 0, by a Taylor expansion of g(-) around
u =1 to the 7-th order (7 =p — 1),

o =3 0 () o (2)) = S (1) +o((2)).

12



As will be more clear later in this section, forecasting at time 7' is largely affected by data

information close to time 7". We let

=T

n R ~T _
Y, = n! Z(yzt —a;—B; Di) =9, — 8 Dy,
i=1

for t, <t <T.Let IC(-) be a one-sided kernel whose properties are defined in Assumption A5 above,

we consider the following local polynomial estimation at the end point 7"

() (B (7))

where h; is a bandwidth parameter satisfying Assumption A6.

We summarize the asymptotic behavior of the local polynomial estimator (11) in the following

Theorem. Let

H:+1<IC)
_ 1 41 M:+2(]C)
PO = G O
M27+1(/C)
po(K) (K)o pi(K) vo(K) vi(K) ... vi(K)
gy = | OB | e | ) 0 () |
iiK) wia(K) o s (K) i) 3. (K)

and p}(K) = fi)l K (u) uFdu, vi(K) = f31 w K%(u)du. Let also D;, = diag (1, h,...,h").
THEOREM 3. Suppose that Assumptions A1, A2', A3, A4, A5, and A6 hold, as T — oo,

VThDy (3 — v — k{7 M(K) ' B(K)) = N (0, %JQM(IC)W(IC)M(IC)l) :

where 0 =n~1 Y"1 oF.

The above result indicates that the leading bias effect of local polynomial estimation of (g, 71, .- .,7,)
is given by h" ™D, M (K)'B(K), and the leading variance effect is given by
WD, "M (K)~'V (K)M(K)~1D; ' /nTh. The local polynomial predictor for g(1 + ¢/T) is then given
by

and our predictor for y; 74, is given by
~ ~ AT ~
Yirrq = Qi+ B; Dryg +9(1+¢q/T). (12)
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The forecast for average temperature is just the average forecast, so

—~ =T R
Uriqg =08 Dryg+9(1+q/T), (13)

where E =n 1ty ", @T

The forecasting error is given in the following theorem. Let P, = (1,(q/Th),...,(¢/Th)")". Let
E7. denotes asymptotic conditional expectation given the data.

THEOREM 4. Suppose that Assumptions A1, A2', A3, Aj, and A5 hold, as T — oo, the fore-

casting bias in Y; 14 is given by
Erfirvq = Yimg) = by = BT [PIM(K) ' B(K) + o(1)]

and the forecasting error variance in Y; 44 is given by
1
Tnh

T

E7 [(Uireq — ETg//\i,T-HI)Q} =0l + ( [PIM(K)"V(K)M(K)™'P, + 0(1)]) %,

where, o2 is defined in Theorem 3. For the forecast of average temperature, @T +q» the forecasting bias
is the same as that of Y; v+, given by the above formula, and the forecasting error variance in §T g
s given by

B |(Frea— Bilire) | = (14 7 [PTMO VM) P, +o1)] ) o2

The results of Theorems 3 and 4 indicate that the forecasting error of ¥; 1, is dominated by that
of the local polynomial forecaster of g(1+¢/T). In particular, for the leading case of forecasting with
finite ¢, the bias term is dominated by the first term in b, : A" By, where By is the first element
in the (7 + 1)-vector M (K)™'B(K). The forecasting error variance is dominated by o2 + Vyo?/Tnh,
where V; is the (1,1)-element of matrix M (K)~'V ()M (K)~*. Similar result can be obtained for
the average temperature forecaster @T +q- These results also hold for more general cases as long as
q/Th — 0.

If we allow that ¢ — oo, the order of magnitude of the forecasting error is determined jointly by
the bandwidth h and the forecasting distance ¢/7. In the case of ; 144, if ¢/Th — 0, the bias term
is dominated by the first term in b, : A" By, and the forecasting error variance is dominated by
0?2 + Voo? /Tnh, where By and V; are defined in the same way as above. If ¢/Th — ¢ € (0,00), the
leading bias term is affected by all terms in b, : A7 ATM(K) "' B(K), where A, = (1,6,...,67)".
The leading variance terms is giving by: o2 + AT M (K)"'WV(K)M(K)'A,0?/Tnh. If q/Th — o,

our theory is not applicable.
REMARK 4. In the general case when {¢;}, are weakly dependent,
Eryiriq = @i+ B Drig+9(1+¢/T) + Ereiry,
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where Ep denotes conditional expectation given the data. Under our condition Al, Epe; 1, # 0
(although Ere; 1+, — 0 as ¢ — 00). To forecast Epe; g, we should fit a time series model (say, an
ARMA model as Box and Jenkins) to the error term, and using the existing forecasting method to
construct a predictor. In this case, we may detrend and remove the seasonal components from y; ,

using our estimates @, 3;, and §(¢/T), i.e.
—~ ~ A—l— —~
Eit = Yip — O — B; Dy — g(t/T)

and then fit the estimated stochastic component €;; by an appropriate ARMA model to obtain
forecast of €, 74,, say, ETsi,T+q. A predictor for y; 14, can then be constructed by g(1 + ¢/T) that

we obtained earlier in this section together with other components, i.e.
~ ~ ~T —~ =~
Yir+q = Qi+ B; Dryg +9(1 +q/T) + Ereiziq-

In the AR(1) special case €; ¢ = pe; 1—1+1);,, where n,, is iid, we have Epe; ri, = ple; r. More generally,
for ARMA process errors one could use the standard linear forecasting techniques associated with
Box and Jenkins. Alternatively, we may ignore the error dynamics and simple construct forecasts for
Yi,;r+q and Y, by (12) and (13). Such predictors are asymptotically equivalent to predictors that
takes into account the weak correlation in ¢, for long-run forecasting (the case ¢ — o0), but are less

efficient for short-run forecasting than predictors that utilize the correlation property.

6 Application

Our dataset contains the average maximum temperature within a month (TMAX), the average
minimum temperature within a month ("M IN), the difference between the average maximum and
minimum temperatures within a month b(TRANGE), all measured in degrees Celsius and also the
number of hours of sunshine and the number of millimeters of rainfall. The primary data source is
the met office web site for each of the twenty six stations.? The first observations were taken in 1853
at Armagh and Oxford so that we have a total of 1858 time series records.

In the working paper version of this paper we provide the full results of a univariate parametric
analysis based on a quadratic trend. This shows evidence of seasonality and an upward trend for
all stations. There is also some evidence of serial correlation in the residuals but little evidence of
GARCH effects. The error correlation does not affect the estimation of the regression coefficients
and changes only slightly the standard errors. Similar results were obtained for both maximum

and minimum temperature. We also report results for the range. These are somewhat different.

2The data are available at http://www.metoffice.gov.uk/climate/uk /stationdata/
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Specifically, the trend coefficients are significant in only nine cases, with seven of those cases having
a similar upward trend, whereas the other two actually have a negative trend in range. Range has
also a significant seasonal effect and a significant autocorrelation coefficient in most cases. The results
for sunshine hours are not so consistent as for temperature. There are seven stations with significant
trends, six of them with increasing trend. Overall though many other stations have negative, albeit
insignificant, trends. With rainfall, the trend is not significant in any station.

One critique of such a parametric analysis is that the implied trend is a little unrealistic and poorly
estimated. Extrapolating beyond the sample implies an outrageously high temperature twenty years
from now, which is just not credible. This is why we have advocated a semiparametric approach.

We next present the results of the semiparametric analysis. In Tables 1 and 2 we give the
estimated values of € and the associated standard errors for TMAX and TMIN. The parameter
values are strongly significant and show evidence of geographic variability in the level of temperature
and seasonality. These results are broadly consistent with the individual purely parametric results
we gave in the working paper version.

We present in Figures 2 and 3 the implied trend from the parametric analysis. The jagged nature
of the graph is caused by the introduction of new stations. Also note that the implied trend at the
end of the period is quite extreme. Our results are somewhat different from those obtained in Gao
and Hawthorne (2006) for example, since we find evidence of trend starting much later. In Figures
4 and 5 we give the estimated nonparametric trend over the same period. The trend is much more
moderate especially at the end of the period. In Figures 6 and 7 we give the trend just for the recent
period by only considering the balanced subset of the data. Even though the nonparametric trend
indicates some variation i.e., some downward movements, but generally it climbs upward, this being
more pronounced after 1995. In both cases, balanced and unbalanced, we can easily claim that there
is an upward trend for the TMAX and TMIN values. These were implemented using a Gaussian
kernel and Silverman’s rule of thumb bandwidth (which in this case yield h ~ 0.05). As we remarked
in the text, the estimation of the common trend is purely local and unaffected by earlier data. The
standard errors for the nonparametric estimators of TMAX and TMIN over the shown period are
0.476709, 0.48602 respectively, indicating the level of significance of the estimated curves.

We next present the result of an out of sample analysis. We compute the estimated forecast
based on local linear smoothing. We report the absolute error for the p-step forecast, where p =
1,2,...,12, so forecasting out to one year ahead. The forecast errors given in Figures 8 and 9 appear
reasonable and are better than the corresponding parametric results, which substantially overpredict

the temperature in this period.

R+ Figures and Tables Here***
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7 Conclusion

In conclusion, we have developed a semiparametric model we think is appropriate for modelling the
changes in temperatures observed at a cross section of locations. The model and methods are defined
for the important practical case of unbalanced data. The methods we develop give similar results to
a parametric analysis and help to confirm the main finding of a gradual upward trend in temperature
in the UK, although with somewhat less trend obtained by the nonparametric method than the

parametric one.

8 Appendix

8.1 Proof of Theorems

PrOOF OF THEOREM 1. The first order condition (FOC) for 6 is

agal B _ZZ (y]t aj —B;Dt—ﬁe@/T)) %ZT)

J#i t=t;

=3 (=@ =B D= Gult/T)) (1 + %) =0

5 ZT T 4 (/T)
S i t=t; (yjt j - ﬂj b= ga(t/T)> 8—51
ZT . R 95

where:

ed/T) ———ZKh (t —s)/T) — {Om,a i< my

8041' 1> my

DGo(t/T) 11 — i,
9%, ZKh ((t — s)/T)D, 1

044, 1> My
Thus, fori=1,...,n,

DD | me—d—5 Dt———ZZ(y]s— s~ B, D) Ki((t — 5)/T) —@%%TM

I#i t=t; j=1 s=t;

S (g—a- 3 t———fjfj(yjs— ;= B, D.) Kal(t — )/7) (1+%ZT>>=0,

t=t; j=1 s=t;

iﬁmt

stl
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T n T

2.2 y’t_al_BlTDt—m%%ZZ(yjs—aj—BjTDs) (¢ — 57 | 20D

I#i t=t j=1 s=t; 9B,

T b Lty ol oG(t/T)
Z yz‘t_ai_ﬁi Dt_gizzcyjs—aj—ﬁj DS> Kh((t—s)/T) (Dt+08—ﬁ> :0,
t=t; t Jj=1 s=t; i

Substitute the true model y; = «; + ﬁZDt + g(t/T) + 4 into the above FOC, notice that

~ ~T . ~T
Yie = Qi = B Dy = i+ g(t/T) — (@i — i) — (ﬁi - 5:) D,
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thus we have, for i =1,..., n, the corresponding FOC w.r.t. «; is given by

> | B -+ |- P (5 - 7)
lgga(Eaemme)]o-.

o (S m) 2 o
S0 o)t
- (5 -#7) [me (1 > 0.k~ s>/T>> )

+@-a)) (1 - mit%ZKh«t - S)/T)) (1 T aﬁg;/iﬂ)
+ <B:— - 6:) Z <Dt - mit%ZDsKh((t — S)/T)) (1 n aﬁea(ZT))
N Z a; — a; Z (mtTZKh tS/T)) ( ajq\%(ZT))

J#I=1 t=t;
o)y (L) 05u(1/7)
_jg]:zl <5j - 5;) tz; (ETZDSK}‘(@ - s)/T)) (1 + %ai )
T 11 9Gs(t)T
- l%;;:l (5” - ET;;;%K}L ((t—s /T)) gea(a{ )

22 (9 HT) = ——ZZg (s/T)EG((t — >/T>) @%(ZT)

l?él t= tl ] 1 s= t]
T

Z (9 t/T) — ——ZZg s/T)KL((t — S)/T)) < 5998(ZT))
BS (

j=1 s=t;

Ly 030 (t/T)
my T > Z*fjsKh«tS)/T)) (1+ gaai >

J#i =1 s=t;
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and the corresponding FOC w.r.t. 3, is

d 0gy(t)T
> [x 200 @

i (B -7
I#i Lt=t;

z[ sy L (zm =D @%Wﬂ)](aw»

W+ Y [3

l#1

t=1;

JF#i I#i t=t; s=t;

[ ZZ (ZKh ((t—s /T>5ge(t/T)

l#l t= tl

-y (BJT — 6}) [Z > — (; ; D ((t— S)/T>) 6@%(;7)]

( —Oéz')

- (5. -57) [ZZ ( ZDJ(h((lf—s)/T)) %;/T)

l#l t tl

T

r- a0 (1= 21w am) (b0 20)

t=t;

“'(Bj_ﬁj)i (Dt———ZD Ki(( t—s)/T)) (Dt—i_a/g\%(;iT))

t=t;

—; @ - %-)i: (ET > i~ s)/T>) (0 2200

—; (3 ) Z (mi% > Dt~ s>/T>) (0 2280
- S5 (- S S - m) BT

+§§;<g t/T) —il;;g s/T)Knx((t s)/T)) %ZT)

§ (v i) o542

+ZT; g(t/T) — il;;g s/T) Ky ((t — s)/T)) (Dt + @%(ZT))

_ET: mitl 2”: Z%Kh (t—9) /T)) <Dt+ agg;iT)) '

t=t; Jj#i,j=1 s=t;
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If we denote:

Ca,z'i

Oa,ij

Cb,’i’i

Cb.ij

Ca,ll C’a,ln C1b,11 Cb,ln
CT,a = 7CT,b—
Oa,nl Ca,nn Cb,nl Ob,nn
Can Cain Cen Ca,in
CT7A = >CT,B—
CYA,nl CA,nn CB,nl C(B,nn
do da €a1 €Al
da: ,dA: y €a = , €4 ’
da,n dA,n €a,n €An

S Mzs L Kl = 9)/1)) (

1+ BQ%Z/T)
El# Zt . (Zs g, Kn((t = s)/T)> 950 ( t/T f }

i 39%CZT) TZZ;&Z > t mp <ZS o Kn((t = ) /T) 2552
Zt t1< Zs ¢ Ki( t—s/T)) (1 aget/T)

> et DIK((t—s /T)) (1 + 399 t/T)

Sa DIEL((t— s)/T)> 05 t/T ]

day;
- T Zl;ﬁz Zt t me (ZT DTKh(( - S

399 999 (t/T)
T Oy

M=

9ge (t/T)
Oa;

:
o |

)/

a’L

T
2=t

N[ =

S| =

Y ,%%
Zl;ﬁz t t nit <T

0ge(t/T)
Yooy, DI %)

ST (RS, D)) (14

N[ =

T
|
1
| o

ZZ ( (t/T) ___Zzg s/T)Kn(( ts)/T)) 0gg(t/T)
\/— I# 1=t j=1 s=t; 8&1
—l—Z (9 t/T) ___;;g s/T)Kn(( ts)/T)) ( %ZT))
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T

Cai = LT ; (sit —~ LlZasKh((lﬁ - 8)/T)> <1 + @%(ZT))
11 dge(t/T)
(ZZETK;L(( - S)/T>T«Z-) Eis
. G (t/T) 0gy(t/T
FE (R T (FEame B

J#LI= 1 s=t; \ I£i t=1

T i . 8g9(t/T) c.
Pogd> (Z Kt = 5)/T) (1+ - )) .

o1 Zfiti (1 - m_tT Zs t: Ky ((t — 8)/T)) <Dt + Oﬁe(t/T))

CA,M T { [ Zl;ﬁz Zt t ms <ZS —t; Kh((t — S)/T)) 93s t/T ] }

Crii — — ZZ t; 899 t/T -7 Zl# Zt b <ZS " Ku((t — 8)/T)8gg t/T >
Ajj = T — Zt:t (mtT Zs =t; Kn((t— S)/T)> <D + ng(tZT))

Cos = 7 { g _mzs " DTKh((f—S>/T>) (D o+ 2250 }

! [z#, St (— ST, DIKy((1 — 5)/T)) )]
=l l# t= tl s=t; i

i (—Z) (5800

t=t;

I#i t=t =1 s=1,

1 11 9Ga(t)T
dai = \/TZZ( (t/T) —tTZZg(S/T)Kh((ts)/T)) gﬁ(ﬁi )

Z (g t/T) — ilZZg (s/T)Kp( (ts)/T)) < aﬁ%(;{T))

Jj=1 s=t;
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€Ai = LT Z (&'t - mit% eis Kn((t — 5)/T)> (Dt + %)

s=t;

3 g om0 ),

1 L 0Go(t)T "Ll 11 9G(t)T
- (Z% S T2<225Kh<<t—s>m%f)

7 j#i,5=1 s=t; I#1 t=t;
1 & 1 9gs(t/T)
== 2 TZ (Z EK}LW —5)/T) <Dt + %T) Ejs)

then we have

Cra Cry || VT(@-a) K2 a
Cra Crp ﬁ<5—5> - | da i ea ] '
Let )
CT _ C'Ta C'T,b ’ dT _ [ da er = [ €a ] :
Cra Crp da | €A

the FOC can be written as:
CTﬁ (5— Q) = dT + er.

Thus the profile likelihood estimator subject to the linear restriction ¢'6 = 0 satisfies
VT (0-0) = R(RTCrR) ™ R'dr + R (RTCrR) ™' RTer,
where R is the K x (K — 1) normalized orthogonal complements of q.

By results of Lemmas 1 and 2, as 7' — o0 :

C11 .. C1 ... Cip
Cra= | ca Cii Cin | =Bn+Gn=0Ch,
Cn1 Cni Cnn i
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1
CTJ, - O@( T)

12111
i1 ... C1; ... Cipn
1, 1
= Ci1 Cii Cin | ® <E11T1> = (A +Gp)® (
Cnl Cni Cnn

1
Cra — Cn®(_111>

12
C11 C1; Cin
® L (A, +Gp)® L
Ci1 Cii Cin 12 11 12 11
i Cnl Cni Cnn i
and
1
Crp — A, ® I11 +G,® 122111111
Thus

Cr 0= A, + G, (A, + Gp) ® in

By Lemma 3, the bias terms are

[ ;la ] = —VTh? +o(VTh?),

b® Liy
where:
b:[bl, b bnr
1 1
b= (1) |3 | [ 601 (9)ds | = | [ w19 (5)ds
1#1 e ;

where w(s) and 6(s) are weighting functions on [0,1] :

1
é(s) = =, ifrj<s<rj,j=12,...,n
J

(A + G ) 121]—1 An ® %[11 + Gn ® #i]—lill ] .

1
w(s) = 1—(5(3):1—771ij<S<7°j+1,j:172>---an'
J
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By Lemma 4, the stochastic term e; converge in distribution to a multivariate normal with

covariance matrix

O Qi Qi - Q, + A, [Q, + A, ® 1211Tl
Qo Qoo [+ A] @ i, Su® S+ A4, @ s |

Proor Or THEOREM 2. Consider

n T
ARD Y ZST:Q. (yis —a; — B, Ds> Kp(u—s/T)
T 3 Y, Kalu—s/T) '
If tTm <u< tmT+1> D i1 Zfzti Kn(u—t/T))T =322, ZtT:ti K([u—1t/T)/h)/Th = m. Therefore,

gp(u) =

Bel) = =3 S Kufu—t/7) (e — @ - B, D)

=1 t=t;

_ Tth:;Ku—t/T) (yzt—az B, Dt>

_ ii (/71 /1) (e — @i — B7 Di — @i — o) — (B — 57) D.)
_ ii (= 1/ /1) (9/T) + e — @ — i) = (B, = 57) D)

- iz K([u— /7] /1)o(t/T) +TLM§§;K<W—WT] h)es

TthZK fu—t/T) /1) (@ — )

Tmh;tZ;K [u— t/T)] /h)( )Dt.

For the first stochastic term,

Tmh Zlgf( u—t)T) /h)ey = —Z {Th ZK w—t/T] /h)elt}
Again, for each i, >, K([u —t/T] /h)e; is a weighted sum of weakly correlated random variables

and a CLT applies,
T

7 2 K =t/ /Wi = will KI5
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The second term is simply a kernel smoothed estimator of g(u),

=SS K t/T] [h)a(t/T)

ilttl

_ _ZThZK [u—t/T) /h)g(t/T)

tt,

= _ZThZK u—t/T/h{ +Z hﬂ<u—ht/T) '()}+0(h”>

= —Z( + hp ()/Olsz(z)dz—i—o(hp).)

= g(u)+ ﬁhpg(p)(u)/o 2PK(z)dz + o(hP).

For the third and fourth terms,

o IS KT ) @) =0, (),

=1 t=t;

TthZK w— t/T] /h)( )Dt:0p<\/%),

=1 t=t;

the preliminary estimation of # does not affect the first order asymptotics for this estimator.
Thus for ¢,,,/T < u <ty /T, m=1,...,n—1,

VTR (u) - g(u) — WPb(u)] = N (o, ~ (% Df) HKH§> .

For u > t,,/T,

VTR (u) — g(u) — hPb(u)] = N (o% (% Zw?) ||Kr|§) |

|
PROOF OF THEOREMS 3 AND 4. Notice that when ¢/T — 0, as T — oo, under Assumption
A2’ by a Taylor expansion,

oM =3 50”0 (7)o (£)) = Xow- () +o((2))

The local polynomial estimation at the end point T is given as follows:

ol 1
XT:/C E < — Tx>2 where v = '0 Ty = :
pa Th gt /y t ) ’Y_ . y Mt — ti:T ]

Vr (T)
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The local polynomial estimator can be written as

[ T T T+1
T-t\ - 1 oy T -t t—T

* Z’C( Th >“’txt o PO () (7 |
By result of ALX(2008),
T -7

T—t
ZK: (W) .Itl’;r] ZK: ( ) TiE¢
t=1 =1
T -1 T 7+1

T —t - AR T —t t—T\"" 12 et
Sk (T ) e ] e WK (T )\ ) ) e @

t=1

Notice that, under Assumption 5,

and thus
pe(K) (K)o pn(K)
L (T=t\ | miK) (k) 1 (K)
T_hZK(T—h)x_) B s
pr(K)  pia (K)o ps(K)

Notice that, although with incomplete data, when we consider the end point 7" and neighbourhood

around 7', observations from all ¢ are available,

AR () ()t (42E)

i=1

and
vo(K)  vi(K) Vi (K)
S () e o Ziget | 40 v vl ||y (o L)
_ v1(K) i, (K)



where w? = 3" | w?/n, since
o (e () () =) (e () () =)

(Z v, <j>> / K () udu = w2, (),

j=—o0

The variance term of the local polynomial estimator is

1 . (T—t 1 (Tt 1
— T B = -1 2

_ N (0, %&M(K)*V(/C)M(/C)—l) |

And the bias term
f741(K)

o () ( () ) | 4 [0
_ P11 (K)

Thus
VTh (7 —~y - TM(K)'B(K)) = N (o, %&M(/C)*V(/C)M(/C)—l) :

Notice that .

S _ p7—k+1
Vi Vi = h Bk+ ﬁhk+1/2Uk7

and our forecaster for g(1 + ¢/T') is given by

9g(14+q/T) = 27k (—) :

Thus, the forecasting error is

g1 +q/T)—g(1+q/T)
=2 (e (£) Bk)+o((%)T)+k:0 (s (2) ) +o((2)):

The bias and variance terms are given by

T

b, = Z(hT’““ (;) Bk) ey <(%>k3k)

k=0 k=0
! kzzo VThE+1/2 <T Y VTh = *
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whose order of magnitude are jointly determined by the bandwidth h and the forecasting distance

q/T. In particular, the prediction error is given by
~ —~ AT AN
YiT+q — YiT+g = EiT+q — (O — Q) — (ﬁi - 5?) Driq—[g(1 +¢/T) — g(1+q/T)],

Since the parameter estimates are of smaller error, for any fixed ¢,

~ - 1 . 1
YiT+q — YiT+q = EiT+q — P 1By — \/ﬁUo + 0y <h LR —ﬂ) .

Thus, the forecasting bias is of order O(h7™!), with leading term A" By, and the leading term of
forecasting variance is

1
2
W2 —V
it TR

where Vj is the (1,1)-element in the matrix +w? M (K) 'V (IC)M ()~ ]

8.2 Lemmas

LEMMA 1. For each i, as T" — oo:

n
Ca,ii — ¢y =1 —1;— 2ay; +iag + g 2y,

l=i+1

1.+ . - 1.+
Cb,z‘z‘ —  Cy Elu = (1 — 7”2‘) — 2CLM’ + 1Q9; + ZZZ—H 9 Elu s

1, . - 1,
CA,ii — Cy Elu = | 1—7r;—2ay; + tay + Z 5] Elu )

l=i+1
~ 1 1 T e . 1 eT o - 1 o o
Cpii — Ci=(1- 7“1‘)5111 — 26!11‘@111111 + 12i 7oz ha1n + Z a2 | Toziiln
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LEMMA 2. Fori # j, as T' — oo:

(max(, j) — 1)ag max(i,j) + Z
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A,ij Cij 12 11 ax\, j 42 max(i,j) — 4Q1,max(i,5) l ) 12 11 | »
| max(,j
I .1, .
Ch.ij Cij @111111 = | (max (4, j) — 1)@z max(i,j) — 201,max(ij) + Z 22 11 i | .
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_\/_hp ,,pr

/5 (p
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- / w(e)g (s | | (5

—iy
T4

where w(s) and d(s) are weighting functions on [0,1] :

1
1-6(s)=1—~,ifr;
J

LEMMA 4. For each i, as T" — oo,

€ai = N (0,02) seai = N (O,

where:

2 2
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8.3 Proof of Lemmas

Proof of Lemma 1. Notice that
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Proof of Lemma 4. Notice that
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Thus, let
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