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Abstract. We make a proposal for incorporating massless modes ingpthechain of théAd S /CF T,
integrable system. We do this by considering the- O limit of the alternatingd(2,1;a)? spin-
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1 Introduction, review and summary

The AdS/CFT correspondence [1-3] provides a remarkablepedturbative duality between quantum
gauge and gravity theories. For certain classes of duatitemtegrability has given a detailed, cal-
culable description of how (in the planar limit) the corresgdence works. For a review and a more
complete list of references see([4, 5]. Within the AdS/CFrespondence, integrable structures were
first identified in the case of the maximally supersymmettiality between type [IB superstring theory
onAdS x S and.# = 4 super-Yang-Mills (SYM)BSU(N) gauge theory([6,7]. However, we now know
that integrability gives a handle on several other claséési@ pairs. These include othadS/CF T,
duals such as orbifolds, orientifolds and deformationsdfreview and more complete list of references
seel[8]) of the 4 = 4 dual paiE] Remarkably, integrability has also been instrumental menstanding
the AdS,/CF T3 duality of the ABJM Chern-Simons theory [18]19] as initehte [20-:22] and Type IIA
string theory omAdS, x CP® [23-25)3

Lintegrability in the context of AdS/CFT of other four-dimsanal conformal gauge theori€s [9+12] has been investigat
in [13+17].
2For a review and a much more extensive list of referencesZ§ie |



1.1 TheAdS/CFT, dualities

More recently, the integrability approach to the S /CFT, correspondence [1, 27,128] has been devel-
oped in [29]. Related recent advances in this area include3s]. The gravity side of these dualities
is given by Type 1B superstring theory éxdS; x S° x M whereM = T4 or M = S* x St For brevity,

we will henceforth refer to these two backgrounds, and tbairesponding dualities, 8 andS', re-
spectively. In order to satisfy the supergravity equatiohsiotion, the radii of théAddS andS® factors

are related to one another

1 1
T - (1.1)
Riss R8
1 1 1
==+ (1.2)
s R R

Sl

Above, R, are the radii of the two three-spheres in Stegeometry, and because of the above relation
it is convenient to define andg as ,
azg¥¢z$§§ (1.3)
+

As a — 0 theS' theory becomes the (decompactifidi) theor)H The radii and other moduli of the
St andT# factors can be chosen freely. Both backgrounds also refjuies to support the geometries,
which can be suitable combinations of R-R and NS-NS fluxesodghout this paper we will consider
backgrounds with only R-R flux@sOur motivation for this comes from the observation that ghleir-
dimensionaAd SR-R backgrounds, integrability has been very successfutderstanding the (stringy)
quantum gravity at small string coupling. We expect thisdotmue to be the case féWdS/CFT, as
well. In particular, we will investigate the dual pairs asidtions of a 't Hooft-like [37] parameter
A =41T?, whereT = R ,5/2ma’ is the effective string tension.

The T4 and St backgrounds preserve 16 real supers mm&resich combine with the bosonic
Lie-algebra symmetries into two different Lie super-a

M=T* ; psu(1,1/2)2
M=Sxg ; 0(2,1a)2.

In two dimensions the conformal symmetry algebra is infiditeensional. The above Lie super-
algebras are the finite-dimensional part of the full supeadtro algebras known as small and large
(4,4) super-conformal algebras far* and S', respectively. Throughout this paper we will be only
concerned with the Lie super-algebra symmetries.

The CFT, dual for T# is expected to be (a blow-up of) thd,4)-supersymmetric sigma model
Symi(T#). This is suggested by the following observation. TiHfegeometry is the near-horizon limit
of a D1-D5 system in flat space. The open strings living on theDB intersection at low energies are
described by a (hon-conformal) 1+1-dimensional SYM. Ttasge theory is expected to flow in the
infrared to theSym\ (T#) sigma-model. However, as has been known for some finle [B&€]point in
moduli space described by tiSynt(T4) orbifold is in many ways atypical, and it is not clear to what

3Another background of this type I8 = K3. However, for our analysis it can be viewed as an orbifoldl bf

4The limita — 1 is identical to thex — 0 limit: the role of the twaS® factors is interchanged. Throughout the text we wil
only refer to thea — 0 limit and all our results will apply equally ta — 1.

5Type 1B S-duality relates these backgrounds to more géoerabinations of fluxes. A detailed analysis of i dual
pair's moduli space, including S-duality is given[in [36].

6This is the maximal number of supersymmetries allowed faaekground with ardS; factor.

"The appearance of the super-algef 1;a) in this setting was first observed [n38].
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extent it can be regarded as the analogue of the free gaugey timehigher dimensions. Iri_[39] an
attempt was made to identify an integrable spin-chain insigea-model orbifold directly. However,
perhaps because of a large amount of mixing, it is much haoddwo this than in4” =4 SYM in four
dimensions, and so a Minahan-Zarembo type spin-chainigéearof theT* CFT is still missing. The
situation is more murky still in the case of tlF T, dual of St where at present no suitable dual is
known. A detailed discussion of this can be found_in [40].

1.2 TheAdS/CFT, integrable systems and missing massless modes

The above-mentioned obstacles make it difficult to studyGQRéa, side of the dualities directly. The
string theory side of both th&* and S' backgrounds is better understood. For example, the string
action, in a suitable kappa gauge, is known explicitly fothblbackgrounds. It consists of a Metsaev-
Tseytlin coset action together with four/one extra freedmssdescribing th&4/S* part of the geometry,
respectively. As a result the equations of motion and Biaitgntities that follow from the action
are equivalent to the flatness condition of a certain Lax eotion. In other words, the theory is
classically integrable. In [29] finite gap equations werastaucted from the monodromy matrix of the
Lax connection. InN[29,32] an all-loop Bethe ansatz (BA) wasjectured, which in the thermodynamic
limit reduced to the string theory finite-gap equations.

One might expect that, up to the knowledge of the so-calledsiing phase and functitA ) which
enters the dispersion relation, this all-loop BA shouldctibe the spectral problem associated with both
the T4 andS' dual pairs. However, as was already noted in [29], the figéte-equations obtained from
the string theory monodromy matrix do not incorporate alhgly excitations.

To see which states are missing from the finite-gap equaitoisseasiest to look at the BMN
limit [41], where the string spectrum is known exaclly [4Y}-4 In the BMN limit, any state in the
string spectrum can be built up by acting on the groundg@tevith bosonic and fermionic creation
operators

anm s W m (1.4)

and imposing a suitable level matching condition. The @meabperators are labeled bye N, the
Fourier-mode of a string coordinatethe target-space directions transverse to the light-candm
which is called thenassof a particular excitatioff. For example, a state of the form

o)} (1.5)

\/ M+ n2. (1.6)

The T* theory has four target space directiarfer which the bosonic and fermionic excitations have
m; = 1 (in suitable units) and four directiorior which the bosonic and fermionic excitations have
m, = 0. TheS! theory has two target space directiorier which the bosonic and fermionic excitations
have massesy = 1,a,1— a and 0. The oscillators withh, = 0 lead to a degeneracy of the groundstate,
since, for example,

has energy

(.Uri1:0;m =0 |0> ) (1-7)

has zero energy.

It has been shown in_[29] that the finite-gap equations areniptete. For example, they do not
capture BMN-type solutions withy; = 0. In other words, we are “missing” four/twoassles®osonic
modes (and their fermionic superpartners) in THgS' theories, respectively. As a result, the all-loop

8The massn does not depend am



BA does not contain all the information about the spectrabfam of thes&d S theories. Nevertheless,
given that the all-loop BA is consistent — for example, then&xix on which it is based satisfies the
Yang-Baxter equation (YBE) — we expect that including thesstess modes will modify the BA, rather
than change its form entirely.

Notice that asx — 0 the number of massless modes changes. In other words, ifeenof modes
not captured by the all-loop BA changes in this limit. Thisetvation will play an important role in
what follows.

1.3 Spin-chains forAdS/CF T,

As we have already mentioned, t8& T, side of the duality is considerably less-well understoahth
the corresponding gauge theories of higher-dimensional pairs. A direct construction of an inte-
grable spin-chain from th€FT, side seems challenging at present [13-17].[In [32], a diffeap-
proach was adopted: starting from the all-loop BAs of Tifeand S' theories [29, 32] smalh BAs
were extracted. A homogeneous (respectively, alternating) integrabla-spain was then constructed,
whose spectrum could be computed using the weak coupling fBAeoT# (respectively,S') theory.
Regardless of their relation ©©F T,, these spin-chains can be viewed as a discretization ofttimg s
theory at smalh .

It was shown|[[32] that certain solutions of the weak coupBAgbecome singular in the — 0 limit.
These solutions correspond to the increase in the numbeissing modes in the BA ag — 0. What
is remarkable however, is that the R-matrix, which encotlestegrable structure of the spin-chain
remains well behaved @s— 0. In other words, the integrable structure of the spinthamains well-
behaved in this limit. Since the number of missing modes gbsiat these values af by keeping track
of the integrable structure, we should learn about the fatBeomissing modes. Indeed it was already
understood in[32] that in the — O limit the alternatingS' spin-chain and its R-matrix contained the
homogeneoud* spin-chain and its R-matrix as part of a larger state space.

1.4 Plan of paper

It is the purpose of this paper to investigate the spin-chétiat arise in thex — 0 limit and show
how one can understand the missing modes as excitationscbfsqin-chains. It will turn out that
these spin-chains are somewhat unconventional. Firbiyreépresentations that enter the spin-chain
are no longer irreducible at = 0. Secondly, for the limiting values af, there is no value of the
spectral parameter where the R-matrix is proportional égsérmutation operator. As such, we cannot
immediately apply the conventional methods used in theystdichtegrable spin-chains. Nevertheless,
the R-matrix encodes all the relevant physical informatiod we will use it to understand tlee= 0
spin-chain and its interactions.

This paper is organized as follows. In sectidn 2 we reviewst() representations that enter into
the construction of the spin-chains paying particularraitbe to thea — 0 limit, where some of the
representations are no longer irreducible. In order to tstded better the R-matrix that enters our
spin-chains in sectidi 3 we construct the Yangian for thevesits((2) representations using Drinfeld’s
second realisation. In sectiobs 4 ddd 5, we show that the tRe@s given in[[32] (and reviewed in
sectiorL 6), restricted t1(2) ands[(2|1) subsectors can be obtained from universal R-matrix exjoress
using the Yangians we have constructed in Drinfeld’s seaeatisation. We take this as important
evidence of the validity of our R-matrices, especially o= 0. In sectiorl b we review the construction

9To do this one needs to assume that the dressing phase anbligoétaus functionh(A), which enters the dispersion
relation, have suitable small behavior. This assumption can be roughly thought of as aertéms that an integrable, local
spin-chain description of the integrable system existsratlsvalues ofA .



of the spin-chains and R-matrices considered in [32] ancLids some of their properties. In section 7
we investigate the spin-chain et= 0. We argue that for this value @f the alternating spin-chain
involves reducible representations, and, using the Rixnasrour guide, we identify a suitable notion
of local interactions for such spin-chains. In secfibn 8 westruct an Algebraic Bethe Ansatz (ABA)
for the a = 0 spin-chain.

Up to this point the spin-chain discussion will be in the dmalegime. We will show that, as a result
of working in the smallA approximation, the spin-chain has a very large degeneragsoandstates at
a = 0. In sectior D we show that this is in fact an artifact of the@b#ambda approximation, and that
when higher order interactions are included, much of theederacy is lifted. In particular, we show
that the remaining ground-state degeneracy is precisedy arre expects from the BMN limit analysis.
In this way we believe we are able to incorporate the missinges into the spin-chain description of
the AdS/CFT, integrable system.

2 Areview of certain sl(2) representations

In this section, we fix our conventions for th&2) Lie algebra. The motivation for treatirg(2) first,
and only later turning to thel(2|1) case of relevance to the superstring, is due to the fact treatan
learn a great deal from this simplified setting. Many praperthat will turn out to be quite crucial
for the supersymmetric case are best observed when dealing2) representation, especially the
distinction between the various modules at special poimtthé moduli space of the representation
parameters and the issues related to unitarity. This teyatmvill also serve as an illustration of the
Yangian algebra techniques we will be using, before apglyfiem tos((2|1).

2.1 Defining relations
The basic commutation relations are given by

[h,e] = 2e, [h, f] = —2f, e f]=h, (2.1)
for h Cartan elemengraising andf lowering operator. The quadratic Casimir of the algebra is

h2
C2:E+ef+ fe (22)

Let us focus on infinite-dimensional modules parameteriaed complex variable, and choose one
among the various representations available. This chsigetitoo restrictive, however, since in general
one can find an isomorphism between different representati@s long as is strictly non-zero. One
has (see for instance [48,49]) the following representaiticterms of differential operators:

PP=2z9,—-s P~ =29,-2sz P"=-94, (2.3)
One can prove that the identification with (2.1) is done as\s:
h=2P%, e=P, f=P". (2.4)
The Casimir in this representation is equal to

Co = 25(s+1). (2.5)



Another representation with the same assignnient (2.4h @ieverywhere replaced b§f) and same
Casimir [2.5) is given by

$=29,-s S =-z S"=_-2s4,+20% (2.6)
There exists a transformation between the two represensatve just described, namely
pilgty —_pst  pligly —ps® 2.7)
The formal expression fd¥ is

1
v= [ (20, —25)° 28)

This expression becomes well-defined on eigenstates ohtleber operator’
N = zd,, (2.9)
given by
In) =2", n>0. (2.10)
Another representation is given by (¢f. [50])

R¥|n) = (n—s)|n), R n) = —v/(n+1)(n—2s)|n+1), R |n) = v/n(n—2s—1)|n—1).

(2.11)

The assignment is still given by (2.4) (wif¥ everywhere replaced Hy®) and the Casimir still given
by (2.83). We can perform a similarity transformation on thpresentatiof (2.11), namely

VIR Yy =£RYo, v IR®y =R, (2.12)
with

1

FRTD (2.13)

y:

The transformatior (2.13) is regular on any stale since the eigenvalues bf+ 1 are strictly greater
than zero on any such state. The resulting representatiaogsr to Holstein and Primakoff’s original
representation [50], and is manifestly unitary ®real ands < 0. In fact, if we introduce a set of
oscillatorsa <+ d,, a' <+ z, such that

aal=1  |n=a"l0), n=012,.... (2.14)

we immediately have

Nl

Lo=a(@a-29)2, Ro=(ala—2s)

a (2.15)
If we canonically assign the hermiticity property
(@t =a' (2.16)

we see thatRs;o)" = R%,o, while RS o = 1 RS0, R%;0] is hermitian.
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There exists a transformation between tR& tepresentation (2.11) and thE* one (2.3), namely
EIREE =P, EIRSBE =P (2.17)

The formal expression faf is

M(N+1)

E: F(T_Zs)v

(2.18)

which again becomes well defined on eigenstaiesf the number operator. The transformatibn (2.18)
is regular on all statef) as long as # 0, which implies via[(2.17) the unitarity of the represeitat
(2.3) forsreal ands < 0. From these observations we can already anticipate fremeht section that
for s= 0 the representation (2111) will remain unitary, while timedn [2.3) will not (similarly for the
(2.8) representation).

In the list provided by[[5l1], the above equivalent repreatoms all correspond to the one dubbed
principal discreterepresentatiot. One needs to assign

h:2‘]3’ e:‘JJra f:—‘]i’ S:_j? |O>:|J1J>’ (219)

whereJ®, J*, j and|j;m) are used in[51], whiléy, e, f, sand|n) are used in this paper. It follows from
(2.19) and from the description in [51] that unitary repréadons are obtained farreal ands < 0,
which is what we have found by direct observation[in (2.1i)c& we are working with the universal
cover ofAdS (hence, time is a non-compact variable), the paransatan be any negative real number.

2.2 s—0limit

In this sub-section we consider tise— 0 limit of the above representatio@.The representations
that arise in this limit will play a central role throughoutuoh of what follows. In thes — 0 limit
the similarity transformation®, & andW¥ &~ become singular when acting on the stiilg and the
limiting representations, denoted respectively P, S arar&no longer equival& We discuss them
in more detail below. In particular, we show that all threedumles become reducible.

2.2.1 P module

Such representation has been intensively studied in #ratiire due to its connections with high-energy
QCD (see for instancé [52] and references therein). Somastitrs called thalual Verma moduleln
terms of oscillators, a' and state$n) one has

PP=ala P =a’a, P'=-a (2.20)
One can prove that the identification with (2.1) is done dsys:

h=2P3, e=P, f=pP". (2.21)

10This representation is referred to lasvest weightin [51] (case (2), page 17). However, we will use the termogyl
highest weighthroughout this paper to refer to this very representatioto@ny representation with a highest or lowest
weight, and speak abohighest weight statesithout distinction.

Lwe are grateful to Joe Chuang for explanations of this aradeelpoints.

12 Notice that the three limiting modules still have the samleieraf the quadratic Casimi{E; = 0 ats = 0, since the
modules before the limit do share the vall€}(2.5).



P > Py S < ! Sy R ' T Ry
(1) () (1)

P_ Py S S R_ < > R:
(12)) (12)) (12))

P P S Sy R_ < > Ry

(a) TheP module. (b) TheSmodule. (c) TheRmodule.

Figure 1: Pictorial representations of tRe S and R modules. The grayed out and dashed lines indicates the
action of generators that vanish on a specific state, remglére corresponding module reducible.
The action on states is given by

Pin)=nn), P ny=n|n+1), P*n)=-nn-1). (2.22)

This module corresponds to an indecomposable represamtditecause all generators annihilate the
state|0), howeverP™ connectg1) and|0).

It is straightforward to show that the module (2.3) tendsh®R module in the limit. The module
(2.3) corresponds in fact to an irreducible representatfisraction on the statgs) is given by

PS3|n>:(n—s)|n>, P37 |n) = (n—2s) |n+ 1), PS*In) = —n|n—1). (2.23)

Whens goes to zero, the statB) is annihilated by all generators, and it generates an ioibtione-
dimensional submodule (‘singlet’). We have summarizedsthetion in Fig. [(1).

2.2.2 Smodule
The action on states in the representation] (2.6) is given by

SB¥n) = (n—9)|n), S7|n) = —|n+1), SNy =-n(2s—n+1)|n—1). (2.24)

The limit s — 0 provides us with the following module, conventionallyledltheVerma module Uti-
lizing the same oscillators and states (2.14), one has

S=a'la, S =a, s'=-a'a (2.25)
One obtains identification with the generatdrs](2.1) if oaéreks
h=2S5, e=§S, f =S, (2.26)
The action on states is given by
Sny=njn), S n)=|n+1), Stn)=-n(h—1)|n—1). (2.27)

This module corresponds to an indecomposable represamtatcause no generator can have the state
|0) as an outcome, howev&r connectg0) and|1), as depicted in Fig[{1).
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2.2.3 Rmodule

Taking the limit starting from the representatién (2.1 @erforming a further similarity transforma-
tion regular on all statesone obtain ars = 0 module we call th& module. More specifically,

(IR (s=0){ =-RT, ('R®(s=0){ =R, (2.28)

with ¢ formally given by

{=1/T(N+1). (2.29)

One finds this way

RP=a'ay, R =a'\/(a'a), R =—,/(a’a)a (2.30)

Identification with [2.1) is done as follows:

h=2R}, e=R", f =R". (2.31)

The action on states is given by
R3n) = n|n), R |n) =vN|n+ 1), RfIn) = —nvn—1|n—1). (2.32)

This module corresponds to a decomposable (or ‘completalyaible’) representation, because all
generators annihilate the sta@®, and no generator can have the st@leas an outcome, as depicted
in Fig. (). The two irreducible components are, respelstietrivial one-dimensional representation
and an infinite-dimensional one isomorphic to the —1 limit of the generall(Z]3) representation.

Let us mention that the — O limit for the P and S module results in a breakdown of unitarity. It is
not possible to find an inner product which preserves goonhitieity properties of the generators in
these two modules. This is not the case for Bmodule, as can clearly be seen frdm (2.30). As we
will see later, theR module will be of relevance to thedS/CFT correspondence. From the point of
view of integrability it may however be interesting to intigate all three types of representations, and
throughout the paper we will often present results for atkéhof them.

2.3 The representation®P @ P, R® R, and S® S

In this subsection we review the decomposition of the repretionsP ® P, R® R and S® S into
indecomposable (and mostly irreducible) sub-modules. Wllestart by noting that the tensor product
of an irreducible representatia@(s < 0) with itself, can be decomposed as

S®s=(29®(2s—1) P (2s—-2)® (2s—-3) P ---. (2.33)

Each of the representations on the right-hand side denatéseaucibles((2) representation. In the
following subsections we will write down the correspondidgcomposition for the differerga — 0
multiplets.
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231 PRP
The decomposition d? ® P is given by

PRP2P®-10-20-3@---. (2.34)
The highest weight states of the irreducible represemtsiim the right-hand side f (2134) are given by
N12= (a] —a3)'[0);®10), - (2.35)

The || = 0),, state is part of thé> module, while thel > 0);, are highest weight states fer= —I
modules. The expression (2135) matches fornfula4.10) at ¥aiows (for j =1).

232 S®S
The decomposition dd® Sis given by

SRS=Se -1 -2 -3 (2.36)
On the right-hand side of (2.86), the two highest weightestaf the modul& are
I =0)1,=10);®10), and (S +S)[1=0)y,, (2.37)
while the highest weight state of thel module is
I=1)1,= (8] -23)[0);®10),. (2.38)
The highest weight states of the irrep, —3,... are given by

"1 ni(n—2)!(—al) (@)
LPES SN =DI(n=D(n—1-1)

| |0);®10),, (2.39)
forn=2,3,.... The expression (2.89) matches formlla (4.12) in what¥aI¢for j = n).

2.3.3 R®R
Recall thatR= 04 —1, so the irreducible decomposition Bf Ris given by

RORX 0 —1g® —1a® —26 36 --- (2.40)
The highest weight states of the first three irreps of thet4tigind side are

I =0)1,=1[0);®|0),,

_1 1 (2.41)
I =15)1,=3 (111 ®]0),+0); ® 1)) , =1a)12=3(|1)1®[0),—[0); ®[1),) ,

where we used the subscrigtand o to distinguish between the symmetric and anti-symmetric
representations. The highest weight states of-tBe—3,... irreducible representations in tf® R
decomposition are

_d /=2 (-a)) (@)™
’n>12_|:1|! I=D(n—1/(n—T—1)! 0210, (2.42)

forn=2,3,.... The expression (2.42) matches formdla (4.15) in what¥aI¢for j = n).
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3 Yangians

We will now review the theory of Yangians relevant to our godh this section, we provide the defining
relations. For details, we refer the reader ta [563-55].

3.1 Drinfeld’s first realization

Let us first focus on bosonic Lie algebras. The Yang#ify) is a deformation of the universal en-
veloping algebra of the loop algebgdu] associated to a Lie algeb Let g be a finite dimen-
sional simple Lie algebra generated Bf with commutation relationgJ?,J8] = f2BJC, equipped
with a non-degenerate invariant consistent supersymengitmear formk” (such as the Killing form
kAB = fAC {8P). The Yangian is defined by the following commutation relasi between the level-zero
generatorsg” and the level-one generatqré:

[JA7JB] _ féB\JC,
(34, 38] = fRB3C. (3.1)

The original Lie algebray is a subalgebra o (g). Higher level generators are defined recursively
by subsequent commutation of these basic generators cstibjine following Serre relations (fgr #

s[(2)):
3 35,997 + 3% 30,9 + 30, 31, 99]) = RSB ¥ o357 (32)

Curly brackets enclosing indices indicate complete symmagion. Indices are raised or lowered with
k"B or its inverse, respectively. For the algebt¢), the above Serre relations are trivial, and one needs
to impose a more complicated set of relations (cf. secti@rilzf [56]).
The Yangian is equipped with a Hopf algebra structure. Theeamhuct is uniquely determined for

all generators by specifying it on the level-zero and -oneegators as follows:

AN =1 +10IA (3.3)

~ ~ ~ 1
AP =Fe1+103+ 5 fEJB @ 3C. (3.4)

Antipode and counit are easily obtained from the Hopf alget#finitions.

3.2 Drinfeld’s second realization

Drinfeld’s second realization explicitly solves the rexion left implicit in the first realization. It defines
% (g) in terms of (simple root) generatoksm, Eifm, i=1,...,rankg, m=0,1,2,..., and relations
[Kim Kinl =0,  [Kio, &'l = & &y
[fj—t_ma fjjn] = &,J’ Kj.n+m,
[Kims1, &) = [Kims € a) = £ 38 {Kim, &)
(& &) = [ &) = +3a; {&m &)

13 g =L+ fails Symig & (&g [k, €1l 11 =0, (3.5)

In these formulasg; is the Cartan matrix, which we will assume to be symmetric.

B3We remind the reader thgfu] is the algebra of-valued polynomials in the complex variahle
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Drinfeld’s first and second realization are isomorphic toreather. LetH;, Eii be a Chevalley-Serre
basis forg, and denote byy;, & the corresponding level-one generators in the first retizaf the
Yangian. Drinfeld[[57] gave the isomorphism

Kio=Hi, &o=E" &o=FE,

Ki,lzgi—via |1_QS — Wi, E':L:/é'_—zh (36)
where 1 1
Vi = 4,2 (ai,B) (EgEg +EfEg) — 2Hizv
1 1
W = ZBGA+ <E adE+( )+adE+( ) ) - Z{Ei+>Hi}> (3.7)
1 1
z = ZB;N <adE (B )Eg +Egad; (E )) — 2B Hik

At denotes the set of positive root vectdj'sgﬁ are generators of the Cartan-Weyl basis constructed from
Hi, E*, and the adjoint action is defined as@ad = [, y].

To obtain a quasi-triangular Hopf algebra one needs theldaflthe Yangian, which is obtained
by adding a second set of generators with ‘negative’ lavgl Eifm, i=1...,rankg, m=-1-2...,
satisfying the same relatioris (B.5). In addition, one hastalse pairing between positive and negative
level generators, which is used to construct the universald®ix [58]. Following Drinfeld, the object
constructed in this way provides solutions to the Yang-Batguation (YBE) when projected into
representations of (3.5).

The generalization to the supersymmetric case is straightird. Commutators become graded
commutators, and the relations with the ‘wrong statistarsthe right-hand side of (3.5) ard (B8.7) also
take up the wrong statistics in the graded case accordinglg.will spell out these relations in the
specific example ofl(2|1) later on (see formula (5.17)).

3.3 The Yangian ofsl(2) in infinite-dimensional representations

Let us specialize Drinfeld’s second realization of the Yango thes((2) case. The map between the
first and the second realization becomes in this case

ho=h, e=e fo=f,

~ ~

hy=h-v, eg=€é-w, fi=1-2 (3.8)
where
1 2 _ 1 _ 1
_E({f7e}_h )7 W= 4{evh}7 Z= 4{f7h} (39)
The first realization is given by
[h,e] = 2e, lh, f] = e f]=h,
[ﬁae] = [h,€] =2¢ [F] f] = [h f] = —Zf\, & f]=]e ﬂ = ﬁa (3.10)

Let us consider a so-callezaluationrepresentation whetfie=uh, é = ueand f = u f. By applying
Drinfeld’s map to this representation, one first finds theléand 1 generators of the second realization.
The generalization at all levelis afterwards easily found ds [58)59]

en:e(u+h%l)n, fn_f<u+h71), hy=ef,— fe. (3.11)
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It is easy to check that these generators satisfy the catedicting relations stemming fror (3.5):

[hm, hn] =0, [€mn, fn] = Nnem, [ho, &m] = 2€m, (ho, fm] = =2 fm,
[Pmi-1,€n] — [hm, €nva] = {hm,en},  [hmta, fol = [Pm, fria] = —{bm, fn}, (3.12)
[€m+1,6n] — [em,ent1] = {&n. &},  [Tmr1, fal = [Tm, Tap] = —{Tm, fn}.

We can extend the infinite-dimensional modules we have bisenssing in section 2 to representa-
tions of # (s1(2)) according to[(3.11). This promptly produces, épr0,1,2,...,

e Irreducible ‘ P module:

&ln) = (u+n—s+ %)q(n—25)|n+ 1, foln) =—(u+n-s- %)qn|n—l>. (3.13)

e P module:
1\d 1\d
&l = (u+n+3) nin+1), fol) =~ (u+n—3) "nin- 1) (3.14)
e Smodule:
1\d 1\d
eq]n>:<u+n+§> In+1), fq\n>:—<u+n—§> n(in—1)|n—1). (3.15)
e Rmodule:
&|n) = <U+n+%>qx/ﬁ!n+l>, fq\n>:—<u+n—:—2L>qn\/n—1\n—1>. (3.16)

Notice that the otherS” and ‘R® modules of sectiofil2 are easily obtained from th& module [3.13)

by applying the very same transformatiofs 12.7) dnd {2.de8pectively, to generators atbitrary
Yangian level. In fact[(3.11) shows that the differenceneen level zero and higher level generators in
this representation is always given by a factor which is aled on theln) basis. This factor therefore
commutes with the similarity transformation, which is addwvays diagonal on thig) basis.

4 Universal R-matrix

In the next two section we will show that the R-matrix used3g][(see formulad (6.11) and (6112) in
sectiorL6) can be re-derived from a Yangian constructioh@fype discussed in sectioh 3, by means of
the universal R-matrix. Such a derivation will put the exgsiens for the R-matrix in terms of projectors
on a much firmer footing. Our strategy will be as follows. Irsthection, we will review the notion of
the universal R-matrix and the basic formulas for @) case. We will then specialize its action to
the various modules discussed in seclibn 2, deriving exawtiflas for the coefficients of such actions
on arbitrary highest weight states. In the next section, Wegeneralize to thel(2|1) super-algebra,
where we will perform analogous calculations for the sdechthiral module

The main motivation we have in performing the calculationdibthree P, S, and B(2) modules is
that we will a posterioriobserve that the R-matrices for these three modules ceinvdiith one another
when acting on the respective highest weight states. THipravide us with a justification to later
on focus on one particular type of (unitasff2|1) modules, without worrying too much about missing
potentially interesting phenomena related to the otheruiesd
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4.1 Universal formula
The universal R-matrix solves the equation
A°P(JIR=RA(J) (4.1)

for any generato{y of the Yangian. The coproduct is induced on the generatoByriofeld’s second
realization by[(3.B)[(3]4) via the mdp (B.6). The ape&iRdenotes the ‘opposite’ coprodubtf = oA,
with o the permutation operatar(a® b) = (—)®b® a.

The universal R-matrix for the double of the Yangiansti?), solving [4.1) in any representation,
reads([58]

R=ReR4Re, (4.2)

where

Re = rLexp(—a@ fn 1),
n>

RF = rLeXF(— fn®efn71), (43)
n>

d
Ry = rLexp{Re@_v {a(logHJr(t)) ®logH ™ (v+ 29+ 1)} }
9=
We have defined

Res_y | Zak®b k1 (4.4)

whereA(t) = 5 at ™ andB(u) = 5, bu= "1, and the so-called Drinfeld’s currents (for the Cartan
subalgebra) are given by
) =1+ Z)hnt—”—l. (4.5)
n<0
The arrows on the products in(4.3) indicate the so-caikmuinalorderin@ prescription of([58].
Let us now evaluate the universal R-matrix on the various utesdwe have been describing in
section[3.B. The calculational details are reported in appdB, while here below we merely state

the results of the action dR on the respective highest weight states of the modules (ttienaon
descendants being obtained by use ofstli2) invariance).

4.2 Action on highest weight states

By taking into account formulag (B.6), (BJ11) arid (B.5), ve ghat the successive action of the 3
factors in the universal R-matrik (4.2) on states gives

Mp+m my
Rimy, m; Eb Z Am(Ma, Mz) Ry (My —m, mp + m) Bn(my —m,mp+m) x

X|mg —m+n,my+m—ny, (4.6)

where we define¢im, n) = |m) ® |n). The quantitie\n, Ry andBy, are calculated in appendiX B for the
various modules of interest, with their definitions beingyided by

Ru [Ny, n2) = Ry (ng,no) [Ny, np) (4.7)

14Not to be confused with the normal ordering familiar from ouen mechanics.
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and
m
Re|my,mp) = 5 Bm(myg,my) My +m,mp —m),
m=0
m
Re[my,mp) = 5 Am(myg, np) [mg —m,mp+m). (4.8)
m=0

In the following, we will be focusing on the action of the R-m&on highest weight states, which are
particular linear combinations of stateg,n,). One can therefore use the formula {4.6) and suitably
combine the results for different valuesrafandn, to obtain the action on highest weight states.

4.2.1 P module

We compute now the action of the R-matrix on highest weightiestin the tensor product of twe
module representations. These states are annihilatecelfpelyative root) generatdr

A(f)|hw); = (f @1+ 1® f)|hw); =0. (4.9)

We obtain for the® module (choosing a suitable normalization, as it is not fixg@4.9))
j .
b — _q<1> 2 li—q. 4.10
\>Jq;()q\CI>\JQ> (4.10)

One can then show that the action of the R-matrix is diagondahese statBs, By plugging formula
(4.8) into [4.10), one obtains, after a massive simpliﬁn@, the final outcome

j—1

. . up — U +K
Rl j = oF1(1— j,—j,1— j+tr — U, 1) [hw); = [ ——2—

=)
o s = RPhw);.  (4.11)
k=1

4.2.2 Smodule

We can again compute the action of the R-matrix on highesjiweitates in the tensor product of two
Smodule representations. In tBamodule the highest weight states satisfying equafion @®)

jhw = ;Z}—)q (D) (2= meti-a @12

for j > 1. Besides these states, the sta@s |0), |0) ® |1) and|1) ® |0) are all annihilated by(f)
individually, hence they are all highest weights. The R+iraicts as identity on these states.

15 Because of{4]1), and the fact th?(f) = A(f) andA°P(h) = A(h), one has
A(f)RIhw)j = RA(F) hw); =0,
henceRlhw); is also a highest weight state. Moreover, becausi 0f](2.22),
A(h)Rhw)j = RA(h) |hw) j = 2jR|hw)j,

henceRlhw); is a highest weight state with total Cartan eigenvaljielmust then be proportional {bw) ;.
18Computations are performed with the help\dthematica.
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The action of the R-matrix is diagonal on the stafes (4.12) e coefficient given in terms of
another hypergeometric function,

Rihw); = R hw); (4.13)
=Ur—U)(l+ur—uw)l(1-j4+u—up) 2F(1—j,2—j,3—j+ur—u,1) |hw)j,
where,F;(a,b,c,x) = 2F1(a,b,c,x)/I'(c). It so turns out that
(4.14)
a relation which is also valid for the stats © |0), |0) ® |1) and|1) ® |0).

4.2.3 Rmodule
In the R module the highest weight states satisfying equafion @®)

a1 (12
hw); = — ®|j—0a). 4.15
i =3 () (45) l@eti-a (@.15)
for j > 1. As in theSmodule, besides these states, the st@tes |0), |0) ® |1) and|1) ® |0) are all
annihilated byA(f) are also individually highest weights. The R-matrix actgdastity on these states.

The action of the R-matrix is diagonal on the stafes (4.1%} the coefficient given in terms of
a complicated combination of hypergeometric functions. Wilenot report the result explicitly here
since it is not very illuminating, furthermore it again taraut that

P) (4.16)

)

RR _ R
j
) ®10).

i
on the stateg (4.15) and (@) ® |0), |0) ®|1) and|1

4.3 (Genericsvs generics

As a final example, we can consider the case where both fanttirs tensor product are modulés (3.13)
with generics; # 0 ands, # 0. It is relatively straightforward, with the machinery it the previous
stages, to derive the following results. The highest wesghtes are given by (4.10), since the action
of f does not depend ain either factors of the tensor product and coincides wighattion for theP
module. The action of the R-matrix is given by

Rlhw)j = R™% hw); = w0
210U (j — g — 5, — SU) (1~ j + Sy + S + OU) lhw);
M3(—s1—%+3W]T [31+5—%+0u)] T [3(1-si+%+0u)| T [32+si+%+0u)]
FA-s—s+0u)r[3(l+s+s+ou)] tou—s —s+k
T s ou)r JA-stsou)] | hours ek
where
Su= U — Up. (4.18)

Notice that the systematic dependence of the R-matricelseodifferencedu of the evaluation parame-
ters is a consequence of the shift automorphism of the YarjgRB+-55].

To conclude our treatment ef(2), in appendiX_C we perform some unitarity checks on the R-matr
actions we have derived in this section.
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Figure 2: The choice of (distinguished) Dynkin diagrans§2|1) used in the text.

5 Thesl(2|1) case

Having derived the action of thel(2) universal R-matrix on highest weight states, we still canno
directly compare to the formulas in [32]. These formulasihokr thesl(2|1) case, where, as we will
see shortly, fermionic degrees of freedom contribute mivrally. Firstly, the highest weight states will
contain fermionic excitations. Secondly, the coprodustduto determine highest weight states include
fermionic algebra-generators. We therefore need to atieptdlculation to the supersymmetric case,
which we will do in the rest of this section. We will first intitace the algebra and tlwhiral module
then report the formula for the universal R-matrix and deiitg action on highest weight states. We
will explicitly compute the universal R-matrix action ordyn some low-lying highest weight states. The
results reproduce the formulas bf [32] for all highest wéfhtes we can check analytically. This gives
us confidence in the consistency of the R-matrix reporte@atian[6. It would of course be desirable
to obtain explicit results for a generic highest weighteststiarting from our Yangian and universal
R-matrix formulas, although that appears at the moment ast@ challenging computational task.

5.1 The supersymmetric algebra

The definition of the Lie superalgebs&2|1) in the Chevalley-Serre presentation, for a so-catlistin-
guishedDynkin diagram (one with the lowest number of fermionic nedeee Fig.[(2)), is obtained in

terms of generatonls;, g, fi, i = 1,2, standard commutation relations
[hi,hj] =0, (5.1)
[hi,ej] = aijey, (5.2)
[hi, fj] = —aj fj, (5.3)
&, fj] = &;hi, (5.4)

and the Serre relations

(ad, ) (e2) = (adk,)?(e1) =0, (5.5)
(adk,)? (f2) = (adk,)?(f1) =0, (5.6)

The Cartan matrix is given by
2 -1

The rootsey, f; are bosonic, the rooey, f, are fermionic. Furthermore, the curly brackét$ always
denote the anticommutator, while the brackisdenote the graded commutator, and ad denotes the
super adjoint action adly) = xy— (—1)X¥lyx (with |x| being the fermionic degree aj.

The correspondence with the generators used in [32] is svil

e =J", fi=3" hy = [ey, fa], (5.8)
&=5, f,=Q", hy = {e, f2}. (5.9)
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The generators corresponding to non-simple roots are giyen
es=lee]=Q, f3=[f1, f2] = ST, (5.10)

where again the generatd@s andS* are the ones used in [32].

We denote highest weight representationsi((|1) by (s;b), where the two labelsandb give the
eigenvalues of the highest weight state under the two cb%ﬂg@and%hl + hy, respectively. There are
two kinds of short representations.chiral representation has a highest weight state that is anmitlilat
by f, and satisfieb = s. The charges of aanti-chiral representation are given liy= —s. It has a
highest weight state annihilated by the generator

5.2 Chiral representation
Thechiral representation is given B/
el@h) = —/(n+29(N+ 1) [ghy1) , fil@h) = +v/(n+2s—1)n[gh-1) ,
er|th) = —/(N+25+1)(N+1) [Ynr1),  falthh) = +/(N+29)N | 1) , (5.11)

e|m) =—Vnlth-1),  €lgn) =0, f2l@n) =0, f2[n) = +vVN+1|¢hi1) -

We impose the following conditions on the stétev); in the tensor product of two chiral represen-
tations:

A(f)[w); =0, A(fs)|hw); =0,  A(e)[hw); =0, (5.12)

with A(f;) = fi® 1+ 1 ® f1, and similarly for the other two conditions ih_(5]12). Neatithat the
condition with respect td is generated by anticommuting the remaining ones. This shioat, strictly
speaking, the condition$ (5]12) are highest weight camwlitifor an all-fermionic Dynkin diagram,
where the role of negative root generators is takerfismnde,, respectively. We will however continue
working in the distinguished basis (cf. sectlonl5.1), sitreeR-matrix will act diagonally ofhw); by
means of similar arguments as in footniofé 15. One can pratedttb conditions in(5.12) are satisfied
if we choose

j

o= 5 (2000100 @ W-0) + a0 W) @10-0)). =01 (6.13)
a=
with
i (i —k+2s)
=) [0 ey
o V(K —k-1+2s)
afb(bQ)—be(J)I!:L(_l) VG DK 15 2s0) (5.14)
and
Bor (1) = o) | = - (515)
Besides these states, also the state
Ihw)o = @) @ |@) (5.16)

is highest weight, as it satisfids (5112).

In order to have an easier comparison with the literaturehae switched to-s for the supersymmetric casa the
s[(2) case. Unitary representations are now obtained for pesiéial values o, as one can see frdm 5]11.
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5.3 The Yangian and the chiral-chiral R-matrix

The Yangian in Drinfeld’s second realization is given imterof generators; p, Eﬁ;, i=12andna

non-negative integer, witk; o = hj, Eijg) =g andfib = fj, satisfying the following defining relations:

[Ki,m7 Kj,n] - 07 [Ki,07 Efm] - iaij ijmv

[ ijrm7 &inl = 8,j Kjnim,

Ko, &) — K &) = %585 (m £

€1 o) — [ €] = 28 (E ),

i # 5, mij =1+]ajl, Symigl&i. iiz,...[fiiij,fﬁ]...]] =0 (5.17)

with the Cartan matrix;j given by [5.7). The all-level representation correspogdm (5.11) which
solves all the relation$ (5.117) is given by

Lol = I D@41 (5 + 0+ 5+0)Pghoa),

Efp!wn>:—\/<n+1)(28+1+n>(§+n+s+U>p\wn+1>,

0ol ) = V@S 1T (—2 4 n+5+UP | 1),

ELplh) = VAT (7 40+ S+UP g 1), (5.18)
&olth) = VA (g TP 1), &plun) =0

1
Soplt) =0, &pldh) = VNt 1(=7+5+U)° |¢hi),

where|@,), (|¢n)), for n > 0, are an infinite tower of bosonic (fermionic) states. Thet&@agenerators
Kin can be obtained froni (5.1L7), for instancer@s = [, & -
The R-matrix related to this Yangian representation mugtfga

A°P(3)R=RA(J) (5.19)
for any generatofj of the Yangian. The universal formula fBris given by [58]
R= R2 R1+2 R]_ RH RI RI+§ RE, (520)
where
— —
Ry = rLeXF(—Ei_n ® El_,—n—l)’ Ro = r!)exqu—t_n ® 52_,—n—1)’
n> n>
—
Ri2= rLeXF)(_[EIO’ EZTn] ® [Ef,o’ Ei—n—l])a
n>
— —
Ry = rLexp(—Eljn ®& 1), Rg= rLeXIO(—E{,n ®& _n1);
n> n>
—

Ry 2= rLeXp([Ef,m &onl ©[€10:85 n 1)

Ry = exp{Res_V [z %(Iog H (1) ® Dﬁllog Hj(v)] } , (5.21)
1]
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whereDj; = —(T2 —T~2)a;(T2), & (q) = qi;:q‘fj with a; the Cartan matrix entrie§ (5.7), and the

operatorT is defined such that f(v) = f(v+1). The definition of Res and the Drinfeld curreits (t)
are given in[(4.4) and (4.5).

The arrows on the products in_(5121) indicate the ordering tuas to follow in the multiplication,
and are a conseguence of the normal ordering prescripticdhdaoot factors in the universal R-matrix
(see[[58]). The ordering of the factoRs, R, Ry, 2, and respective barred versions, is also prescribed.
The ordering rule states that if two positive rootsandaz, corresponding to root generatdfg, and
¢a,, have already been orderedg., they satisfya; < az (where< stands for the chosen ordering),
then their sum must lie in between them, namely

ay < a1+ 0o < ds. (5.22)
Remember that the generator corresponding to the sum obthe is the graded commutator

fa:ﬁ»az — [Eala 502]' (523)

Fixing a; anda; to be the two positive simple roots eff(2|1), and recalling thaf..4, = &*, we obtain
the ordering[(5.20).

In appendixX_D we give details of the calculation of the ursatrR-matrix action on the chiral
module. Here below we focus on highest weight states, fatigwthe same rationale as in th&2)
case. In particular, a formula analogous to equafiod (4gplies, although now with 7 terms stemming
from the subsequent application of all the factors in equalb.20).

5.3.1 Action on highest weight states

As it turns out to be quite cumbersome to deal with the gerexpression[(5.13), we specialize to
low-lying highest weight states first. Let us start with thete

Ihwo = |@) @ @) (5.24)
On this state, all root factors act as identity, and so doe€#trtan factoRy, hence
Rlhw)o = [hw)g. (5.25)
Next, we consider

Ihw)1 = —v/S1|@) © [Yo) +v/S2|do) © | ). (5.26)

where we have fixef#,(0) = /S, for convenience. On such a state, only a few factors give &iban
tion which is not just acting as the identity. The final ressilt

S tStu—U
S +S—U+ W

The calculation for the next highest weight (suitably noineal setting additionallyB3s,(1) = 1)

R|hW>1 = |hW>1 (5.27)

25, 2s;
1+2s, 1+29

involves non-trivial contributions from all the root facsp and it is performed by mechanizing it into a

Mathematica computer program. This program systematically deals wighstubsequent action of all

the seven factors of the universal R-matrix. After a massinglification, one obtains
(S1+S+Up— W) (145 +S+Uup— Up)

Rlhw), = hw)s. 5.29
)2 (51+S'2—U1+U2)(1+51+SQ—U1+U2)| )2 (5.29)

[hw)z = — @) @[4n) + @) © |do) + [do) @ 1) — ) ©lw)  (5.28)
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We have pushed the program to its Iiby computing the action dR on the next two (appropriately
normalized) highest weight states :

s1(1+42s)

lhw)g = — “1t1s, @) @ [W2) + /(14 2s1) [Yo) ® |@2) + /2(1+ 251) | 1) @ [Yn)

VAT @ o)~ VAT 2 ) 0 )+ | 22 )0 ), (5:30)

(S1+S+Up—Up)(1+S1+Sp+Up —Up)(2+ S + S+ Up — Up)

Rlhw)y = — hw 5.31
i) (31+52_U1+U2)(1+Sl+32—U1+U2)(2+31+SZ—U1+U2)’ )3 (5-31)
and
251(1+s1)(1+2
g = — [ 22AEVAE28) o AT AT 250 e s — (5.32)
(3+ 25
25(1+5)(1+2
\/6(1+51)(1+52)(P2®1.U1+\/(l+52)(1+252)(.03®l.U0—\/ S (312)2(31) Sg)w3®cn)+
V@+s1)(1+25) @ 3 — /6(1+51)(1+ )4 @ G+ /3(1+ %) (14 2%) o @ @,
(s1+S2+tu—Ww)(l+s1+S+Uu1—W)(2+S1+ S+ U —U)(3+S1+ S+ U — W) Ihw)a
(St -+ U)(l+si+—h+U)(2+s+S—U+W)B+s+S— U+ W) '
The above results are in agreement with the general foriBalgD]
i1 .
Rlhw); = rL(ul Ut S+ 9+k Ihw) (5.34)
b (-t —s1—%—kK)

where an empty product is conventionally set to 1.

Let us remark that the chiral(2|1) module, when restricted to the bosonic stgdtgs and taken
ats= 0, bears a resemblance to #1€2) R module introduced in sectidn 2.2.3, hence it is physically
the most relevant case (see discussion about unitarityeatety end of sectionl2). More precisely,
upon identificatiorg) ~ |n) , the similarity transformatiory(N) = /(N + 1), N being the number

operatolN In) =n|n) (cf. equation[(2.D)), provides an isomorphism (up to a sign) betwthe restriction
of the chiral module to bosonic states and 4H&) R module:

XN EX(N)=—6 X HN)Eox(N) = —1 (5.35)

on any statén). Such a similarity transformation is well-defined on altssasince they are spanned by
integersn > 0, and the gamma function is therefore never singular.

In principle one could repeat the R-matrix calculations veefgrmed in this section for alternative
s[(2|1) modules which, when seen a§2) modules, resemble more closely theand S modules of

18The result[[5.3B) is still obtained in analytic form, whilebsequent highest weight states would require resortireg to
numerical treatment. We have not checked formula({5.34) fe#.
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section$ 2.2]1 aid 2.2.2, respectively. However, the éxpes withsl(2) suggests that the action of the
universal R-matrix on highest weight states is the saméethree-types of modules (see for instance
formulas [4.14) and_(4.16)). We have not checked this assamfor s[(2|1), also in view of the fact
that, in what follows, we will be mostly interested in the yp¢ module[(5.18) we just described.

5.4 Antichiral representation
Theantichiral representation is given by
el@h) = —/(n+29(N+ 1) [ghy1) , fil@h) = +v/(n+25—1)n[gh 1),
e |¢n) = —v/(N+25+ (N +1) [Yna) ,  Faldn) =+ (n+29n ¢ 1) , (5.36)

&) =0,  elth)=+vn+2s(@),  fl@g)=—-vn+2slgn),  f2lgn) =0,
The all-level representation corresponding[fo (5.36) Wisolves all the relations (5.117) is given by

generators; n, Eiﬁ, i = 1,2, with n a non-negative integer, such thap = h;, ijg =g and Eij() = fi.
One has
1
E1plth) = —V/(N+1)(25+n) (7+n+5+U)° [¢hia),
1
&lplgn) ==V (N+ 1)@+ 14n) (F+n+5+U)° [¢hea),

ff,p\‘ﬁﬁ =4/N(2s—1+n) (—§1+n+s+u)p |h-1),

&) = VAT (5 40t 5+ 0P g 1), 5.37)
1

Ez—‘rp‘%>:07 EZp’wn>: n+28(—Z—S+U)p‘(ﬁ1>7

1
Ez_p‘%>:_ n+28(—Z—S+U)p‘ll_ln>7 Ez_pw"n>:07

for the same choice of Cartan matrix (5.7). If we considehbgl weight states corresponding to the
conditions [(5.IPR), this time projected into antichiral @ antichiral representation (namely, taking
the coproducts with two representations of tylpe (5.36) ithlfactors of the tensor product), then one
can verify that the corresponding highest weight statesstitegiven by [5.138), [(5.14),[{5.15) and
(5.16). The reason is that the antichiral representaidfjmnd the chiral oné (5.111) are related by the
exchange of the generatags < f3, €3 «» f2 (with e3 = [e1, ] and f3 = [f1, f2] in both cases), which
preserves the highest weight conditiohs (5.12). By projgcthe universal R-matriX(5.20) into an
antichiral ® antichiral representation, and performing a calculation analogoulemne in appendix
O] we have observed that the action on the highest weightsstatincides witH(5.34) for all the states
we have checked.

5.4.1 The mixed chiral-antichiral case

In this section we consider the tensor product of a chiral @méntichiral module, and the action of
the universal R-matrix on highest weight states in this mhibemsor product representation. This means
that we still impose[(5.12), namely

A(f)]e); =0, A(f)|w) =0,  Aler)|w); =0, (5.38)

with A(f;) = f1® 1 + 1 ® f1, and similarly for the other two conditions. However, in fivst factor
of the tensor product we will use (5]11), while in the secamtdr we will use[(5.36). We will always
consider this mixed projection whenever we speak aboubtgreducts in the rest of this section.
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Conditions [(5.3B) are satisfied by choosing (fet 0,1,...)

-1

j
=5 aw(j,q) @) @e_q+ Y arf(j —1,0) |Pe) @ |Wj_1-q) (5.39)
)= 3 anl1.0) @) 9 101-0) + 5 a11(1 = 2.0) ) © -1-o)
. | V(B e e
abb(Jaq):Bbb(J)ki (-1 Kt Dk 25
o VUK —k+25)
and
Bri (i) = Punti + 1) L2 (5.40)

In order to compute the R-matrix action on these highest mteitates, we adopt the following line
of reasoning. Fist, we notice that we can perform a map tchenset of stat@, namely

Q) =A(F2) |w),;. (5.41)
The stated(5.41) satisfy
A(f1)|Q); =0, A(f2)[Q);=0,  A(f3)|Q); =0. (5.42)

The first of conditions[(5.42) is guaranteed by the nilpoyenicthe fermionic generatof,, the second
and third by the fact thah is still a Lie algebra homomorphism, hentgf;) andA( f3) (antijcommute
with A(f2) and annihilatgw);. The R-matrix will act diagonally orQ); with the same eigenvalues as
for |w)j because ofl(2|1) invarianceA(f2) R= RA(f,). By explicitly acting on[(5.39) as in(5.41), we
obtain (forj =0,1,...)

j

Q)= Z)(aff(j —1,9-1)\/G—avn(j.a) /] —q> ) @ |W—q) , (5.43)
0=

with the coefficients being given bly (5]15) ahd (5.14).

By inspecting [(5.111),[(5.36) and_(5/39), one realizes ¥y only contain states of the type
| ® |Wn). The action ofA(f3) andA(f,) in the mixed representation on stales,) ® |¢n) is ac-
tually identically zero, so the last two conditions Bf (5)4®e trivially satisfied. The only non-trivial
constraint comes from the conditidy{ f1) Q) j, which preserves staté@n) @ |n) but changes the val-
ues ofnandm. Since, from the point of view ofy, the statdy), are as good &), as a basis for an
s[(2) submodule, the condition

A(f1)]Q)j =0 (5.44)

coincides with arsl(2) @ sl(2) highest weight condition, for twel(2) modules given by the action of
e, and f1 on|@y) in the left (chiral) factor andiym) in the right (antichiral) factor of the tensor product,
respectively.

%We considers; ands, non-zero for the remainder of this section. If one of thememz then the mag (5.41) can be
degenerate. More precisely, the only degenerate case autrt® beA(f2);s,—o|w)o = A(f2))s,—0|®0) @ |@) = 0. In this
specific case, the action of the universal R-maffix_(5.20)wyp can be computed directly without the need of resorting
to (5413). In fact, all the generators in the second factoeaxth tensor product i (5120) annihildtg) at s, = 0, hence
Rlw)o = |@)o.
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The Yangian coproducts at level 1 are given by

A(K11) = K111 +1®@K1+hh@h—2fi@e+ 0 f+ fa3®es,

A(K21) = K21 @1 +1® K21+ @hh+ f1® f1— fa®es,

A& =& 0l+10E +hoe - fhoes,

Aépy) =& @1+10&+ hoh+hoe, (5-45)
A& =& 0l+10E +hoe+ fhioes,

A&y =8,01+108,+ oh—fiee.

If we focus onA(Efl), we see that the fermionic part of the coproduct tail actseas an states of the
type |@n) ® |¢n), and the same holds for the opposite coprodﬂﬁﬂéffl), by using again the explicit
form of the representations (5]11) ahd (5.36). This meaaisttie Yangian level 1 coproduatﬁ(ffl)
effectively act orjgm) ® |¢hn), hence onQ);, in the same way as those of the Yangianl¢2), projected
in the two representationigy,) in the left (chiral) factor andy,) in the right (antichiral) factor of the
tensor product, respectively. Such Yangian coproductessetily preserve statég,) ® |Wn).

This means that the Yangian R-matrix, when acting on thesta);, has to effectively satisfy a
set ofs((2) conditions

AP(Ef ) R=RAEL,),  m=0.1 (5.46)

in the mixed chiral-antichiralgm) @ | ) representation. The conditioris (5.46) almost uniquelyhfex t
R-matrix to coincide with the action of the(2) Yangian universal R-matrix in the two respectiué€2)
modules, up to an overall scalar factor. Following this argat, we can simply compute such ()
R-matrix in the same fashion as in sectidn 4. In fact, we caplsi borrow the result of sectidn 4.3. For
s ands, different from zero, the mixed chiral-antichirid,) ® |Y,) representation is isomorphic (up
to a similarity transformation) to the tensor product of tRfamodules. The chiral part corresponds to

1
up — U — Z (5.47)

in equation[(3.113), followed by a similarity transformati(regular everywhere as long sis# 0)

—pi&gprt, —pifaprt, pila) = rr(f]nfzg)lw (5.48)
and finally a transformation
S — —S1. (5.49)
The antichiral representation corresponds to
Uy — Up — 2 (5.50)

in (3.13), followed by a similarity transformation (regukverywhere for unitary representations)

r(n+1)

mmﬂ% (5.51)

— paegps Y, —p2fqps t, P2|¢h) =
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and finally a transformation

1
S —SH— > (5.52)

This means that the eigenvalues will be given by formula@yviith the appropriate substitutidds
In the final expression we obtain, we further shift— u; — % to make them suitable for comparison
with the literature. This amounts to (apart from an overzdlar factor)

7l —u 11k
RIQ); = 1—W+S+S+5+ Q). (5.53)
U—U—S—S—3—Kk
k=0 Y1 2 1 >

6 The alternating 9(2,1;a) spin-chain

In this section we will briefly review the construction o&2,1;a) symmetric spin-chain presented

in [32]. This spin-chain is proposed to describe the leftvmg part of the spectrum of operators of the
CFT, dual to string theory in Ad$x S° x S% x St. As mentioned in the introduction, supersymmetry
requires that the AdS radil®ags, and the radiR, andR_ of the two three-spheres satisfy

1 1 1
— = = (6.1)
R R Rigs
Hence, there is a one-parameter family of backgrounds,hwtan be parametrized by a parameter
in the range G< a < 1 defined by

Rids RAds
R = 6.2)
The super-isometry of this string background is then giwea topies of the exceptional(2,1;a)
superalgebra, corresponding to the left- and right-mosgiectors on Adg

At weak coupling the left- and right-moving spin-chains mleqcl Here we will consider the
0(2,1;a) spin-chain describing the left-movers. This spin-chaialisrnating, with odd and even sites

transforming in two different short representations ofgiimmetry algebra.

6.1 Thed(2,1;a) algebra and its representations

In the relevant real form af(2, 1; o), the bosonic subalgebra is givendiy?2) x su(2), x su(2)_, where
we have added the subscriptgo the distinguish the tweu(2) algebras. We denote the corresponding
triplets of generators b, S, for the sl(2) algebra,Ls, L+ for su(2); andRg, R. for su(2)_. In
addition to these bosonic charges there are eight supg&ﬂ@gﬁﬁ, with each index taking values,
transforming in th& ® 2® 2 representation of the bosonic algebra. The full commutatitations for
thed(2,1;a) algebra are given in appendiX A.

We denote a highest weight representations(8f1;a) by the weights of the bosonic sub-algebra.
The even and odd sites of the alternating spin-chain tramsfo the representations-%; %;O) and
(=152;0;2), respectively.

20As a check, we have verified on a few low-lying states that thieuniversal R-matrix[(5.20) in the chiral-antichiral

representation indeed coincides with formlila_(#.17) wheting on (p{1®p51 ‘Qh)‘ , (which, modulo an
SI=—S1, 8= —%—3
overall normalization, are the corresponden{of (b.48rdfte maps described in the text are perforrzned).

21At weak coupling the left- and right-movers interact onlyaiingh the level matching condition, which says that for a
physical state the total momentum is zero.
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The (—%;3;0) representation consists of the bosonic quai”) and the fermionapj(t”). The
subscripts indicate that the bosons transform as a doubtirew(2), and the fermions as a doublet
undersu(2)_. The superscriph gives thes((2) level of the fields, with the corresponding generators

acting as

Sle™) = — (2 +n) (o), Sy = — (2 +1+n) [y,
S @) = —/n+a)(n+1) [y, s @) = —/(n+D(n+1+a) g™y, (6.3)
Sclof”) = +v/in-Trajnie™) . s uf?) = +v/nlra) ).

In the notation of sectionl 2, this corresponds to f®¥aepresentations, whese= —% for the bosons,

ands= —% — 1 for the fermions.

The representation—PT“;O;%), in which the even sites transform, is very similar to thewabo

representation. Again there are two sets of fields, the tmqﬁjﬁ'h which make up a doublet &ii(2)_,

and the fermionsﬁ(i”) transforming undesu(2).,.. Undersl(2) these fields transform in representations
of spins= —1-% ands= —12 — 1, respectively.
The two representations at the odd and even sites of theatiiey spin-chain are short representa-

tions ofo(2,1;a). The highest weight stateqcéo) and(ﬁ(f) are annihilated by the supercha@Q,+i
andQ_ , respectively. A state of the alternating spin-chain oftér. transforms in thé.-fold tensor

product

(%300 (-5%05)" = (555 o (6.4)

On the right-hand side of the above equation we have givetettting term in the decomposition of
the tensor product into irreducibté2, 1; o) representations. The highest weight state of ¢hi ;%; %)

representation is given l:(ypfro) (E_@)H This state is annihilated by the supercha@e, .. Hence the
(—%; %; %) representation is a shor{4-BPS state, which we take as the spin-chain groundstate.

6.2 Closed subsectors

To understand the alternating spin-chain it is often hélffuestrict to a closed subsector. We need
to make sure that the subsector is closed under interactitmslo this, we want to construct a semi-
positive definite chargd that commutes with the Cartan generators ofdf 1;a) algebra, and in
particular with the left-moving Hamiltoniar-S + oLs+ (1 — o)Rs. The subsector consists of all
fields annihilated byl. We construct such a charge as a linear combination of geneth= ¢;S) +
CoLs + c3Rg + ¢4B. In addition to the Cartan elements of the bosaiti®) x su(2) x su(2) algebra, we
have also the “baryonic” chardggwhich takes valueg-1/2 on odd sites ane-1/2 on even sitel] The
closed subsectors are summarized in table 1. This analf/sisbsectors is similar to the discussion
in [61] about subsectors i” = 4 super-Yang-Mills theory.

The simplest sector is the 1/4-BPS sector consisting of tygroundstate, and is obtained by
choosing the chargd to be the spin-chain HamiltonianS — als — (1 — a)Rs. The states in this

sector are constructed out of the fietpg) and (Ef).
The next subsector is tha(2|1) . sector where, in addition to the groundstate, we have orentos

excitationg'® and one fermionic excitatioml(f). Note that both these excitations live on the odd sites

22In analogy with the spin-chain picture it” = 4 supersymmetric Yang-Mills theory we refer to the statethefrepresen-
tations at each site of the spin-chainfiéds even though we do not have any direct interpretation ofetlséstes as fields in
the dual two-dimensional CFT.

231n our conventions a highest weight state is annihilatechygeneratorS, , L, R, andQ .

24Note that a physical spin-chain states have equal numbetcbéind even sites and hence Bas 0.
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Charge ¢J) Fields Sector

S+als+(1—a)Rs <p$, (E_@ 1/4-BPS
S+Rs+aB 0”2, g su(21),
S+Lls—(1-a)B fP+>, (Pi>, _(O) su(2/1)_
Ls+Rs—L (p+ ,l,U+ ,(p+ yid sl(2/1)
Ls—L fpi), *”) sl(2),
Rg—L L.UJr , + sl(2)_
25— (1-2a)B+L cpj["), @f’) 5u(2) x 5u(2)
S+Ls+2Rg+aB—L (p+ ) 9, su(1]1),
S+25+Re—(1-a)B-L ¢, ¢, ¢ _(0) su(1]1)_

Table 1: Closed subsectors of the alternati(@ 1; a) spin-chain. The first column gives the semi-definite charge
J that identifies the sector. The first three sectors in thestabé closed to all loops. For the other sectors the
chargel is conserved only to leading order at strong coupling.

of the spin-chain. The only other sector that is closed aloalbs is the conjugateu(2|1)_ sector,
where one bosonic and one fermionic excitation sit at the sites.

To leading order at weak coupling there are no length charigteractions in the spin-chain Hamil-
tonian. We can then include the extra chakgmeasuring the length of the chain. This allows us to
construct additional closed subsectors. The4w(@|1) sectors can now be split into two bosoriq2)
sectors as well as tweu(1|1) sectors with a single fermionic excitation. Moreover, the tu(2)
sectors can be combined to ar(2) x su(2) sector.

Additionally, there are two types non-compact subsectdre sl(2|1) sector consists of the fields

(p+ , lﬂ+ , " and L/J . The final type of sector that is closed as long as the lengtheothain is
preserved is aa[(2) sector which consist of the bosoqvg‘) on the odd sites and the fermiorﬁ”) on

the even sites. Note that the usual groundstate is not ptrisdast sector. This situation is very similar
to thesl(2) sector of the ABJIM spin-chain [62].
6.3 Thesl(2|1) subsector

We obtain thes((2]|1) subalgebra from(2,1;a) by defining the generators

e=3S, fi=S;, =01+, f=Q 1. (6.5)

Using the commutation relations in appendik A, it is stréfigiward to show that thel(2|1) algebra
in (6.J) is satisfied. From the(2, 1; a) representations for the fields we find that the above generato

act on the fieldgg, = (pi andynh =y M as

el =—v(n+a)n+1)|gha), filg) =+vV(n+a-1)nfgh-1),
elgn) = —v(In+a+1)(N+1)[Pni1) . f1lgh) =+ (N+0)N|Ph 1), (6.6)
et =0, elgn)=+vVn+ala), f2lgh) = —vn+a|yn) , f2|¢n) =0,
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while the action on the field@ = (Eﬂ‘) andy, = @”) is given by

e lgh) = —v/(n+1-a)(N+1)|gh) filg) =+v(n+1-a—-Dnjgn-1),
elfn) = —v(n+1-a+1)(n+1)[n1) ,  fi|dh) = +v/(N+1—a)n|dn1), (6.7)

ela)=—vNgh1), €| =0, f2lg)=0,  f2|d)=+VNt1l|gh1).

Comparing the above relations to equatidns (5.11) and)(5v86Gee thatf (616) corresponds toaanti-
chiral representation spis, = , and [6.7) to ahiral representation of spis. = 1*7"

Using the results in sectidn 5 we can write down R-matricéimgon these representations. There
are four R-matrices acting on the various combinations!(@1) representations at the odd and even
sites. Each such R-matrix can be written as a sum over poogechto irreducible representations in the
tensor products of two sites. For two anti-chiral represgémmns (s, ; —s; ) or two chiral representations

(s_;+s_) this decomposition is given by

(St;—S1)®(Sp5—8) = (251525, ) o EP(2s; — 3+ —25+3), (6.8)
n=1

(so;4+s.)®(s;+s.) =(2s_;+2s) @é(Zs, —2+n+2s—3). (6.9)
n=1

The first representation appearing on the right-hand si¢@.8f and[(6.D) is short, while all other repre-
sentations in these decompositions are long. In the caseecduati-chiral and one chiral representation
decomposes into a sum of long representations

00

(St;—-8:)@(s;+s ) =P(s +s; +ms —sy). (6.10)
n=0
Indicating the anti-chiral and chiral representationsdhywe find the R-matrix for two identical
representation froni (5.84) by settisg= s, = s;.

> " lu+2s, +k
Ry (u) = — = N, 6.11
o (U) nZOI!:!)u_ZSi—k n (6.11)

whereMi* denotes the projectors onto the representations appearihg decompositions i (6.8)
and [6.9). Similarly we se$; +s, = s, +s_ in equation [(5.53) to get the R-matrix for the mixed
chiral—anti-chiral case,

onluts;+s +3+k .o

Ri+(u) = ns, 6.12
i?() n;)kELU—&—S——%—k n ( )

wherel#T projects onto the representations appearing_in [6.10grting the relevant values far.
and rescaling of the spectral parameter u/2, and simplifying [(6.IR) using, +s- = 1/2, we find
that the above expressions perfectly agrees with the qgamneling result in[[32].

6.4 Thea — 0limit of the alternating spin-chain

In thea — 0 limit one of the three-spheres decompactifies in the stsiagkground. Together with the
St, this sphere forms a (partially decompactified) At the same time the(2, 1;a)? isometry reduces
to psu(1,1]2)2. As discussed in[32], the limit of the(2,1;a) algebra is taken in such a way that
the generators of theu(2), subalgebra become commuting. We will now study what happetise
representations at the spin-chain sites in the above layitestricting to thes[(2|1) subsector.
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Let us consider the anti-chiral(2|1) representatiori (6l.6) in the — 0 limit. On the bosonic fields
¢ the generators now act as

ellgh) = —v(n+nlgh1),  filg) =+v/n(n=1)hi1), el@m) =0, f2]@)=—vn|thn).

In particular, all generators annihilate the stagg). In order to identify the rest of the module we
introduce a new field, = — @, 1. The limit of the relations in{616) then take the form

e |n) = —(N+1)|¢ni1) f1lgn) = +n|¢h-1)

e l¢n) =—v(N+2)(N+1)[dni1), fildn) =++/(N+1)N|pn_1), (6.13)
&[¢h) =—Vnlpn-1),  €[¢n) =0, f2|Yn) =0, f2|¢n) = +VN|Wny1) -

Comparing the above expression with (5.11) we see thatdblssllike achiral s[(2|1) representation
with spins= 1/2, but where the bosonic and fermionic fields have switchégsroTaking the same
a — 0 limit of the chiral representation ih (6.7), we find an oatiy chiral representation with spin
s=1/2. Hence the representations living on the odd and evenditae limit of the alternating((2|1)
spin-chain are almost the same except that there is an@ulitsinglet state at the odd sites, and that
the statistics of the fields on the odd and even sites arelsdtaround.

It is instructive to also consider the first few states in thesbr product of two odd sites. For general
a this tensor product decomposes as

(3:—

The first representation on the right hand side is anti-Ghivah the rest of the representation in the
sum being long. The highest weight state of the anti-chiepkesentation is given byn@). The
supercharges = {e;, e} acts on this state as

)@ (4 -%)=(a;—a)@(a+3-a+Ho(a+3-a+do--. (6.14)

NI

es| @) = —Va (o) + @) - (6.15)

Fora =0, the stateg @) becomes a singlet, and the state on the right above is thegtigleight state
in a newchiral representatiori3; 3). In other words(a; —a) decomposes in the limit to

(a;-a) = 1&(3:3)s, (6.16)

wherel is the trivial representation and the subscBm the second term indicates that the representa-
tion lives in the symmetric part of the tensor product.

We can analyse th@r + 3; —a + 3) in a similar way. Forr # 0 this is a long representation with
highest weight statgw); = |o@) — |@Yho). Acting with ez on this state gives

&3 |hw); = 2v/a |dodo) - (6.17)

At a = 0 this representation splits into two short multiplets. Tniginal highest weight statgw),
generates another copy of the chiral representa(t%oé), while | Yo) is the highest weight state of a
new chiral representation with chargds1). The decomposition of the second state on the right hand
side of [6.14) is

(a+3—a+3)— (3:3)ad (1), (6.18)

where the subscripA indicates an anti-symmetric state. All the other represd@nis in the decompo-
sition (6.14) remain long in the — 0 limit. Hence we can write the full decomposition in this tim
as

(1eGp)e(eGi2) = (106G (G e L) e Gy e ., (619
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where we have grouped terms that originate from the sa#ed representation.

The R-matrix in[(6.111) is written as a sum over projectorsngcbn two anti-chiral spin-chain sites.
Each such projector acts on one of the representatiohslif)(@n thea — 0 limit the projectors acting
on the first two representation in the decomposition spli two projectors, corresponding to the split
of these multiplets when the limit is taken. However, acowydo (6.11) these representations still have
the same eigenvalues under the R-matrix. Setting 0 in these eigenvalues, we find that the R-matrix
acts as the identity on the trivial representatioas well as on the tw¢3; 3) representations. On the
other representations in the above decomposition, thenaiees of the R-matrix perfectly agrees with
the result for the chiral R-matrix i (5.84) provided we set s, = 1/2.

Similarly, the tensor product of the representations ondhand an even site of the spin-chain
gives the decomposition

Nl

($-9odE 5 =Gi-003;-0e3i;-0)o.... (6.20)
For a > 0 all these representations are long, butdos 0 the first representation splits into two chiral
representations

(Fa-9— FP+ 5D, (6.21)

The R-matrix again acts trivially on tt{%; %) multiplet, and has the same eigenvalues as in5.34) (with
s = & = 1/2) when acting on the rest of the tensor product. In particié0) acts as the identity if
the one of the states is a singlet, and as a permutation dteerw

This structure also appears in the limit of the foiR,1;a) spin-chain. At the even sites of the
chain we have a irreducibleu(1,1|2) representation denoted ify-1;2). On the odd sites we have
a reducible representation. In the full spin-chain theeetan singlets, originating from theu(2) .

doublet(pf). The rest of the fields on the odd sites transform in the s(an%%) representation as the
fields on the even sites, but with the opposite statistics.

In the following section we will study an alternating spihain with a very similar structure as the
spin-chain discussed here. In order to simplify the catcuia we will consider aml(2) spin-chain with
even sites in the spis= —1 representations and odd sites in a reducible represamtedintaining a
singlet and &= —1 multiplet. Apart from some minus signs originating frone flermion statistics this
s[(2) spin-chain can be obtained from th&2|1) spin-chain by restricting to the fields in tite-3; 3)
representation witkl((2) spins= —1,—2,.... This is not a closed sector of the fuli(1,1|2) spin-
chain, but the analysis still captures the structure of #ucible spin-chain discussed above. It is
straightforward to generalize the following constructtorthe full superalgebra case.

7 Rmodule spin-chains

In the preceding sections we have shown that the R-matrigepted in[[3R2] can be obtained from
a Yangian universal R-matrix construction. In particuldnis confirms that in thex — O limit the
integrable structure of the alternating2,1;a) spin-chain is preserved. In the present section we will
investigate this spin-chain in thee = 2s — 0 limit. In order to focus on the key features that the spin-
chain exhibits in this limit, we will restrict ourselves ihi$ section mostly to asl(2) subsector. The
generalizations to the complete spin-chain are mosthgstifarward and we will comment on them at
the end of the section.

As we have seen in sectibh 2 there are three possibié) representations that may arise, but that
only one of these, the reducibR module, is a unitary representation. Nevertheless, reptagon
theory on its own does not tell us whether the> 0 spin-chain will involveP, R or S modules. In
fact, we have found sensible R-matrices for spin-chainsentad of P, R or Smodules. As a result,
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we may investigate the integrability properties of the ¢hitygpes of spin-chains. It turns out that spin-
chains involving theP or S modules have unconventional integrability propertiesiciwhwe consider
undesirable for our purposes. We present a more detailedijkisn of this in sectioh 7]1 and delegate
some of the computational details to the appendices.

The observations made in section]7.1 lead us to concludarttibe s — O limit the spin-chains
we wish to investigate involve the module. Since there appears to be little literature on shains
with reducible representations we will consider some tmdeais first before focusing on the alternating
chain in question. In sectidn 7.2 we consider the simplgshtodel: a homogenous spin-chain with
a three-dimensional reducibe(2) representatiol @ 2 at each site. In sectidn_T.3 we generalize this
to a homogenous!(2) spin-chain with theR module at each site. In sectidn 7.4 we generalize the
su(2) toy model to an alternating chain with odd sites in the reldecl @ 2 representation, and even
sites transforming ir2. Finally, in sectioi 76 we consider the alternating chaithwan R module at
even lattice sites and an= —1 module at odd sites; as we have discussed in the previotisrsdbis
spin-chain is closely related to the spin-chain discussqdd].

Before proceeding further it is appropriate to point outchtécal reason for why we cannot simply
apply the many results on integrable spin-chains for ircédda representations to the present cases. It
appears that these results, to a large extent, depend attivédal assumption that (for a homogeneous
spin-chain) the R-matrix evaluated at a privileged valu¢hefspectral parameter (typically at= 0)
is proportional to the permutation operator. On highesghtestates j),, this implies that we must
hav _

Ro1(U=0)])o1 O (=1) [1)oz - (7.1)

While this holds for the R-matrix we have been considerinthis paper away frons # 0, whens= 0
it is easy to see that

Roi(U=0)[j =0)g; =Roa(U=0)[j =1)g; - (7.2)

In other words, the R-matrix at= 0 is not proportional to the permutation operator. It seems that as
a result, many of the conventional integrable spin-chashni&ues do not immediately apply, and one
has to obtain information about such spin-chains from firsigiples.

7.1 Integrability for Sor P module spin-chains

In this subsection we review some of the integrability prtipe of spin-chains where (some of) the
sites transform in thé& or P representations. We will simplify the problem slightly bgnsidering
only homogeneous$ or P module spin-chains. These will already have the peculiatufes which
we referred to above. It is then easy to convince oneselfalatnating spin-chains involving these
modules will also have such features.

Conventionally, the first step in investigating an intedgatpin-chain is to define the monodromy
matrix T (u). For a homogeneous spin-chain this is given by

T(U) = Rol(U)Roz(U)...RoN(U), (73)

where the subscripts 2,...,N label the sites in the spin-chain, and the subscript 0 cooreds to the
auxiliary space which is taken to be in the same representas all the sites of the spin-chain. The
R-matrix for both the homogeneoBsandSmodule spin-chains can be expressed as a sum of projectors

R(u) = R*(u)M* + i R (un® (7.4)
=1

25Analogous conditions exist for alternating chains.
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where
1+ F(A—wr(+u)

Fruri—u)’ and R'(u)=1. (7.5)

R(w=(-1

Above, M* andM{") are projectors onto irreps in the decompositiorPab P or S® S given in equa-
tions (2.34) and(2.36); in particul&it* projects onto thé or Smodule on the right-hand side of those
equations. In the appendix we find explicit expressionsHesé projectors in terms of the oscillator
representations introduced in sectidn 2.

Using this form of the R-matrices, we may compute the actioi® monodromy matrixt (u) on
short spin-chain states. This is further facilitated by fdmt that the monodromy matrix is manifestly
length preserving, and it turns out also to preserve theativenmber of excitations on the spin-chain
state. This allows one to consider subsectors of the s@imatate-space, with a fixed length and fixed
number of excitations. The details of the calculation aesented in the appendix, but the important
observation is thal (u) has non-trivial Jordan blocks, and so is not diagonalisabhgs feature also
persists when one computes the transfer matrix

7(u) = tro(Roz (U)Roa(W) .. Ron (L) (7.6)

While each of the matriceRg;(u) has no non-trivial Jordan blocks the prodiRgt(u)Ro;(u) does.
For example, given the explicit form of the R-matrices one sfaow thafRy; (u)Ro; (u) acting on a three-
site chain with three excitations has a single non-trivial2Jordan block. Denoting byny, my,my) a
three site state

(a)™(a])™ (a3)™|0.0,0) 77

with mg 4+ my 4+ mp excitations, one can show that in t8enodule
Ro1(0)Rp2(0) |1,1,1) = [1,1,1) , Ro1(0)Rp2(0) [0,1,2) =0,1,2) +2|1,1,1) . (7.8)
Similarly, in theP module the two states

|LIJ1>P = %(|O’37O> - |3,0,0> =+ (|Ov 17 2> - |0727 l>) + (|2707 l> - |l7072>) - 2(|l7270> - |27 l70>)) )
|¢o)p =10,2,1) +1,0,2) —2|1,1,1) ,
(7.9)
satisfy
Ro1(0)Ro2(0) [¢n)p = |Yn)p , Ro1(0)Ro2(0) |Y2)p = [W2)p + 2|Yn)p - (7.10)

Longer chains or chains with more excitations have more tioatpd Jordan blocks. The presence of
Jordan blocks in these settings module spin-chains was already noted.in [63]. It turns oat the
space of all spin-chain states with at least one excitatie@aeh site is a closed subsector of the full
integrable chain. One can show that in this subsector naattdordan blocks do not arise. We also
note here that foP andS module spin-chains, Jordan blocks also appear for the xmatfdefined in
equatiori 8.4 below) which is used in the Algebraic Bethe Ansanstruction. Some explicit examples
of this are given in appendix E.

Having non-trivial Jordan blocks in the full spin-chain idbe unphysical - after all its energies are
meant to correspond to the spectrum of physical string &oits at smalk . One may wonder whether
such unphysical states somehow decouple in the full smm One can check that analyzing the
complete alternating chain which includes both left- amghtimovers does not alter the presence of
Jordan blocks - this is in contrast to what happens in ldgaiit CFTs, see for example the review|[64].
The only other way to remove such states would be by intreduein additional projection into the

26\\e thank Matthias Gaberdiel for an interesting discussfaelated issues in CFTs.
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spin-chain atr = 0. The only natural projection that we could identify commsf the zero momentum
condition one imposes in thee # 0 spin-chain. Each state in tlie= 0 spin-chain has a corresponding
state in thex = 0 spin-chain. We might then decide@t= 0 to keep only those states that come from
momentum-conserving states in e 0 theory. However, one may check that this does not eliminate
all the non-trivial Jordan blocks. We do not know of any otpRysically motivated projections.

To summarize, the results of this subsection lead us to thelesion that, from the point of view of
theAdS /CF T, correspondence, we should be interested in spin-chaiesl lbesthe reducibl® module
and its super-algebra generalizations. In the rest of ddsan we will discuss in detail integrable spin-
chains with reducible representations at some of theis.site

7.2 The homogeneous & 2 spin-chain

Given the results of the previous section we would like testigate ther — 0 limit of the alternating
0(2,1;a) spin-chain. In this limit some of the representations bezoeducible. As we showed in
the discussion around equatién {7.1), spin-chains inmglveducible representations cannot be treated
using conventional integrability techniques. As we sawhia first part of the paper, however, the
integrable properties of such chains are well establishealigh the Yangian construction of the R-
matrix. We want to understand better their “local” propestiln the rest of this section we will consider
spin-chains with reducible representations at (somej aitd use their R-matrices to deduce the “local”
physics. We will start with simpler examples which share ynainthe essential features of tloe— 0
limit of the alternatingd (2, 1;a)? spin-chain in which we are ultimately interested in.

In this subsection we consider a homogenau®) spin-chain withr = 162, the three-dimensional
reducible representation, at each site. A convenient fasthis vector space is given by

9, b, 2, (7.11)

where the first state is the singlet. The?2) generators can be represented as the following matrices

J = <0 0 ) . (7.12)

0 Lo
The decomposition into irreps of the tensor product of twitheke representations is given by
rer=2162¢26341. (7.13)
The highest weight states of the irreps on the right-hane aimbve are given by
10,0012, [1,0)12, [0.1)15, 1,115, [2,1)1,—11,2)15. (7.14)

For completeness we note that the mod@esd3 span the following subsets of the nine-dimensional
vector space

2= span{|1,0>12, |270>12} )
2= Span{|ov 1>127 |072>12} )
3= Span{“‘a 1>12> |2’ l>12+ |1a 2>12|2’2>12} .
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The analogue of the R-matrix considered in the previous@ectan be written as aX99 matrix

1 000 0 0 0 0 0
0100 0 0 0 0 0
0010 0 0 0 0 0
0 0 01 0 0 0 0 0
Reor (W) 0 0 0 O r3(u 0 0 0 0 (7.15)
u) = _ , )
®r 0000 0 I’3(U) —|2— rl(u) 0 rg(U) . I’1(U) 0
0O 00O 0 0 1 0 0
0 00O 0 0 0 0 ra(u)
where
r(u)=—(1+u),  rsu)=-+1-u). (7.16)
and the R-matrix above acts in the basis
(’07 O>12 ) ‘07 1>12 ’ ’07 2>12 ) ’17 O>12 ’ ‘17 1>12 ) ’17 2>12 ) ‘27 O>12 ’ ’27 1>12 ) ’27 2>12)t (7'17)
with ' denoting the transpose. In terms of projectors the R-mainixbe written as
Rrer (U) =My + Mo+ Mo+ rg(u)Mz+ro(u)fy, (7.18)

wherel; projects onto th¢ representation on the right-hand side of equation {7.18}hik form the
similarity to the R-matrices considered in the first part lugtpaper is most easily noted. One can
quickly check that the YBE is satisfigh

Rrer12(U—V)Rrgr 13(U)Rrer 23(V) = Rrer 23(V)Rrar 13(U)Rrgr 12(U— V). (7.20)

We find it convenient to write the R-matrix as

Rear(U) = 1+ Raga(u) (7.21)
where
It =Ni@Me@N =111 4142, (7.22)
rs(u)—+rq(u rs3(u) —rq(u ; ;
Roea(u) = B (05 1,) 5 (022 + B MW 050w 000).  (7.29)
Above,
000 100 100 100
‘= o 10|®[{000]), 1=l 000]|®|[010]|, (729
001 0 00 0 00 001

27In fact one could pick a more general R-matrix consistent it YBE of the form
R(u) =M1 b(u)Mz @ c(u)Ma & ra(U)Az @ ry(u)iy, (7.19)

whereb(u) andc(u) are arbitrary functions of the spectral parameter. Howeteranalogy with the R-matrix considered in
the previous sections is most apt whes c= 1.
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1 2 3 4 5 6 7 8 9 10

Figure 3: An example of a state in a reducible homogeneousdmin. The squares indicate sites in a non-trivial
irrep, such ag in section Z.P or th& module in sectiof 713. The dots indicate sites in a trivialgt) repre-
sentation. In the notation introduced in equatidns {[7.28) &.29) this state has = {1,2,3,4,5,6,7,8,9,10},
n={3,4,5,9} andi = {1,2,7,8,10} as well asdN = 10,n = 4 andri’= 6. The states are drawn according to the
ordering given by the site number.

and, for example,

(7.25)

In particular, Ro2(u) is the conventional (4 4) R-matrix of theX XX, spin-chain “enlarged” to a
9 x 9 matrix with a bunch of zeros. The monodromy matrix can bendefin the usual way

T(U) = Rol(U)Roz(U)...RoN(U), (7.26)

where the subscripts 2, ..., N label the sites in the spin-chain, and the subscript O qooregs to the
auxiliary space which is also armodule.

It is convenient to denote the statd$ and|2) as|)) or |1) to emphasize that they are an(2)
doublet. Collectively we will refer to these doublet staéss]). A basis of states of lengtN can be
constructed from all two-cell partitions of the $¢t= {1,2,... N}

rN =span | {|n)}. (7.27)

ncN

By an abuse of terminology we allow= 0,N, as well as all proper subsets Wf The staten) is
defined as follows. Given a two-cell partition defined lby- N, we label the elements of and its
complemenfi=N\n as

n:{nl,...,nn}, ﬁ:{ﬁl,...,ﬁN_n}, (728)

wheren = \n\ and
A= |A|=N-n. (7.29)

The basis-states are then given by

|n> =7 <®|0>nj ® |$>ﬁk> ) (7-30)
k=1

=1

where Z(---) orders the states according to their position in the spairchAn example of a state in
this spin-chain is given in figurel(3)
Acting on the basis states with the monodromy matrix gives

T = e[ (16 +Resza (W) In). (7.31)

ken leh

28Below, we will often refer to these two-cell partitions silyjas partitions, since we will never need partitions withreno
then two cells.
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Above, we have used the following identities

Rrer,0(U)[0); = g [0); ,

i i (7.32)
[IOi , Rog2.0j(u )] 0, foralliandj.
Next we note that N
1610); = 1do[0); .33
loi [2)i = 1612

where I is a 3x 3 identity matrix acting on the auxiliary space labeledybyhis allows us to re-write
equation[(7Z.31) to get

T = 1do]] (1624 Reszan (W) In) (7.34)
= ﬂ <Iﬁ2+ R2®2,0|(U)) ). (7.35)

Forn = N we see immediately that the monodromy matrix is just thetiterFor all other states we
can use the identity
lg:?Rowz,0j(U) =0,  foralliandj (7.36)

and re-write equation (7.85) as

T(u)|n> 1 5r‘|N <<n| ) (HR2®20| )) >—{—5n7|\||n> (7.37)
len len

=(1-onn) (('do —12)o+[]Res20 (U)> In) 4+ dnn Ny . (7.38)
len
For completeness we remind the reader that
1 00
ldo—1,= 0 0 O |. (7.39)
0 00O
We note at this point that this monodromy matrix by constanctatisfies the Fundamental Commuta-

tion Relation (FCR)
RalaZ (U - V)Tal (U)Taz (V) = Taz (V)Tal (U) Ralaz (u - V) ) (7'40)
wherea; anday label two distinct auxiliary spaces.
We have arrived at a very explicit expression for the monmgranatrix; in particular this expression

makes it is easy to take the trace over the three-dimensaundlary space to get an explicit expression
for the transfer matrix

(U) [m) = tro(T (W) [M) = (1= Snn) Taw2(W) [M) + (1+2n) [N) (7.41)

where

T2®2(U) |n> = tl’6 (l_l

len

Ra2g2.0 (U)> Iny . (7.42)
Above, ty, denotes the trace over the two-dimensional auxiliary sphdhe XXX/, R-matrix. The

transfer matrix in turn is the generating object for the naigervables of the spin-chain. What remains
is to find the most sensible Hamiltonian and shift operatotie system.
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From equation[(7.41), we see thatloes not change the lengtl| of a state and that it “preserves
the partitionn”, i.e., acts diagonally on each sub-space spannethpy Moreover, let us define the
linear map

S(In) =@M, » (7.43)
k=1

which acts as a surjection from afiN module into @2®% module. It is easy to see that for two states
In) and|n’) of lengthsN andN’, respectively, which satisfy

S(n)) =§(|n")), (7.44)

we also have
Tn(U) [n) = T (U) ') . (7.45)

In other words, the charges contained in the transfer matexdetermined exclusively by tliieparts.
Any |0) parts are simply impurities which do not change the chargesded in the tranfer matrix.
The transfer matrix contains all the physical informatidooat the spin-chain as encoded in a set of
commuting conserved charges. For a physical interpretatiethe reducible spin-chain we would like
to define the notion of #ocal operator and find a conserved charge from the transfer mahigh is
local with respect to this notion of locality.

In a conventionalX X% /» chain, for example, one can find the shift operator amongsbpiera-
tors in the transfer matrix. Recall that the shift operddtrtakes a state at sie and maps it to a
corresponding state at site- 1

SH(V1)1[V2)5- - [Va)n) = [Vn)1 V1) - [Va-1)p s (7.46)

and satisfieSH' = Id,. A local operator? is then defined with respect 8has
n—1 H<
0= Shoy,. (7.47)
2

We would like to identify a corresponding notion of localftyr the reducible spin-chain with transfer
matrix (7.41). For states with n@®) impurities (in other words for states with= 0) the notion of
locality reduces to the one used in a conventiaklX; , spin-chain described above. This follows
since the tranfer matrix reduces to tHeXX, transfer matrix for such states (see equatlon (7.41)).
Starting with any such statél = 1), we can construct a new stgdt€) by adding some0) impurities
(and so increasing\ andn). Equation [(7.45) tells us that, no matter where or how manguch
impurities we add, the conserved charges encoded in theféramatrix will be the same fdN = fi)
and|n’). In other words, any operator constructed out of the tramstgrix will act in the same way on
these two states. On the stéhé= i) the shift operatoSh(cf. equation[(7.46)) defines the notion of
locality. As we just saw, for states’), there is no way to non-trivially modif§hthrough some operator
extracted from the transfer matrix, since the transfer mdtes not “notice” the0) impurities.

The argument in the above paragraph leads us to concludéhthahly possible notion of locality
in the reducible spin-chain comes via the generalized spitator, which we continue denoting 8
This operator moves an excitation at sitetd an excitation at siteg; 1 (cf. equation[(7.28))

Sh(|n)) = Sh<9” (@\% ®\vk>ﬁk>> =7 (@\% ®!vk+1>ﬁk> : (7.48)
k=1 k=1

j=1 j=1

wherevy =7, | at sitek andvy_n4+1 = v1. In figure[4 we show pictorially what is the notion of locality
introduced by the operat@hon the state from figurd 3.
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Figure 4: The spin-chain state from figlide 3 drawn in a way rtbfiécts the notion of locality as dictated by the
integrable structure. The nearest-neighbors are linedargahe horizontal direction. For example, the nearest
neighbors of the site 2 are sites 1 and 6, and the nearestioembf the site 7 are sites 6 and 8. The Hamiltonian
of the spin-chain is local with respect to this notion of liitya The monodromy matrix (u) acts non-trivially
only on the sites on which the non-singlet representatibnskich, in this case are,2,6,7,8,10.

We can check that the operat8hcan be extracted from the transfer matrix. To this end we note
that with some suitable rescaling of the spectral parameter

v=(iu-2)/4 (7.49)

as well as an overall rescaling of the R-matrix by a scalactfan of the spectral parameter, the mon-
odromy matrix is a polynomial of ordeéd in the new spectral parameter We will expand around
v=0

N N
— 5 1K — 5 1t .
T(v) k§: T, T(V) k§: T (7.50)

It is then straightforward to show that for a general bagigesh) (with i # 0)
fi
TOn) = (1do — 1) [n) + [T Pon ) , (7.51)
k=1

where

1 o
P = = (Le® 1+ 0 ®0') (7.52)

2
with the subscripb;, indicating the vector spaces on which the operator actsnfing we find

O °

%n) = (1+n|_ipﬁkﬁk+l) In) = (1+Sh[n), (7.53)
k=

where we have used the identity

1
Sh\n> = PﬁlﬁHl ]n> . (7.54)

The next term in the expansion is given by

i
T |n)=— Po In) (7.55)
glk:l;lgél “
and one can then show that
. o fi-1 fi-1
T( )’n> = _(T( ) 1) Z Pﬁlﬁl+l ‘n> =—Sh Z I:>ﬁ|ﬁ|+1 ‘n> . (7-56)
=1 =1
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Higher charges can be worked out analogously. In falais invertible
(SHt|n) = |‘| Paf..IN) . (7.57)

so we can define the following charge

n—

_ — xxxl
Hin)= (19 =)t n) == 5 Pya,In) = Z Hid,. In) (7.58)
=1

As is guaranteed by the FCR, the operadonbove commutes with the charges contained in the transfer
matrix. The final equality in the above equation shows thatan be thought of as just theX X,
Hamiltonian, acting on thé part of the spin-chain.

In summary then we usghto define the notion of local operators on thepin-chain, and we take
H to be the Hamiltonian of this spin-chain. It is easy to chdek it is indeed local with respect ®h

7.3 A homogeneou® module spin-chain

In the previous subsection we presented in some detail thgeneous integrabka:(2) spin-chain
with each site in the reducible finite-dimensiodab 2 representation. In this section we will consider
a homogeneousl(2) spin-chain with the reducible infinite-dimensional mod&®e= 0 —1 at each
sited The basis-states for a lengthspin-chain of this kind can be thought of in almost the samg wa
as that of thea spin-chain of the previous subsection. In particular, $atites correspond to two-cell
partitions of the selN = {1,2,...,N}, just as in equation§ (7Z.R7)-(7]130), but now states befantp i
are not in the doublét}), but rather in thes= —1 infinite dimensional representation.

We remind the reader that the representaRonR can be decomposed into irreducible modules as
in equation[(2.40). As a result, we can take the R-matrix to be

RR@R( ) Mo+M- 11—{—|_| 12"'; I_I jo (7-59)

with M_; the projector onto the= — j representation on the right-hand side of equafion {2.40) an
71y 4 2k

rj(u):kELu_zk. (7.60)

This expression is in agreement with the general expresioived in equation[(4.11) upon setting
u=u; — Uy andj = |g|. Explicit expressions for the above projection operatoesgaven in appendix G.
Just as in the previous subsection we can write the R-matrix a

Rrer(U) =17+ R15-1(u), (7.61)
where
It =Mo+N_ 1, +MN_4,, (7.62)

andR_15_1(u) is the conventional R-matrix for théXX_; spin-chain “augmented by some zeros” so
it acts on the full moduldk and not just on the-1® —1 sub-module; this is in analogy with equa-

tion (Z.21).

29The moduled is the trivial one-dimensional module.
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Acting on the basis states with the monodromy matrix gives
T(Wn) = e[ (1 +R 1010 (W) In). (7.63)
ken len

Above, we have used the following identities

Rrer0i(U)[0); = 157 [0);

7.64
[l R 15 1.0j(W)] =0, foralliandj. 79

It is easy to check that these identities hold, using theigkpkpressions for the projectof$s given in
appendiX_G. Using these expressions we note also that
lor [0); = Idg |O): ,
()i‘ >| 0’ >| (7.65)
lor (V)i = (Mo+TM_1,) [V); ,

where Ig is the identity matrix acting on the auxiliary space, &wdis any state in the-1 sub-module
of theRmodule at site. This allows us to re-write equation (7163) to get

T(u)[n) = |!_I Ido I|_] (Mo+N_1,+R_1z-1.0(u)) [n) (7.66)
=[1(Mo+N_1, +R1o-10(w) In). (7.67)
len

Forn = N we see immediately that
T(un=N)=|n=N), (7.68)
For all other staten £ N we can use the identity
(Mo+M_1,)0iR 15-1,0j(u) =0, foralliandj (7.69)

to simplify the monodormy matrix further. Combining the twarts we obtain the following expression
for the monodromy matrix

T(U) \n> = (1— 5n,N) <<I_I no+ I'I_12> + <I_I R_1®_170|(U)>> ]n> + 5r|7N ’n> (770)

len len

— (1-8w) <\o>o<oyo+ i R_1®_17o.<u>> DET- Y (7.71)

len
In the above it is useful to recall that
Mook +M_1,0k = [0)o (Olg , (7.72)

for any sitek. This identity can be explicitly verified using the projecéxpressions given in appendix G.
We can now trace over the auxiliary space to get an expligitession for the transfer matrix

T(u) [n) =tro(T(u)) [n) = (1= SN)T-12-1(W) [N) + (1 + (Z—1)Sun) [N) , (7.73)
where

T_12-1(U) [n) = trg (l_l Ro1s-10 (U)> I, (7.74)

len
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andZ is au-independent (infinite) constant
Z =trg(ld) Z 1. (7.75)

Above, t, denotes the trace over the auxiliary space of a conventi¥aX_; R-matrix. As in the
previous subsection, we see that the transfer matrix aetgighlly on two states which differ from
one another by an addition/removal |6f impurities (cf. equation{7.45)). This in turn implies that
the only notion of a generalized shift operator is given by s$ame formal expression as the one in
equation[(7.48), but withv) now belonging to the-1 submodule. We can perform a similar analysis
to the one in the previous subsection to show that the géredadhift operatoShcan be extracted from
the transfer matrix (cf. equatioh (7153)). We can also extimm the transfer matrix a local conserved
charge which we will call the Hamiltonian of the system

Ai-1
XX)L
H ’n> = IZ n|n|+11‘ > (776)
=1
where
XX)L
n|n|+11 2 Z h _J n|n|+17 (777)

sz
andh(j) is the j-th harmonic number. This Hamiltonian acts only onfltgart of the spin-chain through

the action of a conventionad X X_; spin-chain Hamiltonian, and is, by construction, locahwigspect
to the generalized shift operatSh

7.4 The alternating r® 2 spin-chain

In this subsection we consider an alternaténg2) spin-chain, where the odd/even sites are in2fe
representation, respectively. The general procedure l@fis outlined in [20]. We will denote the
even (odd) sites by an un-bared (bared) ingé, respectively. A convenient basis of spin-chain states
of length 2\ can be constructed using two-cell partitiond\of= {1,2,...,N} just as in sectioh 712, but
now replacing eaclD) or |]) state with|]) ® |0) or 1) ® |1). In particular we will have

(2@r)N =span | {n)}, (7.78)

ncN

where now )

n
n)= (@(n @0, )®(n>ﬁk®n>ﬁk)>. (7.79)

k=1
There is also a second way to parametrize the stajeshich will also be useful below. If we define
M=2N={1,2,...,2N}, (7.80)
and the two cell partition o as

m = {2ny,2ny,...,2n,}, m=M\m, (7.81)

then the statén) can also be thought of as

n) =m)=2 (@\0>m,. ®\i>ﬁk> : (7.82)
k=1

j=1
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1 2 3 4 5 6 7 8 9 10

Figure 5: An example of a state in a reducible alternating-gpiain of the type discussed in sectibns 7.4[and 7.5.
For such spin-chains the odd sites are in ther R representations respectively (denoted in the figure by a
square). The even sites are either singlets (denoted by) @diot ther (respectivelyR) representation. In the
notation introduced in equatiorls (7128) ahd (¥.29) thitedtasN = {1,2,3,4,5}, n = {2,3,5} andfi = {1,4}

as well asN =5, n= 3 andri’= 1. In the notation introduced in equatioms (7.80) dnd (7t8iy state has

M ={1,2,3,4,5,6,7,8,9,10}, n = {4,6,10} andfi = {1,2,3,5,7,8,9} as well asM = 10,m= 3 andni=7.
The states are drawn according to the ordering given by taensimber.

where Z(---) orders the states according to their position in the spairchs counted b, m= |m|
andm= |m|. Above, them; denote the elements af, and therr the elements of. This alternate
basis just reflects the fact that a generic basis $taten the alternating chain consists of a particular
ordering ofn singlet state$0) and 2N — n states in the representation. Hence, such a basis state can
be thought of as a lengti\Rbasis state of the homogeneauspin chain discussed in sectionl7.2. An
example of a state in this spin-chain is shown in figure 5.

Let us turn to the integrable structure of this alternatipgrshain. In such a model there are
three R-matricesR«r (given in equation(7.18)), the conventioneX X, R-matrixRas2 and a further
R-matrix

Rrg2(U) = M2 @ Roga(U). (7.83)

Above, Rys2(u) is the conventionaK X %, R-matrix augmented by some zeros so that it now acts on
r ® 2. The R-matrices now satisfy a number of YBE equations: irtaufdto (Z.20), and theXXX%
YBE for the 4x 4 Ryg2(u), they also satisfy

Riz(U— V)Ry3(U)Ra5(V) = Ra3(V)Ri3(U) Rz (U— V), (7.84)
Ri2(U—V)Ry3(U)Ro3(V) = Ryz(V)Ry3(U)Ri2(U— V), (7.85)
Ry2(u—V)Ri3(U)R3(V) = Raz(V)Ruz(U)Ryz (U~ V), (7.86)
R (U—V)R3(U)Ry3(V) = Ryz(V)R3(U)Rp(U—V) (7.87)
We may define two monodromy matrices
Ta(1) = CRo ()R () Rz (W) Rz (1) Ran(u) R (U) 7.68)

Ta(u) = CRa (W)Rg (WRa2(WRg(U) - - Ran(U)Rar (1)

where, andz denote auxiliary spaces in tleandr representationsy andC are constants. From the
above YBE relations the following fundamental commutatielations (FCRs) follow

Rap(U— V) Ta(U) Tp(V) = Tp(V) Ta(U)Rap(u— V)

Rep(U V) Ta(U)T5(v) = () Ta(t)Reu V). (759
As a result, if we define the transfer matrices
T(U) = traTa(u), T(u) = trzTa(u), (7.90)
they commute amongst themselves for different values opleetral parameter
[t(u), 7] =0,  [r(w),T(v)]=0 (7.91)
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Figure 6: The reducible alternating spin-chain state frguré{% drawn in a way that reflects locality as dictated
by the integrable structure. The nearest-neighbors aed lip along the horizontal direction. For example, the
nearest neighbors of the site 2 are sites 1 and 3, and thesheaighbors of the site 5 are sites 3 and 7. The
Hamiltonian of the spin-chain is local with respect to thaian of locality. The monodromy matrix(u) acts
non-trivially only on the sites on which the non-singletmegentations sit, which, in this case ar@,B8,5,7,8,9.
Notice that, unlike the homogeneous spin-chain, there eaat most one defect between two local sites.

To show thatr (u) and7(u) also commute,
[t(u), T(v)] =0, (7.92)

we need a further FCR

Rap (U= V) Ta(U) Tp(V) = Tp(V) Ta(U)Rgp (U— V), (7.93)
to hold. In fact, such an FCR can hold as long as the Yang-Badeations[(7.86) and (7.87) are
satisfied.

We can now expand the transfer matrices to extract the gerestahift operatoiSh In fact it is
easiest to write down this operator explicitly in time) basis. We find

m-1

1@ |m) = [ Prumes Im) = Shim)
k=1

m—1

Om) = (1+ IDl Pr.1) (M) = (1+Sh [m) .

(7.94)

The Shoperator defines the notion of locality for the alternatihgio (see corresponding discussion in
sectior Z.P). In figurkl6 we draw the state depicted in figure&way that reflects locality induced by
Sh In the|m) basis one can extract an operator from the transfer matnibesh is local with respect
to the aboveShoperator - this will be our Hamiltonian. Its explicit form is

HIm) =~ B m) = 5 HI m (7.95)
- |Zl mmq Z m+1 '

In the alternating spin-chain in [32], the a Hamiltonian g&mto the above was constructed as

ddu log((u)T(w))| = (T(0)T(0)) (T (0)T(0) + T(0)T'(0)). (7.96)

u=0

We can repeat the same construction in the reducible sgimcbrovided we shift (0) by —1 to obtain

the invertible shift operatoBh The discussion above shows that botl) and 7(u) provide transfer
matrices that effectively act on tree= —1 part of the spin-chain. Moreover, these transfer matrices
commute. Hence the resulting Hamiltonian simply consiétsvo copies ofH***/2 from above.

7.5 The alternatingR module spin-chain

In this subsection we consider an alternating integraki®) spin-chain, where the odd sites are in a
conventional—1 representation and the even sites ardRanodule. Having gained some experience
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with the construction of local quantities for reduciblersphains in the last three subsections, we can
be quite brief here. In particular the construction is agaic to the one in the previous subsection,
upon replacing ang representation ofu(2) with a —1 representation of((2). For example, a basis
for this spin-chain can be constructed

2@ R)N =span | {n)}, (7.97)

ncN

where now ] ;
=2 (@ (Ve @100, ) @ (W), rv>ﬁk)> , (7.98)
j=1 k=1

where|v) is a generic state in thel representation. As above, there is a second way to param#te
stategn). DefiningM, m, M, m; andn as in the previous subsection, the statesan be re-expressed
as

m m
ny=|m)=2 (@ 0)m, & yv>,n> . (7.99)
j=1 k=1

Using the expressions for projection operators in appef@iwe can construct the transfer and mon-

odromy matrices for this alternating chain in a manner sintib the previous subsection. In the end we
find that the generalized shift operator is

m—1
Sh|m> = Pﬁ,&mﬁl|m> (7.100)
1

and the Hamiltonian, local with respect$ty is

fi-1
XXX
Him) = z Hmﬁml\m> , (7.101)
whereHﬁfq),;fill is the conventional nearest-neighbor Hamiltonian oKafX_; spin-chain

HARE =2 S (L= (- mm..- (7.102)
=2

7.6 Thed(2,1;a = 0) spin-chain

The generalization of the above to the alternaofg, 1;a = 0) = psu(1,1|2) chain is straightforward.
The odd sites are in @-3; 3) irreducible short representation, and the even sites @&id @ (—3; 3)
representation. Compared with the alternatii@) spin-chain discussed in the previous subsection, the
0(2,1;a = 0) chain has two main differences. Firstly, at the even sité®revthe reducible representa-
tions sit, there are nowvo singlet states. Secondly, the highest weight states OH@%) modules
at the even/odd sites are fermions/bosons, respectivelyf@rmionic statistics of the even site ground-
states is a consequence of these states being fermionierdizsts in thé—%; %; 0) irreducible module
ata #0.

Modulo these two differences, the alternat?@, 1;a = 0) spin-chain is quite similar in form to
the alternating spin-chain of the previous subsectiors dtill useful to define the basis elemefrts

m) =2 (@ O )y ®\v>ﬁk> : (7.103)
k=1

j=1
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1 2 3 4 5 6 7 8 9 10

Figure 7: An example of a state in a reducible alternating-gpiain discussed in sectibn]7.6. The odd sites are
in an irreducible representation of the super-group, witfosonic highest weight state. These are denoted by
a white square. The even sites can either be in a singletsemtaion (denoted by a dot), or in an irreducible
representation of the same type as the odd sites, but withsitepboson/fermion grading (denoted by a grey
box). In ad(2,1;a = 0) spin-chain, there are two singlets, one bosonic and onadeaicy we don’t distinguish
between these in the diagram. In #1€2|1) sub-chain there is only one bosonic singlet state.

Figure 8: The reducible alternating spin-chain state frguré{® drawn in a way that reflects locality as dictated
by the integrable structure. This is quite similar to figuy&@t the boson/fermion grading of the representations
at sites 2 and 8 are now opposite to the grading of the repasmrs at sites 1,3,5,7 or 9.

where now|0mJ can be either of the two possible singlets) denotes a generic state in(a3;3)
module, taking into account the bosonic/fermionic naturéhe groundstate. The generalized shift
operator is

Shim) = |‘|1 P M) (7.104)

=

whereP is the graded permutation operator. The Hamiltonian, ladt respect tcSh is

H|m) = Z Asa 27 m) (7.105)
=1

where H,(nnl]/zll/z) is the conventional nearest-neighbor Hamiltonian ofpam(1,1|2) homogeneous

spin-chain WI'[h(—%; %) irreps at each sité [61]. The “hat” dth indicates the extra grading required due
to the switched statistics of the even-site irreps. We cdtewltis Hamiltonian as a sum of projectors
by lifting the s/(2|1) R-matrix discussed in sections 5 did 6. The result reads

00

A 242 Z (DAl (7.106)

Note that this Hamiltonian acts trivially on any site contag a singlet as well as on the groundstate of
the (—1/2;1/2) sub spin-chain.

Finally, the full spin-chain relevant tddS/CFT, consists of a left-moving and a right- moving
sector, together with a momentum conservation conditianpfiysical states which combines both
sectors. This construction was already discussed in [32janrefer the interested reader to it.

8 The Lax connection and the algebraic Bethe ansatz

In this section we discuss how reducible integrable spairchcan be solved using the algebraic Bethe
ansatz (ABA@ For any representation ef(2) given by operatord 3, T+ satisfying the conventional

30For other unconventional settings generalising the ABA[EBE6E].
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commutation relations and acting on a vector spacene defines the Lax operator as

_(p—iTE T
L = . ( 8.1

k(u) < |Tk+ u +|Tk3 ) ( )
where the subscrigt labels the site on the corresponding spin-chdig:acts onV ® v wherev is a
two-dimensional auxiliary space. The above expressiohghktly different from the conventional one
in [67], because we take™ to be the “creation” operator. Itis easy to check that thevalh@x operator
satisfies the fundamental commutation relation

RE52(1 — V)Lna(K)Ln2(V) = Ln2(v)Laa ()R 2(1 — V), ®8.2)
where i i
RE3%(1) = plds +iPerm, = (U +i/2)lds +i0' ® 0'/2,
Ln1=Lk®Idz, (8.3)
Ln72 - Id2® Lk'

ngz(u) takes the same form as the R-matrix used_ in [68]. Mhean be used to construct an algebraic
Bethe ansatz (ABA) for finding the eigenvectors and eigemsbf the operator

p(u) =try (La(u)la(p) ... La(u)) - (8.4)

wherelJ is the length of the spin-chain and the trace is taken oveath@iary spacevs. Typically, one
thinks of integrable spin-chains as coming equipped witRanatrix Ry, (1), which acts o’V @ V. In
such cases, the spin-chain Hamiltonian is one of the chag#sined in the monodromy matrix

T(1) = tro (Ro1(H)Ro2(M) - - - Roa(H)) , (8.5)
where the trace is taken over the auxiliary spdcén [67], the authors show that
[T(k), p(H2)] =0, (8.6)

implying that, up to degeneracy, the eigenvectorp @f), found through the ABA procedure, are also
eigenvectors of (i), and hence also of the Hamiltonian. [n[67], a proceduresis given for extracting
the eigenvalues af(u) from the ABA.

In this section we will follow the ABA construction for theytanodel from sectiof 712, the homoge-
neous R-module spin-chain from sectionl 7.3 and the alten&-module spin-chain from sectibn 17.5.

8.1 The ABA for the 1@ 2 spin-chain

Before we study the ful((2) spin-chain we will again consider the compact toy-modeahfsection 7.2,
with sites transforming in th& & 2 representation. As explained above, we can introduce the La
operatorLy(u) defined in[(8.11) and satisfying (8.2). However, it will be genient to consider a shifted
operator

Ce(k) = Le(p) + ()N, (8.7)

wherel‘ll((o) is a projector onto the singlet at sike The operatoil, satisfies the same fundamental
commutation relatior (812) ds. We also introduce the corresponding operator

p(u) =try (La(p)Ca(p) -~ La(n)) - (8.8)
As above p(1) commutes withp () and T ().
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The representation at each site is reducible. Hence thersvarhighest weight state8) and|1).
Let us denote these two possible states atkditg

W) =10y, and  |ab) =), (8.9)

We can then construct a “vacuum” state of lengjibf the form

J
1QY); = @), (8.10)
k=1

wherev = (v1,Va,..., V) with v € {0, 1} labels the choice of highest weight state at each site. Adter
tively, we can use the notation of sectlon]7.2 and partitenditesN = {1,...,J} into two complemen-
tary sets

n={ng,n,...,Nh} CN, A=N\n, (8.11)
with n specifying the sites transforming in the singlet submodinether words
0, ifk
V=4 o tRem (8.12)
1 ifk¢gn.

As before we denote the number of sites in the s@itand|1) by n andri; respectively.
Labeling the entries in the 2 2 matrix definingo(u) as

plp) =tr (’éﬁﬁ; Siﬁ))) (8.13)
we find
A Q) =ay(1)[Q");, D) |Q%),;=38(1)IQ"),,  B(u)[Q"),;=0, (8.14)
where

ay(u) = <u+€>n<u+%>ﬁ, Oy (u) = <u+€>n<u—%>ﬁ- (8.15)

Following [68], the fundamental commutation relation {82 equivalent to certain relations be-
tweenA;, B, C; andD; includinﬂ

B(u)B(v) =B(v)B(u),
A(H)B(v) = f(u—V)B(V)A(H) +g(k — V)B(L)A(V) (8.16)
D(u)B(v) = h(u —v)B(v)D(u) + k(1 — v)B(u)D(v),

where we have temporarily dropped the subsclifar clarity and

f(=E = hw =R =y @)

We saw above that the groundstate$Q") ; are eigenvectors gf(u). We now look for additional
eigenstates by applying the ansatz

[®3({mi})) =B(pr) - B Q%) , (8.18)

31The expressions are exactly the same as ih [68] because drix &2 is exactly the same as the onelin][68].
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where we have introducedy } to indicate the sefp, ..., 1 }. Following the same arithmetic as in [68]
we find that the above are eigenvectorgofit) with eigenvalue

|
My (K, {ki}) = ay(p |'|fu Hk) + 05 (H |j (M — ), (8.19)

as long as they; satisfy

[ [
ay (k) [ f (ke — 1) = 03 (k) [] (ke — 1) (8.20)
] ]
fork=1,...,l. Using the explicit expressions fdr h, a¥ andd" we obtain the Bethe equations
iNA TR
<“k_+l2> — M ) (8.21)
Hk— 3 # Hk — Hj —1

Note that the Bethe equations only depend on the number e$ingiets sites).”"Hence there are only
J+ 1 distinct sets of Bethe equations even though the numbeoahgstates is2 The above equation
coincides with the Bethe equation for an XXX spin-chain of lengtim [68]. Since the raising operator
B(u) does not change the position of the singlet states, thermutaipectrum consists of sectors labeled
by the set of singlet sitas. The highest weight states in such a sector matches the sfettee XXXy,
spin-chain on the non-singlet sites.

When acting on a vacuum state containing singlets equdBd@i) has a solution g = /().
This is not a solution of the Bethe equations (8.21) and doesorrespond to a new eigenstatepdfi),
but to a zero of the raising operatBtpy). If we had not introduced the additional shiftiip(u) this
sporadic solution would sit gt = 0, and would hence hide a physical solution of the Bethe @t
In this regard, the shift introduced in equati¢n {8.7) actsaaegulator of the raising operator. The
function ¢(u) is arbitrary. In particular we can chooseg, /(i) = 1— u, which completely removes
the sporadic solutions.

8.2 The ABA for the Rmodule

We are now ready to apply the algebraic Bethe ansatz to a hemag spin-chain with the sites trans-
forming in theR module. Like the toy model considered above, Bheodule has two highest weight
states. One of these is a singlet and the other state gem#ratest of the module. Hence, the structure
of the ABA is very similar to that of the toy model. At each site define

@) =[0),, and  |wl)=all0),. (8.22)

As above a vacuum state for a lengtBpin-chain can then be defined by

(&)

Q%) =@ |a) (8.23)

n=1

where agairv = (v1, Vv2,...,Vv;), withv; € {0, 1}.
As in the previous section it is useful to consider the sdiftex operator

Cu() = Li(p) + £(u)Ng, (8.24)
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and the corresponding transfer matgigu). Fromp(u) we construct operatoris(u), B(u), C(u) and
D(u) by the same prescription as [n_(8.13). These operatordystitesrelations in equation (8.116), with
the only difference being their action on groundstatescivis now given by

A Q%) = a3 (1) Q) Dy 1Q"); =8y (1)[Q");, Cy|Q"); =0, (8.25)
where i i
ay(u) = (u+0)"(u=0)" &) =+ " (p+i)". (8.26)
Note that the extra parametérthat we introduced in the shifted Lax operafdru) again acts as a

regulator aju = 0.
Following the derivation in the last section, we find that $tegte

[ ®3({Hi})) =B(pa) - B(uk) Q") (8.27)
is an eigenstate g(u), provided the parametefs satisfy the Bethe equations
i\ K o, i
<M> = |_| M (8.28)
Hj+1 |¢j”$‘”k—|

These equations take the same form as the Bethe equationsoofi@ggenous Heisenberg spin-chain
with A sites in thes= —1 representation [68].

As in the toy model, there ar€ Bifferent “ground-states” labeled lwy but onlyJ+ 1 distinct Bethe
equations labeled hy=0, ... ,J. Since the raising operat8( ) is constructed out afl(2) generators,
any state obtained by acting with a set of raising operatoes groundstate which contains a singlet at a
particular site will again have a singlet at that site. Hemeecan use one solution {0 (8128) to construct
several different states by acting with the same set ofngigperators on different groundstates of the
same length and with the same number of singlet sites. Belwilcheck that we in this way obtain
enough states to cover the full spectrum.

The counting of states. We will now show that the above Bethe equations give the comamber
of highest weight states.e., that the obtained spectrum is complete. To do this we wilhaes that
the ABA description of thes = —1 Heisenberg spin-chain is complete. The decompositianhighest
weight states of th@-fold tensor product of spisinfinite dimensional irreduciblel(2) representations
is given by

S®S®- - ®@s=dg oMysx (Js—9), (8.29)
where the multiplicitiesM; s are given b@
J+S-2
Mys= < +S > (8.30)

3270 see this, we note that in an oscillator representationameuse a basis with states of the form
Ing.ng,.....ng) = (@)™ (a])"™ - (a]™0)..

The total number of states with= n; +n, + - --nj oscillators is

J+S-1
= (75)

However,N; s_1 of those states are descendants from the level below. Tanisseus with

J+S-1 J+S-2 J+S-2
NJ,S—NJ,&l:( S )—( S—l):( S ):MJ,S

highest weight states.
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We now note that the Bethe equation in Renodule for a state with total weigi&tabove a ground-
state withn; non-zero entries coincides with the Bethe equation for adgemouss = —1 spin-chain
with n; sites andK,, = S—n; Bethe roots. As we have just seen, this latter equatior1\/h.§1,;zznl non-
trivial solutions. For theR module there are’Aifferent groundstates, and to obtain all states we need
to sum over them. In doing this we note that there(a,ir?groundstates with weigh;. Hence the total
number of highest weight states of weigis

J /] Kn, — 2 J I\ [/S-2 J4+S-2
0] Gy B 691 Sy B G B
m=0 Ny Knl m=0 Ny n1—2 S

which agrees with the expect number of staldgs.

8.3 The ABA for an alternating R module spin-chain

Let us finish this section by considering the ABA for a spimichwhere the even sites transform in
the R module and the odd sites in a spil representation. Since tikmodule contains a= —1
representation as a sub module, the structure of this attagnchain will be very similar to that of
the homogenous chain considered in the previous sectidiacinthe only difference between the two
cases is that the groundstates of the alternating chairyalags a non-singlet at the odd sites.

As in sectiori 7.b we denote the set of singlet sitesignd the non-singlets by. In the alternating
chain in particular contains all the odd sites. For a chain of lar@it we can then construct-2
groundstates of the form

J
Q%)= R la) (8.32)
k=1
where again
) =10),, and |wy)=a}|0),, (8.33)
and
0, ifk
D (8.34)
1, ifkgm.
Above such a groundstate we construct an excited state ingaeith a raising operatdB(u),
|5 ({ki})) =B(pa) - B(kk) [QY); - (8.35)
This is an eigenstate of the monodromy mafiiyu) providedy; satisfy the Bethe equations
C_i\M™ K i
(M) - M (8.36)
K+ k4j Hj = Hic—1

As expected from the results of sectlonl7.5, this is the Bethations of a homogenoss= —1 spin-
chain of lengthm”

9 Missing massless modes

Let us now turn to the relation between the reducible spairchwe have investigated in the previous
sections and the missing massless mode puzzle oAd&/CF T, integrable system discussed in the
introduction. In order to highlight the essential featuoé®ur discussion, throughout this section we
will focus on thes((2|1) subsector of the fuld(2,1;a = 0) alternating reducible spin-chain. We remind
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the reader here that at= 0 the odd sites of the spin chain are in @e%) highest weight chiral irrep
of 5[(2|1) and the even sites are in the reducible (3; 3) representation. In particular, we recall that
the reducible representation at the even sites has onesiagt it's non-singlet highest weight state is
a fermion. In analogy with the results in sectidn 7, a basistates in the alternating reducikdg2|1)
spin-chain takes the form

m m
Im) =2 ((X)\o>mj ®\v>m> : (9.1)
j=1 k=1
wherem, m, M, m; andnf are defined in equations (7180)-(7.82) and the text arouewh tk¥” orders
the sites according to tHd -order (see also the text following equatién (7.30)).

9.1 A glut of groundstates

In sectior 7.6 we have constructed the Hamiltonian for this-shain. As a first exercise we may find
all the groundstates of this chain of a given length. Fromathalysis in sectionl7 it is easy to see that
any state of the form

m m
z <®lo>mj®’\/:0>rﬁ<> ) (9.2)
j=1 k=1
is a ground-state. Abovie = 0) is the highest weight state of tmé; %) irrep. In other words, ground-
states always have = 0) on the odd sites, but on the even sites one is free to choskdberfic) singlet
state|0) or the (fermionic) highest weight staje= 0). All such states must be groundstates since they
sitin short multiplets of the overadl(2|1). As a result the reducible alternating spin-chains havey ve
large degeneracy: given a spin-chain of length there are ® ground-states, half of which are bosonic
and the other half fermionic. These ground-states do noaaty the samel(2|1) Cartan charges, since
the singlet stat¢0) has no charge under thi(1) R-current, while the highest weight stdte= 0) has
charge ¥2.

9.2 Lifting the degeneracy

This glut of groundstates is in fact unphysical. Perhapsctimest way to see this is by considering
what happens to certain magnon states inathe 0 limit. For a # 0 the alternating((2|1) spin-chain
of length 2\ has a unique vacuum

N
10) o0 E®|0>2i—1®|0>2i (9.3)

i=1

where|0),;_, is the highest weight state of tiié>%; 152) irrep and|0),; is the highest weight state of
the ($;—%) irrep. On this groundstate we can build a fermionic magnatest

N .
Qi # 0)ay = % 3 @ Qim0 (9.4)

where the momentum of the magnonpis= 2rrm/N with m=0,1,2,... ;N — 1, and we have chosen
the overall normalisation for later convenien€g}, is the fermionic creation operator #fi(2|1) which
does not annihilate the (chiral) highest weight state; thessript,, indicates that the operat@™ is
acting at site .

In the a — O limit the magnons#Q*; a # 0>2N remain well-defined elements of the Hilbert space
of states of the spin-chain, sin€g" scales like,/a. However, they can no longer be written using the
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1 3 - w2me1 2m 2mHl e w 2N-1

Figure 9: A groundstate of lengthmwith a non-zero representation at site,2and singlets on every other even
site. As previously we indicate the odd sites by a box, thglets by a dot and the non-singlet site at the even sites
by a filled grey circle. The zeros on the non-singlet sitesesgnts the highest weight state of the corresponding
representations. In the notation of secfiod 6.4, the odd sibntain the statg), and the even site an2contains

the stataly, while the singlets are given by the state

action ofsl(2|1) generators, However, if we define an operdtdr, which maps the singlet sta@) to
the highest weight state = 0) in the (3; 2) module

W*0)=|v=0) (9.5)

then the magnon state in equatién [9.4) becomes-atd
N .
W= S €PMWL (00 - (9.6)
m=1

It is easy to see that such magnon states are in fact partioud@r combinations of the groundstates
of the reducible alternating spin-chain given in equat®@®). We will refer to them as degenerate
magnons. Any groundstate of the reducible alternating-epain is a linear combination of states
given in equation[(9]2) and so equivalently is given by a sugstion of a number of degenerate
magnons[(916). Figufe 9 depicts one of the st&tgs|0),, appearing in the construction of the degen-
erate magnon.

Now to see that these degenerate magnons are in fact notdsgtates of the full Adg/CFT, inte-
grable system, let us make the following observation. R#tal, using the non-perturbative dispersion
relation, a magnon state (9.4) has energy

E(|QS)) = \/a2+4h()\)23in2§p, ©.7)

whereh(A) is the ubiquitous and undetermined function of the 't Hoofgling A. In thea — O limit
the energies of these magnons become

E(W)) ) zz(h()\)sing(. 9.8)
So ata = 0, only thep = 0 magnon is a ground-state, and all the other degenerateamggine in fact
excited states. The glut of groundstates is vastly reduced!

From the above, we see that the apparent glut of groundstesasssed in the previous subsection
comes about because our R-matrix and resulting Hamiltoaiarcomputed at smalti(A). From the
dispersion relatior (917) it is clear that for the states$ biewome massless in tile— 0 limit, we should
really be re-summing all th& contributions to get the leading term in the dispersionti@teat o = 0.
Our preceding smal(A ) analysis however has been very useful in determining theesgtate of the
spin-chain and how one should incorporate massless mads iWe conclude that non-perturbatively
in A, for each length. our reducible alternatingl(2|1) spin-chain has two (degenerate) groundstates.
One is given by ther — 0 limit of the state[(9.3) - this is simply the state consigtaf the singlet state
at all even sites and the highest weight state at all the ddd.sThe second groundstate is the- 0
degenerate magnon stdte {9.6).

54



This degeneracy is in agreement with what one expects tofgbe ghiral ring in the plane wave
limit [45]. The CFT, for the a = 0 theory is expected to be ttid, 4) Symi(T#) sigma model or some
deformation of it. SuclCFT,s have a chiral ring of chiral primary operatdrs|[69] whoseelisions are
protected by supersymmetry - in particular the chiral ringXpected to be invariant under deformations,
and can be studied at the orbifold point directly. A bealtiescription of operators in chiral rings in a
wide class ofCF T,s was given in[[70] and more explicitly for the case of intetesse in [27] . A chiral
ring operator can be thought of as a state in the Fock spate ¢éft-moving sector of a sigma-model
whose target space is the cohomology (in this cas@)‘ofn particular, they are of the form

M
A
II:!afni |0> (99)
whereM is an integer and satisfies<IM < N, with N defined as
M
i;n, =N. (9.10)

The A label the complex cohomology classesTdf®3 A = 0 denotes th¢p, q) = (0,0) cohomology
and operatorsr® for which p+ q is even or odd are respectively bosonic or fermionic. ThenBrges
of the chiral-primaries (919) are

M M
(BL,BR):(N—M+_Zipi,N—M+Zlqi). (9.11)

Above p; andg; are the(p,q)-cohomology degree a4;.
In the plane-wave limit the chiral primaries correspondtogsingle particle states were shown
in [45] to be of the forid

Pfa_j-1

N
(a®y) T aéj+%_1|o>‘ (9.12)

PickingA = 0 gives an operator which in the spin-chain is the- 0 limit of the groundstaté (9.3). With
A chosen as &1,0) form, the operator in equation (9]12) is precisely the 0 degenerate magnon in
equation [(9.6) which we have shown is a genuine groundsfatieecall-orders-inA reducible spin-

chain.

9.3 Speculations on the degenerate magnon Hamiltonian

In the previous subsection we have argued that the glut cingistates present in the smalteducible
spin-chain is lifted by a resummation of higher orderiinerms. Fora # 0 these higher orders are
suppressed, but far = 0 they combine to give the degenerate magnbns (9.6) a naakispersion
relation and energy (9.8). This implies that the Hamilton@ the full integrable system is not just
given byH the Hamiltonian of the one-loop reducible spin-chain offibren discussed in sectidn 1 .6.
Rather, we expect there to be an additional pidgewhich will be responsible for giving energy to the
degenerate magnons. In this subsection we will present am@e of the sort of form thatly could
take.

33Recall thafT# has, with multiplicity, the following Dolbeault cohomolpglasses

@pgHPHTY) = (0,008 (1,0%2 2 (0,1)*?& (2,00@(0,2) & (1,1)* & (1,2 & (2. 1)*? @ (2,2).

34The analysis of[45] is mainly focused on tAdS x S® x K3 background rather than thelS x S® x T4 we are interested
in, but it is straightforward to extend these results todackground.
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Figure 10: The action of the shift operat®yon four highest weight states.

On general grounds the full Hamiltonian of the AGEFT, spin-chain should be given by
Hiotal= h(A)?H +h(A)Hqg, (9.13)

whereH is the Hamiltonian of the homogenosi§2|1) spin-chain.Hg should commute with the((2|1)
generators and withl as well as with the full transfer matrig(u). Acting on a single degenerate

magnonHy should give
Ha Wy ) = 1 /4sir12§p W) o - (9.14)

Degenerate magnons considered in the previous sub-seion a momentum, which is a con-
served charge associated with an operator which we willRallLet us construct this operator. In
analogy with a conventional spin-chain, we will wré& as a "shift” operator which acts as

PIPL (0), = Woi2(0)oy - (9.15)

This ensures that degenerate magnons defined in equai@nhé.ePy = p. In a conventional spin-
chain the shift operator can be expressed as a product ofietion operators. For our spin-chain this

can be generalized to
N—-1

& = (S 1, (9.16)

k=1

where (S)2«-1 is an operator to be defined presently, which acts on the 2itesl, 2, 2k+ 1 and
2k+ 1. In order to satisfy equatioh (9115) has to satis@

S(vi=0)[0)[vs=0)[0)) = = 0}[0) [vs =0} [0) .
(M= 0) 2= 0) v =0)[0}) = [va = 0}[0) Vs = 0)[vs = 0) . (9.17)
Si(M=0)[0) v =0)[va=0)) = v = 0} [v2 = 0) v = 0)[0)
and it is also natural to define
S (\vl = 0) [va = 0) |vg = O) v = o>) = vy = 0) Vo = 0) |v3 = 0) [v4 = 0) . (9.18)

In figure[10 the action o0& is shown pictorially. We would like foP4 to be defined on any state of

35We remind the reader that the reducible representatiorsitszat the even sites of the spin chain has two highest weight
states: the singlet denoted [8) and the highest weight of the infinite-dimensional irrepated by|v = 0).
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Figure 11: The action of the shift operat®y on a generic state, with the states of #ig2|1) representations
labeled by the occupation numbers. . ., v,

the spin-chain, not just the degenerate magnon statese Bjrshould be a conserved quantity that is
independent of thel(2|1) occupation numbeng we will also take

Si(1)[0) ) [0)) = va) 0) [v8) [ 0)
) 1v2) s} [0) ) = ) [0} v2) Ivs)
Si(2) [0) Iva) [va) ) = Iva) Iva) [va) 0,
) Iv2)

Su(Va) Iv2) s} Vi) ) = [va) [v2) [va) )

(|V1 V2
(9.19)

This action is shown in figufe 11. We may wrkg as

(St)2k-1 = 1— 2R(0)2x 2+ 1Mk 2k 2R(0) 2k 2K 1 - (9.20)

Above, R(0)a 2«+1 is the a — 0 limit of the s[(2|1) R-matrix (6.12). As discussed in sectibnl6.4,
R(0)2«2x+1 acts as a permutation operator if the states at sikean? X+ 1 are both in the(%;%)
representation, and as identity otherwise.

Let us now turn to the construction of a possiblg operator. In order to preserve thg2|1)
structure of the spin-chain we would like fbig to commute withH. This condition, together with the
dispersion relatiorf (918) places restrictions on the fofidg€ To see this it is instructive to consider the
action ofHy andH on a state in the spin-chain which is a superposition of amkEg¢e magnon and a
conventionakl(2|1) magnon. Such a state can be constructed by acting with techgygeQ— on the
sitesm, of the homogenous part of the chain. The homogeneous pdreafdgenerate magnon states
in equation[(9.6) has length+ 1 — theN odd sites plus the single even sit® 2ontaining a non-singlet
representation. We thus find the state

N-+1

Qai¥m) = 3 €Qn, ¥im Oy (9-21)

On the odd sitesQ~ acts by replacing the bosa;_zb by the fermionic excitationJp. One such state
appearing in the sum above is shown in figure 12. WQeracts on the siter, the fermionic highest
weight stateyy turns into the bosomg, as shown in figur€_13. From the above state, we can now
construct a state where the degenerate magnon carries rnomeminder the operatd?y by writing
N N N+1
Qy:Wp) = nzlépmqu =55 PV Wi 10), (9.22)

m=1n=1

Note that the ordered set dppearing on the right hand side contains the odd number&lhaswthe
even number @, so thatni={1,3,...,2m—1,2m,2m+1,...,2N — 1}.
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o2, M, Mt2, - 2m-32m-1, 2m 2m+12mt3, . 2N-32N-1

Figure 12: An excitation at siten,"of the homogenous spin-chain, above a groundstate with simgtet at site
2m. The excitation is denoted by a 1 inside a box, corresportditite stately sitting at this place. In total there
are the excitationjpy can sit inN different positions 1 ..,2N — 1. Below the spin-chain state drawn above we
have written out explicitly the seh, Using the notation introduced in equatién (7.81).

2m-3,2m-1, 2m, 2m+12m+3, .. 2N—3,2N-1

Figure 13: An excitation sitting on top of the non-singlesié 2n. The 1 inside the circle denotes the excited
statedyo.

Before discussing a Hamiltonian for the degenerate magtimtsreproduce the dispersion rela-
tion[9.8, let us write down a simpler Hamiltoni&tf, with a nearest-neighbor type interactions, similar
to the Hamiltonian of an XXX spin-chain. It is natural to camgt such a Hamiltonian using the shift
operatory; discussed above, by writing

L
Hi= Y (Hiam:  (Ha)om=1—(Su)om-1. (9.23)

m=1

SinceH; is written in terms of the operat&;, it will automatically preserve the ordering of any excita-
tions in the homogenous(2|1) part of the spin-chain. Henckl); commutes with thel(2|1) Hamilto-
nianH. Acting on the statéQq; W) with H; we find

Hq1Qq:Wp) =4sing|Qa;‘P§>. (9.24)

This is the normal form of the energy of an XXX spin-chain.

Above we have constructed a Hamiltonibl} acting on the degenerate magnons and commuting
with H. But this Hamiltonian does not reproduce the dispersioatim [9.8). To obtain the correct
dispersion relation we can defikfy as

L
Hg = z 1-(S4)2m-1, (9.25)
m=1

we obtain an operator that does have the correct eigenvaligtates containing a single degenerate
magnon. This operator again acts by changing the positidheohon-singlet even sites, leaving the
ordering of the excitations of the homogenous chain fixeerdlore, it commutes not only witHd but
with the whole transfer matrix(u), as well as with the momentum operaRar

When acting on a state where all the even sites are eher |v = 0), expression(9.25) simplifies,
since the R-matrices always gives the identity. Furtheemtire projectof1®, when acting on such a
state, can simply be written as-1P, whereP exchanges the representations at two even sites. The
square root can then be expanded

1 1 L L
Hgq = VL [l— — ( Z Pom, 2m+2> a2 ( Zopzm,2m+2> (Z)P2n72n+2> +
= n=
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From this expansion, it is cledty acts non-locally on the spin-chain. This argument also shibvat
Hq has an expansion in powers of the degenerate magnon momenta.

Finally, we would like to note that all of the groundsta{e{Zontinue to satisfy the(2|1) shorten-
ing condition — indeedH in equation[(7.105) annihilates them. Nevertheless, asawve argued above,
in the full reducible spin-chain the degeneracy of theseiguistates is liftedHy;5 does not annihilate
them§ In other words, while these operators are short with redpetiesi(2|1) supercharge®, they
cannot be short with respect to the supercha@gg, of the full spin-chain. Hence, we expect the
supercharges to also receive corrections, schematicailtiewa

Qtotal ~ h(A)Q+1/h(A) Qq, (9.27)

whereQ is asl(2|1) supercharge an@y commutes with thel(2|1) algebra as well as the transfer
matrix 7(u). It would be interesting to construct the charggs

9.4 Speculations on the degenerate magnon Bethe Ansatz

We end this section with some comments on a possible ABA fdggenerate magnons. The Bethe
equations for theu(1|1) spin-chain are given by

L K 1— -1
Xif) XX o
-] = o“(pPx: Pj) (9.28)

whereo? indicates the dressing phase and the paramafesatisfy

+ - 1 1 i
B, b = — (9-29)
X X % h

These relations can be solved by

m+ /P + 42sir? &,
2 et (9.30)

+_
%= 2hsin %

From the above expressions we see thand h enter only in the combinatioh/m; for the above
expressions takingn — 0 is equivalent to thé — o limit. In this latter limit the dressing phase reduces

to the AFS phase [71]
) . . B (4e-1/%%—1/%))
1 — —
(5 (s)

Gz(pk,pj): 1_# L L
i (1— xk—> (1‘ xk—>

Inserting this expression into equatign (9.28) we obtain

. . . I(X+1/%—%j —1/X))
m _ 1 h - - =
1= (Xk>Lh IEL : e <l kaj+> <l XIXJ) (9.32)
B j[—— 1 1 ' '
T <1‘xk+xr> <1‘W>

36Apart from thep = 0 degenerate magnon stdte 9.6).
37During the question time following the presentation of samhéhis work at the ETH Ziirich meeting, Niklas Beisert
suggested this possibility. We would like to thank him fainlging this to our attention and for a discussion of this poin

(9.31)
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We can now send — 0, however, in order to keep thedependence of the equation we also take
L — L. The above equation then becomes

1

- (%) F (1-27) (-
( >JI;I< (1_xk+1xj*><1_ﬁ>

X
In order to keep the momenfs and p; non-zero, we will also take in this limit

> i(X+1/%—X —1/%j)

(9.33)

X = gtiP/2, in — gtipi/2. (9.34)

Equation [(9.3B) then becomes

o 8i(cos™ —cos")
sm% ) ( 2 2

aPx :I—L
i PPk
Ak \ SIN=7=

We propose this equation as a possible Bethe Ansatz for tipendeate magnonk (9.4). We hope to
investigate this further in the future.

(9.35)
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A Thed(2,1;a) algebra

In this section we give the full commutation relations of t{&, 1;a) algebra, as well as the action of
the generators on the representations of the even and audlsain sites. The generatorsu®, 1;a)
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satisfy the algebra

1
[S)a&] = :l:S:b [S-H&] = 2&)’ [S)’Qiﬁﬁ] = iEQiﬁﬁa [&aQq:ﬁﬁ] = Qiﬁﬁ’

1
[LS, Li] - :l:l—ia [L+) ] 2L55 [L5a QbiB] = iéthB’ [Lia Qb:':[?] = QbiBa
1
[Re,R:] = +R:, [Ry,R|=2Rs, [Re,Qups]= iEQbBia R+, Qup+] = Qup+» (A1)
{Qei, Qi _} =£8S;, {Qi4+—,Qi4+} =FSy,
{Qi+4,Q s} =Fal., {Qr+-,Q sy} =+aly,

Qe Q 1} =F(1-0)Ry, {Qi4,Q s} =(1-0a)Rs,
{Qi24,Q-35}=—SFals+=(1-a)Rs, {Q4++,Q 1} =+SFals+(1-0a)Rs
The non-vanishing action of th&2,1;a) generators on the states of the%; 3;0) representation is

given by

1
Lslol™) = +516l") . Lol =1g"), Lo[@”) =]0") .

n

Rolul) =2 0l") . R0y = (). Rl = 0l
. N R )
s ") = —Vin+a)n+Dlg" V). S g =—vin+ Ty, (A2
S lg") = +v/m—Tranigh V). s ) = +V/inranjy )

Q .l ==vnTalwl”),  Quplel) = +vnlyY),

Q-p+ \l/—’:(pn)> = ¢m1(pén+l)> . Qups y(p;”b _ jF\/nJr—a‘(p[(;n)> _

On the(—152;0;3) representation the generators act as

1 —
Ls|1”>>=i§|wi”>>, Lol@™) =@, L@ = 18),

Ralgl”) = +316) . RJg”) =[0l”), R |g") =1dl"),
S18") =~ (5 +1)14") I =~ (5 + 340 18,
S |g") = —vVInri—amr 0lg"Y), s @) = —vinr2—a)nr @Yy, A3
S 1g") =/(n—ang" Y, Sc1gy") =

(n+1—a)n|@™ Yy,
Qe [@”) = +vnr1—a|@"), Quypld™) =+VAIG"Y),
Q™) =Fvnr1g™),  Quld)=Fvnri-alg").

B Universal R-matrix calculations for sl(2)

Let us follows [59] and evaluate the universal R-matrix tétgr with the P module of sectiong2.2.1
and[3.3, in order to display the computational details. Ad bthers((2) modules will be dealt with
analogously.
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B.1 P module

We will compute the various factors of the universal R-mxaseparately, and assemble the results in
the main text.

B.1.1 The factorRy

Let us start by computing the fact®;, and let us consider the logarithmic derivative of the Daidf
current,% logH " (t) in the first factor of the tensor product, acting on a staf¢. The strategy is to
first act on single-particle states in each factor of thedepsoduct, and then combine the results found
to obtain the action oRy on two-particle states. The way to combine these two sipghticle results
is provided by the residue formula_(4.4).

The action in the first factor of the tensor product is diadgomad the eigenvalue can be expanded
in power series i as follows:

d < e
—logH (t)|n) = ¥ (af"+af' —af' — o)t |ny) (B.1)
dt L
with
or—u+1 a;=u ! or—u+n+1 04 =U;+n ! (B.2)
1—4WY1 2’ 2=uU1 2’ 3=—W 1 2 4 — U1 1 2 .

whereu, is the Yangian evaluation parameter appearin@_in (3.14).

To be able to use formul&_(4.4), we need now the contributiom the second single-particle factor
in the tensor product. In the second factor we have the Ddrdarrent logH ~(v+ 2n+ 1) acting
diagonally on a generic stapa,). This can be expanded as

0gH (v+ 20+ i) = K(a)+ 5 (Bula) ™+ fale) ™~ (@ "~ Bu@) ") T (B3

with 1 3
Bl(Q)=U2+n2—ZQ—§7 Bz(q):u2+n2—2q—§
1 3
B3(Q) = up — 20— > Ba(q) = wp — 20— > (B.4)
2ny(14-ny) 2ny(—14ny) ]
K(gq) =log |1 .
(@ g[+(1—2n2+4q—2u2) (Z3+ 2 — 4q+ 2U)

The termK (q) corresponds to the constant term in the Taylor expanid).(Because of the structure
of the residue formuld (4.4) and ¢f (B.K(q) does not play any role in the final result (this will be true
in all subsequent calculations of this appendix and of agipe€Dl

By combining these contributions together irfta {4.4), weayactor

exp{ Res_y [%(IogH*(t)) ® logH ™ (v+2n+ 1)} } In1) ® |ng) = (B.5)
. (Bu(@ ™+ o) ™~ pafe) "~ () ™)

exp Z) Zl(ai"wé“—aé“—a?‘) - 1) @ |ng)
g=0m=

_ I'(n1+u1—uz)r(l+n1+u1—uz)l'(—n2+u1—u2)l'(1—n2+u1—u2) ’nl n2>
F(ul—uz)l'(1+u1—u2)l'(n1—n2+u1—u2)l'(1+ nl—n2+u1—u2) ’

= Ry (M, ) [Ny, n2),

where we denotém,n) = |m) ® |n).
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B.1.2 The root factorsRe and Re

Let us focus our attention oRg acting on two statefm) ® |mp). We closely follow appendix A.3
of [59]. One has, using (3.14),
- mp
|‘Lexp(—en® fn-1)lM) @ [Mp) = 5 Bm(my, mg) [my+m) @ [mp — m). (B.6)
m=0

n>

We will suppress the dependence B, (and of Ay, to be defined in[(B.11) below) om; and mp
whenever it is not ambiguous. Let us define

~ 1 . 1
d:(§+m1+u1), c:(—§+mg+u2). (B.?)

The termBy, is built up out ofm copies of—e® f acting onjm;) ® |mp). On the left factor

(n1+m—1)!

€, - - B, 6y M) = G d<.. . (d+m—1)%|my +m). (B.8)

On the right factor

m (m2+ m-— 1)! ~—ki—1
(mp — 1)t

From the ordered exponential (BB.6) we hdye< ki_;. In casek; = ki1, we pick up a combinatorial
factor coming from the series of the exponential. One finds

fom-1- o1 fok—1|mp) = () o (E—=m+ 1) Y m, —m).

(Mg +m—1)!(my+m—1)! 1 dka (d4+m—1)kn
c—

T MM D g N ) 8L G me Do

(B.9)

N is a combinatorial factor which is defined as the order of grenutation group of the sékg, ..., kn}.
For exampleN({2,1,1}) =  andN({5,4,3,3,2,1,1,1}) = 3 4 = . The sum evaluates to [59]

my +m—1)!(mp4+m—1)! M1 1

__yml
B = O e - ime -1t L d e prmot

(B.10)

A similar computations allows to determine the contribatad R-. One obtains correspondingly

Re My, mp) = % Am(my, my) [my —m,mz +m), (B.11)
m=0
A= (g — 1) (- D ) - (a1
' m-1 . (B.12)

X -.
,I:L U —Up+Mmy— M —m—i

B.1.3 Final expressions for thé® module

In summary, let us re-write the above expressions for thea®#rin the following way. One has

(P) _ < AP
Re7[my,mp) = % An’ [my —m.mp+m), (B.13)
m=0
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where the superscrigP) stands fo® module, and

®_ )"

Am’ = == [mu(my — 1) (Mg —m+ D][(Mp + m—1) - (M + 1) mp] x
m—1 1
X vYym>0,
,!:Lul—uz-l-ml—mz—m—p

AP =1 (B.14)

Then, we obtain for the Cartan part

F(n+ur—u)l(I+n+up—u)lM(—np4ug —up)l (1—n2+up — up)
Mug—u)l (1+up—u)M(ng—np+up — )M (14 ng — N2+ up — W)

R,&P) Ing,np) = Ing,np).

Finally, we obtain
P kP
R [ky, ke) = Z;Bﬁ ke + ko ke — k), (B.15)
k=

with
B(P>——( )k[k (kp—1)---(kp—k+1)][(ks+k—1)---(k Jrl)k]klll !
k 2\R2 2 1 1 L = U1—U2+k1—k2+k—j

ki
Vk>0,
B =1. (B.16)

In this re-writing all terms are explicitly well defined, imgicular for smalim.

B.2 Smodule
If we repeat the entire procedure for tBenodule of section 2.212 and 3.3, we find now

S NG
Re” My, mp) = 5 Aw’ [my —m,mp 4 m), (B.17)
m=0

where the superscrigf) stands folSmodule, and

m

AS — (_m)l [my(my —1)--- (Mg —m+1)][(mg — 1) (Mg — 2) -~ (Mg — m)] x

m-1 1
,!:L Uy—b+mMm—nmp—m-—p
AP =1. (B.18)

vYm> 0,

The Cartan part turns out to be the same as forRhmodule, since not only the level zero Cartan
generatoh is the same across all three modules (see(2.22).1(2.27RB@&)), but also all higher level
Yangian partnersy, (3.11) happens to be the same for ByeS andR module by explicit computation.
One has therefore

RY Ing,ng) = R [ng, mp).
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Finally, one obtains

k2
RY ke ko) = 5 B [ka+k ko —K), (B.19)
k=0
with
s _ O o ko — K ko — 1)(k oK1 11 =
BS — ) — 1) (ky— Kt D)[(kp — 1) (ko — 2) -+« (ko — .
K - ke(ke = 1) (ko —k+ D][(ke = 1) (ke —2) - (ko )]JI:Lul—U2+k1—k2+k—J
Vk>0,
Bl =1. (B.20)
B.3 Rmodule

Since theRmodule of sectioh 2.2l 3 and 8.3 is the physically relevast etius give a few more details of
the corresponding computation. The teBmis built up out ofm copies of—e® f acting onjmy) @ |my).
On the left factor

(N +m-—1)!

(hy 1)1 d“ . (d+m— 1) my +m), (B.21)

Bn- - B M) =

whered (andcbelow) are still given by[{BlI7). On the right factor

(m+m-21! [(m+m-2)!
(mp—1)! (M —2)!
gkl E@—m+ 1) my—m).

f_km_l. .. f_kz_lf—kl—l’m2> = (_)m
X C

From the ordered exponential (B.6) we hdye< ki_;. In casek; = ki1, we pick up a combinatorial
factor coming from the series of the exponential. One finds

B. — (mp+m—1)! \/(m1+m_1)!(n]2+m_2)!

(m—1)! (my — 1)(m, — 2)!
1 de  (d+m-1ke
klzzzkm N({k,...,kn}) €+l (E—m+ 1)kntl’

X
N({ky,...,kn}) is the same combinatorial factor discussed belowl!(B.9). @&ins

ko
R kg, ko) = > BV kg + K ko — k), (8.22)
k=

~

B® = (_k—!)[kz(kz—l)---(kz—k+1)]\/(kz—l)(kz—Z)---(kz—k>

k—1 1

n Vk>0,
JI:LU1—U2+k1—k2+k—J

X \/(k1+k—1)(k1—|—1)k1
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Analogously, one has for the other root factor
(R) < AR
ReT[my,mp) = % Am’ [my —m.mp+m), (B.23)
m=0

where the superscrigR) stands folR module, and

AR :%[ml(ml—1)---(ml—m+1)]\/(ml—l)(m1—2)"'(ml—m)

m-1 1

X +m-1).-- +1 vYm>0,
vim, UL )wﬂoul—uz+ml—nb—m—p

AP =1
The Cartan part is again the same as forRhmodule for the reasons explained befdre (B.19):

R N1, n2) = R [ng,ny).

C Unitarity in the sl(2) case

We can check unitarity of the R-matrices we have derived itice{4 for theP, SandR modules. The
unitarity condition on states reads

Ro1(Uz —up) R(up —Wp) =1, (C1)

where
R21(X) =P R(X) P (CZ)

andP is the permutation matrix implementing the permutation tates:P|a) @ |b) = |b) ® |a).
It is straightforward to see that, for all three modukResS andR, the permutation on highest weight
states simply acts '
Plhw)j = (=)' [hw); (C.3)

(one can simply change varialile— j — qin the summation in all three cases). Since the R-matrix acts
diagonally on highest weight states, hamely

Rlhw)j = R; [hw); (C.9)
one deduces that unitarity implies
Rj(ul—u2) Rj(Uz—Ul) =1 Vj, (C.5)

which is indeed satisfied in all three modules, $ee {4.1134j4nd[(4.16).

We now assume that all other states in the tensor productmifitadules can be obtained by acting
with the s[(2) tensor product raising generatfe) = e® 1 + 1 ® e on highest weight states. If this is
the case, then, since one simultaneously has that

A°P(e)R=A(e)R=RA(e), A(e)P=PA(e), (C.6)

one concludes that unitarity on highest weight states splinitarity on all states. In fact (denoting
againdu = u; — Up)

PR(—0u)PR(Su)A(e) |hw); = A(e) PR(—Su)PR(6u) [hw); = A(e)|hw);, (C.7)
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since having-du instead ofdu makes no difference when it comesA(e) R = RA(e).
Let us also comments on thphysical unitarityof the R-matrices of sectidd 4. This is a reality
condition taking the forn [5]
R (U — u2) R(ug — up) = 1. (C.8)
The R-matrix in the® module is given in equation (4.1.1) by
7l —u+k

Mow « (C.9)

R(up— W) = Z)Rj(Ul—Uz)nj, Rj(up—up) =
]:

wherefll; is a projector onto thg:th representation in the decompositionfok P in equation [(2.34).

As shown in sectionl4, the same expression holds irRla@d S modules provided we substitute in
the relevant projectors. Since the projectors are selﬁat;l@ the physical unitarity conditiori (C.8)
requires the coefficients of the R-matrices to satisfy

j—1

U —u+kuf —ub+k
1=Ri(U — ) R (U — W) = 1~
(U =) Rj(t — ) kL!ul—m—ku’;—u;—k

. (C.10)

This is true provided the spectral parameterandu, are purely imaginary, which is consistent with
Ui being relate to the parametgrappearing in the Bethe equations of seckibn &by —iL;.

D Universal R-matrix calculations for s((2|1)

In this appendix, we calculate the action of the universah&rix (5.20) on the chirad((2|1) module

E.18).

D.1 The factor Ry

Let us start by computing the fact®y, following [59]. For example, consider the Drinfeld curten
H, (t), taken in the first factor of the tensor product, acting onsobé stateg,, ). It will act diagonally,
with an eigenvalue which can be re-expressed as a powes $etias follows:

d - —m
logH; (1) |gh) = 5 (— o'~ af'+af' +af) t ™t g,) (D.1)
dt m=1
with
1 3
0’1:U1+n1+z+817 0’2:U1+n1—z+317
3 1
a3 =Up—, +51, Qg =Ur+ 7 —S. (D.2)

whereu; is the Yangian evaluation parameter appearind_in {5.18)er@ lare four of these actions,
corresponding téd;* (t), i = 1,2 acting on bosons and fermions, respectively.

38The operation 1 is the adjoint operator in tRenodule. TheP and S modules are not unitary and there is no adoint
operator compatible with the Lie algebra. In these casesighwsends — af anda — a is still an operator on the vector
space on which the Lie algebra acts; it ensures positivith@fnner product and is tre— 0 limit of the adjoint operator for
asmodule. These properties make it a sensible choice for aradjperator foiSandP modules.
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In the second factor of the tensor product we have for instdaccompute the Drinfeld current
H, (v+q), for a shiftq to be determined shortly. This can be re-expressed as

0gH; (v-+0)lg) =K(@ + 3 (Aa(@) ™+ fala) ™~ (@ - B0 ") i) (©3)
m=1
with
3 1
Puld) = +ne—q—+% B0 =Utm—a+  +%

1 3
Bs@) =t —a+7—%  Pa@) =U—q-7+%,

(3+4q—4s; — 4up) (—1+4q+4s,; — 4up)
=344 —4g+ 45+ 4up) (1+ 4np — 49+ 45, + 4up)

We have again four combinations in the second factor of tieoteproduct, corresponding g (v+0),

j = 1,2 acting on bosons and fermions, respectively. Let us coengnubther one of these contributions
for future convenience, for instance the Drinfeld currggt(v+ q) on a boson, for a correspondiing
to be fixed below. This is re-expressed as

K(a) = log (D.4)

L VT
'ogHz(va) ) = Z M ya(a) ) ) (D.5)
with
1 1
W@ =t—a-7+%  KkA)=tk+n-0-7+%

4n2 :|
—1-4q+4s,+4uy) |

The shiftq depends on how these contributions are paired upyirwith the first factor V|aDI i
which reads explicitly

Km):km[1+( (D.6)

0 1 1 1
-1 _ T2-T 2
Dij” = 1 134773 |- (D.7)
1 1 1 1
T2-T 2 T2-T 2
We remind thafl is the shift operatoll f(v) = f(v+ 1) defined in section 5l3.
We adopt the prescription af [72] and everywhere interpret
— ZOT Pt (D.8)
T2 —T 2
This means that, for instancB[2 = — z‘;:OTpJFE, therefore there will be an additional sum oyein

the exponent oRy for the termi =1, j = 2. In each term of the sum overthe factorH; (v+q) will

haveq= p+ % Considering that the exponential Ry factorizes on individual contributions from the
sum oni, j, and taking into accouni (4.4}, (I0.1) and (D.5), we get adiact

exp{Res_v [%(log HZ (1))  Dstlog Hg(v)] } ) ) =

exp{_“ S (—af—alt o+ ap) AEED (P45

(—al—az +a3 +a, m

}‘%1>® ’%2> =

p=0m=1
M-p-si-+w-—wlnt+s-S+u—uf
Ml-s1—S2+U—Wl[s1— S+ Uy — W)
Mlt+m+s—S+u—WlM[—N2+S—S+ U — W]
M —m+s—S+u— Wl [1+n -+ —S+u—Uu

|@hy) @ |@hy).  (D.9)
]
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SlnceDll1 =0, we have only two more such factors{2, j = 1 andi = 2, j = 2) acting on two bosons,
to be computed similarly to the ab@¥e The overall product is

[exp{Res-y | g1oaH () D Hogh )| flan) 1) =
1)

Ml-n-s—-S+uw-—WlMlim+s-S+u—t]
Ml-si—S+u—Wlln —n+s -+ u— W]
M—n2+$1— S+ U1 — Ul [N+ 51+ S+ Up — W)
Ml+m—np+s—S+u— Ul s+ S+ Uy —
Similarly, one calculates the contribution Rf; on states with one or two fermions.

W) ) ®[@,).  (D.10)

D.2 The root factors

In this section, we describe the computation of one of the faxiors, the other ones being dealt with
in a similar fashion. Let us focus our attention Bpacting on two bosons. We again closely follow
appendix A.3 of([59]. One has, usirig (5118),

- n2
rLeXp(_El—t_n ® E:I:fnfl)’%ﬁ ® ’(pﬂ2> = Z Bm’%1+m> ® th—m>- (D-ll)
n> m=0
Let us define
~ 1 N 3
d:(Z+n1+sl+u1), C:(—Z+n2+SQ+U2). (D.12)

The termBp, is built up out ofm copies of—&;" ® &, acting on the statgm, ) ® |@,). One has

_ (+m!(ng+25+m-—1)! 5 = o
€ S i ) = (— )\/ ()l 25— 1)1 de.. (d+m-1"|@,.m. (D.13)

Similar expressions hold for the stringmfgenerators —, ; acting correspondingly t¢ (D.113) da,),
with € instead ofd, producing the statgms,_m). Specifically, we have

_ _ _ ol (no+2s —1)! ok N L
f*kmfl"'fszflffklfl|%2> = \/(nz—;)f(éz—{—zsrz—gn—l)l ¢ a l(C_m+1) km l|¢hrm>-

From the ordered exponential (DI11) we h&ve k3. In casek; = ki, 1, we pick up a combinatorial
factor coming from the series of the exponential. We find,lsiry to thesl(2) case[(B.B),

np)! (g + 251 — 1)1 (np — m)! (n + 25, — m— 1)
1 de  (d+m—1)
klZZZKm N({Ki,...,kn}) &+l " (E—m+ 1)kntl’

N is again a combinatorial factor which is defined as the ordeh® permutation group of the set
{ki,...,kn}. ForexampleN({2,1,1}) = 3 andN({5,4,3,3,2,1,1,1}) = 4 3 = 1. The sum evaluates
at

Bm:(_)mm!\/<nlr:m><n1+2s1m+m—1><m><n2+2& 1) |_|O i

*In ([O.7), we consistently interpr@,, = — 35 (TP —55 (TP

8 _\/(n1+m)!(n1+231+m—1)!nz!(n2+232—1)!
"V

X

69



In a similar fashion, one needs to compute the action of alredt factors in the universal R-
matrix, and then repeat again the computation for the otireetcombinations of states (boson-fermion,
fermion-boson and fermion-fermion). For the fermionic exentials i.e., involving fermionic roots)
R, and Ry, » and barred version, the calculation is made easier by theHat fermionic generators
square to zero, therefore only the linear term survives.iristance,

N

R, = rLexp(—f;,n@b & ) =101~ Z) En®& n 1 (D.14)
n>

n>

The sum is then performed easily by recalling thatrikdiependence in the generatdrs (5.18) is always
of the forma,, = w"a, for an appropriatev linear function ofu ands. Therefore, one is systematically
reduced to combinations like for instance the following:

1
_ _
XCr 1V R|V) = —— & V1) ® [V2). D.15
nzz EZ,n 52, n 1‘ l> ‘ 2> % 0 52,0 52,0‘ l> ’ 2> ( )

When all these 24 blocks are ready, taking into account thesponding formulas fdRy, one can
compute the action of the universal R-matrix on arbitraagest. In the main text (see section 5.3.1) we
focus on the highest weight statés (5.13).

E Jordan blocks in Sand P module spin chains

In this appendix we demonstrate explicitly the presenceooftnivial Jordan blocks in the operators
p(u) andt(u) in homogeneou® andSmodule spin-chains. Since these operators preserve langth
excitation number we will consider their action mostly oates of lengthi. = 3 with three excitations.
We have checked that longer states or states with more tgngdhave similar properties. In total there
are ten states of length three with three excitations. Sithede states are descendants of states with
fewer excitations, and the other four states are highesiiwstates. We will include in our discussion
R module spin chains as well since this will contrast the rédla@nd indecomposable cases.

The eigenvalues of the operafofu) in this sector are the same in all three: 0 modules, namely
2u3, 2(u® —u) and Jud —3u). The first two of these eigenvalues both have multipliciteéhand
correspond to the descendant states. The third eigenvakaddgebraic multiplicity four. However, as
we will see below, in th&® andSmodules there only exists three corresponding eigenwedttence the
eigenvalues hageometrianultiplicity three and the Jordan normal form of the oper&amon-diagonal.
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E.1 P module

We introduce the following base of states wlith= 3 and containing three excitations:

|Wo
|Uno

= (/012 —|021) + (/120 —[210)) — 2(|201) — [102)) +[300) — (003,
= 3(]012) + |120) + [201)) + 3(]210) + 102 + |021)) — 12]111)
— 2(]300) + [030) +003)),

The first nine state satisfies the equations

|¢1)p = [300) +030) +|003),
|Y2)p = [300) —[003),
|Ys)p = 030 — |003),
|(a)p = 2(]003) +030) + |300)) — (|012) +|120) + |[201)) — (]210) + [102) +[021)),
|s)p = (/003) —2]030) +|300)) + (|012) — 2|201) +|120)) + (|210) — 2102 +[021)),
|Ye)p = (/003) — [300) + (|120 +[210) — (|012) +(021)), (E.1)
47)p = ((|012) +|120) + |20D)) — (210 +|102) +|021))),
|Ys)p = 3(|012) — |021)) — 3(]120) — [210)) — (|300) — 2|030) +|003),
)P
)P

(Pp—20%) |P)p =0, k=1,2,3,
(pp—2(u3—U)) |11U|(>ona k:4,5’6’ (EZ)
(Pp—2(u*—3u)) |h)p =0, k=7,89.
The statd o), satisfies
(PP —2(U° = 3)) [Yro)p = 121 |y (E-3)
Hence,|yno)p is Not an eigenstate @p(u). However, it does satisfy
(P — 2(u® —3)) (pp — 2(u* = 3u)) |Y10)p = 12 (pp — 2(U® — 3U)) |Y7)p = O. (E.4)

This shows that the operatpp(u) only has nine eigenvectors, whi(@p —2(u® - 3u))2 has ten and
hence is completely diagonalisable in the sector we considee. In other wordspp(u) has a non-
trivial Jordan normal form.

When we add more excitations we find that more eigenvecterm@sing. For example, fdr= 3
and five excitations there is a new eigenvala®2- 10u) with arithmetic multiplicity four, but with
only three excitations. The same is true for larger with three excitations dt = 4 we find that the
Jordan normal form opp(u) has three non-zero off-diagonal entries.

The 7(0) operator. In theP module the operatar(0) acts on any state exce|@00) a®q

7(0) [mnk = |mnk) — [nkm) + [Ok(m -+ 1)) + |(n+ KYOm) + n(k+ m)O)

E.5
— |(m+n+k)00) — [0(m-+ n+k)0) — |[00(m+n+Kk)). (E5)
In particular we have
7(0) [¢gi)p = O, k=123,
T(O)‘wk>P:2’wk>Pv k:475767 (EG)
T(O)|'1U|(>P:0? k:778797

4OwWhen acting withr (0) on |000) there is a contribution from all states appearing in theetrahich leads to an infinite
sum that needs to be regularized.
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and
7(0) [Yro)p = —6[Wr)p- (E.7)
Hencet (0) has the same non-trivial Jordan normal fornpagu).

E.2 Smodule

The action ofps(u) on simple state of th& module is very similar to the case of tRemodule above.
In this case we find the eigenvec@s

lYn)s= +%3((|300> + 030 + |003)) + 3(|012) + |120) + |201))
+3(]021) +|210 + |102)) + 6|111) ),

|Yr)s= +1i8((2]300> —1030) — |003)) — 3(|012) — |210) +|021) — ]201>))7
(Ys)s = +1—18((\3oo>+\030> —2|003)) + 3(|120) — [102) + |210) — |120))),
[Ua)s = —25(1012 +[021) + 102 + 3[111) + [120) + |201) +[210)),
|s)s = +2—14( 1012) + [021) — 2|201) — 2|102) + [120) +[210) ), (E.8)
W)= 5 (1012 +(021) — (120, + [210)),
W)= +35((1012 —[021)) — (1120~ [210)),
|Pg)s = +2—14((\012> —1022)) + (|120) — |210)) — 2(]201) — ]102})),
1

|Wo)s = +2,((1012+[120) +[201)) - (|210) +[102 +(021))),

1
|Yho)s= ——5[111),

12
which satisfy
(ps—2u%) |)s =0, k=123,
(Ps—2(u®—u)) |yr)s=0, k=4,5,6, E9)
(ps—2(u*—3u)) |Yh)s =0, k=8,9,10, '

(ps—2(u®—3u)) |gr)s = 12 |¢no)s.

Again we find thaips(u) cannot be fully diagonalized.

The action oft(0) in the Smodule is a bit more complicated. However, from the relabetween
the P and S modules under the adjoint operatian- af, we see ther(0) in the Smodule has a non-
trivial Jordan normal form when acting to the left — the cep@nding generalized eigenstates are the
states (x| whose coefficients were given above.

The state$yi) g are chosen so that i |m)p = &m, Where the conjugate states are given by the adjoint aatiora.
Under this action th® andSmodules are exchanged. Hence the conjugate of the gemeraiigenvectors of the operajos
when acting to the right are generalized eigenvectors oftiaction of pp.

72



E.3 Rmodule

As a base for the three-excitatitn= 3 states of th& module we use

|'1U1>R: |003),

|'1U2>R: 1030,

|'1U3>R: 1300,

|Wa)r =012 +-|021)

[Us)r =102 +[201), (E.10
|We)r = [120) +[210),

W—'7>R: ‘111>7

|Wg)r = [012) — [021),

| W) = [102) — [201),

[¢10)r =120 - [210).

These states satisfy
(pR—2u3) |l1Uk>R:0> k= 17 2737
(Pr—2(U*—u)) |h)g =0, k=4,58, (E.11)
(Pr—2(u®—3u)) [y =0, k=7.8,9,10,

which shows thapg(u) in this sector is completely diagonalizable. In tRenodule,pr(u) is Hermitian
under the adjoint action acting on the oscillatars: a', and hence has a complete basis of eigenvectors.

F Some comments o and Smodule integrable spin-chains

In this appendix we collect some formulae relating to honmegels spin-chains with sites in tReand
Srepresentations. Despite having some peculiar propefisesissed in sectidn 7.1, one may calculate
many quantities in these chains, precisely because thetRxnmexplicitly known. Indeed thd?
module homogeneous spin-chain is well known in the QCDdttae [63) 73]. In the first subsection
below we discuss the application of the ABA to tBenodule spin-chain. In the second subsection we
present an example of an explicit calculation of the transfatrix on specific states in tHe module.

In this appendix we wanted to illustrate thHRAtand S module spin-chains can be investigated quite
explicitly using for example the projection operators wegented in appendix]G or ABA techniques,
but that these spin-chains do have some unusual propetties deserve further study.

F.1 The ABA for the Smodule

TheSmodule is similar to th& module, in that it has two highest weight states, the lowerafrwhich
generates the whole module. We can therefore try to applpB#edirectly, like we did in section 812
for theRmodule case. Since the basic formulas are expressed in ¢éthnss((2) generators and their
eigenvalues, they take the same form for #@dR modules. In particular we consider a Lax operator
L(u) that is given by )

Li(p) = Li(p) + €)M, (F.1)
and a corresponding transfer matpxu) = A(u) +D(u), as well as raising and lowering operators
B(u) andC(u).
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The resulting Bethe equations take the same for ds inl(8.28),

(u—i>ﬁ: My 2)
HA+i k#Uj—Uk_i. .

However, there is an important difference in the spectrutainbd in theR andS modules. To see
this, let us consider the case of a spin-chain with thres,slte- 3, and a groundstate containing one
singlet, so thah = 1 andri’= 2. For concreteness we will take this groundstate t¢Oi4). We now
add a single excitation to this site. The Bethe equatfion) (fae a single solution far= 2 andK = 1,
sitting atp = 0. To obtain the corresponding eigenstates we act with femgeoperatoB(u = 0). In
the R module this gives

Br(0) [011) = £(11)(|012) — [021)), (F.3)

while we for theSmodule get
Bs(0)|011) =i|111) — ¢(u)(|012) —|02D)). (F.4)

Hence the regularizing factdi(u) only appears as an overall normalization in fenodule. After
adjusting the normalization of the excited state, we carefbee set’(u) = 0 to obtain the spectrum of
the original Lax operator.

However, in theSmodule, the obtained spectrum actually dependg(an. In particular, if we set
¢(u) = 0in the above state we obtain the stdtgl). But this is one of the groundstates of the model,
and not an excited state. Hence, the spectrum of the regedatiax operator does not fully describe
the spectrum of the original operator in t8enodule.

F.2 The monodromy matrix for the P module

In this subsection we will show that, using the projectiorergpors defined in appendixl G, one can
compute the monodromy matrix fé& module spin-chain. Since the monodromy matrix is one of the
key ingredients of an integrable spin-chain, this caléotatiemonstrates that tiemodule spin chain

is a sensible integrable system, though with some uncoiovehtproperties. We consider the action of
the monodromy matrix on simple states of length 2 with n aticihs at either the first or second site

IN,0)15, and 10,n) 15, (F.5)

and we will evaluate the monodromy matrixu) on these to establish whether they are degenerate.
Throughout this subsection we will always take- 0. From a representation-theory point of view it is
natural to expect the following linear combinations to lgeeistates of (u)

)1, =1n,0)1,£1(0,n)g, . (F.6)

It is easy to see, using, for example, the projectors we hawstructed previously, thah®),, be-
longs to theP module andn™),, belongs to the-1 module in the decomposition & ® P given in

equation[(2.34).
F.2.1 The|n,0),, state

We wish to compute

00

7(U)[n,0) 1 = tro(Rox(U)Ro2(U)) In,0) 1o = %o(ml Ro1(U)Ro2(u) [m,n,0) g1 - (F.7)

m=0
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The R-matrix can be expressed as a sum of projectors

:RP u < —|— < RI u < |
( )k;‘e{?>” 'J<e{?‘ IZl ( )k;‘ek >|] IJ<ek
with explicit expressions for the projectors given in secfG.1.1, and the dependent coefficients can

be read off from the universal(2) R-matrix evaluated on highest weight states wita 0, —1, -2, ...

[ (iu)l (iu+1)
Fliu+DMiu—1+1)’

" (F.8)

R(u) = and R°(u) =1, (F.9)

wherel =1,2,... and we have set the overall normalisation of the R-mat(ix) = 1, since it will
not play a role in the discussion here. Notice in particulteat after some rescalings aofthis is the
same as ther — O limit of the homogeneous part of the R-matrix proposed_2],[2&nd also that
RP(u) = 1=RY(u), as is the case in [32].

For notational convenience let us define

o? (u) = <m| Ro1(U)Roz(U) [m,n, 0)g15 (F.10)
Form= 0 we have

ré”’())(u) = 0(0|Ro1(U)Ro2(u)|0,n,0) 415
_ ‘n70>12_ (F.11)

In doing this computation it is useful to note that stateshefform|k, 0), j (for anyk > 0) are only found
in the P and—1 modules in the decomposition (2134) and sinee BR”(u) = R(u) we have for example

Rij (u) [k, 0);; = [k, 0);; - (F12)
Let us now evaluate the > O contributions
mz® (u) = o(m|Roy(U)Roz(u) [m,n,0)gy,
= o{m|Rox(u z |Q< 0202 Q<| + Z R(u Z |ek|>0202<ek||] Im.n,0)015
k=0
= o(mRoa(U) [R°(U) § Vek(—1)(IK, 02+ [0, K)gp)02(K, O]
K=1

= Z Z <m‘ek 0101<q( ‘m n 0>012 (F13)

Let us evaluate the two matrix elements on the line above. éRdmaring that = 2,3,..., one of the
matrix element gives

-1 k

2
or(g'mn,0),, = Vlkzt% 'IT” 1kt “(L) (‘t‘>01<u+t,|+k_u_t\m,n,o>012
2
- vlkm'n'dwmwzu(—l)k*'“(') (meu)l0 9

u m-—u
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This sum can be expressed in terms of regularized hyperggorhenctionssFR,. Above, we use the
generalized convention for binomial coefficients whicheexts the conventional to negative and zero

values as follows
(g) = dou, forkez

(L) = 0, forreNandue Z,u<0. (F.15)

Next, we turn to the other matrix element. We will evaluate dther matrix element in the case where
m+n=k+1, as required by the delta function on the last line of equafio14). After some algebra
one finds

[
_ m+n—1\ /I _ -
o<m|em|+n_| >01 - m [Z ( s > <s> (_1)I+S(S)(m s)(| _S)(n I+s) ‘n>1
s=1
(F.16)
Above we have used the Pochhammer symbol

r(r+s)

(8)) =s(s+1)...(s+r—1) = S

(F.17)

We can now insert the expressions we found for the two maleixents back into equation (F113)
0o = (e'|m.n,0)
m 22 ml % 0101 1Y/ 012
m+n I
= min! z RI VI -l ( > <s> (_1)I+S(S)(m—s)(| _S)(nfl+s)

[Z (I—U)( ™ “<L>2<mr::|>]>|n’o>lz'
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Finally, we can then write the complete action of the monodranatrix on the staté,0) ;,

W0, = Y W

m=0

m+n
= 1+n|ZmIZR Vi mn—|

x L; <mr4n‘2;|> <Is> (—1)"+3(5) ™91 _S)(n—l—i-s)]
| M“<L>2<mnffﬁ'>])|n,o>u

> MmN 1 -1 (1—-1+m+n)
- (1+n'n 1) Z ZR F(I+m+n)
[sFRy(1 —|,1—|,1—m,1,2—|+n;1)
—I3FRy(1—1,1—1,1—m;2,2—1+n;1)]
><3FR2(1—I,2—I,l—m;2,2—I+n;l))|n,0>12

(F.19)

Above, the regularized hypergeometric functiBR is generically defined (typically) in terms of the
ordinary hypergeometric functidr as

3F2(ay, 8,83, 01,102, 2)
I (by)r (b2) ’

but is better behaved than the right-hand side when some@frjuments are zero or negative integers.

The sum ovem above is finite, showing that, at least on such states, theodromy matrix is a

well-behaved object. Secondly, we see that the $ta®,, does not mix with other states and is an
eigenvector of the monodromy matrixu). A similar calculation yields

3FRx(ag,ap,a3;b1,002;2) = (F.20)

00

rwon, = Y ")

G Projectors for tensor products of s= 0 sl(2) representations

In this section we collect some results on projection opesatelevant to our spin-chains. As we have
discussed in sectidd 2, there are three inequivalg) representations &= 0. We will construct
them using an oscillator basis

[a,a] =1, (G.1)
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and the Hilbert space whose orthogonal basis is given by
ny=am0), n=0,1,2,3..., (G.2)

together with the inner product
(n||m) = &mn! . (G.3)

Thesl(2) representations are given explicitly in equatidns (P.#Z024) and[(2.30). Th& representa-
tion is a reducible representation which is a direct sum of an0 ands = —1 representation, there
are two highest weight statef) and|1), which respectively generate tlse= O (trivial) ands= —1
modules by the action d?~

R 0)=0, (R)"1)=+vnl|n+1). (G.4)

TheP representation contains an indecomposabid (trivial) sub-representation; therepresentation
has a single highest weight stafe which generates the trivial sub-representation; all osteies in the
P representation are generated by acting Withon the statél)

P~|0) =0, (P)"1) =n!|n+1). (G.5)

The Srepresentation has two highest weight stésnd|1), and the whole module can be generated
by acting on|0) with S~
(S)M0) = (=1)"[n) . (G.6)

G.1 Projectors onto irreps of P® P, S® Sand R® R representations

A central ingredient of the integrability machinery is pdalyby projectors onto irreps in the tensor
product of thes= 0 irrepsP, RandS. The decomposition of these tensor products is given in-equa
tions [2.34), [(2.36) and(2.40). The highest weight stafethe irreps in these decompositions are
mostly given in equation$ (2.85), (2139) ahd (2.42), as akquations near these for some simple spe-
cial cases. In this subsection we construct the projectuis these irreps. As discussed in secfion 2.3,
the tensor product representations decompose into dinets,sas a result finding orthonormal projec-
tors is straightforward given that the vector-space ugdegithe modules has a positive-definite inner
product given in equatiorh (3.3). Recall that for a vectorcgpa= V; @ V,, an orthonormal basis &f

can be found which is of the form

Vgspan{‘e,yl>}@span{‘f}’2>}, (G.7)

where theqv1 and fJy2 form a basis 0¥, andV;, respectively. In that case the projector ovitdakes the

form
EEDNCRICHE (G.8)
y[e)
The bra<qVl is defined as the state in the dual vector space which satisfies
(] |a7) =&, and  (&%]f%) =o0. (G.9)

From this we see that we can use the results of the previosestidn to write down the stat V1>.

To find the projectors onto the various irreps we will thencheefind the state qvl which satisfy the

above orthonormality relations. We proceed to do this fardifierents = 0 modules presently. This
procedure amounts to working out the relevant Clebsch-@oobefficients.
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G.1.1 Projectors onto irreps ofP® P

Let us construct the basis vect#q¥1> for the irreps on the right-hand side of equatibn (2.34). tRer
P module we have

{[e0)} =1101®10)5, k)1 ©[0),+0); @ K)} (G.10)
wherek =1,2,.... Above we have used
(PL+P,)(11)1®10),+0); ©[1)5) = KI(|k+ 1)1 ® |0),+0), @ [k+1),). (G.11)
For the—I modules on the right-hand side of equation (2.34) the basitovs are
(e = {Pr+Pp)¥al-a))'10), 210}, , (6.12)
wherek=0,1,2,... andl =1,2,3,.... It is in principle possible to obtain an explicit expressior
the statege™') for | > 1
KoLK+ s— DK+ =1 —s—I)S(1 =) ;s trei_rs
r;é r|s|2(k_r)|(| _S)!Z a‘l a2 |O>l®|o>2 (Gl3)
Whenl = 1 the expression simplifies dramatically to
{lat)} = {kal*-af) 0,210, } , (G.14)
wherek=10,1,2,.... In any case we have now found all t%ﬁl> states.

To define the projection operator we now need to find<tq\é‘ states. Up to normalisation, these
are given by

{1} = {0l @20 veu(P + )< (6.15)
wherek=0,1,2,...,

{(a|} = {x01 @20 vax(a - ) (P +P§)} | (G.16)

wherek=0,1,2,..., and
nInl(n-1) |

(&M} = {1(0| ® 2(0] | Vnk I; mal(—az)”*'

wherek=0,1,2,... andn=2,3,.... Above, thev,x andvpi are normalisation constants. One can
check that fokk = 0 all of the above states are annihilatedRyy+ P, and so are highest weight “bra”

statel8. This observation ensures the orthogonality relationd,alirthat remains to be done is find the

normalisations/, k. These are given by

<Pf+P§)k} : (G.17)

Vpo = 1, (G18)
_ Dk _
Vpk = 2K fork=12,..., (G.19)
I Gk
Vi = Sk (.20
_1NK(n=1)12(2n—
Vo = SN DEERNL) s (G.21)

n(n—1)k!(k+2n—1)!’

42These highest weight states are basically the same as theshigeight “ket” states for th@module, after swapping all
a' operators witha operators, and the ket vacuum for the bra vacuum. This rpaityfollows from the fact that if we define
(a")" = athe SandP modules are conjugate to each other.
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G.1.2 Projectors onto irreps ofS® S

Let us construct the basis vect#q¥1> for the irreps on the right-hand side of equatibn (2.36). tRer
Smodule we have

{le9} = {81 +%)410,©10),} (6.22)
wherek=10,1,2,.... The—1 module gives
{la®)}={E+s)aE-a)0,20,}. (G.23)
wherek=0,1,2,.... The remaining modules are given by
(amp={sspy —mEaCat g o (.2)
8 Sl_ S Z || | — |(n ) ( = ) 1 2 (> :
forn=23,... andk=0,1,2,.... At this stage we will not bother writing out explicit expsiens

in terms of creation operators for the above; this can be @asdy, though the expressions are again
somewhat lengthy.

To define the projection operator we now need to find<tq\é‘ states. Up to normalisation, these

are given by
{(eP]} = {(0] @ 2(0] vso, (1(K| @ 2(0] + 1(0] © K| )Vsk} (G.25)

wherek=1,2,..., and
{(&]} = { (0] @ 20| vi k(a1 — @) (S +S5) } (G.26)
wherel =1,2,... andk=0,1,2, ...
G.1.3 Projectors onto irreps ofR® R
The projector onto the singlet representatidgis
Mo =10,0) (0,0, (G.27)

while the projectors onto the twel representations are

M1,= Y 15 (k0)+[0.K) (k0 +(OK). (G.28)
k=1
M1,= 3 g (k010K (0l (OK) (.29

To find the projector onto < —1 irrep. from the right-hand side of equatién (2.40) we firstevdown
the highest weight bra states dual to the highest weightt&eg |s) ,, given in equation[(2.42)

(ag)' (—a)™

T=DIn—1)/(n=T=1)1’ (G.30)

n-1
(n[1, = (0,0 Z V”’o||
=1 '

where the normalisation is
(n—1)1?(-1)"\/(n—2)!

(2n—2)! (631

Vn,0 =
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The projectors then take the form given in equation (G.8hwit

lr={Rr+R)M M}, and (= {vc R +R)K},  (6.32)
wherek=10,1,2,... ands= —2,—3,... and the normalisation fd¢ > 0 is given by

Vo = Vi E(!—(l)k(Zn —1)!

kK+2n—1)1° (6-39)
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