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The Ising quantum spin chain in an imaginary field

A spin chain model with non-Hermitian interaction:

The Ising quantum spin chain in an imaginary field
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Abstract: We investigate a lattice version of the Yang-Lee model which is character-

ized by a non-Hermitian quantum spin chain Hamiltonian. We propose a new way to

implement PT -symmetry on the lattice, which serves to guarantee the reality of the spec-

trum in certain regions of values of the coupling constants. In that region of unbroken

PT -symmetry we construct a Dyson map, a metric operator and find the Hermitian

counterpart of the Hamiltonian for small values of the number of sites, both exactly and

perturbatively. Besides the standard perturbation theory about the Hermitian part of the

Hamiltonian, we also carry out an expansion in the second coupling constant of the model.

Our constructions turns out to be unique with the sole assumption that the Dyson map is

Hermitian. Finally we compute the magnetization of the chain in the z and x direction.

1. Introduction

It is known for about thirty years that ordinary second order phase transitions can be

described by the Yang-Lee model [1, 2, 3]. This model admits a quantum field theoret-

ical description in form of a Landau-Ginzburg Hamiltonian for a scalar field φ with an

additional φ3-interaction and a term linear in the scalar field with an imaginary coupling

constant. The model has been identified [4] as a perturbation of the M5,2-model in the

Mp,q-series of minimal conformal field theories [5]. It is the simplest non-unitary model

in this infinite class of models, which are all characterized by the condition p− q > 1 and

whose corresponding Hamiltonians are all expected to be non-Hermitian.

Here we shall investigate a discretised lattice version of the Yang-Lee model considered

by von Gehlen [6, 7], which is an Ising quantum spin chain in the presence of a magnetic

field in the z-direction as well as a longitudinal imaginary field in the x-direction. The

corresponding Hamiltonian for a chain of length N is given by

H(λ, κ) = −1

2

N
∑

j=1

(σz
j + λσx

jσ
x
j+1 + iκσx

j ), λ, κ ∈ R. (1.1)

http://arxiv.org/abs/0906.4070v2


The Ising quantum spin chain in an imaginary field

It acts on a Hilbert space of the form (C2)⊗N where we employed the standard notation for

the 2N ×2N -matrices σx,y,z
i = I ⊗ I ⊗ . . .⊗σx,y,z⊗ . . .⊗I ⊗ I with Pauli matrices describing

spin 1/2 particles

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

, (1.2)

as ith factor acting on the site i of the chain. Their commutation relations are direct sums

of su(2) algebras

[σx
j , σ

y
k] = 2iσz

jδjk, [σz
j , σ

x
k] = 2iσy

j δjk, [σy
j , σ

z
k] = 2iσx

j δjk, with j, k = 1, . . . , N (1.3)

A further real parameter β may be introduced into the model by allowing different types of

boundary conditions σx,y,z
N+1 = βσx,y,z

1 , albeit here we will only consider the case of periodic

boundary conditions and take β = 1.

Since all Pauli matrices are Hermitian it is obvious that H(λ, κ) is non-Hermitian

H†(λ, κ) = H(λ,−κ) 6= H(λ, κ). (1.4)

This poses immediately two questions: First of all, is the spectrum still real, despite the

fact that the vital property of Hermiticity which guarantees this is given up and second

is it still possible to formulate a meaningful quantum mechanical description associated to

this type of Hamiltonians? These issues have attracted a considerable amount of attention

in the last ten years, since the seminal paper by Bender and Boettcher [8] and meanwhile

many satisfying answers have been found to most of them; for recent reviews see [9, 10, 11].

Our manuscript is organised as follows: In section 2 we present various alternatives

about how PT -symmetry can be implemented for quantum spin chains. In section 3 we

establish our notation and recall some of the well known facts concerning a consistent

quantum mechanical framework for PT -symmetric systems. We analyze the model (1.1)

in section 4 and section 5, where the former is devoted to non-perturbative and the latter

to perturbative results. In section 6 we compute the magnetization for the model (1.1) and

we state our conclusions in section 7.

2. PT -symmetry for spin chains

Preceding the above mentioned recent activities von Gehlen found numerically [6, 7] that

for certain values of the dimensional parameters λ and κ the eigenvalues for H(λ, κ) are all

real, whereas for the remaining values they occur in complex conjugate pairs. He provided

an easy explanation for this feature: Acting adjointly on the Hamiltonian with a spin

rotation operator

R = e
iπ
4

SN
z =

N
∏

i=1

1√
2
(I + iσz)i, with SN

z =

N
∑

i=1

σz
i , I =

(

1 0

0 1

)

, (2.1)

has the effect of rotating the spins at each site clockwise by π/2 in the xy-plane, such that

the corresponding map acts as R : (σx
i , σ

y
i , σ

z
i ) → (−σy

i , σ
x
i , σ

z
i ). The resulting Hamiltonian

– 2 –



The Ising quantum spin chain in an imaginary field

is a 2N × 2N non-symmetric matrix with real entries given by

Ĥ(λ, κ) = RH(λ, κ)R−1 = −1

2

N
∑

i=1

(σz
i + λσy

i σ
y
i+1 − iκσy

i ). (2.2)

Its eigenvalues and those of H(λ, κ) are therefore either all real or occur in complex conju-

gate pairs. This is precisely the well known behaviour one finds when H(λ, κ) is symmetric

with respect to an anti-linear operator [12, 13, 14, 15, 16], which as mentioned above has

recently attracted a lot of attention. In quantum mechanical or field theoretical models the

anti-linear operator is commonly taken to be the PT -operator, which carries out a simul-

taneous parity transformation P : x→ −x and time reversal T : t → −t. When acting on

complex valued functions the anti-linear operator T is understood to act as complex con-

jugation. Real eigenvalues are then found for unbroken PT -symmetry, meaning that both

the Hamiltonian and the eigenfunctions remain invariant under PT -symmetry, whereas

broken PT -symmetry leads to complex conjugate pairs of eigenvalues.

We will now argue that PT -symmetry on the lattice can be interpreted in various

ways. One may for instance reflect the chain across its midpoint via the map P ′ : σx,y,z
i →

σx,y,z
N+1−i as suggested by Korff and Weston [17] and used thereafter in [18]. It is obvious

that the Hamiltonian (1.1) is invariant with regard to this symmetry. However, when

keeping the interpretation of T as a complex conjugation, and thus ensuring that the P ′T -

operator is anti-linear, one easily observes that this type of transformation does not leave

the Hamiltonian (1.1) invariant, i.e. we have [P ′T ,H] 6= 0.

Therefore we need to implement PT -symmetry in a different way for H(λ, κ) to be

able to analyze its properties along the lines proposed in [12, 13, 14, 15, 16]. We propose

here that one carries out a parity transformation at each individual site and reflect every

spin for instance in the xy-plane on y = −x. This is obviously achieved by R2. As

R4 =
∏N

i=1(−I)i = (−1)N I
⊗N and not the desired identity operator, we take here

P = −iR2 = e
iπ
2

(Sz−I) =
N
∏

i=1

σz
i , with P2 = I

⊗N , (2.3)

as our parity operator. Consequently this transformation acts as

P : (σx
i , σ

y
i , σ

z
i ) → (−σx

i ,−σy
i , σ

z
i ). (2.4)

Thus with T being the usual complex conjugation, which acts on the Pauli matrices as

T : (σx
i , σ

y
i , σ

z
i ) → (σx

i ,−σy
i , σ

z
i ), (2.5)

we have identified an anti-linear operator constituting a symmetry of the Hamiltonian (1.1)

[PT ,H] = 0. (2.6)

This operator provides more information than the transformation (2.2), because we have

now in addition a concrete criterium, which distinguishes the regimes of real and complex

– 3 –
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eigenvalues. We can precisely separate the two domains UPT and UbPT in the parameter

space of λ and κ defined by the action on the eigenstates Φ(λ, κ) of H(λ, κ)

PT Φ(λ, κ)

{

= Φ(λ, κ) for (λ, κ) ∈ UPT

6= Φ(λ, κ) for (λ, κ) ∈ UbPT .
(2.7)

According to the general reasoning provided in [12, 13, 14, 15, 16], simultaneous eigenfunc-

tions of PT and H(λ, κ), that is for (λ, κ) ∈ UPT , are then associated with real eigenvalues

whereas in the regime of broken PT -symmetry, that is (λ, κ) ∈ UbPT , the eigenvalues

emerge in complex conjugate pairs.

From the above it is clear that we may define equally well different types of PT -

operators closely related to the one introduced in (2.3). For instance we can define

Px :=
N
∏

i=1

σx
i and Py :=

N
∏

i=1

σy
i , (2.8)

which obviously act as

Px : (σx
i , σ

y
i , σ

z
i ) → (σx

i ,−σy
i ,−σz

i ) and Py : (σx
i , σ

y
i , σ

z
i ) → (−σx

i , σ
y
i ,−σz

i ). (2.9)

Clearly these parity operators can not be used in the same way as P in (2.3) to introduce

a PT -symmetry for H(λ, κ) when keeping T unchanged. However, they serve to treat

non-Hermitian Hamiltonians of a different kind, such as obvious modifications of H(λ, κ)

and also to allow for alternative treatments of non-Hermitian spin chains, such as the

XXZ-spin-chain in a magnetic field [19]

HXXZ =
1

2

N−1
∑

i=1

[

(σx
i σ

x
i+1 + σy

i σ
y
i+1 + ∆+(σz

iσ
z
i+1 − 1)

]

+
∆−

2
(σz

1 − σz
N ), (2.10)

with ∆± = (q ± q−1)/2 previously studied in [17, 18]. Obviously when q /∈ R this Hamil-

tonian is non-Hermitian, but we observe that it is PT -symmetric when using any of the

parity operators defined in (2.8) and keeping T to be the usual complex conjugation

[PxT ,HXXZ ] = 0 and [PyT ,HXXZ ] = 0. (2.11)

Thus besides reflecting the chain across its midpoint in form of a “macro-reflections”, as

suggested in [17], we may also carry out the parity transformations on each individual side.

It appears that these “micro-reflections” (2.3), (2.8) allow for a wider range of possibilities,

such as for instance Hamiltonians of the type H(λ, κ) in (1.1), which could not be tackled

with P ′ : σx,y,z
i → σx,y,z

N+1−i. The different possibilities are simply manifestations of the

well known ambiguities non-Hermitian Hamiltonians possess with regard to their operator

content [21]. This also means that the symmetries (2.11) will lead to a different kind of

physical systems than those identified in [17].

It is well known that HXXZ can be expressed in terms of generators of a Temperley-

Lieb algebra Ei, i.e. simply by writing the Hamiltonian alternatively as HXXZ =
∑N−1

i=1 Ei.

– 4 –
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It is then trivial to see that the algebra remains invariant under a PT -transformation when

realized as (2.8): T : Ei → E∗
i , Px,y : Ei → E∗

i , such that Px,yT : Ei → Ei. On the other

hand when implementing the “macro-reflection” on the entire chain, the P ′T -symmetry

on the generators is broken, i.e. P ′T : Ei → EN+1−i, as was found in [17].

A further interesting non-Hermitian quantum spin chain has recently been investigated

by Deguchi and Ghosh [20]

HDG =

N
∑

i=1

κzzσ
z
iσ

z
i+1 + κxσ

x
i + κyσ

y
i , (2.12)

with κzz ∈ R and κx, κy ∈ C. Clearly when κx or κy /∈ R the Hamiltonian HDG is

not Hermitian, which is the case we will consider. As the previous model also the quasi-

Hermitian transverse Ising model allows for different types of realizations for the PT -

symmetry. We easily observe that the macro-reflections can not be implemented

[

P ′T ,H
]

6= 0, (2.13)

whereas all the micro-reflections can be realized

[PT ,H] = 0 for κx, κy ∈ iR,
[

Px/yT ,H
]

= 0 for κx/y ∈ R, κy/x ∈ iR. (2.14)

Once again these different possibilities raise the question about the unique of the operator

content in the model.

Having an explanation for the nature of the eigenvalue spectra, it is left to show that

one may in addition construct a meaningful metric for this Hamiltonian with well defined

quantum mechanical observables associated to it. As already indicated, the metric is not

even expected to be unique so that, unlike as for the Hermitian case, the observables are no

longer defined by the Hamiltonian alone [21]. It remains therefore ambiguous what Hamil-

tonians of the type H(λ, κ) describe in terms of physical observables. Having constructed

a metric one may often also compute an isospectral Hermitian counterpart for H(λ, κ) for

which the physical observables have the standard meaning.

One of the main purposes of this manuscript is that of finding the Hermitian coun-

terparts of the Hamiltonian (1.1) and studying in some detail (at least for small N) how

many such Hermitian Hamiltonians can be constructed.

3. Generalities

3.1 A new metric and an isospectral Hermitian partner from PT -symmetry

For the sake of self-consistency, we briefly recall the well known procedure [12, 13, 14, 15, 16]

of how to construct a meaningful metric and isospectral Hermitian counterpart, h, for a

non-Hermitian Hamiltonian, H. We assume the Hamiltonian to be diagonalizable and to

possess a discrete spectrum. Being non-Hermitian the Hamiltonian has non identical left

|Φ〉 and right eigenvectors |Ψ〉 with eigenvalue equations

H |Φn〉 = εn |Φn〉 and H† |Ψn〉 = ǫn |Ψn〉 for n ∈ N. (3.1)

– 5 –
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The eigenvectors are in general not orthogonal 〈Φn |Φm〉 6= δnm, but form a biorthonormal

basis

〈Ψn |Φm〉 = δnm,
∑

n

|Ψn〉 〈Φn| = I. (3.2)

We assume the existence of a selfadjoint, but not necessarily positive, parity operator P
whose adjoint action conjugates the Hamiltonian

H† = PHP with P2 = I. (3.3)

The action of this operator on the eigenvectors

P |Φn〉 = sn |Ψn〉 with sn = ±1 (3.4)

defines the signature s = (s1, s2, . . . , sn), which serves to introduce the so-called C-operator1

C :=
∑

n

sn |Φn〉 〈Ψn| , (3.5)

satisfying

[C,H] = 0, [C,PT ] = 0, C2 = I. (3.6)

Next we employ this operator to define a new operator ρ, which also relates the Hamiltonian

to its conjugate

ρ := PC, H†ρ = ρH. (3.7)

Depending now on the assumptions made for ρ, such systems allow for different types of

conclusions. When ρ is positive and Hermitian, but not necessarily invertible, the system

is referred to as quasi-Hermitian [22, 21]. In this case the existence of a definite metric is

guaranteed and the eigenvalues are real. In turn when ρ is invertible and Hermitian, but

not necessarily positive, the system is called pseudo-Hermitian [23, 24, 25]. For this type

of scenario the eigenvalues are always real but no definite conclusions can be made with

regard to the existence of a definite metric. Here we will identify operators ρ which are

quasi-Hermitian as well as pseudo-Hermitian.

Finally we may factorize ρ into a new operator2 η and use it to construct an isospectral

Hermitian counterpart for H

h = ηHη−1 = h† ⇔ H† = ρHρ−1 with ρ = η†η. (3.8)

In other words assuming the existence of an inverse for ρ and its factorization in form of

(3.8) one can derive a Hermitian counterpart h for H and vice versa.

1The is an unfortunate notation and it should be pointed out that the operator is not related to the

standard charge conjugation operator in quantum field theory.
2When η is Hermitian, it just corresponds to a Dyson transformation [26] employed in the so-called

Holstein-Primakov method [27]. For practical purposes it is useful to have a name for this operator and

therefore we refer to η from now on as the Dyson map.

– 6 –
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3.2 Expectation values of local observables

As discussed above, when dealing with non-Hermitian Hamiltonians the standard metric

is generally indefinite and therefore a new, physically sensible, metric needs to be defined

by means of the construction described before. This amounts to introducing a new inner

product 〈 | 〉ρ which is defined in terms of the standard inner product 〈 | 〉 as

〈Φ|Ψ〉ρ := 〈Φ|ρΨ〉, (3.9)

for arbitrary states, 〈Φ| and |Ψ〉. Assuming that all local operators O in the non-Hermitian

theory are related to their counterparts o in the Hermitian theory in the same manner as

the corresponding Hamiltonians

ηOη−1 = o, (3.10)

one finds that a generic matrix element of the operator O has the form,

〈Φ|ρO|Ψ〉 = 〈Φ|η†oη|Ψ〉 = 〈φ|o|ψ〉, (3.11)

where |Ψ〉 and 〈Φ| are eigenstates of the non-Hermitian Hamiltonian and its conjugate,

respectively. The states |ψ〉 and 〈φ| are related to the previous two states by |ψ〉 = η|Ψ〉 and

〈φ| = 〈Φ|η†, that is, they are eigenstates of the Hermitian Hamiltonian corresponding to the

same eigenvalues. Equation (3.11) will be used later on in this paper for the computation

of various kinds of expectation values.

3.3 Perturbation theory

In most cases the above mentioned operators can not be computed exactly and one has

to resort to a perturbative analysis. Let us recall the main features of such a treatment.

To start with it is convenient to separate the Hamiltonian into its Hermitian and non-

Hermitian part as H(λ, κ) = h0(λ) + iκh1, where h0 and h1 are both Hermitian with κ

being a real coupling constant. The latter term may then be treated as the perturbing

term. For our concrete case (1.1) the individual components are

h0(λ) = −1

2

N
∑

i=1

(σz
i + λσx

i σ
x
i+1), and h1 = −1

2

N
∑

i=1

σx
i , (3.12)

such that h0(λ) corresponds to the Ising spin chain coupled to a magnetic field in the z

direction and the perturbing term is an imaginary magnetic field in the x-direction. In

order to determine η, ρ and h we can now solve either of the two equations in (3.8). Here

we decide to commence with the latter. Making the further assumption that η is Hermitian

and of the form η = eq/2 this amounts to solving

H† = eqHe−q = H + [q,H] +
1

2
[q, [q,H]] +

1

3!
[q, [q, [q,H]]] + · · · (3.13)

where we have employed the Backer-Campbell-Hausdorff identity. Writing H and H† in

terms of h0 and h1 equation (3.13) becomes

2iκh1 + iκ[q, h1] +
iκ

2
[q, [q, h1]] + · · · = [h0, q] +

1

2
[q, [h0, q]] + · · · (3.14)

– 7 –
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For most non-Hermitian Hamiltonians, such as for our model (1.1), this equation is very

difficult to solve for q. When the (ℓ+1)-fold commutator of q with h0, denoted by c
(ℓ+1)
q (h0)

vanishes, closed formulae were found in [28]

h = h0 +

[ ℓ
2
]

∑

n=1

(−1)nEn

4n(2n)!
c(2n)
q (h0), H = h0 −

[ ℓ+1

2
]

∑

n=1

κ2n−1

(2n − 1)!
c(2n−1)
q (h0), (3.15)

where [x] denotes the integer part of a number x and En are Euler’s numbers, e.g. E1 = 1,

E2 = 5, E3 = 61, E4 = 1385, . . . The coefficients κ2n−1 were determined by means of a

recursive equation, which was solved by

κn =
1

2n

[(n+1)/2]
∑

m=1

(−1)n+m

(

n

2m

)

Em, (3.16)

such that κ1 = 1/2, κ3 = −1/4, κ5 = 1/2, κ7 = −17/8, . . .

One may also impose some further structure on q and expand it as

q =

∞
∑

k=1

κ2k−1q2k−1, (3.17)

so that each perturbative contribution q2k−1 is a κ-independent matrix. For models of the

form considered here only odd powers of κ appear in the perturbative expansion. This is

essentially due to the fact thatH and H† are related to each other by κ→ −κ. Substituting

the expansion (3.17) into the equation (3.14) one finds a set of equations for q1, q3, q5, . . .

by equating those terms in (3.14) which are of the same order in perturbation theory in κ.

The first few equations are given by

[h0, q1] = 2ih1, (3.18)

[h0, q3] =
i

6
[q1, [q1, h1]], (3.19)

[h0, q5] =
i

6
[q1, [q3, h1]] +

i

6
[q3, [q1, h1]] −

i

360
[q1, [q1, [q1, [q1, h1]]]]. (3.20)

As we can see easily, they can be solved recursively, namely once q1 is known, one case solve

for q3 and so on. A closed expression for the commutator [h0, qn] in terms of commutators

[qm, h1] with m < n was derived in [18]. Perturbation theory has been carried out in the

past for various non-Hermitian models, e.g. [16, 28, 29, 30, 31, 18].

The model at hand is special in the sense that it involves two coupling constants,

i.e. κ and λ, such that it allows for an alternative perturbative expansion in terms of the

latter. Indeed we will demonstrate below that the case λ = 0 can be solved exactly and we

can therefore expand around that solution. Proceeding similarly as for the κ-perturbation

theory we separate the Hamiltonian into its single spin contribution and into the nearest

neighbour interaction term H(λ, κ) = H̃0(κ) + λh̃1with

H̃0(κ) = −1

2

N
∑

i=1

(σz
i + iκσx

i ) and h̃1 = −1

2

N
∑

i=1

σx
i σ

x
i+1. (3.21)

– 8 –
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We stress that the counterparts of (3.18)-(3.20) in the well known κ-expansion explained

above differ substantially in the λ-expansion. The details will be explained in the main

part of the manuscript below. Having the option to construct two perturbative series, we

in principle have in addition the possibility to combine them in a manner that has proved

to be very successful in the context of high intensity laser physics [32].

3.4 Ambiguities in the physical observables

As mentioned previously, one can argue that the metric ρ is not unique. In the perturbation

theory framework, this can be easily seen from the fact that the equations (3.18)-(3.20) (and

any other equations arising at higher orders in perturbation theory) admit many different

solutions. The non-uniqueness of η or, equivalently, the fact that several independent

Hermitian Hamiltonians h may exist which are all related to the same non-Hermitian

Hamiltonian by different unitary transformations is well known in the literature. Indeed,

this fact has been noticed already in the past [21, 33, 30, 34, 35, 36] and is currently still

object of debate [37, 38].

Assuming now the Dyson map η in (3.8) to be Hermitian and related to the operators

P, C and ρ as defined in (3.7) we simply obtain

η = η† ⇒ η2 = ρ = PC. (3.22)

Writing η = eq/2, it is obvious that we can always add to q any matrix b that commutes

with the full Hamiltonian [H, b] = 0 and with q, [q, b] = 0

h = eq/2+bHe−q/2−b = eq/2He−q/2, (3.23)

and still solve equations (3.8). This kind of ambiguity is not very interesting, as it will not

change h and therefore not lead to new physics. A somewhat less trivial ambiguity was

pointed out in [30], which will generate different types of Hermitian counter-parts to H. It

originates from the fact that we can always add to q1, q3, q5, . . . any matrix commuting with

h0 as we may easily observe in equations (3.18)-(3.20). Below we will see that in principle

for specific examples many such matrices can be found.

However, by relating η to the operators C and P as in (3.22) we are introducing further

constraints on the form of η. These constraints follow from the equations (3.6), particularly

the last two equations there. Using the explicit form (3.22) they can be rewritten as

PT eqPT = eq, PeqP = e−q. (3.24)

by employing the equality C = η2P = eqP. In order for (3.24) to be satisfied, it is required

that

PqP = T qT = −q, (3.25)

and consequently

Pq2k−1P = T q2k−1T = −q2k−1, ∀ k ∈ Z
+. (3.26)

Below, we will show that these constraints are sufficient in many cases to fix the operator η

and therefore the metric completely. However, it should be noted that these arguments are

based on the assumption that ρ acquires the form (3.22) and furthermore that the parity

operator is unique, which as we exemplified (2.8) is not always the case.
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4. The Yang-Lee quantum chain: non perturbative results

We will now employ the general ideas and definitions introduced in the previous subsection

for the quantum spin chain Hamiltonian (1.1). In particular, we will show how to obtain

exact solutions for the operators η, ρ and h in the two particular situations: i) λ or κ are

vanishing and N is generic and ii) λ and κ are arbitrary and N is taken to be small.

For large values of N it will be convenient to use the following abbreviation

SN
a1a2...ap

:=

N
∑

k=1

σa1

k σ
a2

k+1 . . . σ
ap

k+p−1, for ai = x, y, z, u; i = 1, . . . , p ≤ N. (4.1)

We denote here σu = I to allow for non-local, i.e. not nearest neighbour, interactions. In

this notation the Hamiltonian (1.1) reads

H(λ, κ) = h0(λ) + iκh1, with h0(λ) = −1

2
(SN

z + λSN
xx), h1 = −1

2
SN

x . (4.2)

In what follows it will also be important to use the adjoint action of P, T and PT on the

generators SN
a1a2...ap

. It is easy to compute

PSN
a1a2...ap

P = (−1)ny+nxSN
a1a2...ap

, (4.3)

T SN
a1a2...ap

T = (−1)nySN
a1a2...ap

, (4.4)

PT SN
a1a2...ap

PT = (−1)nxSN
a1a2...ap

, (4.5)

where nx, ny are the numbers of indices ai equal to x, y, respectively. These identities

follow directly from the definitions (2.4) and (2.5).

4.1 Limiting cases: λ = 0 or κ = 0

Let us start by considering the special case λ = 0 for which

h0(0) = −1

2
SN

z and h1 = −1

2
SN

x . (4.6)

Although the Hamiltonian is extremely simple, it is still non-Hermitian, and thus serves

as a benchmark to illustrate the above mentioned notions. For example, a matrix η that

relates H(0, κ) to its Hermitian counterpart h(0, κ) is easily found to be

η = eq/2 = e−
1

2
arctanh(κ)SN

y . (4.7)

Its adjoint action on SN
x and SN

z is simply

ηSN
x η

−1 =
1√

1 − κ2
(iκSN

z + SN
x ), ηSN

z η
−1 =

1√
1 − κ2

(SN
z − iκSN

x ), (4.8)

which when we evaluate (3.8) yields the Hermitian counterpart to H̃0(κ) in (3.21)

h(0, κ) = −1

2

√

1 − κ2SN
z . (4.9)
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This Hamiltonian describes a spin chain for which no mutual interaction between spins

along the chain occurs. An external magnetic field is applied at each site of the chain,

whose intensity is governed by the value of κ and is the same at every site. The constraint

−1 < κ < 1 ensures the Hamiltonian h(0, κ) and η to be Hermitian. Given the simplicity of

h(0, κ) we can easily find its full set of eigenstates and eigenvalues, hence those of H(0, κ).

The operator SN
z is a diagonal matrix with entries

SN
z = diag(N,N − 2, . . . ,−N + 2,−N). (4.10)

The entries in the diagonal (eigenvalues) are N−2p with p = 0, . . . , N . They are not neces-

sarily in decreasing order and, except for N and −N , all other eigenvalues are degenerate.

For example, the eigenvalues N − 2 and 2−N are always N times degenerate. This means

that there is a single ground state with minimum energy,

Eg(κ) = −N
2

√

1 − κ2, (4.11)

and the corresponding eigenstate is simply

|ψg〉 =

N
⊗

i=1

(

1

0

)

i

, (4.12)

associated to a configuration with all spins “up”, hence aligned with the magnetic field

that is being applied at each site of the chain.

The situation when κ = 0 and λ is arbitrary corresponds to the Hermitian Hamiltonian

given by h0(λ), that is the Ising spin chain with a magnetic field in the z-direction. In

this case, η = I, which is automatically ensured when using perturbation theory. The

eigenstates and eigenvalues of this Hamiltonian have been studied in the literature by

using the Bethe ansatz approach, see e.g. [39, 40]. In particular, the ground state can not

be written in such as simple form as (4.12), as it will depend on the value of λ. One does

know however, that, for finite N , it will interpolate between the λ = 0 case, in which the

ground state is (4.12) and the λ → ∞ case, in which the ground state will correspond to

alternating up-down spins.

4.1.1 Uniqueness of the Dyson operator

In light of the discussion in section 3.4 it is also interesting to investigate the uniqueness of

(4.7). Indeed, we will now show that (4.7) is the only solution to (3.8) which is consistent

with (3.24) for the Hamiltonian H(0, κ). This can be proven in two steps: firstly we will

characterize the subset of matrices and linear combinations thereof that satisfy (3.25) and

secondly, we will show that none of these matrices can be in the kernel of h0(0). Let us

define the matrices, which provide a basis for the set of 2N ⊗ 2N -Hermitian matrices,

Ma1...aN
= σa1

1 ⊗ · · · ⊗ σaN

N , with ai = x, y, z, or u ∀ i = 1, . . . , N. (4.13)

Recall the definition σu
i = Ii. Let us consider an arbitrary linear combination of the

matrices (4.13). The action of parity and time reversal on such a linear combination is

– 11 –
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analogous to (4.3) and (4.4). From this it follows that, in order for any linear combination

of matrices Ma1,...,ap to transform as q does in equations (3.25) it must be such that for

all matrices in the linear combination ny is odd and nx is even (nx and ny as defined after

equation (4.5)).

We will now argue that no matrix in the kernel of h0(0) is of this form. There are

various ways of having a vanishing commutator [h0(0), B] = 0. The most obvious solution

is for B to be a diagonal matrix, as h0(0) is itself diagonal. In terms of the matrices (4.13),

this means selecting out those that are tensor products of σz and I only. There are overall

2N such matrices and obviously none of them has ny odd. This would be sufficient to

conclude that the solution (4.7) is unique if only the kernel of h0(0) had dimension 2N .

This is not so because h0(0) has degenerate eigenvalues.

Any additional matrices in the kernel will be some linear combination of matrices

(4.13) involving at least one index x or y. Employing the commutation relations (1.3), it is

easy to see that there are basically two kinds of additional matrices that are in the kernel

of h0(0): firstly, the matrices Mxyu...u −Myxu...u and generalizations thereof , which are

antisymmetric under the exchange of indices x↔ y and violate the condition nx even and

secondly, the matrices Mxxu...u + Myyu...u and generalizations thereof, which violate the

condition ny odd and are symmetric under the exchange of indices x↔ y. Generalizations

of these matrices are those obtained by replacing any number of indices u by z and/or

permuting indices, as well as other matrices of similar characteristics, such as Mxxxxu...u +

Myyyyu...u +Mxxyyu...u +Myyxxu...u and so on. Since this is more an argument than a proof,

we would like to support it with two examples. For N = 2

h0(0) = diag(−1, 0, 0, 1), (4.14)

and the kernel has dimensions 6, as one eigenvalue is twice degenerate. It is generated by

the matrices

Mxy −Myx, Mxx +Myy, Mzz, Mzu, Muz and Muu = I. (4.15)

For N = 3 we have that h0(0) has four different eigenvalues, two of which are three times

degenerate,

h0(0) = diag

(

−3

2
,−1

2
,−1

2
,
1

2
,−1

2
,
1

2
,
1

2
,
3

2

)

, (4.16)

The dimension of the kernel then becomes 20. Its generators are the matrices

Mxyu −Myxu, Mxuy −Myux, Muxy −Muyx,

Mxxu +Myyu, Mxux +Myuy, Muxx +Muyy,

Mxyz −Myxz, Mxzy −Myzx, Mzxy −Mzyx,

Mxxz +Myyz, Mxzx +Myzy, Mzxx +Mzyy,

Mzzz, Mzzu, Mzuz, Muzz, Mzuu, Muzu, Muuz, Muuu, (4.17)

As shown before, these examples confirm once more that no element in the kernel of h0(0)

can fulfill the conditions (3.25) and therefore could not be added to q, whilst fulfilling such

conditions. Thus no matrices in the kernel of h0(0) satisfy the conditions (3.25) and the

solution (4.7) is unique if the operator η = eq/2 is to be Hermitian.
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4.2 The N = 2 case: two sites

We have already identified the PT -symmetry for the Hamiltonian (1.1) with P given as

specified in (2.3) satisfying (3.3). Let us now take the length of the spin chain to be N = 2

and compute the quantities as outlined in the previous section.

For two sites we may chose without loss of generality the boundary conditions to be

periodic σx
N+1 = σx

1 as any other choice may be achieved simply by a re-definition of λ. In

this case the Hamiltonian (1.1) acquires the simple form of a non-Hermitian 4× 4-matrix.

In order to make notations clear, we will write this matrix here in the various notations

introduced so far,

H(λ, κ) = −1

2
[σz ⊗ I + I ⊗ σz + 2λσx ⊗ σx + iκ (I ⊗ σx + σx ⊗ I)] ,

= −1

2
[σz

1 + σz
2 + 2λσx

1σ
x
2 + iκ (σx

2 + σx
1)] ,

= −1

2
[S2

z + λS2
xx + iκS2

z ] = −











−1 iκ
2

iκ
2 λ

iκ
2 0 λ iκ

2
iκ
2 λ 0 iκ

2

λ iκ
2

iκ
2 −1











, (4.18)

where the first line shows the most explicit way of writing the Hamiltonian, the second line

shows a simplified version, were the tensor products are omitted and absorbed into the σs

as specified after (1.1). The last line uses the notation introduced in (4.1).

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

U
bPT

U
PT

 
 

Figure 1: Domains of broken and unbroken PT -symmetry

At first we shall be concerned with the spectral properties of this Hamiltonian. The two

subdomains UPT and UbPT , as introduced in (2.7), have already been identified numerically

in [6] for spin chain lengths up to N = 19, that is for matrices up to the remarkable size

of 524288 × 524288. For N = 2 the eigenvalues for (4.18) are easily computed analytically

as the characteristic polynomial factorizes into a third and first order polynomial. The

discriminant ∆ of the third order polynomial is computed by

∆ = r2 − q3 with q =
1

9

(

−3κ2 + 4λ2 + 3
)

, r =
λ

27

(

18κ2 + 8λ2 + 9
)

. (4.19)
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The eigenvalues are guaranteed to be real when the discriminant is smaller or equal to zero,

such that UPT is defined as

UPT =
{

λ, κ : ∆ = κ6 + 8λ2κ4 − 3κ4 + 16λ4κ2 + 20λ2κ2 + 3κ2 − λ2 − 1 ≤ 0
}

. (4.20)

The regions UPT and UbPT are depicted in Figure 1, from which we note that in order to

have a real eigenvalue spectrum κ is restricted to take values between 0 and 1, whereas λ

is left unbounded λ ∈ [0,∞).

The four real eigenvalues are then computed to

ε1 = λ, ε2 = 2q
1

2 cos
(

θ
3

)

− λ
3 , ε3,4 = 2q

1

2 cos
(

θ
3 + π ∓ 2π

3

)

− λ
3 , (4.21)

where the additional abbreviation θ = arccos
(

r/q3/2
)

has been introduced. We depict

these eigenvalues in Figure 2,

0.0 0.1 0.2 0.3 0.4

-1.0

-0.5

0.0

0.5

1.0

 = 0.45202439665
 

 

n  
1

 
2

 
3

 
4

0.0 0.1 0.2 0.3 0.4 0.5
-1.0

-0.5

0.0

0.5

1.0

 = 0.4

 

 

n
 

1
 

2
 

3
 

4

Figure 2: Avoided level crossing: eigenvalues as functions of λ (κ) for fixed κ (λ).

where we observe the typical avoided level crossing behaviour of the eigenvalues as a func-

tion of the parameters [41], i.e. the eigenvalues ε3 and ε4 only meet in the exceptional

point when they simultaneously become complex.

For the computations of physical observables, which we will carry out below, it is

important to identify the lowest eigenvalue, which turns out to be always ε4.

Next we compute the right eigenvectors of H(λ, κ) to

|Φ1〉 = (0,−1,−1, 0), |Φn〉 = (γn,−αn,−αn, βn), n = 2, 3, 4, (4.22)

with αn = iκ (λ− εn + 1), βn = κ2 + 2λ2 + 2λεn and γn = −κ2 − 2ε2n + 2λ− 2λεn + 2εn.

We verify that left and right eigenvectors are related via a conjugation |Ψn〉 = 〈Φn| and

compute the signature as defined in (3.4) to s = (+,−,+,−) for the parity operator (2.3).

Normalizing the vectors in (4.22) by dividing with N1 =
√

2, Nn = (2α2
n + β2

n + γ2
n)1/2 for

n = 2, 3, 4 we compute the C-operator according to (3.5) to

C =











C5 −C3 −C3 C4

−C3 −C1 − 1 −C1 C2

−C3 −C1 −C1 − 1 C2

C4 C2 C2 2(C1 + 1) −C5











(4.23)
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where the matrix entries are

C1 =
α2

4

N2
4

− α2
2

N2
2

− α2
3

N2
3

− 1
2 , C2 = α4β4

N2
4

− α2β2

N2
2

− α3β3

N2
3

, C3 = α2γ2

N2
2

+ α3γ3

N2
3

− α4γ4

N2
4

,

C4 =
β2γ2

N2
2

+
β3γ3

N2
3

− β4γ4

N2
4

, C5 =
γ2
2

N2
2

+
γ2
3

N2
3

− γ2
4

N2
4

.

(4.24)

We may now verify that C indeed satisfied the properties (3.6) upon the use of the identities

C2 = C2C5 − C3C4, C3 = C5C3 − C2C4 − 2C1C3, C4 = C2C3 − C1C4,

1 = 2C2
3 + C2

4 + C2
5 , 0 = C2

2 + C2
3 + 2C1(C1 + 1).

(4.25)

Next we compute the metric operator in the form ρ = PC simply from (2.3) and (4.23)

to

ρ =











C5 −C3 −C3 C4

C3 1 + C1 C1 −C2

C3 C1 1 +C1 −C2

C4 C2 C2 2(1 +C1) − C5











(4.26)

Since iαi, βi, γi ∈ R it follows that C1, iC2, iC3, C4, C5 ∈ R and therefore we conclude

immediately that ρ is Hermitian. To see whether ρ is also positive, as it ought to be, we

compute its eigenvalues

y1 = y2 = 1 and y3/4 = 1 + 2C1 ± 2
√

C1(1 + C1). (4.27)

Since C1 > 0 all eigenvalues of ρ are obviously guaranteed to be positive.

Next we determine the corresponding eigenstates to

|r1〉 = (0,−1, 1, 0), |r2〉 = (C4, 0, 0, 1 − C5),
∣

∣r3/4

〉

= (γ̃3/4, α̃3/4, α̃3/4, β̃3/4) (4.28)

with α̃3/4 = y3/4(C3C4 + C2(−4C1 + C5 − 1))/2 − C3C4, β̃3/4 = −C2
3 − C1 − C1C5 +

(

C2
3 + C1(4C1 − C5 + 3)

)

y3/4 and γ̃3/4 = C1C4−C2C3 +(C2C3 +C1C4)y3/4. Defining now

the matrix U = {r1, r2, r3, r4}, whose column vectors are the eigenvectors of ρ, we may

take the square root of ρ, such that η = ρ1/2 = UD1/2U−1, where D = diag(y1,y2,, y3,, y4).

The isospectral Hermitian counterpart of H results from (3.8) to an XY Z spin chain (with

just two sites) in a magnetic field

h(λ, κ) = ηHη−1 = UD1/2U−1HUD−1/2U−1 (4.29)

= µ2
xx(λ, κ)S2

xx + µ2
yy(λ, κ)S2

yy + µ2
zz(λ, κ)S2

zz + µ2
z(λ, κ)S2

z . (4.30)

It is clear that the coefficients µ2
xx, µ2

yy, µ
2
zz, µ

2
z can be computed explicitly, but the

expressions are rather lengthy and we will therefore not present them here. They are all real

functions of λ and κ. Their explicit form can be found in appendix A in terms of functions of

λ and κ (5.10) which will be introduced in section 5, in the context of perturbation theory.

In the next section we wish to compare this exact result with a perturbative expansion.

Let us therefore report two numerical examples for some isospectral Hermitian counterpart

of H(λ, κ)

h(0.1, 0.5) =











−0.829536 0 0 −0.0606492

0 −0.0341687 −0.1341687 0

0 −0.1341687 −0.0341687 0

−0.0606492 0 0 0.897873











, (4.31)
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and

h(0.9, 0.1) =











−0.985439 0 0 −0.890532

0 −0.0094167 −0.909417 0

0 −0.909417 −0.0094167 0

−0.890532 0 0 1.00427











. (4.32)

Notice that h23 = h32 = h22 − λ = h33 − λ.

We have carried out a similar analysis for the chain with three sites explicitly, albeit

the resulting formulae are rather cumbersome to present. In any case for longer chains

one has to resort to more sophisticated and less transparent techniques as for instance the

Bethe ansatz. Alternatively, we may employ perturbation theory.

5. The Yang-Lee quantum chain: perturbative results

In this section we want to address the problem of obtaining the matrices η, ρ and h from

a perturbative analysis as described in section 3.3. We will study the N = 2, 3 and 4 cases

in detail and draw some conclusions concerning the analytic expressions of η, ρ and h for

generic N .

5.1 The N = 2 case: perturbation theory in κ

Despite the fact that H(λ, κ) is just the 4×4-matrix (4.18), it is actually not easy to find the

matrix q in (3.13) exactly. As discussed in section 3.4, it is clear that the equations (3.18)

to (3.20) as well as the equations that would be obtained for higher orders in perturbation

theory, admit many solutions. Any solution q2k−1 can be modified by adding a matrix that

commutes with h0(λ). However, not all solutions obtained in this manner would be valid

solutions if the equations (3.24) are to hold. For the particular case N = 2, we are about

to show that these constraints actually select out a unique Hermitian counterpart to the

Hamiltonian H(λ, κ). We will start by finding the most general matrix q1(λ) which solves

the identity (3.18). It is quite clear that given one solution q1(λ), any matrix of the form

q1(λ) + B(λ) with [h0(λ), B(λ)] = 0 will also be a solution, so we may start by finding

all such matrices. In this simple case, there are four basic independent solutions to the

equation [h0(λ), B(λ)] = 0

B1 = I, B2 = S2
zz, B3 = S2

xx + S2
yy and B4 = S2

z − λS2
yy. (5.1)

Since h0(λ) is a 4 × 4-diagonalizable matrix, with non-degenerate eigenvalues, there can

be at most four independent matrices that commute with it, namely those shown above or

combinations thereof. On the other hand, it is clear that any polynomial function of the

Hamiltonian h0(λ) would also commute with h0(λ). As the four matrices in (5.1) constitute

a basis, we expect to be able to express any power of h0 as linear combinations of them.

Indeed, we find

h0(λ)2n =
(1 + λ2)n

2
(B1 +

1

2
B2) +

λ2n

2
(B1 −

1

2
B2), (5.2)

h0(λ)2n+1 = (1 + λ2)nh0(λ) +
λ(1 + λ2)n − λ2n+1

4
B3, (5.3)
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for n ∈ N0. Therefore, the most general solution to the first order equation (3.18) for the

present model is

q1(λ) = −S2
y − λ(S2

yz + S2
zy) +

4
∑

i=1

fi(λ)Bi, (5.4)

where the fi(λ), i = 1, 2, 3, 4 are arbitrary functions of λ.

Before we proceed to determine q3(λ) by solving (3.19) let us comment on the am-

biguities and answer the question of whether all solutions (5.4) are compatible with the

equations (3.24). Specializing equations (4.3) and (4.4) for the matrices in (5.4) we find

PXP = T XT =−X, for X = S2
y , S

2
yz, S

2
zy (5.5)

whereas

PBiP = T BiT = Bi, for i = 1, 2, 3, 4. (5.6)

These equations imply that the equalities (3.24) can only be satisfied if the functions

fi(λ) = 0 for i = 1, 2, 3, 4. Thus we have selected out a unique solution for q1(λ), namely

q1(λ) = −S2
y − λ(S2

yz + S2
zy). (5.7)

More generally, the conditions (3.24) together with the properties (4.3) and (4.4) imply

that

• any solutions q2k−1 must be linear combinations of matrices (4.1) with ny odd,

• any solutions q2k−1 must be linear combinations of matrices (4.1) with ny + nx odd,

• or, combining the two conditions above, any solutions q2k−1 must be linear combina-

tions of matrices (4.1) with ny odd and nx even,

as anticipated in subsection 4.1.1. These conditions then automatically guarantee the

validity of the PT -properties (3.26) for the q2k−1. For N = 2, this singles out the matrices

S2
y and S2

yz = S2
zy in (5.7), so that, even before attempting to solve (3.18) we would already

know that it can only be a linear combination of those two matrices. As indicated above,

these constraints apply for all other q2k−1(λ), with k > 1 so that we can safely claim that,

at all orders in perturbation theory, the matrices q2k−1(λ) must be linear combinations of

the form,

q2k−1(λ) = a2k−1(λ)S2
y + b2k−1(λ)(S2

yz + S2
zy), (5.8)

where a2k−1(λ), b2k−1(λ) are real functions of λ. In other words, all the terms in the

perturbative expansion of q are linear combinations of the same two matrices. Hence, we

can write

eq = eα(λ,κ)S2
y+β(λ,κ)(S2

yz+S2
zy), (5.9)

which, after computing the exponential becomes














ρ(λ,κ)2+ǫ(λ,κ)2 cosh[2γ(λ,κ)]
2γ(λ,κ)2

− iǫ(λ,κ) sinh[2γ(λ,κ)]
2γ(λ,κ) − iǫ(λ,κ) sinh[2γ(λ,κ)]

2γ(λ,κ) − δ(λ,κ) sinh2[γ(λ,κ)]
γ(λ,κ)2

iǫ(λ,κ) sinh[2γ(λ,κ)]
2γ(λ,κ) cosh2 γ(λ, κ) sinh2 γ(λ, κ) − iρ(λ,κ) sinh[2γ(λ,κ)]

2γ(λ,κ)
iǫ(λ,κ) sinh[2γ(λ,κ)]

2γ(λ,κ) sinh2 γ(λ, κ) cosh2 γ(λ, κ) − iρ(λ,κ) sinh[2γ(λ,κ)]
2γ(λ,κ)

δ(λ,κ) sinh2 γ(λ,κ)
γ(λ,κ)2

iρ(λ,κ) sinh[2γ(λ,κ)]
2γ(λ,κ)

iρ(λ,κ) sinh[2γ(λ,κ)]
2γ(λ,κ)

ǫ(λ,κ)2+ρ(λ,κ)2 cosh[2γ(λ,κ)]
2γ(λ,κ)2














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where

α(λ, κ) =
∞
∑

k=0

κ2k+1a2k+1(λ), β(λ, κ) =
∞
∑

k=0

κ2k+1b2k+1(λ), (5.10)

and

γ(λ, κ) =
√

α(λ, κ)2 + 4β(λ, κ)2, δ(λ, κ) = α(λ, κ)2 − 4β(λ, κ)2. (5.11)

ǫ(λ, κ) = α(λ, κ) + 2β(λ, κ), ρ(λ, κ) = α(λ, κ) − 2β(λ, κ). (5.12)

Notice that, for α(λ, κ) and β(λ, κ) real, the matrix above is explicitly Hermitian, as it

should be. Once the coefficients α(λ, κ) and β(λ, κ) have been obtained, the Hermitian

Hamiltonian (3.8) can be easily computed. The difficulty here is however that general

formulae for the coefficients a2k+1(λ) and b2k+1(λ) are very difficult to obtain. Nonetheless,

perturbation theory allows us to compute these coefficients up to very high orders in powers

of κ. In order to solve for such high orders, we have resorted to the use of the algebraic

manipulation software Mathematica. It allows us to find the entries of the matrix (5.9) as

perturbative series in κ and to fix the coefficients a2k+1(λ) and b2k+1(λ) by matching the

entries of H†(λ, κ) and η2H(λ, κ)η−2, order by order in perturbation theory, as expected

from (3.8). For numerical computations and sufficiently small values of κ this gives results

which are very close to the exact values. In tables 1 and 2 we present the coefficients

a2k+1(λ) and b2k+1(λ) up to k = 7.

−λ0 −λ2 −λ4 −λ6 −λ8 −λ10 −λ12 −λ14

a1(λ) 1 0 0 0 0 0 0 0

a3(λ) 1
3

24

3 0 0 0 0 0 0

a5(λ) 1
5

244
15

28

5 0 0 0 0 0

a7(λ) 1
7

1152
35

35104
105

212

7 0 0 0 0

a9(λ) 1
9

17432
315

43408
35

1890368
315

216

9 0 0 0

a11(λ)
1
11

289616
3465

797296
231

38228224
1155

355526144
3465

220

11 0 0

a13(λ)
1
13

353372
3003

72293440
9009

655729408
5005

2275245568
3003

15442769920
9009

224

13 0

a15(λ)
1
15

7100416
45045

67453952
4095

896579072
2145

58903814656
15015

717363822592
45045

1273503367168
45045

228

15

Table 1: The coefficients a2k+1(λ) for k < 8.

−λ −λ3 −λ5 −λ7 −λ9 −λ11 −λ13 −λ15

b1(λ) 1 0 0 0 0 0 0 0

b3(λ)
4
3

24

3 0 0 0 0 0 0

b5(λ)
23
15

27

5
28

5 0 0 0 0 0

b7(λ)
176
105

7544
105

210(3)
7

212

7 0 0 0 0

b9(λ)
563
315

49136
315

212816
105

216

9
216

9 0 0 0

b11(λ) 6508
3465

335576
1155

7827328
1155

164005504
3465

218(5)
11

220

11 0 0

b13(λ) 88069
45045

4400960
9009

39578944
2145

1947324416
9009

9037578752
9009

223(3)
13

224

13 0

b15(λ) 91072
45045

34381136
45045

178162048
4095

1068366848
1365

37570428928
6435

903387164672
45045

226(7)
15

228

15

Table 2: The coefficients b2k+1(λ) for k < 8.

These tables should be understood as follows: in order to obtain the corresponding coef-

ficient the numbers in a given row are to be multiplied by the power of λ (with a minus
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sign added) at the top of the same column and added up. For example:

a5(λ) = −1

5
− 244λ2

15
− 28λ4

5
. (5.13)

The only case for which it is easy to conjecture the expressions of a2k+1(λ), b2k+1(λ) for

generic values of k corresponds to λ = 0. Then a2k+1(0) = −1/(2k + 1) and b2k+1(0) = 0,

which gives the already known result α(0, κ) = −arctanh(κ) and β(0, κ) = 0, see section 4.1.

Having found η, it is straightforward using (3.8) to determine the Hermitian counterpart

of H(λ, κ). In general, we find

h(λ, κ) = eq/2H(λ, κ)e−q/2 =











h11(λ, κ) 0 0 h14(λ, κ)

0 h22(λ, κ) h22(λ, κ) − λ 0

0 h22(λ, κ) − λ h22(λ, κ) 0

h14(λ, κ) 0 0 h44(λ, κ)











=
h22(λ, κ) − λ+ h14(λ, κ)

4
S2

xx +
h22(λ, κ) − λ− h14(λ, κ)

4
S2

yy

+
h11(λ, κ) + h44(λ, κ) − 2h22(λ, κ)

8
S2

zz +
h11(λ, κ) − h44(λ, κ)

4
S2

z

+
h11(λ, κ) + h44(λ, κ) + 2h22(λ, κ)

4
, (5.14)

which is the same kind of structure found in (4.30). The functions h11(λ, κ), h22(λ, κ),

h14(λ, κ) and h44(λ, κ) are real functions of the coupling constants which can be evaluated

very accurately for fixed values of λ and κ by using the perturbative results above. In

fact, the remaining entries of the matrix are not explicitly zero as functions of α(λ, κ)

and β(λ, κ). They are complicated functions of the latter which when carrying out the

perturbation theory result to be zero up order κ15. This is consistent with the exact

results obtained before. The explicit expressions of the entries of h(λ, κ) in terms of the

functions (5.11) and (5.12) can be found in appendix A. Here, we will just present their

expression as a series expansion in κ up to order κ4 (for higher orders, expression become

too cumbersome),

h11(λ, κ) = −1 +

(

1

2
+ λ

)

κ2 +

(

1

8
+ λ+

3λ2

2
+ 4λ3

)

κ4 + O(κ6), (5.15)

h22(λ, κ) = −λκ2 − λ
(

1 + 4λ2
)

κ4 + O(κ6), (5.16)

h44(λ, κ) = 1 +

(

−1

2
+ λ

)

κ2 +

(

−1

8
+ λ− 3λ2

2
+ 4λ3

)

κ4 + O(κ6), (5.17)

h14(λ, κ) = −λ+ λκ2 +

(

3λ

2
+ 4λ3

)

κ4 + O(κ6). (5.18)

From this expansions we can deduce some interesting features which also extend to higher

orders in perturbation theory

h11(−λ, κ) = −h44(λ, κ), h22(−λ, κ) = −h22(λ, κ), h14(−λ, κ) = −h14(λ, κ). (5.19)

Furthermore, we note that the Hermitian Hamiltonian h(λ, κ) is an even function of κ,

so that the series expansion of its components involves only even powers of the coupling.
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Finally, as it should be, the Hamiltonian h(λ, κ) is also PT -symmetric, which follows from

the fact that all matrices involved (S2
xx, S

2
yy, S

2
zz and S2

z ) are invariant under the adjoint

action of the operator PT . These are in fact the only matrices that are both PT -symmetric

and real. In fact we could have known a priori before carrying any computations that h(λ, κ)

has to be some linear combination of S2
xx, S

2
yy, S

2
zz and S2

z . Notice that the reality of h(λ, κ)

can be expressed by saying that any matrices (4.1) involved must have ny even, as defined

in the paragraph after equation (4.5).

In order to compare with the results obtained in section 4 we give below the numerical

values of the entries of the Hermitian Hamiltonian h(λ, κ) for fixed values of the couplings

h(0.1, 0.5) =











−0.829534 0 0 −0.0606716

0 −0.0341688 −0.134169 0

0 −0.134169 −0.0341688 0

−0.0606716 0 0 0.897872











, (5.20)

and

h(0.9, 0.1) =











−0.985439 0 0 −0.890532

0 −0.00941674 −0.909417 0

0 −0.909417 −0.00941674 0

−0.890532 0 0 1.00427











. (5.21)

We underlined the digits which differ from the exact values computed in (4.31) and (4.32)

and note that the perturbative expressions for h(0.1, 0.5) and h(0.9, 0.1) agree extremely

well with them, especially for smaller values of κ, as is expected.

In order to see how fast this precision is reached in the perturbation theory we report

in table 3 the relative error for the entry h11 order by order up to 15

λ, κ\O(κ) 2 4 6 8 10 12 14

0.9, 0.1 5.7 10−4 4.6 10−5 4.7 10−6 5.3 10−7 6.4 10−8 8.2 10−9 1.1 10−9

0.1, 0.5 2.5 10−2 6.3 10−3 2.1 10−3 7.5 10−4 2.9 10−4 1.6 10−4 4.7 10−5

Table 3: Relative error = —(perturbative value - exact value) / exact value— for h11 order by

order.

We observe that the convergence is fairly fast, which allows to extract useful information

from the perturbation theory even at low order. We shall not be concerned here with more

rigorous mathematical arguments regarding the summability and convergence in general.

5.2 The N = 2 case: perturbation theory in λ

In the previous section we have employed the standard version of perturbation theory

when dealing with non-Hermitian Hamiltonians of the type (1.1), that is decomposing the

Hamiltonian into a Hermitian and a non-Hermitian part as in (3.12) and then treating

the non-Hermitian part as the perturbation. Since the Hamiltonian (1.1) depends on two

independent coupling constants, κ and λ, it is also natural, albeit less standard, to consider

perturbation theory in the coupling constant λ rather than in κ. In other words we expand

– 20 –



The Ising quantum spin chain in an imaginary field

around the exact solution for λ = 0 provided in section 4.1 and treat the nearest neighbour

interaction term as perturbation. As announced already in section 3.2., we decompose

H(λ, κ) into

H(λ, κ) = H̃0(κ) + λh̃1, where H̃0(κ) = −1

2
(SN

z + iκSN
x ), h̃1 = −1

2
SN

xx. (5.22)

We wish now once again to solve the equations (3.8) for the Dyson map η, that is

H†(λ, κ) = ewH(λ, κ)e−w, (5.23)

where we have assumed that η admits the exponential form

η = ew/2 with w =
∞
∑

a=0

λawa(κ). (5.24)

At order λ0 equation (5.23) becomes simply

H̃†
0(κ) = ew0(κ)H̃0(κ)e

−w0(κ). (5.25)

The solution to this equation for all N was found in subsection 4.1 and corresponds to the

Dyson map identified in equation (4.7). For N = 2 this means that

w0(κ) = −arctanh(κ)S2
y . (5.26)

Employing the once again the Backer-Campbell-Hausdorff identity to select O(λ) terms in

(5.23) we find the condition

h̃1 = ew0(κ)h̃1e
−w0(κ) +

∞
∑

k=1

k
∑

i=1

∑

ai=1,
aj 6=i=0

1

k!
[wa1

(κ), [wa2
(κ), · · · , [wak

(κ),H0(κ)] · · · ]] (5.27)

Notice that, because of the presence of the zeroth order term w0(κ), the equation (5.27)

involves a sum of infinitely many contributions, as would equations corresponding to higher

orders in perturbation theory. Because of this, it would in general be difficult to solve (5.23)

using perturbation theory in λ. However, for N = 2 we can solve up to high orders in λ by

exploiting the fact that η must have the structure identified in the previous section. This

means that η is a matrix of the form (5.9) with

α(λ, κ) =

∞
∑

a=0

λaya(κ), β(λ, κ) =

∞
∑

a=0

λaza(κ). (5.28)

It is then possible to find the real functions ya(κ) and za(κ) which solve equation (5.23)

order by order in λ by employing Mathematica, as explained in the previous subsection.

In this way, we have obtained the functions ya(κ) and za(κ) above up to order λ15. Here
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we will just report the first five orders,

y0(κ) = −arctanh(κ), (5.29)

z1(κ) =
y0(κ)

1 − κ2
, (5.30)

y2(κ) = −2(κ+ 2κ3 +
(

1 − κ2
)

y0(κ))

(1 − κ2)3
, (5.31)

z3(κ) = −2(κ+ 2κ3 +
(

1 − κ2 − 2κ4
)

y0(κ))

(1 − κ2)4
, (5.32)

y4(κ) =
2
(

κ
(

3 − 5κ2 − 32κ4 − 8κ6
)

+
(

3 − 6κ2 − 5κ4 + 8κ6
)

y0(κ)
)

(1 − κ2)6
, (5.33)

z5(κ) =
2
(

κ
(

3 − 5κ2 − 36κ4 − 16κ6
)

+
(

3 − 6κ2 − 9κ4 + 28κ6 + 8κ8
)

y0(κ)
)

(1 − κ2)7
, (5.34)

and y2a+1(κ) = z2a(κ) = 0 for all a = 0, 1, . . . From these formulae, it is possible to find

an expression for the Hermitian Hamiltonian h(λ, κ) as a perturbative series in λ. As it

should be, one finds the same structure (5.14) with

h11(λ, κ) = −
√

1 − κ2 +
κ2λ

1 − κ2
−

6
(

−2 + κ2 + 2
√

1 − κ2
)

λ2

(1 − κ2)
5

2

+
4κ4λ3

(1 − κ2)4

−
2
(

40 − 44κ2 − 57κ4 + 28κ6 + 8
√

1 − κ2
(

−5 + 3κ2 + 8κ4
)

)

λ4

(1 − κ2)
11

2

+ O(λ5), (5.35)

h22(λ, κ) = − κ2λ

1 − κ2
− 4κ4λ3

(1 − κ2)4
+ O(λ5), (5.36)

h44(λ, κ) =
√

1 − κ2 +
κ2λ

1 − κ2
+

6
(

−2 + κ2 + 2
√

1 − κ2
)

λ2

(1 − κ2)
5

2

+
4κ4λ3

(1 − κ2)4

+
2
(

40 − 44κ2 − 57κ4 + 28κ6 + 8
√

1 − κ2
(

−5 + 3κ2 + 8κ4
)

)

λ4

(1 − κ2)
11

2

+ O(λ5), (5.37)

h14(λ, κ) =

(

−4 + 4κ2 + 3
√

1 − κ2
)

λ

(1 − κ2)
3

2

+
4
(

8 − 10κ2 − 2κ4 + 4κ6 +
√

1 − κ2
(

2 + κ2
) (

−4 + 5κ2
)

)

λ3

(1 − κ2)
9

2

+ O(λ5). (5.38)

Notice that the same symmetries (5.19) are also found here. We also see once again that

h(λ, κ) is an even function of κ, as only even powers are involved. Computing again

numerical values for h(0.1, 0.5) and h(0.9, 0.1) we find almost perfect agreement with the

exact results. There is extremely good agreement both with the exact results (4.31) and

(4.32) and with the result from perturbation theory in κ (5.20) and (5.21). In order to

see how fast this precision is reached in the perturbation theory we report in table 4 the
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relative error for the entry h11order by order up to 15, omitting the odd orders despite the

fact that they occur in the λ-perturbation theory

λ, κ\O(λ) 2 4 6 8 10 12 14

0.9, 0.1 3.4 10−3 2.3 10−5 1.9 10−6 1.8 10−7 1.9 10−8 2.0 10−9 2.2 10−10

0.1, 0.5 1.1 10−3 6.3 10−5 4.9 10−6 3.6 10−7 3.1 10−8 2.8 10−9 2.6 10−10

Table 4: Relative error = —(perturbative value - exact value) / exact value— for h11 order by

order.

We note that the perturbation theory converges extremely fast, even for large values of λ,

for which one would not expect such a behaviour. This can be explained as follows: In the

domain of unbroken PT -symmetry UPT the allowed values for κ become very small as λ

increases. As we note from the expressions (5.35)-(5.38) the order of κ increases with the

order of λ term by term.

5.3 The N = 3 case

We will now carry out an analogous perturbative study in κ for the three sites case. We

keep the choice of periodic boundary condition, even though for sites more than two this

means some loss of generality. Proceeding as before, we will try to obtain the matrix q

perturbatively, by solving the consistency conditions (3.18)-(3.20). Now we have to solve

the problem for 8 × 8-matrices. We commence by computing the kernel of h0

B1 = I, B2 = S3
zz − λS3

yyz, B3 = λS3
yy − (1 − λ2)S3

yyz − S3
xxz, B4 = S3

xy − S3
yx,

B5 = S3
zzz, B6 = S3

xyz − S3
yxz, B7 = λS3

xx + S3
z = −2h0(λ), B8 = S3

xx + S3
yy + λS3

yyz ,

in addition to this eight matrices, there are another four, due to the fact that two of the

eigenvalues of h0(λ) are degenerate. Hence the dimension of the kernel is 12,

B9 = S3
z − λ(S3

yy + S3
zz − σy

1σ
y
3 − σz

1σ
z
3 − σx

1σ
x
3), B10 = σy

2σ
y
3 + σz

2σ
z
3 + σx

2σ
x
3 , (5.39)

B11 = S3
zz + λS3

xxz − λ(σz
1 + σz

3 + σx
1σ

z
2σ

x
3 + σy

1σ
z
2σ

y
3), B12 = σz

3 − σx
1σ

x
2σ

z
3 − σy

1σ
y
2σ

z
3,

with [Bi, h0(λ)] = 0 for i = 1, . . . , 12. Similarly as in the case N = 2 we find that all of

these matrices are parity invariant

PBiP = Bi, ∀ i = 1, . . . , 8, (5.40)

which from equations (3.26) means that no linear combination of the matrices Bi can be

added to q2k−1 that would be compatible with the constraints (3.24). Therefore, with such

constraints, there is a unique solution to (3.18) which has the form,

q1(λ) = −S3
y − λ(S3

yz + S3
zy) + 2λ2(S3

yyy − S3
zzy). (5.41)

As we can see, the two first terms in q1(λ) are a direct generalization of the result for two

sites, which hints at the existence of a general pattern. As for the N = 2 case we find once

again, that even before attempting to solve (3.18), we could have predicted from (3.26)

that the matrices q2k−1(λ) can only be linear combinations of S3
y , S

3
yz, S

3
zy, S

3
yyy, S

3
zzy and
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S3
xxy (for k = 1, equation (5.1) tells us though that the coefficient of S3

xxy is zero. This will

change for higher orders in perturbation theory). We can therefore write,

q = α̂(λ, κ)S3
y + β̂(λ, κ)(S3

yz + S3
zy) + γ̂(λ, κ)S3

yyy + δ̂(λ, κ)S3
xxy + ǫ̂(λ, κ)S3

zzy, (5.42)

where

α̂(λ, κ) =
∑∞

k=1
â2k−1(λ)κ2k−1, β̂(λ, κ) =

∑∞

k=1
b̂2k−1(λ)κ2k−1, (5.43)

γ̂(λ, κ) =
∑∞

k=1
ŝ2k−1(λ)κ2k−1, δ̂(λ, κ) =

∑∞

k=1
d̂2k−1(λ)κ2k−1, (5.44)

ǫ̂(λ, κ) =
∑∞

k=1
ê2k−1(λ)κ2k−1. (5.45)

Computing coefficients up to order κ7 we find the results in tables 5-7.

−λ0 −λ2 −λ4 −λ6 −λ8 −λ10 −λ12

â1(λ) 1 0 0 0 0 0 0

â3(λ) 1
3

8
3 16 0 0 0 0

â5(λ) 1
5

122
15 144 5024

15
3072

5 0 0

â7(λ) 1
7

576
35

9616
15

432832
105

1755136
105

2720768
105

196608
7

d̂1(λ) 0 0 0 0 0 0 0

d̂3(λ) 0 0 24

3 0 0 0 0

d̂5(λ) 0 2
3

496
15

1184
15

210

5 0 0

d̂7(λ) 0 25

15
4432
35

86848
105

65024
15

754688
105

216

7

Table 5: The coefficients â2k+1(λ) and d̂2k+1(λ) for k < 4.

−λ −λ3 −λ5 −λ7 −λ9 −λ11 −λ13

b̂1(λ) 1 0 0 0 0 0 0,

b̂3(λ) 4
3

28
3

26

3 0 0 0 0

b̂5(λ) 23
15

664
15

1568
5

3328
5

212

5 0 0,

b̂7(λ) 176
105

4344
35

13536
7

52416
5

1104384
35

311296
7

218

7

Table 6: The coefficients b̂2k+1(λ) for k < 4.

−λ2 −λ4 −λ6 −λ8 −λ10 −λ12 −λ14

ŝ1(λ) -2 0 0 0 0 0 0

ŝ3(λ) -4 -8 − 27

3 0 0 0 0

ŝ5(λ) − 28
5 − 112

5 − 2592
5 − 4608

5 − 213

5 0 0

ŝ7(λ) − 232
35

288
35 − 91008

35 − 452224
35 − 356352

7 − 491520
7

219

7

ê1(λ) 2 0 0 0 0 0 0

ê3(λ) 20
3

56
3

27

3 0 0 0 0

ê5(λ) 196
15

400
3

3872
5

6656
5

213

5 0 0

ê7(λ) 440
21

53152
105

206336
35

75904
3 69632 622592

7
219

7

Table 7: The coefficients ŝ2k+1(λ) and ê2k+1(λ) for k < 4.

– 24 –



The Ising quantum spin chain in an imaginary field

It is now possible to use these perturbative results to compute h(λ, κ) for particular

values of λ and κ. We find that the structure of the Hermitian counterpart of the original

Hamiltonian is:

h(λ, κ) = µ3
xx(λ, κ)S3

xx + µ3
yy(λ, κ)S3

yy + µ3
zz(λ, κ)S3

zz + µ3
z(λ, κ)S3

z

+µ3
xxz(λ, κ)S3

xxz + µ3
yyz(λ, κ)S3

yyz + µ3
zzz(λ, κ)S3

zzz, (5.46)

which resembles the result for two sites, but includes few extra terms that couple all three

sites. The functions µ3
xx, . . . , µ

3
zzz are all real functions of the couplings. As for N = 2,

the Hamiltonian above is PT -symmetric, which follows from the fact that all matrices

involved are invariant under the adjoint action of the operator PT (see equation (4.5)).

As for N = 2 also, these are the only matrices that are both PT symmetric and real

(notice that, from the definition (4.1) for N = 3, it holds that S3
xxz = S3

zxx = S3
xzx and

S3
yyz = S3

zyy = S3
yzy).

5.4 The N = 4 case

It is interesting to investigate how the perturbative results generalize as we increase the

number of sites. The N = 4 case is especially interesting as it is the simplest example

for which we may see non local interaction terms in the Hermitian Hamiltonian. There is

again only one solution for q1(λ) which is compatible with the conditions (3.26), that is

q1(λ) = −S4
y − λ(S4

yz + S4
zy) −

6λ3(S4
yuz − S4

yz − S4
zy)

40λ2 − 9

+
1

40λ2 − 9

[

(9 − 32λ2)λ2(S4
yzz + S4

zzy) − 32λ4S4
zyz − 2λ2(3 − 16λ2)S4

yyy

− 3λ2(S4
xxy − 2S4

xyx + S4
yxx) + 2λ3(S4

xxyz − 5S4
xyxz + S4

xxzy)

+ 2λ3(9S4
yzzz − 7S4

yyyz) + 64λ5(S4
yyyz − S4

zzzy)
]

. (5.47)

In many ways, this is a simple generalization of the results of two and three sites. The

matrices that enter the expression are to a large extent the same we find for less sites, but

we have now extra contributions involving Pauli matrices sitting at all four sites of the

chain, which was to be expected. There are however two major changes

• the dependence on λ of the coefficients is not polynomial anymore,

• the first occurrence of non-local interactions appears through the matrix S4
yuz.

As for lower values of N , it is not difficult to argue that the matrices (4.1) entering

the linear combination (5.47) are the only ones that are compatible with (3.24). Hence,

as expected, the same structure extends to higher orders in perturbation theory, although

expressions become extremely involved. The table below gives q3(λ) as a sum of terms

given by the matrices on the first column multiplied by the corresponding coefficients in

the second column,
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q3(λ) Coefficients

S4
y

−81+72λ2+1892λ4
−4224λ6+28672λ8

−131072λ10

3(−9+40λ2)2

S4
yz + S4

zy
2916λ−22842λ3+27216λ5+81152λ7+251904λ9+786432λ11

−6291456λ13

3(−9+40λ2)3

S4
yuz − 64λ5(351+276λ2

−8352λ4
−4096λ6+65536λ8)

3(−9+40λ2)3

S4
yzz + S4

zzy − 4λ2(−1215+7722λ2+12432λ4
−151808λ6+131072λ8

−262144λ10+2097152λ12)
3(−9+40λ2)3

S4
zyz

4λ2(1215−16065λ2+26952λ4+72448λ6
−2097152λ12)

3(−9+40λ2)3

S4
yyy

4λ2(−729+8667λ2
−14040λ4

−97024λ6+393216λ8
−1048576λ10+2097152λ12)

3(−9+40λ2)3

S4
xxy + S4

yxx − 8λ2(243−2079λ2+7752λ4+16768λ6
−159744λ8+262144λ10)

3(−9+40λ2)3

S4
xyx − 4λ2(−972+6939λ2

−31512λ4+82176λ6
−188416λ8+262144λ10)

3(−9+40λ2)3

S4
xxyz + S4

xxzy − 2λ3(405−19368λ2+146048λ4
−349184λ6

−131072λ8+1048576λ10)
3(−9+40λ2)3

S4
xyxz − 64λ3(81−99λ2

−692λ4+672λ6+4096λ8)
3(−9+40λ2)3

S4
zyyy

32λ3(−567+6390λ2
−21448λ4+12096λ6+49152λ8

−196608λ10+524288λ12)
3(−9+40λ2)3

S4
yzzz − 32λ3(−729+7290λ2

−19512λ4
−5952λ6+32768λ8

−65536λ10+524288λ12)
3(−9+40λ2)3

In general we have,

q = ζ(λ, κ)S4
y + θ(λ, κ)(S4

zy + S4
yz) + ϑ(λ, κ)S4

yuz

+µ(λ, κ)(S4
yzz + S4

zzy) + ν(λ, κ)S4
zyz + ξ(λ, κ)S4

yyy +̟(λ, κ)(S4
xxy + S4

yxx) (5.48)

+̺(λ, κ)S4
xyx + ς(λ, κ)(S4

xxyz + S4
xxzy) + τ(λ, κ)S4

xyxz + υ(λ, κ)S4
zyyy + χ(λ, κ)S4

yzzz,

where all coefficients ζ(λ, κ), θ(λ, κ), . . . , χ(λ, κ) can be expressed as expansions of the form

(5.43) and are real functions of the couplings. Perturbation theory results show that the

Hermitian Hamiltonian h(λ, κ) has the following structure:

h(λ, κ) = µ4
xx(λ, κ)S4

xx + ν4
xx(λ, κ)S4

xux + µ4
yy(λ, κ)S

4
yy + ν4

yy(λ, κ)S4
yuy

+µ4
zz(λ, κ)S

4
zz + ν4

zz(λ, κ)S
4
zuz + µ4

z(λ, κ)S4
z + µ4

xxz(λ, κ)(S4
xxz + S4

zxx)

+µ4
xzx(λ, κ)S4

xzx + µ4
yyz(λ, κ)(S4

yyz + S4
zyy) + µ4

yzy(λ, κ)S4
yzy + µ4

zzz(λ, κ)S4
zzz

+µ4
xxxx(λ, κ)S4

xxxx + µ4
yyyy(λ, κ)S

4
yyyy + µ4

zzzz(λ, κ)S4
zzzz + µ4

xxyy(λ, κ)S
4
xxyy

+µ4
xyxy(λ, κ)S4

xyxy + µ4
zzyy(λ, κ)S

4
zzyy + µ4

zyzy(λ, κ)S
4
zyzy + µ4

xxzz(λ, κ)S
4
xxzz

+µ4
xzxz(λ, κ)S4

xzxz. (5.49)

As expected from the expression of q, we find that h(λ, κ) involves non-local interaction

terms proportional to S4
xux, S

4
yuy and S4

zuz. The remaining terms are the natural general-

ization of the those appearing for the N = 2, 3 cases plus additional terms corresponding to

interactions that couple all four sites of the chain. Once again, all coefficients µ4
xx, . . . , µ

4
xzxz

are real functions of the couplings. As for previous cases, it turns out that matrices ap-

pearing in the linear combination (5.49) are exactly those that are both invariant under

PT -symmetry, according to equation (4.5), and real.
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5.5 Some general features from perturbation theory

We would like to end this section by summarizing the main results that we have obtained

from our perturbative analysis. Since we have only solved for 2, 3 and 4 sites, our conclu-

sions are based on a case-by-case analysis rather than rigorous proofs. However, we believe

that the consistent occurrence of certain features across the various examples that we have

studied provides strong support for these conclusions.

Firstly we found that the combination of perturbation theory and the assumption of

Hermiticity of the Dyson operator η = eq/2 fix the metric ρ and therefore the Hermitian

Hamiltonian h(λ, κ) with its corresponding observables uniquely. We have established this

for N = 2, 3, 4 and arbitrary values of both coupling constants as well as for arbitrary N

if λ = 0.

Secondly, concerning the specific algebraic structure of the Hermitian Hamiltonian, we

have seen that it becomes more involved for higher values of N . For N > 2 it generally

includes interaction terms that couple two or more adjacent sites, as well as non-local

terms that couple non-adjacent sites. In addition, this structure is entirely dictated by

PT symmetry, which selects out which tensor products of Pauli and identity matrices the

Hamiltonian will be a linear combination of. Combining the requirement of PT symmetry

with the requirement of h(λ, κ) being real completely fixes the general structure of h(λ, κ),

although not the specific dependence on the coupling constants λ and κ, which is fixed by

perturbation theory. All examples studied indicate that for a given value of N , all solutions

q2k−1(λ), with k ≥ 0 at different perturbative orders, share a common structure, namely

they are all linear combinations of the same set of matrices, with coefficients that increase

in complexity with increasing values of k.

Finally, concerning the numerical accuracy of perturbation theory, we have demon-

strated in detail that it converges very quickly for N = 2. For N = 2, 3 and 4 it becomes

very difficult to perform computations up to such high orders of perturbation theory reached

for N = 2 and the rate of convergence has not been analysed in detail for such cases. An

interesting aspect of the model studied here is the dependence of the Hamiltonian on two

coupling constants. For N = 2, we have carried out perturbation theory in both such

couplings and found quick convergence in both cases. All our perturbation theory results,

suggest that the entries of the Hermitian Hamiltonian h(λ, κ) can generally be expressed

as a double Taylor series in λ and κ.

6. Expectation values of local operators: form factors

In this section we want to employ our general formulae in order to compute the expectation

values of certain local operators of the chain. In particular, we will be looking at the

expectation values of the total spin in the x and z directions in the ground state of the

chain. These expectation values are commonly known as the magnetization in the x and z
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directions. Recalling the results from section 3.2, we define

Mz(λ, κ) =
1

2
〈Ψg|ηSN

z η|Ψg〉 =
1

2
〈ψg|SN

z |ψg〉, (6.1)

Mx(λ, κ) =
1

2
〈Ψg|ηSN

x η|Ψg〉 =
1

2
〈ψg|SN

x |ψg〉. (6.2)

where |ψg〉 is the ground state of the Hermitian Hamiltonian and |Ψg〉 is the ground state of

the non-Hermitian one. We assume that the states are normalized to 〈ψg|ψg〉 = 〈Ψg|Ψg〉 =

1. In the following sections, we will carry out this computation for λ = 0 with generic N

and for λ 6= 0 for small values of N .

6.1 General solutions for λ = 0

In section 4.1 we described in detail how for λ = 0 the original Hamiltonian and its

Hermitian counterpart simplify greatly. Indeed, the latter can be found in all generality,

for any number of sites, resulting in the expression (4.9). Taking (4.10) and (4.12) into

account, it is very easy to show that

Mz(0, κ) =
N

2
, (6.3)

which is nothing but the total spin of the chain and does not depend on the particular value

of the coupling κ. This result is to be expected for a Hamiltonian like (4.9). Naturally, the

spins of the chain tend to align in the direction of the field, and will all be up so that the

magnetization is just the total spin of the chain and maximal. A similar computation can

be performed for Mx(0, κ) for each particular value of N . In all cases one finds

Mx(0, κ) = 0, (6.4)

which is also what one would expect for this model, as the Hamiltonian (4.9) does not

favour any particular direction of the spin σx.

6.2 General solutions for κ = 0

For κ = 0 the Hamiltonian (1.1) is Hermitian and therefore computations of the magneti-

zation simplify, as η = I. The ground state will nonetheless still depend on the value of λ.

For example, for N = 2 it is

|ψg〉 =
1

√

2(1 + λ2 +
√

1 + λ2)











1 +
√

1 + λ2

0

0

λ











(6.5)

with energy Eg = −
√

1 + λ2 and the magnetizations becomes simply

Mz(λ, 0) =
1

√

1 + λ2
and Mx(λ, 0) = 0. (6.6)

– 28 –



The Ising quantum spin chain in an imaginary field

The function Mz(λ, 0) flows between the value Mz(0, 0) = 1, as seen in the previous section,

and Mz(∞, 0) → 0. This is simply because for κ = 0 our model is nothing but the Ising

chain with a magnetic field of intensity 1/λ in the z-direction. Therefore, as λ → ∞ the

intensity of the perturbing field tends to zero, and the ground state of the chain has zero

magnetization, as consecutive spins align in opposite directions to minimize energy. This

is a general feature that will also hold for higher values of N . For example, we find

µ(λ, 0) =
1

2
+

2 − λ

2
√

1 + (−1 + λ)λ
for N = 3, (6.7)

µ(λ, 0) =

(

1 − λ2 +
√

1 + λ4
)

√

1 + λ2 +
√

1 + λ4

√
2
√

1 + λ4
for N = 4. (6.8)

In both cases we recover the expected behaviour: µ(0, 0) = N/2 and µ(∞, 0) = 0. The

κ = 0 curve in figure 4 is precisely a plot of the function (6.6) for N = 2.

The second equation in (6.6) can also be explained easily as a consequence of the

symmetry of the Hamiltonian H(λ, 0). Such Hamiltonian is invariant under the transfor-

mation σx
i → −σx

i at each site i of the chain. This means that any form factor involving

the operators σx
i must have the same symmetry. Therefore,

Mx(λ, 0) = −Mx(λ, 0), (6.9)

which implies Mx(λ, 0) = 0 for all values of N .

6.3 The N = 2 case for κ, λ 6= 0

Let us now compute Mz(λ, κ) and Mx(λ, κ) in the more generic situation when both cou-

pling λ and κ are non vanishing. We will start by analyzing the magnetization in the

z-direction. In this case (λ 6= 0), the form of the ground state of the Hermitian chain

is not particularly simple and therefore we will work with the first equality in (6.2) and

employ the properly normalized ground state of the non-Hermitian Hamiltonian. As figure

3 shows, the magnetization is maximal at λ = 0 with value 1, and exhibits different kinds

of behaviour as λ increases, depending of the value of κ under consideration.

For every fixed value of κ, the corresponding graph in figure 3 generally only covers

a small region of values of λ. These are precisely the values that lie in the region UPT of

figure 1, namely those values for which all eigenvalues of H(λ, κ) are real. As shown in

figure 3, the smaller the value of κ the larger this region becomes in λ. Depending on the

value of κ the magnetization exhibits a rich structure: for κ ≥ 0.7 it is a strictly decreasing

function, whereas for κ ≤ 0.6 it has a minimum. This minimum is located near the critical

value of λ above which some eigenvalues of the Hamiltonian become complex, except for

κ = 0.6, where the minimum of the magnetization shifts to a smaller value of λ.

With regard to the magnetization in the x-direction we find that it vanishes for all

values of λ and κ. This is so because the Hermitian counter-part of H(λ, κ) with N = 2 has

the form (4.29) and therefore the Hamiltonian h(λ, κ) has the same symmetry described

at the end of the previous section.
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Figure 3: The magnetization in the z-direction for N = 2 as a function of λ and κ.

It is also interesting to analyze how the presence of an imaginary magnetic field in

the x-direction in (1.1), as opposed to a real one really changes the physics of the model.

Figure 4 precisely shows the magnitude of that change for the magnetization when κ is an

imaginary number. The Hamiltonian (1.1) is now that of the Ising spin chain with both

a perpendicular and longitudinal fields applied at each site of the chain. The competition

between these two fields will determine the values of the magnetization in both the x and

z-directions.
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Figure 4: The magnetization in the x and z directions for N = 2 and κ imaginary.

We also observe that the magnetization is strictly smaller than 1, as it should be.

Computing the expressions (6.1) and (6.2) in the standard metric ρ = I, i.e. disregarding

the fact that the Hamiltonian is non-Hermitian, leads to non-physical values larger than

one.
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7. Conclusions

We have demonstrated that there are various possibilities to implement PT -symmetry for

quantum spin chains, either as a “macro-reflection” by reflection across the entire chain

or as “micro-reflection” by reflecting at individual sites. These new possibilities constitute

symmetries for the model H(λ, κ) in (1.1) we focussed on, i.e. Ising quantum spin chain

in the presence of a magnetic field in the z-direction as well as a longitudinal imaginary

field in the x-direction. However, there are also implications for other Hamiltonians such

as HXXZ in (2.10) and HDG in (2.12). Due to the various possibilities to implement parity

the corresponding metric and therefore the underlying physical model is more ambiguous

and it requires further clarification as to which physical system it describes. Remarkably

the non-Hermitian Hamiltonian H(λ, κ) fixes the underlying physics uniquely under the

sole assumption the Dyson map η is Hermitian. As pointed out above this uniqueness is

not obtained in general. One might conjecture that this is due to the finite dimensionality

of the Hilbert space, as opposed to continuous models studied for instance in [16, 29], but

our comments on HXXZ and HDG suggest this is not the case. The explanation lies surely

in the different types of symmetries a Hamiltonian might possess, which is supported by

the fact that two different types of metric operators, say ρ and ρ̂, can always be used to

define a new non-unitary symmetry operator S = ρ̂ρ−1 [34, 35].

We have shown that all these possibilities serve to define anti-linear operators, which

can not only be used to explain the reality of the spectra and identify the corresponding

domains in the coupling constants, but can also be employed to define a consistent quan-

tum mechanical framework. Regarding the technical feasibility of this programme, we have

demonstrated for two sites that the perturbation theory, in κ as well as in λ, converges very

fast by comparing it with the exact result. We took this as encouragement to tackle also

three and four sites, albeit up to not as high orders of perturbation theory. Our pertur-

bative analysis has allowed us to demonstrate for specific examples that the combination

of perturbation theory and Hermiticity of the Dyson operator are sufficient to uniquely fix

η, ρ and h(λ, κ). In fact, for the model at hand, the constraint of Hermiticity of η appears

to be sufficient to entirely fix the algebraic structure of these quantities, even before any

perturbative analysis is carried out.

Clearly there are various open issues and follow up problems associated to our in-

vestigations. Firstly one may try to complete the analysis for the Hamiltonian H(λ, κ)

by carrying out further numerical studies, perturbative computations for more sites and

ultimately obtain a complete analytic understanding for instance by means of the Bethe

ansatz. Special attention should be given to the values of κ and λ corresponding to the

exceptional points, when the usual analysis is expected to break down. Secondly one may

consider the model for higher spin values as for instance studied in [7]. Finally it would

be also very interesting to investigate some other members of the class belonging to the

perturbed Mp,q-series of minimal conformal field theories.

Acknowledgments: A.F. is grateful to Günther von Gehlen for bringing the papers [6, 7]

to our attention. O.C.A. would like to thank Benjamin Doyon for helpful discussions and
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suggestions. We are grateful to Pijush K. Ghosh for bringing reference [20] to our attention

and Vincent Caudrelier for comments on the manuscript.

A. Exact Hermitian Hamiltonian for N = 2

As demonstrated in section 5 perturbation theory, both in κ and λ, agrees numerically very

well with the exact results of section 4. We showed that the Hermitian counterpart to the

Hamiltonian (1.1) for N = 2 can be obtained by computing

h(λ, κ) = eq/2H(λ, κ)e−q/2, with q = α(λ, κ)S2
y + β(λ, κ)(S2

yz + S2
zy), (A.1)

where the functions α(λ, κ) and β(λ, κ) have been evaluated perturbatively employing

(5.10) in section 5. In terms of these functions and combinations thereof defined in (5.11)

and (5.12), the entries of the Hamiltonian (A.1) are given by,

h11(λ, κ) = −(2γ(λ, κ)4)−1
[

α(λ, κ)β(λ, κ)
(

6α(λ, κ)β(λ, κ) − γ(λ, κ)2
)

+2κ sinh(γ(λ, κ))α(λ, κ)γ(λ, κ)δ(λ, κ)

+2 cosh(γ(λ, κ))δ(λ, κ) (2λα(λ, κ)β(λ, κ) + δ(λ, κ))

+λα(λ, κ)
(

α(λ, κ)2 − 3α(λ, κ)β(λ, κ) + 4β(λ, κ)2
)

ǫ(λ, κ)

+ cosh(2γ(λ, κ))α(λ, κ) (β(λ, κ) − λα(λ, κ)) ǫ(λ, κ)2

+κ sinh(2γ(λ, κ))β(λ, κ)γ(λ, κ)ǫ(λ, κ)2
]

, (A.2)

h22(λ, κ) =
sinh(γ(λ, κ))

γ(λ, κ)2
[sinh(γ(λ, κ))α(λ, κ) (β(λ, κ) − λα(λ, κ))

+κ cosh(γ(λ, κ))β(λ, κ)γ(λ, κ)] , (A.3)

h44(λ, κ) = (2γ(λ, κ)4)−1
[

α(λ, κ)
(

(6 − λ)α(λ, κ)β(λ, κ)2 + (1 + 4λ) β(λ, κ)3

+α(λ, κ)2β(λ, κ) (1 − 2λ) − λα(λ, κ)3
)

+ 2κ sinh(γ(λ, κ))α(λ, κ)γ(λ, κ)δ(λ, κ)

+2 cosh(γ(λ, κ))δ(λ, κ) (2λα(λ, κ)β(λ, κ) + δ(λ, κ))

+ cosh(2γ(λ, κ))α(λ, κ) (λα(λ, κ) − β(λ, κ)) ρ(λ, κ)2

−κ sinh(2γ(λ, κ))β(λ, κ)γ(λ, κ)ρ(λ, κ)2
]

, (A.4)

h14(λ, κ) = (2γ(λ, κ)4)−1 [−4 cosh(γ(λ, κ))α(λ, κ)β(λ, κ) (2λα(λ, κ)β(λ, κ) + δ(λ, κ))

+2κ sinh(γ(λ, κ))β(λ, κ)γ(λ, κ)
(

−2α(λ, κ)2 + cosh(γ(λ, κ))δ(λ, κ)
)

−ρ(λ, κ)
(

λα(λ, κ)2 − 3α(λ, κ)β(λ, κ) − 2λβ(λ, κ)2
)

ǫ(λ, κ)

− cosh(2γ(λ, κ))α(λ, κ) (λα(λ, κ) − β(λ, κ)) ǫ(λ, κ)ρ(λ, κ)] (A.5)
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