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Abstract 
In this research expert systems for on-line process control and fault diagnosis 

have been investigated and the majority of the research is on using expert sys­

tems in on-line process fault diagnosis. Several on-line expert systems, including 

a rule based controller and several fault diagnosis systems, have been developed 

in this research and are reported in this thesis. The research results obtained 

demonstrate that rule based controllers can be used in situations where mathe­

matical models for the controlled process cannot be obtained or are very difficult 

to obtain. The research on on-line fault diagnosis emphasises deep knowledge 

based approaches. Two avenues in deep knowledge based approaches, namely 

causal search and qualitative modelling based diagnosis, have been investigated. 

In the approach of causal search the research results reveal that diagnostic effi­

ciency can be achieved through structural decomposition. A systematic approach 

for developing diagnostic rules based on structural decomposition is presented in 

this thesis. Much of the research has been done on qualitative model based fault 

diagnosis. A qualitative reasoning method which utilizes knowledge on the quan­

titative relations among variables to reduce ambiguity and can cope with a wider 

range of situations than Raiman's Order of Magnitude Reasoning is investigated. 

In the qualitative model based diagnosis the function of the qualitative model is to 

predict the behaviour of the process under various hypotheses and, therefore, to 

verify these hypotheses. Further research concerning self-reasoning has been done 

for the qualitative model based diagnosis approach. Self-reasoning is achieved by 

backward tracing through the model of the diagnosis system and makes this diag­

nosis system more intelligent. Self-learning of heuristic rules based on qualitative 

modelling is investigated and heuristic rules can add efficiency to model based 

diagnosis. During investigating self-learning of heuristic rules, the good learning 

property of neural networks is recognised and, neural networks based on-line fault 

diagnoses are also investigated. The research results reveal that neural networks 

based diagnosis systems are easy to develop and perform robustly provided that 

the training data are available. 
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Chapter 1 

Introduction 

1.1 Expert systems and their applications in pro­

cess control 

Expert systems have been applied in many areas of process control. More and 

more applications have been reported recently, which show the great potentials 

of expert systems in process control. An expert system is a computer program 

which contains expertise and knowledge about a particular domain and performs 

some tasks which are usually performed by experts in that domain. With sufficient 

knowledge, an expert system may even outperform an expert in some situations, 

since the performance of a human expert is affected by psychological factors, such 

as boredom, tiredness, and lack of motivation. The expertise of human experts 

is often accumulated during a long period and, hence, it could be very valuable. 

Expert system techniques provide a means for exploring and utilizing this valuable 

knowledge resource. 

Expertise in process control engineering includes expertise of process operators 

related to the operation of a specific process and expertise of control engineers 

in designing and utilizing different control structures and control algorithms. By 

making full use of the expertise and knowledge, huge economic profit can result. 

Good controller performance could lead to good product quality, good supervisory 

control could reduce energy and raw material consumption, and earlier detection 

and diagnosis of faults could reduce damage to process equipments and products 

and reduce the shut down time of the process and, hence, reduce profit losses. The 

objective of applying expert systems techniques in process control is to Inake full 

use of available expertise and knowledge and to achieve econonlical advantages. 
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The applications of expert systems in process control can be divided into two 

categories: off-line applications and on-line applications. Some typical off-line ap­

plications include knowledge based control systems design, knowledge based system 

identification, knowledge based production scheduling, and knowledge based plan­

ning. Direct on-line control, on-line fault diagnosis, and supervision are some typical 

on-line applications. A survey of these applications is provided in the next chapter. 

This research aims at investigating the use of expert system techniques in on-line 

process control and on-line fault detection and diagnosis, and pays more attention 

to the later. The research on using expert systems in on-line control intends to find 

and investigate alternative control methods for situations where conventional control 

methods cannot be efficiently applied instead of replacing the conventional methods 

in every situation. The research on using expert systems in on-line process fault 

diagnosis intends to explore more systematic and efficient approaches for building 

on-line diagnosis systems. Several different expert systems have been developed 

during this research, and they will be briefly introduced in the following sections. 

1.2 A rule based controller 

Conventional control algorithms depend on numerical models of the processes to 

be controlled. However, it may be difficult to obtain the numerical models for 

some processes. Such processes are usually controlled by human operators, and the 

operators may have a mental model, in symbolic form, about the process being 

controlled, and derive control actions from this symbolic model. Expert systems 

techniques provide a means for dealing with symbolic computation and, therefore, 

it is possible to develop an expert system which can handle symbolic process models 

and decide control actions based upon these symbolic models. 

The first expert system developed in this research is a rule based controller for 

a pilot scale mixing process. The rule based controller is developed based on the 

causal relations inside the process being controlled. These causal relations form a 

symbolic model of the process and, in some cases, it may be more understandable 

than any numerical models. 

Francis and Leitch (1985a, 1985b) developed an intelligent controller where the 

system being controlled is similar to the mixing process but is a single-input and 

single-output (SISO) system. The rule based controller developed here shares some 

of their ideas, but is an extension to multi-input and multi-output (~1I~10) cases. 

Details of the rule based controller is presented in Chapter 3. 
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1.3 On-line process fault diagnosis through causal 

search 

The second expert system developed is an on-line fault diagnosis system. The knowl­

edge used for diagnosis is represented by diagnostic rules which are compiled from 

the knowledge on process unit functions and process system structures. Structural 

decomposition is used to narrow down diagnosis focus. Based on structural de­

composition, fault diagnosis can be performed hierarchically. Through structural 

decomposition, the process being diagnosed is decomposed into several subsystems 

and diagnosis is performed by searching for the source subsystem, which is the sub­

system where a fault occurs, and locating the fault in the source subsystem. Some 

researchers (Finch and Kramer 1988, Steels 1989) suggest using functional decom­

position to narrow diagnosis search space. In this research, it is demonstrated that 

structural decomposition can also rapidly focus diagnosis in a small region, and is 

easier to implement since it corresponds to the plant topology. 

A general method is proposed for developing diagnostic rules from the knowl­

edge on process system structures and component functions and this knowledge is 

represented by several Boolean matrices. Diagnosis systems have been developed for 

the mixing process and a continuously stirred tank reactor (CSTR) system. Details 

about this are presented in Chapter 4. 

1.4 Fault diagnosis based on qualitative mod­

elling 

In the process control domain, process models are sometimes available, and this 

knowledge can be used in fault diagnosis. For some processes, accurate model pa­

rameters may not be available, and in some cases, accurate or direct measurements 

of some process variables may also be unavailable. The recently developed quali­

tative modelling techniques (Bobrow 1984) provide a means for solving this issue, 

since they rely less on accurate measurements and model parameters. Qualitat ive 

modelling techniques intend to model process qualitatively, and the qualitative be­

haviour of a process, such as the directions of deviations of process variables, can 

be predicted through qualitative simulation. 

Based on a qualitative model of a process, fault diagnosis can be done by a 

procedure of hypothesis formulation and test. \\"hen a fault occurs in the process, 
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the actual behaviour of the process will deviate from the predicted one and this 

can be used to detect the occurrence of a fault. Based on the patterns of violation 

in the qualitative model and the observed abnormalities, a set of candidate failures 

(hypotheses) can be formulated. Then these hypotheses are tested on the qualitative 

model in that the behaviour of the process under these hypotheses is predicted 

from the qualitative model, and is compared with the actual behaviour. Only the 

candidate which can explain the observed abnormalities is taken as the diagnosis 

result. In implementing this diagnosis scheme, it is realised that certain failures, such 

as sensor failures, should be treated differently from other failures, since the effects 

of these failures on the process may not be predicted through qualitative simulation. 

However, these failures can also be diagnosed under the hypothesis-test framework 

in that they can be discriminated by certain heuristic rules in the test phase. A 

diagnosis system developed based on this scheme can provide a general framework in 

that it can be modified for another process by just altering the hypothesis generating 

scheme, the qualitative models, and some of the specific heuristic rules regarding 

sensor failures. 

A problem associated with qualitative simulation is that ambiguity often occurs 

due to the lack of quantitative information. In this research, a qualitative reasoning 

method, which is based on de Kleer and Brown's (1984) confluence based qualitative 

physics and uses order of magnitude information, is investigated. By taking into 

account of the available order of magnitude information, ambiguity can be eliminated 

in some situations. Qualitative modelling based on-line fault diagnosis systems for 

the mixing process and the CSTR system are developed. The qualitative reasoning 

method and the two diagnosis systems are described in detail in Chapter 5. 

1.5 Qualitative model based diagnosis with self­

reasoning facilities 

New generation fault diagnosis systems should have the ability to reason their own 

behaviour and to learn from past experience. With such an objective, some investi­

gations have been performed in building self-reasoning fault diagnosis systems and a 

self-learning diagnosis system has been developed for the mixing process. It is based 

on the fault diagnosis system using qualitative simulation described in Chapter 5. 

The performance of the diagnosis system described in Chapter 5 is affected by 

some parameters used in diagnosis. These parameters include the threshold values 
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used in qualitative simulation and parameters used in the diagnosis of sensor failures. 

Any inappropriate settings of these parameters could result in a wrong diagnosis or 

miss a fault. Therefore, it is desirable that a fault diagnosis system can reason its 

own behaviour and find out any inappropriate parameters when it failed to give a 

desired diagnosis result. 

The proposed self-reasoning fault diagnosis system reasons its own behaviour 

based on its own model and the self-learning is implemented by backward tracing 

through this model. Once the diagnosis system fails to give a desired result, it will 

set a hypothesis as its desired output. This output is propagated backwards through 

the model. Any parameters which are responsible for not giving the desired output 

are examined. Any inappropriate parameters could be found in such a way. Detailed 

description about this self-learning diagnosis system is presented in Chapter 6. 

1.6 Fault diagnosis using both deep knowledge 

and heuristic rules with self-learning of heuris­

tic rules 

The previously described fault diagnosis systems emphasise the use of deep knowl­

edge. Deep knowledge can provide reliable diagnosis but the diagnosis efficiency 

may be affected by the deep knowledge based reasoning, since it tries to explore 

the entire causal path between a fault and the observed abnormalties. Heuristic 

rules, although they may not give a reliable diagnosis, can usually provide valuable 

shortcuts in diagnosis since they directly associate symptoms with the corresponding 

faults. A diagnosis method with the combined use of deep knowledge and heuristic 

rules is investigated. In this method, heuristic rules are used to propose a hypothe­

sis, while deep knowledge, in the form of qualitative models, is used to confirm this 

hypothesis. Thus, both efficiency and reliability will be enhanced. 

Diagnostic rules may not be perfect, and they may propose wrong hypotheses. 

Diagnostic rules may also be incomplete and therefore, in some cases, they cannot 

propose a hypothesis at all. It would be desirable that the diagnosis system can 

learn heuristic rules itself. Several researchers have been investigating self-learning 

of heuristic rules. pazzani (1986, 1987) investigates refining heuristic rules in the 

situations where existing heuristic rules propose an incorrect hypothesis, and he 

demonstrated this technique in the diagnosis of the attitude control system of a 

satellite. Venkatasubramanian and Rich (1989) propose a causality-based failure-
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driven learning technique which, when the existing heuristic rules propose an in­

correct hypothesis, can refine the existing rules and can also learn a new heuristic 

rule. The two techniques are both failure-driven learning in that learning is initiated 

when an incorrect hypothesis is proposed. There could exist such situations that 

no hypothesis can be proposed by the existing heuristic rules. It is desirable that 

learning could also be initiated in such situations. 

A self-learning technique, which takes into account both the situations that an 

incorrect hypothesis is proposed and that no hypothesis can be proposed, is proposed 

in this research. It can refine the existing heuristic rules for the first situation, and 

it can also learn a new heuristic rule. The technique is demonstrated in the fault 

diagnosis of the mixing process and the fault diagnosis of the CSTR system. Details 

about this are presented in Chapter 7. 

1.7 Process fault diagnosis using neural networks 

techniques 

Several knowledge based diagnosis systems have been briefly introduced so far. 

These systems provide intelligent assistance to process operators when malfunctions 

occur in the monitored process. However, the development of these systems may be 

time consuming and requires certain knowledge and expertise. The self-reasoning 

and self-learning systems described in Chapter 6 and Chapter 7 perform much bet­

ter, but they are more complicated. In investigating self-learning of heuristic rules, 

the good learning property of neural networks is realised. Neural networks have been 

receiving great attentions recently mainly due to their interesting learning ability 

and parallel structures. As the final part of this research, the author suggests that 

neural networks techniques, combined with knowledge based systems, could result 

in better diagnosis systems, and a technique which uses neural networks for on-line 

process fault diagnosis is proposed. 

A multilayer feed forward neural network is established and is trained from 

symptom-fault pairs of that process. These training pairs can be obtained from 

simulation analysis or from past experience on the operation of that process. After 

training, the network can find out the relations between symptoms and related faults 

and, can then be used for diagnosis. 

The technique is demonstrated by applying it to the fault diagnosis of the mix­

ing process and the fault diagnosis of the CSTR system. It is demonstrated that 
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the neural network based diagnosis systems can diagnose under partial informa­

tion and partially incorrect information and, furthermore, graceful degradation in 

performance can be obtained. Details about this are available in Chapter 8. 
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Chapter 2 

A survey of expert system 

techniques and their application 

in process control 

2.1 Introduction 

The applications of expert systems have been dramatically increasing during the last 

few years. As a mater of fact, one can find huge numbers of reported applications 

in the periodicals and conference proceedings of many different subjects. An expert 

system is essentially a computer program which contains expertise and knowledge 

about a specific domain and performs some tasks which are traditionally carried out 

by experts in that domain. The early expert systems, such as MYCIN (Harmon and 

King 1985, Jackson 1986) and DENDRAL (Johnson and Keravnou 1984), contain 

empirical knowledge of experts in their domains. Many latest expert systems contain 

knowledge which may not necessarily be experience of some experts, and are also 

called knowledge based systems. The terms "expert systems" and "knowledge based 

systems" are used interchangeably in some AI literature (Harmon and King 1985). 

Expert systems techniques have been applied in many aspects of process control. 

These applications can be generally divided into two categories: on-line applica­

tions, including direct on-line control, on-line fault diagnosis, on-line supervision; 

and off-line applications, including control system design, knowledge based SystclTI 

identification, scheduling and planing etc. Expert systems provide a means for uti­

lizing the expertise and knowledge of experienced process operators and control 

engineers. In on-line process control, expert systems techniques provide an alterna-
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tive method for controlling some processes where traditional control methods may 

not be applied efficiently. For example, in a cement production process (King and 

Karonis 1988), the process is very difficult to model and is subject to large un­

predictable disturbances, and conventional control techniques are difficult to apply. 

Expert systems techniques also provide a means for developing more autonomous 

systems, integrating control, supervision, and diagnosis. 

This chapter is organised as follows: Section 2.2 describes some expert system 

techniques, a brief description of an expert systems shell: ExTran, is given in 

Section 2.3, some off-line applications of expert systems in process control are briefly 

introduced in Section 2.4, discussions of expert systems in on-line control and on-line 

fault diagnosis are presented in Section 2.5 and Section 2.6 respectively. The last 

section contains a summary of this chapter. 

2.2 Expert systems techniques 

2.2.1 General structure of an expert system 

The architecture of an expert system is shown in Figure 2.1. The knowledge base 

contains the knowledge about a specific domain, which is supplied by experts or 

knowledge engineers through the knowledge acquisition subsystem. This knowledge 

includes general problem solving knowledge as well as specific domain knowledge 

and is usually in the form of rules and facts. The performance of an expert system 

is largely determined by the knowledge in its knowledge base, the more knowledge 

it contains, the more capable it could be. The working memory is used to hold 

intermediate problem solving results and temporary data about the problem solving 

state. The inference engine contains the inference strategies and controls that an 

expert uses when he or she manipulates the facts and rules. The inference engine 

performs two major tasks. First, it examines existing facts and rules, and adds new 

facts when possible. Second, it decides the order in which inferences are made. The 

task of the man-machine interface is to handle all the communications between the 

user and the expert system. Through this interface and the explanation subsystem, 

the expert system can explain why and how a particular conclusion is derived. 



2.2.2 Knowledge representation 

The knowledge in the knowledge base is some facts and rules about a particular 

domain. Facts describe objects, phenomena, and properties. For example, ~Tem­
perature sensor readings change abruptly and randomly" is a fact which describes 

an observed phenomenon. Human experts can often make decisions with uncertain 

information. Similarly, facts may also have degrees of uncertainty. For instance, 

"level in the reactor is high, CF=70%" is an example of inexact facts, where CF is 

a certainty factor. The relations among facts are described by rules. 

There are several different ways to encode the facts and the relationships that 

constitute knowledge. Some of the commonly used are: semantic networks, object­

attribute-value triplets, rules, frames, and logical expressions. 

1). Semantic networks. A semantic network is a collection of objects called 

nodes, which are connected together by arcs or links. Generally, both the links and 

the nodes are labeled. Figure 2.2 shows a fragment of a knowledge base represented 

by a semantic network. 

Nodes are used to represent objects and descriptors. Objects may be physical 

objects that can be seen or touched or conceptual entities such as acts, events, or 

abstract categories. Descriptors provide additional information about objects. Links 

relate objects and descriptors. 

Flexibility is a major advantage of this representational scheme. New nodes and 

links can be defined as needed. Inheritance is another feature of semantic networks. 

For example, in Figure 2.2 RLS (Recursive Least Squares method), RPE (Recursive 

Prediction Error method), and RIV (Recursive Instruments Variable method) will 

inherit the properties of the node "On-line or recursive methods", namely requiring 

less memory and suitability for real-time applications. 

2). Object-attribute-value triplets. In this scheme, objects may be physical 

entities or conceptual entities. Attributes are general characteristics or properties 

associated with objects. The value specifies the specific nature of an attribute in a 

particular situation. An example representation using O-A-V is shown in Figure 2.3, 

which states that the level in the reactor is high. In this representation, the object 

is "reactor", the attribute is "level", and the value is "high". Object-attribute-value 

triplets are commonly used to represent factual information. 

3). Rules. Rules are used to represent causal relations between facts and, arc 

in the following general form 
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IF Condition( s) THEN Conclusion. 

Rules and facts can produce new facts. For example, the rule 

IF Sensor readings change abruptly and randomly 

THEN The sensor failed 

and the fact "Temperature sensor 1 's readings change abruptly and randomly" will 

produce the new fact "Temperature sensor 1 failed". A rule is proved (or fired) if 

its condition part is satisfied. A rule may also have a certainty factor indicating the 

degree of confidence that the conclusion can be drawn from the given data. 

4). Frames. A frame is a description of an object that contains slots for all 

of the information associated with the object. Slots, like attributes, may store val­

ues. Slots may also contain default values, pointers to other frames, sets of rules, or 

procedures by which values may be obtained. Default values are quite useful when 

representing knowledge in domains where exceptions are rare. A frame can join 

together in a single representational strategy two complementary ways to state and 

store facts: procedural and declarative representations. A declarative representation 

of a fact is simply an assertion that the fact is true. A procedural representation 

of a fact is a set of instructions that, when carried out, arrive at a result consis­

tent with the fact. To the degree that facts are independent and changing, then 

declarative approaches are more understandable or transparent to readers and more 

easily maintained due to their modularity. Experts and users usually feel more com­

fortable using a declarative perspective. Procedural representation, on the other 

hand, is more efficient to use but harder to maintain. The outcome of a procedure 

is easy to trace, since one can easily examine the flow of instructions. Knowledge 

engineers are usually more comfortable using a procedural perspective. Frames gain 

power, generally, and popularity by their ability to integrate both declarative and 

procedural representations. 

5). Logic expressions. Logic provides another way to represent knowledge and 

the two most common forms of logical notions are propositional logic and predicate 

calculus. Propositions are statements that are either true or false. Propositions that 

are linked together with connectives, such as AND, OR, NOT, IMPLIES, and 

EQUIVALENT, are called compound statements. Propositional logic is concerned 

with the truthfulness of compound statements. There are rules for propagating the 

truthfulness of statements, depending on the connectives. For example, if X is true 

and Y is false, then the compound statement "X AND Y" is false, whereas the 

compound statenlent "X OR Y" is true. 



The elementary unit in predicate logic is an object, and statements about objects 

are called predicates. For example, "islligh(1eveLof( tank_I))" is an assertion that 

says the level of tank 1 is high. Predicates can be linked together by ordinary 
connecti ves. 

2.2.3 Inference strategies 

The inference engine performs two tasks. First, it examines existing facts and rules, 

and adds new facts when possible. Second, it decides the order in which inferences 

are made. The most common inference strategy used in knowledge based systems 

is the application of a logical rule called modus ponens. This rule says that when 

A is known to be true and if there is a rule "If A then B", it is valid to conclude 

that B is true. This rule is simple, and hence, reasoning based on it is easily 

understood. Quite frequently, the information supplied to a knowledge based system 

is incomplete and uncertain, and some rules may also be uncertain. In such cases, it 

is required that the knowledge based system should handle uncertain information. 

This could be done by assigning certainty factors to facts and rules as in MYCIN 

(Harmon and King 1985, Jackson 1986), and propagating the uncertainty factors 

during inference. For example, if a conclusion is drawn with a certainty factor Xl, 

which is in the range [0,1], and later on the same conclusion is drawn from different 

facts with a certainty factor X 2 , then the certainty for this conclusion is increased 

to Xl + (1 - XdX2 • More advanced technique for handling uncertainty information 

can be found in (Pearl 1988). 

The control portion of the inference engine solves two problems: 1). A knowledge 

system must have a way to decide where to start; 2). The inference engine must 

resolve conflicts that occur when alternative lines of reasoning emerge. The control 

strategies include: backward and forward chaining, depth-first and breadth-first 

search, monotonic and nonmonotonic reasoning. If the possible outcomes (i.e. the 

values of the goal attribute) are known, and if they are reasonably small in number, 

then backward chaining is very efficient. Backward chaining systems are sometimes 

called goal-directed systems. If the number of possible outcomes is large, a forward 

chaining strategy would be used. In a forward chaining system, premises of the rules 

are examined to see whether or not they are true. If they are, then the conclusion 

are added to the list of facts known to be true and the system examines the rules 

again. Forward chaining systems are sometimes called data-driven systems. In a 

depth-first search, the inference engine takes every opportunity to produce a sub­

goal. A breath-first search sweeps across all premises in a rule before digging for 
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greater detail. Another distinction among inference engines is whether they support 

monotonic reasoning or nonmonotonic reasoning. In a monotonic reasoning system, 

all values concluded for an attribute remain true for the duration of the consultation 

session. Facts that become true remain true, and the amount of true information in 

the system grows steadily or monotonically. In a nonmonotonic reasoning system, 

facts that are true may be retracted. 

2.3 Some general features of ExTran - an ex­

pert systems shell 

Since ExTran (Razzak, Hassan, and Ahmad 1986) is the expert systems shell that 

is used in this research, it is briefly introduced in this section. 

ExTran, which is short for Expert Translator, is an expert system generator or 

shell. It is written in Fortran, and therefore, it can be easily linked with external 

Fortran subroutines. This is suitable for applications, such as expert systems in 

process control, where some computation is involved. The computation is carried 

out by external Fortran subroutines. The main characteristics of ExTran are listed 

bellow. 

(I). Rule induction. 

The knowledge base of expert systems developed by ExTran may be expressed as 

"examples". ExTran will then "induce" decision-rules from these examples and use 

them to build a rule based inquiry system. For example, given the four examples in 

Table 2.1 about when to use an umbrella, ExTran will induce rules shown in Figure 

2.4. The "-" in Table 2.1 denotes "don't care", which means that the corresponding 

attribute is not important. The induced rules can be interpreted as: 

if weather is wet then 

if in-house is yes then 

don't use umbrella 

else if in-house is no then 

use your umbrella 

else if weather is dry then 

don't use umbrella 

else if weather is windy 

don't use umbrella 
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Table 2.1: Examples on when to use an umbrella 

weather in-house decisions 

wet no use 

dry - dontuse 

windy - dontuse 

- yes dontuse 

The system can also accept explicit decision-rules if the knowledge is already 

available. 

(2). Structuring 

ExTran provides facilities for flexible decision-rule structuring, which allows 

hierarchical dependency to be established between decision-rules. Expert systems 

developed using ExTran usually consists of a main problem and several subprob­

lems. Subproblems can be generally divided into class subproblems and attribute 

subproblems. A subproblem is a class subproblem if it serves as a class value (a 

conclusion of rules) of the main problem or another subproblem. A subproblem is 

an attribute subproblem if it serves as an attribute (a condition of rules) of the main 

problem or another subproblem. In ExTran forward and backward chainings are 

implemented through class and attribute subproblems respectively. 

(3). Linkage to external software 

An expert system built using ExTran may run as a stand-along system or may 

be a part of a large suite having several external modules. External software may 

be linked to ExTran to capture data, evaluate answers asked by the expert system, 

execute decisions reached by the system, act as an external utility, etc. 

(4). Code generation 

ExTran is capable of converting decision-rules into Fortran code and the gener­

ated codes are guaranteed to be syntactically correct. This could ease programming 

effort. 

(5). Versatility 

Expert systems built by ExTran are versatile in the sense that they may be 

configured to run in various modes. The user can decide on how the questions are 

to be asked, what text is to be displayed, from where to get the answers, etc. 

30 



ExTran is composed of two parts: ACL-Tran, which is short for Analog Con­

cept Learning Translator, and Driver, which is the rule's driver. ACL-Tran is the 

construction engine of ExTran. It enables the developer to define problems, to 

enter and manage examples, to induce decision rules, to read pre-defined decision 

rules from files, to test rules against trial data, to convert rules into executable 

codes, etc. The Driver is a set of object files that should be linked to the developed 

decision-rules to create the expert system. The procedure for developing expert 

systems using ExTran is illustrated in Figure 2.5, where the dashed lines indicate 

alternative options. 

2.4 Expert systems in process control 

Expert systems techniques have been applied in many areas of process control en­

gineering. These applications can be generally divided into two categories: on-line 

applications and off-line applications. The essential role of expert systems in these 

applications is an intelligent decision maker, which provides intelligent decisions for 

encountered situations. Expert systems techniques provide a considerable extension 

in the applications of computers in process control engineering. 

Expert systems in off-line applications generally include: control system design, 

system identification, production scheduling and planning, training etc. Control 

system design is a knowledge intensive task and is traditionally carried out by ex­

perienced control engineers. The aims of such knowledge based design systems are 

usually to provide more assistance concerning some tasks which have to be solved 

by the designer (Lunze 1989), such as planning the design process and execution 

of a given design plan. The knowledge based system will propose an appropriate 

design method and sequences of design steps depending upon the properties of the 

plant and the design specifications. Pang and MacFarlane (1987) describe using ex­

pert systems to design multivariable control systems. Rao et al (1988) developed an 

expert system which can determine the optimal control method for a given problem. 

With the knowledge about a process, knowledge based identification systems can 

determine the input signal, system model structure, and the appropriate identifica­

tion methods. Haest et al (1990) developed an expert system, ESPION, which can 

determine model orders for MISO (multiple input single output) systems. Sanoff 

and Wellstead (1985) developed an expert identification system which facilitates 

non-specialists in using adaptive control systems. Betta and Linkens (1990) de­

scribe using knowledge based system for dynalnic system identification, where the 
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knowledge based system can determine the model structure, choose identification 

algorithms, and validate the identified model. 

Production planning is the process of establishing production rates, work force 

levels, and on-hand inventories for product families. There exist several optimisa­

tion techniques that provide near optimal results for production planning problems. 

However, these techniques are not widely used by management because: 1), lack of 

credibility, 2), cost of developing and using models, and 3), excessive data require­

ments of some models. Most of the planning tasks are performed based on a set 

of planning rules or guidelines which are formulated from the planner's experience. 

A knowledge based system can handle such knowledge efficiently and, furthermore, 

its reasoning procedure is more understandable than other quantitative techniques 

and, hence, knowledge based systems show their potential in performing production 

planning tasks. Duchessi and O'Keefe (1990) developed a knowledge based planning 

system for a company which makes and markets a variety of lawn and gardening 

products. More such applications can be found in the two special issues of the 

"Journal of the Operational Research Society" (Doukidis and Paul 1990 a, b). 

Expert systems for on-line process control include expert systems for direct on­

line control, on-line fault diagnosis and supervision. The aim of this research empha­

sises on-line applications. Therefore, detailed surveys of expert systems for on-line 

process control and on-line process fault diagnosis are presented in the next two 

sections. 

2.5 Expert systems for direct on-line control 

In such applications, expert systems are used as controllers which derive control 

actions from measurements, or as parts of controllers which supervise control al­

gorithms. Lunze (1989) refers the former as "heuristic control" and the latter as 

"expert control". Efstathiou (1989) terms the former as "high AI" and the latter 

as "low AI". 

2.5.1 Heuristic control 

For heuristic control, the knowledge is often represented by rules and therefore, 

such systems are often called rule based control systems or fuzzy rule based control 

systems if fuzzy reasoning is adopted. One common feature of such rule based 

systems is that they do not rely on the numerical models of the processes being 
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controlled. They are used mainly in cases where relatively accurate numerical models 

cannot be built or are very difficult to build, such as cement kilns (Haspel and 

Taunton 1986, King and Karonis 1988). 

The rules used are in the form 

IF Situation THEN Control action. 

As pointed out by Efstathiou (1986), the inference mechanism used in these rule 

based control systems is forward chaining since the tasks of these systems are to 

derive appropriate control actions for different situations and they are data-driven. 

One immediate application area of these heuristic control systems is manually 

controlled processes where the control actions are determined by experienced pro­

cess operators. In such systems, the experienced operators are replaced by expert 

systems whose know ledge bases contain the know ledge of experienced process op­

erators. An intelligent controller for the "hot isostotic processing" (HIP) process is 

described in (Geesey and Blaxton 1988). The HIP process is traditionally manually 

operated. At the start of a HIP cycle, the operator will set up pressure and tem­

perature schedules designed to produce a final part of some desired density. From 

on-line measurements, the expert can observe how well the schedule specifications 

are being met as well as the progress being made in densification of the part inside 

the chamber and, therefore, he can readjust the temperature and pressure param­

eters on-line to more accurately control the densification process. The experience 

of process operators is represented in the knowledge base of an intelligent controller 

such that the intelligent controller can adjust these parameters automatically or 

make suggestions on adjustments. The intelligent controller functions as a planning 

system. 

Several intelligent knowledge based controllers for the cement industry have been 

reported recently (Haspel and Taunton 1986, King and Karonis 1988). The model 

of a cement kiln is difficult to obtain and, furthermore, the input disturbances are 

large and unpredictable. Therefore, traditional control methods cannot be applied 

efficiently. From economic considerations, the process should be operated to max­

imise production whilst minimising energy consumption. Since an accurate model 

for a cement kiln can hardly be obtained and the process is subject to a number 

of significant disturbances, mathematical model based optimal control techniques 

cannot successfully be applied. However, it is recognised that skilled operators can 

usually maintain the process in an optimal region. These operators can describe 

their control actions linguistically as a set of rules. It is demonstrated that by en-
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coding the knowledge of skilled operators as rules and using fuzzy reasoning, the 

high level supervisory control and optimisation of the kilning stage can be performed 

automatically by an expert system (Haspel and Taunton 1986, King and Karonis 
1988). 

Sriada et al (1987) describe applications of knowledge based systems in pro­

cess regulation and servo control. The servo controller implements fast open-loop 

set-point changes by using two-level bang-bang control. Due to modelling errors 

and disturbances, the switching parameters cannot be calculated exactly. A knowl­

edge based system is developed to perform simple learning tasks and determine the 

switching parameters on-line. It is demonstrated that through this simple learn­

ing, the knowledge based controller can improve its performance gradually. In the 

knowledge based regulatory control system, fuzzy heuristic rules are used to deduce 

control actions. A special group of rules are developed for situations where the 

process output is near its constraint and, by such means, it is demonstrated that 

the knowledge based controller makes it possible to operate closer to an output con­

straint than a conventional PI controller. In many industrial applications, this will 

achieve economic advantages. 

2.5.2 Expert control 

The term "expert control" was introduced by Astrom (Astrom et al 1986). The 

know ledge based element forms a part of the controller, and it determines the ap­

propriate control algorithm for a given situation. The final control action is obtained 

from the selected control algorithm rather than from the expert system. Expert con­

trol involves the construction of a composite control structure for a complex process 

which includes supervisory functions, adaptive control algorithms, and low level 

control laws. All of these are managed by an expert system which monitors pro­

cess parameters and control system performance. In this type of applications, an 

expert controller might manage the selection and execution of different adaptive 

control algorithms to maintain the controller parameters at their optimal values for 

the specific process conditions. In emergency situations, an expert controller may 

manage the reconfiguration of the controller structure or switch to another more 

appropriate or robust control algorithm. 

One function of the knowledge based elements in these types of applications is to 

a.utomatically tune a controller (Astrom 1989). The tuning knowledge of control en­

gineers is programmed in the knowledge base. U ntH the present, the most commonly 

used controller in process control is the PID controller and several researchers have 
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developed different knowledge based systems for tuning PID controller parameters 

(Lebow and Blankenship 1987, Porter, Jones, and McKeown 1987, McCluskey and 

Thompson 1987, 1988). In such systems, the characters of the controlled processes 

are recognised from the transient responses. Controller parameters are determined 

based on these recognised characters. 

To use some of the newly developed control techniques, such as adaptive controL 

the process operators should have sufficient knowledge related to these techniques as 

well as experience on using them. However, many process operators may not have the 

required knowledge and experience, which may account for the reduced popularity 

of these new techniques. Expert systems can be developed to solve these issues and 

make these new techniques easier to use. An expert adaptive controller, which can 

assist process operators in using adaptive controllers, is described by Cooper (1987). 

The knowledge based component can specify several critical start-up parameters and 

decide how and when to adjust the forgetting factor, reset the covariance matrix, 

perturb the process, suspend or restart parameter updating. It can help the control 

engineer in determining several coefficients in parameter estimation. 

Industrial processes are subjected to various operating conditions, including var­

ious abnormal conditions. Under different conditions, different controller structures 

or different control algorithms should be used to achieve the best performance and, 

furthermore, some abnormal conditions, such as sensor failures, may prohibit certain 

controller structures. Therefore, it is desirable to have an intelligent controller which 

can adapt to various operating conditions. An expert adaptive controller for drug 

delivery systems is presented in (Neat, Kaufman, and Roy 1989), which is developed 

for the treatment of critically ill patients with cardiac failure in order to reduce the 

work load of the attending personal. The adaptive control scheme consists of a bank 

of control algorithms, including a fuzzy controller, a multiple model controller, and 

a model reference controller, and the co-ordination of these control algorithms and 

the system stability assessment are orchestrated by a supervisory system. Differ­

ent controllers are selected for different conditions. An expert multi variable control 

system for chemical processes is described in (Tzouanas, Luyben, Georgakis, and 

Ungar 1990a). The expert multivariable controller can select controlled and ma­

nipulated variables, determine controller structures, and tune controller parameters 

for normal operating conditions and various faulty conditions. Applications of this 

expert multivariable controller to distillation columns are presented in (Tzouanas et 

al 1990b, 1990c). 
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2.6 Expert systems for on-line process fault di-
• agnosls 

One of the first tasks assigned to expert systems in process control is that of process 

fault detection and diagnosis. This task is a difficult one for process operators, 

and even well trained operators may have difficulty in diagnosing unanticipated 

failures, infrequently occurred malfunctions, or incidents where multiple alarms are 

simultaneously triggered. Therefore, expert diagnosis systems are needed to provide 

intelligent assistants to process operators. Expert fault diagnosis systems can be 

divided into shallow knowledge or deep knowledge based approaches according to 

the nature of the diagnostic knowledge employed. 

2.6.1 Shallow knowledge based diagnosis 

Shallow knowledge based diagnosis systems capture the relations between observed 

abnormalities and the associated malfunction. The knowledge used is the empiri­

cal associations between symptoms of a fault and the fault itself, and is acquired 

from process operators. The knowledge is represented by rules and, quite often, 

uncertain reasoning is used since the knowledge is frequently uncertain. These diag­

nosis systems are similar to MYCIN (Harmon and King 1985, Jackson 1986), which 

is a typical shallow knowledge based expert medical diagnosis system capable of 

handling uncertain information. 

A key task associated with the shallow knowledge based diagnosis systems is 

knowledge acquisition. Expertise covering a wide range of malfunctions must be 

encoded into the expert system. The knowledge requirements are unstructured and 

may be broad in scope. The task of knowledge acquisition is very time consum­

ing since the process operators may know little about knowledge engineering and, 

therefore, the interchange of information between a knowledge engineer and a pro­

cess operator may not be carried out efficiently. This issue is often referred to as 

the "knowledge engineering bottle neck" (Moor and Kramer 1986, Price and Lee 

1988). The knowledge base is highly specific to the particular plant and there is 

no guarantee that it is complete. In an industrial process, many faults needing to 

be diagnosed may never have been experienced and, for new or recent ly developed 

plants, there may be little applicable experimential knowledge. 

Due to these drawbacks, the shallow knowledge based diagnosis is often ap­

plied to a process where model based reasoning cannot be applied. or applied to 
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small scale processes where the knowledge required for diagnosis is limited. Shallow 

knowledge in the form of heuristic rules can usually provide valuable short cuts in 

diagnosis since the rules associate symptoms directly with the corresponding mal­

functions. Therefore, shallow knowledge is often combined with, and supplements, 

deep knowledge based diagnosis schemes. A diagnosis scheme which integrates deep 

knowledge and shallow knowledge is described in (Venkatasubramanian and Rich 

1988). Lapointe et al (1989) developed an expert diagnosis system for a waste water 

treatment process - BIOXPERT, where shallow knowledge is used to diagnose the 

frequently occurred faults. 

2.6.2 Deep knowledge based diagnosis 

The so called deep knowledge includes models of the process being diagnosed and 

faulty models of different process units. The model of a process can be in various 

forms. It can be in the form of a set of numerical equations, or a qualitative model, or 

even in the form of rules compiled from a model. As suggested in (Searl, Jamieson, 

and Delaune 1987), diagnosis systems based on any type of models, regardless of 

the depth of the models, can be called deep knowledge based systems. Based on the 

deep knowledge about a process, diagnosis can be performed more reliably. 

There are several different approaches in deep knowledge based diagnosis. Some 

of the commonly used are causal search, diagnosis based on numerical model equa­

tions, and diagnosis based on qualitative modelling. 

(1) Causal search. The diagnosis system attempts to trace the observed ab­

normalities to their origin. The knowledge used is the descriptions of unit functions 

and system structures information which includes the connectivity of different units. 

From this knowledge, causal paths between a fault and observed abnormalities can 

be established. Fault diagnosis of electronic and digital circuits typically employs 

this method (Davis 1983, 1984). 

An efficient technique for representing causality relations among process variables 

is the Signed Directed Graph (SDG) (lri et al1979). The SDG is used to represent 

pathways of causality in the fault-free process. The nodes of the SDG correspond 

to state variables, alarm conditions, or failure origins, and the edges represent the 

causal influences between the nodes. The directions of the deviations of the nodes 

are represented by the signs on the branches, + or -, indicating t hat the cause and 

effect variables tend to change in the same or opposite directions respectively. The 

earlier diagnosis systems based on SDG do not use expert system techniques (Iri 
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et al 1979, Shiozaki et al 1985). Recently, several researchers have attempted to 

formulate diagnostic rules from the SDG representation of processes. Kramer and 

Palowitch (1987) demonstrate that diagnostic rules can be derived from the SDG 

representation and that fault diagnosis based on these rules is more efficient. 

Based on the knowledge of system structure and component functions, fault 

diagnosis can be performed hierachically. The process being diagnosed can be de­

composed, either functionally or structurally, into several subsystems and, therefore, 

diagnosis can be rapidly focused into a small region (Finch and Kramer 1988, Shum 

et al1988, Steels 1989). 

(2) Diagnosis using numerical model equations. In the process control 

domain, a model of the process and various constraints derived from mass and energy 

balance in the form of numerical equations are usually available. These equations~ 

also called governing equations (Kramer 1987), provide important information about 

the process, and can be used in diagnosis. Due to measurement noise, unmeasured 

disturbances, and inaccuracies in certain parameters of these equations, there exist 

equation residuals. During normal operation, the equation residuals should all be 

within their tolerances. Once a fault occurs in the process, some equation residuals 

will deviate from their tolerances. By analysing these residuals, a fault may be 

diagnosed. Several diagnosis methods based on numerical equations are reported 

recently (Kramer 1987, Lutcha and Zejda 1990, Petti, Klein, and Dhurjati 1990). 

The governing equations based diagnosis are briefly summarised here. Let ct, 
C-:- and C~ be the conditions for positive and negative constraint violations and « , « 

constraint satisfaction of the ith constraint (governing equation) respectively. Let F 

be the set of all possible faults with members j. The set of faults that are sufficient 

to cause violation of the ith constraint are defined as follow: 

Ht = {Vj,j ~ ct} 

Let the condition of the plant be C*, where Ct = ct, Ci-, or C? depending on 

whether the ith constraint is violated positive, negative, or satisfied. Let Ht be the 

fault set activated by the condition of the ith constraint, then 

C~ = C-!- ~ H~ = H-!-
, I I I 

c~ = C~ ~ H* = -(H-!- U H-:-) 
I I I I I 
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C": = C-:- -+ H": = H-:-, , , , 

For the case of a single fault, viable single fault hypotheses are those that account 

for all violated constraints. Therefore, the set of single-fault hypotheses are 

s = (H; n Hi n ... n Hive) 

where NC is the number of constraints. Formulae for resolution of multiple faults 

are given in (Kramer and Palowitch 1985). 

Based on numerical equations, non-Boolean reasoning can be applied and, there­

fore, graceful degradations in performance can be obtained (Kramer 1987). It is 

demonstrated that through non-Boolean reasoning, the diagnosis system will not be 

sensitive to measurement noise. 

(3) Diagnosis based on qualitative modelling. The above described nu­

merical equation based diagnosis method may not be suitable for a process where 

accurate measurements or direct measurements of some process variables are not 

available, or some model parameters are not known accurately. For such situations, 

qualitative modelling techniques (Bobrow 1984) can be used in diagnosis. The quali­

tative model of a process is often obtained from its quantitative model and, therefore, 

it can correctly describe the process. Through qualitative simulation, the deviations 

of certain process variables can be obtained. 

Qualitative simulation based diagnosis is usually performed through the hypothesis­

test strategy (Moor and Kramer 1986). Because qualitative simulation can predict 

the deviations of certain process variables under normal operating conditions as 

well as various faulty conditions, diagnosis can be done by first formulating a set 

of hypotheses, and then testing these hypotheses using the qualitative model; the 

hypothesis which can explain the observed abnormalities is the diagnosis result. 

Several researchers have been investigating using qualitative modelling in pro­

cess fault diagnosis. Qualitative modelling of chemical processes is investigated by 

Oyeleye and Kramer (1988) and Waters and Ponton (1989). Herbert and Williams 

(1986, 1987) investigated using qualitative modelling in the diagnosis in power plant. 

The author has performed research in qualitative simulation incorporating order of 

magnitude information, and using qualitative simulation in on-line process fault 

diagnosis. These will be described in detail in Chapters 5, 6, and 7. 

A problenl associated with qualitati \'c modelling is that anlbiguity often occur~ 
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due to the lack of quantitative information. Ambiguity prevents further discrimina­

tion of a set of plausible hypotheses, which could be discriminated with a detailed 

quantitative model. Several approaches have been investigated to reduce ambiguity. 

Raiman (1986) investigates using order of magnitude information among variables 

to reduce ambiguity. Oyeleye and Kramer (1988) show that additional qualitative 

constraints could be derived from redundant numerical equations and ambiguity 

could be reduced. 

2.7 Conclusions 

In this chapter expert systems and their applications in process control are briefly in­

troduced. The basic structure of an expert system, various knowledge representation 

schemes and inference strategies are presented. Some general features of ExTran, 

an expert systems shell used in this research, is also briefly described in this chapter. 

A review of applications of expert systems in process control, especially in on-line 

process control and fault diagnosis, is provided. 

Expert systems for on-line process control can be generally divided into "heuristic 

control" and "expert control" according to the roles of expert systems. Heuristic 

control can be used to automate some manually controlled processes which are 

difficult to be controlled by conventional methods. Expert control is generally used 

to provide some supervisory functions for conventional control algorithms, such as 

controller parameter tuning, determining controller structure, and to assist process 

operators in using advanced control techniques, such as adaptive control. Expert 

systems for on-line process fault diagnosis can be generally divided into a shallow 

knowledge based approach and a deep knowledge based approach according to the 

knowledge used. The shallow knowledge based approach is generally used in small 

scale processes or in some processes where a deep knowledge based approach cannot 

be applied. Shallow knowledge is often used to supplement deep knowledge to 

improve diagnostic efficiency. Deep knowledge based approaches can usually provide 

reliable diagnosis for a wide range of faults. 

The discussion in this chapter provides an environment encompassing the re­

search of this thesis. The research on on-line process fault diagnosis provided in this 

thesis aims to develop, investigate and explore more systematic, more efficient, and 

more reliable fault diagnosis methods. 
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Chapter 3 

, 

Modelling and rule based control 

of a mixing process 

3.1 Introduction 

To investigate using expert systems in on-line process control, the pilot scale mixing 

rig in the Control Engineering Laboratory has been taken as an example of an 

industrial process. Several real-time expert systems, including a rule based control 

system and various different on-line fault diagnosis systems, have been developed for 

this process. During the initial developing and testing stage, it would be desirable 

to develop and test a prototype expert system on the simulation of the process 

instead of the real one for the following reasons: 1) the simulated process can be 

run economically, the only demand is computation facilities, while testing on the 

real process can cost much; 2) the simulated process can be brought to various 

testing conditions very quickly since it is not running in real time where, in contrast, 

real industrial processes usually have significantly large time constants and it may 

take quite a long time to bring a process to a new operating condition; 3) for 

fault diagnosis systems, any malfunctions can be easily initiated by changing some 

parameters of the model used in simulation, whereas it may not be convenient to 

initiate a fault on the real process. From the above considerations, a mathematical 

model of the mixing process was developed at the initial stage of this research. All 

the expert systems developed for the mixing process are first tested by simulation. 

After running satisfactorily on the simulated process, they are then applied to the 

real process. 

The first expert system developed in this research is a rule based on-line control 
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system for the mixing process. It derives control actions from the causal relations 

among process variables, where the causal relations form a symbolic model of the 

process. Since the symbolic model captures the causal relations inside a system 
~ , 

for some situations, it can be more understandable than any numerical model. The 

rule based controller is developed based on the ARTIFACT shell (Francis and Leitch 

1985a, b) but is for the multi-input and multi-output case. 

The modelling of the mixing process is presented in the next section. The rule 

based control system is described in Section 3.3, where the causal relations in the 

mixing process, the control rules, and the performance of the rule based control 

system are described in detail. The last section contains some concluding remarks. 

3.2 Modelling the mixing process 

3.2.1 The mixing process 

The mixing process is shown in Figure 3.1, where two tanks in cascade and of 

rectangular cross-section receive hot and cold water input streams. The hot water, 

at about 80c C, is supplied from an electrically heated header tank, while the cold 

water is supplied from the mains. Both streams enter tank 1 where mixing takes 

place. The contents of tank 1 pass to tank 2 and subsequently out to the pool tank 

from which they are recycled to the header tank. A number of hand valves can be 

seen in the mixing process of Figure 3.1. These hand valves are either kept fully open 

or fully closed during normal operation, as their function is simply to allow different 

system configurations. For example, if hand valves 1 and 2 are closed and hand 

valves 3 and 4 are open, then the system becomes a one tank system since only tank 

1 can be used. In this research, the two tanks configuration is used and, therefore, 

hand valves 1 , 2, 3 and 5 are fully open and hand valve 4 is closed. Measurement 

of level and temperature of the contents of both tanks is available and, hence, it is 

possible to control level and temperature in either tank. 

3.2.2 Model development 

A dynamic model of the mixing process can be de\'eloped from mass and heat 

balances in the process. From the mass balance in tank 1, the following equation 

can be obtained, 
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(3.1 ) 

where Al is the cross-sectional area of tank 1, HI is the level in tank 1, p is the 

density of water, Q c and Q h are the input cold and hot water flow rates respectively, 

and Q 01 is the output flow rate from tank 1 to tank 2. Eq(3.1) can be simplified to 

(3.2) 

The mass balance in tank 2 can be expressed as 

(3.3) 

where A2 and H2 are the cross-sectional area and level of tank 2 respectively, and 

Q 02 is the output flow rate from tank 2. 

Eq(3.3) can be simplified as 

(3.4) 

The heat balance in tank 1 can be represented as 

(3.5) 

where C is the specific heat of water, Tc and Th are the temperatures of input cold 

and hot water respectively, and Tl is the temperature in tank 1. Eq(3.5) can be 

simplified to 

dTI dHI 
A 1Hrdt + AITITt = QcTc + QhTh - Qol TI (3.6) 

Multiply the two sides of Eq(3.2) by Tl and then substitute it into Eq(3.6), gives 

QcTc + QhTh + QolTl - QcTl - QhTl + Qol T I 

Qc(Tc - Td + Qh(Th - Td 

The heat balance in tank 2 gives 

d(CpA2H2T2) _ C Q T - C Q T 
dt - p 01 1 P 02 2 

where T2 is the temperature in tank 2. Eq(3.8) can be sinlplified to 
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dT2 dH2 
A2H2dI + A2T2---;[t = QOlTl - Qo2T2 

Multiplying Eq(3.4) by T2 and then substitute it into Eq(3.9), gives 

QolTl - Qo2T2 - QolT2 + Qo2T2 

Qol(Tl - T2) 

(3.9) 

(3.10) 

The output flows from the two tanks, Qol and Qo2, are determined by pressure 

differences and valve parameters, and can be represented as 

(3.11) 

(3.12) 

where Kl and 1<2 are the restriction parameters of hand valve 1 and hand valve 2 

respecti vely. 

So far, the model of the mixing process is obtained and is listed below. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.1~) 

The cross-sectional areas of tank 1 and tank 2 are 17x16.8 crn
2 

and 12..1x12.1 

cm2 respectively. The temperature of hot water, Th , is approximately 80°C, and the 
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temperature of the cold water, Tc , is approximately 20°C. The other two unknown 

parameters, Kl and K 2 , are determined from experiments. 

3.2.3 Model parameter estimation 

The only unknown parameters in the model are the restriction parameters of hand 

valve 1 and hand valve 2. These parameters are determined from experiments. 

An experiment is designed such that the mixing process is operated at its steady 

state and, therefore, the following equations will hold. 

(3.19) 

Qo2 = Qol (3.20) 

And from Eq(3.17) and Eq(3.18) 

(3.21 ) 

(3.22) 

In Eq(3.21) and Eq(3.22), HI and H2 are, measured variables, Q c and Q hare 

determined by the controlling inputs to the control valves and their values can be 

calculated from the calibration curves (Ellis et al 1986) for the control valves and, 

therefore, 1<1 and 1<2 can be calculated. 

During the experiment, a set of different values of Qc and Qh are applied as inputs 

to the process, and the corresponding steady state measurements of HI and H2 are 

recorded. The set of experimental data is listed in Table 3.1. The parameters 1\'1 

and 1<2 can be determined from the least squares estimation algorithm(Soderstrom 

and Stoica 1989). 

For the following model equation 

y(t) = cpT(t)8 (3.23) 

where y(t) is the output, cpT(t) is the input vector 1 and 8 is the parameter vector, if 

N sets of input and output data are given, then the least squares estimate for 0 i~ 
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Table 3.1: Experiment data for estimating Kl and K2 

HI (cm) H2(cm) Qc + Qh(cm3/ Sec) 
6.15 2.52 55.6 
12.81 5.67 75.3 
20.02 8.57 92.5 

20.07 10.17 94.3 

27.0 15.4 104.0 

N N 
if = [L: <p(t)<pT(t)][L: <p(t)y(t)] (3.24) 

t=1 t=1 

The least squares estimate gives 

5 

1{1 = 29.07(cm2/Sec) 

5 
1{2 = 29.46(cm 2/Sec) 

3.3 Rule based control of the mixing process 

As a first step in this research, a rule based controller for the mixing process is 

developed. It belongs to the category of "heuristic control" described in Chapter 2 in 

that the control actions are directly obtained from the expert system. The rule based 

controller derives control actions from the causal relations between subsystems of the 

process being controlled. These causal relations form a symbolic model of the process 

and, for some situations, it can be more understandable than any numerical model. 

Francis and Leitch (1985a, b) developed an intelligent control system: ARTIFACT, 

where the process being controlled is similar to the mixing process but is a single­

input and single-output (SISO) system. The rule based controller developed here is 

a development of the ARTIFACT to the multi-input and multi-output case. 

3.3.1 Causal relations between subsystems 

Level and temperature of tank 2 are to be controlled. The controller is designed 

based on the causal relations between subsystems and the control actions are inferred 

from the measurements of both controlled and non-controlled variables. 
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The mixing process is divided into two subsystems: tank 1 and tank 2. Level 

and temperature of tank 2 are directly affected by those of tank 1, and the level and 

temperature of tank 1 are directly affected by the inlet hot and cold flow streams. 

These causal relations are used to infer control actions. 

Based on steady state conditions, an increase in inlet flow will cause the level in 

tank 1 to increase whereas a decrease in inlet flow will cause the level in tank 1 to 

decrease. An increase in inlet hot flow or a decrease in inlet cold flow will cause the 

temperature of tank 1 to increase, while a decrease in inlet hot flow or an increase 

in inlet cold flow will cause the temperature of tank 1 to decrease. An increase in 

level and temperature of tank 1 will cause the level and temperature of tank 2 to 

increase respectively, and a decrease in level and temperature of tank 1 will cause 

the level and temperature of tank 2 to decrease respectively. These causal relations 

form a symbolic model of the system. 

Based on the symbolic model and the current state of the system, control actions 

can be inferred. For example, if level 2 is lower than its desired value, then it needs 

to be increased. If the level in tank 2 is currently not increasing, then the level in 

tank 1 should be increased. If the level in tank 1 is required to be increased then 

the inlet flow should be increased. 

3.3.2 Control rules 

The control rules are in the following form: 

Goal + Condition => Subgoal 

where "Goal" is the destination to be achieved, "Condition" is the current state, 

and the "Subgoal" is the intermediate goal to be achieved under the particular 

"Condition" in order to achieve "Goal". For example, the following rule: 

level 2 i + level 2 - i => level 1 i 

can be interpreted as: "To increase level 2 while level 2 is not increasing, level 1 

should be increased." 

Since for the level and temperature control loops the symbolic models are iden­

tical, they have the san1e control rules. The full rule sets are listed below. 

Rule set 1: 
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X2 correct + X2 low =} X2 j 

X2 correct + X2 correct =} X2 steady 

X2 correct + X2 high =} X2 ! 

Rule set 2: 

X2 j + X2 - j =} Xl j 

X2 i + [X2 j, XI<A] =} Xl j 

X2 j + [X2 j, XI>A] =} Xl steady 

where A is a parameter which is defined later. 

Rule set 3: 

X2 steady + X2 j =} Xl ! 
X2 steady + X2 steady =} Xl steady 

X2 steady + X2 ! =} Xl j 

Rule set 4: 

X2 ! + X2 - ! =} Xl ! 
X2 ! + [X2 !, XI>B] =} Xl ! 
X2 ! + [X2 !, Xl <B] =} Xl steady 

where B is a parameter which is defined later. 

Rule set 5: 

Xl i + Xl - j =} Q j 

Xl j + Xl j =} Q steady 

Rule set 6: 

Xl steady + Xl j =} Q ! 
Xl steady + Xl steady =} Q steady 

Xl steady + Xl ! =} Q i 

Rule set 7: 

Xl ! + Xl - ! =} Q ! 
Xl ! + Xl ! =} Q steady 

When dealing with the level control loop, Xl, X2 and Q stand for level in tank 1. 

level in tank 2, and inlet cold flow respectively. When dealing with the temperature 

control loop, Xl, X2 and Q stand for temperature in tank 1, temperature in tank 2, 

and inlet hot flow respectively. \Vithin the rule sets the change in Q is proportional to 
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the error between desired value and measured value, with a proportional parameter 

K. The rules are developed heuristically and the objective is to provide a fast 

response with low overshoot. This is similar to the ITAE (minimise Integral Time 

weighted Absolute Error) criterion in optimal control. 

These rules are similar to those given by Francis and Leitch (1985a, b) in their 

ARTIFACT shell. However, rule sets 2 and 4 are different in that the "Condition" 

parts of the last two rules in each rule set contain extra measurement requirements 

from tank 1. In rule sets 2 and 4, A and B are determined by the steady state 

value of Xl corresponding to the setpoint of X2, A is slightly lower than that value 

whereas B is slightly higher than that value. These two modified rule sets provide 

a faster response. 

3.3.3 Decoupling problem 

According to the previous work on controlling this mixing process (Ellis et al1986), 

the hot inlet flow is used to control temperature and the cold inlet flow is used to 

control level. Since either hot inlet flow or cold inlet flow can affect both temperature 

and level, interaction exists between the two control loops. It is necessary to design 

a decoupling scheme to eliminate the interaction. Heuristic decoupling is used here. 

After the control actions for the individual loops have been inferred from the 

above control rules, they should be modified in order to eliminate interactions. To 

do this, two situations need to be considered. The first situation is when the hot 

water flow is changing while the cold flow is being kept steady. Here, in order to 

eliminate the effect of changing hot flow on the level control loop, the total amount 

of inlet water flow should be unchanged. That is: 

(3.25) 

Therefore 

(3.26) 

So, in this situation, the final control action is that the cold water inlet flow 

should be changed by -t1Qh. 

The other situation is when the hot water inlet flow is being kept unchanged 

while the cold water inlet flow is changing. Here, in order to elilninate the effect of 
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changing the cold water inlet flow on the temperature control loop, the total input 

heat should be unchanged. That is: 

(3.27) 

Therefore 

(3.28) 

So, in this situation, the final control action is that the hot water inlet flow 

should be changed by (Tl - Tc)tl.Qc/(Th - Tl). 

In Equations (3.25) - (3.28), tl.Qc is the change in cold inlet flow, ~Qh is the 

change in hot inlet flow, p and C are the density and specific heat of the inlet water 

respectively, Tl is the temperature of tank 1, Tc is the temperature of inlet cold flow, 

and Th is the temperature of the inlet hot flow. 

3.3.4 Knowledge base and inference engine 

The knowledge base consists of the control rules, the decoupling rules, and some gen­

eral knowledge about the control system, such as control valve saturation. When 

a control valve saturates, its output will not change, and this situation should be 

dealt with differently from that discussed above. The inference engine simply per­

forms forward chaining (Johnson and Keravnou 1984, Jackson 1986). Control rules 

are chained together by the "Goal" and "Subgoal" parts of each rule. Initially, the 

"Goal" is assigned a value: X2 correct. The rule satisfies the current condition and 

the value of the "Goal" is employed and the value of the "Sub-goal" is renewed. The 

inference engine continuously performs this procedure until the value of the "Goal" 

refers to inlet flow. Then using decoupling rules to eliminate interactions, control 

actions are obtained. 

3.3.5 Performance of the rule based controller 

The rule based controller has been implemented using a BASIC program running 

on a BBC microcomputer. Its performance is very satisfactory as can be seen from 

Figures 3.2 and 3.3, where the performance of the rule based controller has been 

compared with that of a convC'ntional decoupling PI controller designed by Ellis (t 

al (1986), for step changes in temperature and level respectively. It can be seen 
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that the performance of the rule based controller matches, qualitatively, that of the 

decoupling PI controller. The response of the rule based controller has low overshoot 

and undershoot and the interaction between the two loops is also very slight. From 

Figure 3.2 it can be seen that the rule based controller has been attempting to 

achieve the objective "fast response with low overshoot". 

The tuning of the rule based controller is done on-line by adjusting the parame­

ters K, A and B, and is relatively easy. It has been found that the controller is not 

very sensitive to change of tuning parameters. This suggests that the properties of a 

rule based controller is largely determined by its rules. The role of controller param­

eters is less crucial in rule based controllers than that in conventional controllers. 

3.4 Conclusions 

A mathematical model for the mixing process has been developed in this chapter. 

The model is used to test several prototype real-time expert systems developed for 

the mixing process. By such means, real-time expert systems can be developed 

quickly. 

The rule based controller described in this chapter has been observed to per­

form satisfactorily. This suggests that it could be an alternative for conventional 

controllers in cases where numerical models for the controlled processes are not avail­

able or are difficult to obtain. The properties of a rule based controller are mainly 

determined by its rules, and it is observed that the rule based controller is not very 

sensitive to the changes in its parameters. This may demonstrate the robustness of 

rule based controllers. 
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Chapter 4 

Process fault diagnosis from 

knowledge on system structures 

and component functions 

4.1 Introduction 

Process equipments are subject to failures during operation. Failures may cause 

poor product quality, reduce production efficiency, damage equipment, lead to plant 

shutdowns, or even result in a hazardous condition. Therefore, it is important to 

continuously monitor the process in order to detect and diagnose faults promptly. 

This task is traditionally carried out by process operators. As the process becomes 

more and more complex, the number of measurements and alarms increase and may 

cause cognitive overload to process operators (Paterson, Sachs, and Turner 1985). In 

such situations, the process operator may not provide the correct diagnosis in limited 

time and, furthermore, the reliability of an operator is likely to suffer when forced 

to make quick judgment or forced to depend upon operating and safety manuals 

which may not be written in a clear or concise fashion. Therefore, automated fault 

diagnosis is required, the importance of which increases as the processes become 

more and more complex. Knowledge based systems show a great potential in this 

field. 

As described in Chapter 2, knowledge based diagnosis systems can be generally 

divided into shallow knowledge based and deep knowledge based approaches. In 

the shallow knowledge based approach, the diagnostic knowledge used is the process 

operators' experience, which directly reflects the relations between symptoms and 
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faults, and is organised as cause consequence rules as used, for example, in J\IYCIN 

(Johnson and Keravnou 1984, Harmon and King 1985). Although these heuristic 

rules possess real-time efficiency, they lack process generality and they tend to fail 

under novel circumstances. Recently reported diagnosis systems for industrial pro­

cesses often use the deep knowledge based approach or use a combined approach 

where deep knowledge plays a dominant role. The advantages of deep knowledge 

based approaches are that they can provide reliable diagnosis for infrequently oc­

curred faults, and some of the deep knowledge is general in nature and can be used 

in the development of diagnosis systems for other processes. 

One of the deep knowledge based approaches is causal search (Moor and Kramer 

1986). In this approach, the diagnosis system will try to explore the causal path 

from the observed abnormalities to their causes and, therefore, locate any associated 

faults. To improve efficiency, the process under consideration can be decomposed 

into several subsystems. Finch and Kramer (1988) propose a diagnostic method 

based on functional decomposition of an industrial process. In their approach, the 

process under consideration is decomposed into several subsystems according to their 

functions, then diagnosis is performed by identifying the source system, which is the 

subsystem where the fault occurs, and then locating this fault in the source system. 

Steels (1989) investigates a similar approach where the function of the system being 

diagnosed is hierachically decomposed. 

In this research, a diagnosis approach based on structural decomposition is in­

vestigated. Since structural decomposition corresponds to plant topology, it may be 

easier to implement. The relations between subsystems, the relations among mea­

sured variables inside a subsystem or in two related subsystems, and the relations 

between faults and measurements in a subsystem are represented by several matri­

ces. Diagnostic rules can be developed from this knowledge. Benefits of rule-based 

format are that the rules can be evaluated efficiently and can be combined with 

other rules pertaining to plant operations. When abnormalities occur in a process 

subsystem under consideration, they are traced through other subsystems affecting 

this subsystem until a source subsystem is located. Once a source subsystem is 

located, the diagnosis system will identify the malfunction in the source subsystem. 

A general structure for the on-line diagnosis system is described in the next 

section, all the diagnosis systems developed in this research are based on this struc­

ture. Section 4.3 describes how to formulating diagnostic rules from knowledge on 

structures and functions. Section 4.4 describes the deyclopment of an on-line fault 

diagnosis system for the pilot scale Inixing process. A fault diagnosis system for a 
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simulated continuously stirred tank reactor (CSTR) process is described in Section 

4.5, where the modelling of the CSTR is also presented. The last section contains 

some conclusions. 

4.2 General structure of the on-line diagnosis 

system 

The on-line fault diagnosis system resides in the supervisory layer of a hierachical 

control system shown in Figure 4.1, where a process is controlled by a controller in 

the control layer, and this control layer also communicates with the supervisory layer. 

There are many supervisory functions, such as determining the optimal setpoints and 

monitoring the condition of the control system, and fault detection and diagnosis is 

one of them. The controller in the control layer simply performs regulation tasks, and 

the sampling interval of the controller is T. The communication interval between the 

supervisory layer and the control layer is nT, where n is a positive adjustable integer. 

This communication interval can be set longer for normal operating conditions and 

shorter for abnormal conditions. 

The diagnosis system contains two parts: abnormal behaviour detection and fault 

diagnosis. During normal operation, the supervisory layer receives data from the 

regulatory layer at the interval nT. The fault diagnosis system examines the data to 

find out if it is abnormal or not. If it is abnormal, then the communication interval 

between the supervisory and the regulatory layers is reduced. The diagnosis system 

then swiftly collects several additional sets of data, and examines if the detected 

abnormalities are present in the majority of those sets of data. Suppose N sets of 

data are collected, then 

which states that abnormal behaviour in mi is detected if the number of sets of data 

where mi is abnormal, N:;i, is greater than or equal to its threshold value Nt. Once 

abnormal behaviour of the process is detected, the diagnosis system begins to locate 

the associated fault. By swiftly collecting several additional sets of data, the effect 

of measurement noise can be eliminated to some extent. 

A bnormal behaviour detection can be performed by checking certain measure­

ments against their constraint values, checking the range of change of some mea­

surements, and examining if some constraints, such as those imposed by energy and 

ITIasS balance, are violated. 
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The diagnosis system diagnoses faults based on on-line information, which con­

tains on-line measurements and controller outputs. It is suggested that performing 

tests on the diagnosed system could help the generation of hypotheses and the dis­

crimination of candidate faults (Milne 1987). This is used in the diagnosis of elec­

tronic and digital circuits (Davis 1983, 1984). In the method proposed by Yamada 

and Motoda (1983), tests using redundant components are used to discriminate sus­

pects. In general, for control systems without redundant components, performing 

tests may disturb the process. To avoid this, the diagnosis systems developed in this 

research diagnose faults from the available on-line information and do not perform 

any intrusive tests on the process. Therefore, employing such diagnosis systems will 

not have any side effects on the controlled process. Even though it may provide 

a wrong diagnosis or miss a fault, the diagnosis system will never affect the con­

trolled process. Since most of the reported on-line fault diagnosis systems are tested 

on pilot scale processes or simulated processes, the above consideration would be 

important for developing on-line fault diagnosis systems for real industrial process. 

One feature of a real-time diagnosis system is that it has a dynamic knowledge 

base. The factual knowledge is dynamically changing. During diagnosis, not only 

the current on-line information but a history of the process states is needed. The 

diagnosis system will maintain a memory of a short history of the monitored process 

and this memory is dynamically renewed by on-line information. 

The diagnosis system also has a "repair flag", which will be set automatically 

after a diagnosis to disable the diagnosis system. After repairing, the process op­

erators can reset this flag to enable the fault diagnosis system. During setpoint 

changes, this flag is also set automatically for a period to allow the process to settle 

down. Process operators can set or reset this flag as is required. 

4.3 Formulating diagnostic rules from knowledge 

on system structures and component func-

tions 

4.3.1 Description of system structures 

In order to narrow the diagnosis focus the process under consideration is struc­

tura.lly decomposed into several subsystems, where t he structural decomposition 

corresponds to the plant topology. The process can be briefly represented by a 
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diagnosis graph, which contains nodes and directed arcs. Each node represents a 

subsystem and the arcs represent interactions between subsystems. The diagnosis 

graph is similar to the Signed Directed Graph (SDG) (lri et al 1979). In a SDG, 

each node represents a process variable, whereas in the diagnosis graph each node 

represents a subsystem. An example diagnosis graph is shown in Figure 4.2, where 

the process is divided into four subsystems. Directed arcs in Figure 4.2 show that 

subsystem 8 1 can affect subsystem 8 2 , subsystems 8 2 and 83 can affect each other, 

and Su?system 84 can affect both subsystems 82 and 83 • 

The interactions among subsystems can be represented by the Connection Ma­

trix, C. If the process is decomposed into n subsystems, then C is an n X n matrix. 

The element of C, Cij , is defined as follows: 

C 
.. _ { 1, if subsystem Si can directly affect subsystem 8 j , 
'J -

0, otherwise. 

The diagonal elements of the Connection Matrix are all ones since a subsystem 

can affect itself. 

The state of a subsystem is described by its measurements and a subsystem is 

abnormal if one of its measurements is abnormal, that is 

which states that if there exists a measurement, mik, which is abnormal, in subsys­

tem 8i , then subsystem 8 i is abnormal. In the above expression, AB is a predicate 

meaning abnormal, mi is the total number of measurements in 8 i , mik is the kth 

measurement in 8 i . 

In the connection matrix, if Cij = 1, then subsystem 8 i can affect subsystem 

8 j • This means that one or some of the process variables in 8 i can affect those 

in 8 j . The connection matrix only provides a rough description on the relations 

among subsystems. A refined description can be given by the Measurement Causal 

Matrix, C M ij . If there are n measurements in Si and m measurements in 8j , then 

the Measurement Causal Matrix between 8 i and 8j , C Mij , is an n X m matrix. The 

element of C Mij , C Mi~" is determined as 

C A[~·l = 
IJ 

1, if the kth measured variable in Si can directly 

affect the lth measured variable in Sj, 

0, otherwise. 
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There also exist causal relations between measured variables within a subsystem. 

These relations are represented by the Self-Causal Matrix. If there are n measure­

ments in subsystem Si, then the Self-Causal Matrix for subsystem Si, CSi, is an 

n X n matrix. The element of C Si is determined as follows: 

CS~1 = , 
1, if the kth measured variable in Si can directly 

affect the lth measured variable in Si, 

0, otherwise. 

The diagonal elements of the Self-Causal Matrix are all ones since a measurement 

can affect itself. 

To locate faults in a subsystem, the relations between faults and measurements 

in that subsystem should be taken into account. These relations can be represented 

by the Fault-Measurement Matrix. If there are n possible malfunctions and m 

measurements in subsystem Si, then the Fault-Measurement Matrix for subsystem 

Si, F Mi, is an n X m matrix. The element of F Mi, F Mik1 , is determined as 

FM~1 = 
I 

1, if the kth malfunction in Si can directly 

affect the lth measurement in Si, 

0, otherwise. 

The diagnosis graph and the above defined matrices give a description of the 

process being diagnosed. Diagnostic rules can be generated from this description. 

4.3.2 Fault diagnosis based on knowledge of system struc­

ture and component functions 

With the above described structural decomposition and knowledge on system struc­

tures and component functions, fault diagnosis can be performed in the following 

two step procedure: source subsystem identification and fault location in the source 

subsystem. Because of the dependence between subsystems, the effect of a fault 

can propagate through connected subsystems and, therefore, a fault can not only 

affect measurements of the subsystem where it occurs but also affect measurements 

of other connected subsystems. When abnormal behaviour is detected, the first step 

in diagnosis is to identify the source subsystem by causally tracing the observed ab­

normalities. To facilitate diagnosis, the "single-failure assumption", which is used in 

most fault diagnosis systems (Davis 1983, 1984, Finch and Kramer 1988), is adopted 
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here. This assumption is also practical since the probability of simultaneous occur­

rence of two or more independent faults is usually negligible. Suppose that two 

independent faults FI and F2 occur with probabilities PI and P2 respectively, then 

the probability of a simultaneous occurrence of FI and F2 is P1P2, which in general 

would be too small to take into account. 

Suppose that the jth measurement in the ith subsystem is abnormal, that IS 

AB(mij), then a search is conducted to causally search any measured variables in 

Si which can cause the observed abnormality in mij and, if such a variable exists, 

then it is activated, which means that it is responsible for the observed abnormality. 

This search is guided by the Self-Causal Matrix of subsystem Sj. Similar searches 

are also conducted to find further causes in Si for the activated variable. Suppose 

that the finally activated variable in Si is mik, then a search is conducted to find all 

the subsystems that are connected to Sj. These subsystems form the set 

(4.1 ) 

Next, pick a subsystem from the above set, for example Sj, and conduct a search 

to find all the measured variables in Sj that could affect mik. These measurements 

form a set 
ik {VI, mjl, CMji = I} (4.2) 

The above set can be refined by examining the deviations of these measurements 

and their causal relations with mik and only the measurements which could result 

in the observed deviations in mik are retained. If the refined set is empty, then try 

other subsystems in Set( 4.1), and if the resulting sets are all empty, then subsystem 

Si is a source subsystem. If there exists a refined set which is not empty, then pick 

a measurement from the set as an activated variable and conduct further searches 

similar as above. 

Once a source subsystem is identified, the remaining task is to locate the fault in 

the source subsystem. Suppose that Sk is a source subsystem and mkl is the finally 

activated measurement, then a candidate fault set is formulated as 

( 4.3) 

where Fki is the ith malfunction in subsystem Sk. The above set can be refined by 

examining the patterns of deviations of measurement mkl and its causal relations 

with these candidate faults and only the malfunctions which can lead to the observed 

deviations in mkl are retained. Certain process specific heuristic rules can be used 

in this stage. Based on the above consideration, diagnostic rules can be formulated. 
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A benefit of the rule based format is that the diagnostic rules can be augmented by 

any available heuristic knowledge about a particular process. The above described 

procedure will be demonstrated in the development of diagnostic rules for a pilot 

scale mixing process and a simulated CSTR system in the next two sections. 

4.4 On-line fault- diagnosis of the mixing process 

The first diagnosis system developed in this research is the on-line fault diagno­

sis system for the mixing process. It is initially developed using Fortran (Zhang, 

Roberts, and Ellis 1988). After the Control Engineering Centre has purchased an 

expert system shell: ExTran, the diagnosis system is redeveloped using ExTran. 

4.4.1 Abnormal behaviour detection 

Constraint values have been assigned to every measured variable and, if the measure­

ment exceeds its constraint value, it is considered to represent abnormal behaviour. 

For the controlled variables, in addition to the constraint values, error tolerances 

have been set which, together with the changing direction of the controlled variables, 

can be used to detect abnormal behaviour, and thus the abnormal behaviour can be 

found quickly. Some general knowledge about the system performance is also used 

to detect abnormality. For example, in the steady state, the level in tank 1 cannot 

be lower than that in tank 2 and the temperatures of the contents of the two tanks 

are roughly the same. Any abrupt changes in sensor readings are also considered as 

abnormal. 

After receiving the data, the diagnosis system examines them to see whether 

they are normal or not. A memory of a short history of the process is kept which 

is used to determi'ne any abnormal behaviour and is also used for diagnosis. Under 

normal conditions, the memory is renewed by newly received data, in that the 

new data replaces the earlier data in the memory. When an abnormal condition 

is detected the earlier data in memory is retained and several sets of additional 

data are swiftly collected by increasing the speed of communication between the 

two layers. The resulting information is used to confirm the abnormality detection 

and is also used for diagnosis. After this data has been collected the communication 

speed is set to normal again. If the majority of the collected data declare the same 

abnormality, then the abnormal behaviour is confirmed, otherwise, the behaviour is 

still considered to be normal. By this means the effects of noise on the measurements 
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can be considerably reduced. 

In this system, the controller sampling time is 4 seconds and, under normal 

conditions, the local controller sends data to the supervisory layer every 20 seconds, 

that is every 5 samples. Four sets of data are kept as a short history. If the 

received data indicates an abnormal condition, the controller then sends data to the 

supervisory layer every 4 seconds, that is at every sample, until 4 more sets of data 

have been transmitted. 

4.4.2 Formulation of diagnostic rules 

The mixing process is divided into two subsystems. The first subsystem includes 

the following components: controller, hot and cold water control valves, tank 1 

and the associated sensors. Components in the second subsystem are hand valves 

1 and 2, tank 2 and the associated sensors. The diagnosis graph corresponding 

to this decomposition is shown in Figure 4.3, from which it can be seen that the 

two subsystems can affect each other. The level and temperature in the second 

subsystem are affected by those in the first subsystem. The controller outputs in 

the first subsystem are affected by the controlled variables in the second subsystem. 

The Connection Matrix for the mixing process is 

( 4.4) 

The on-line information in the first subsystem includes level and temperature 

measurements and controller outputs to the cold and hot water control valves. The 

Self-Causal Matrix for the first subsystem is 

HI TI Qc Qh 

HI 1 0 0 0 

CSI = TI 0 1 0 0 (4.5) 

Qc 1 0 1 0 

Qh 0 1 0 1 

The labels on the top and the left of the matrix, HI, TI , Qc, and Qh, are level 

and temperature measurements in tank 1, and controller outputs to cold water and 

hot water control valves respectively. In the mixing process, either Qc or Qh can 

affect both HI and TI , however, since Q c is used to control level and Q h is used 

to control temperature, the effect of Qc on TI and the effect of Qh on HI can be 
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eliminated by the feedback control loops and, therefore, Eq( 4.5) indicates that Qc 

cannot affect TI and Q h cannot affect HI. 

The on-line information for the second subsystem is the level and temperature 

measurements in tank 2. The Self-Causal Matrix for the second subsystem is 

(4.6) 

The labels on the top and the left of the matrix, H2 and T2, are the level and 

temperature measurements in tank 2 respectively. 

The Measurement Causal Matrix from subsystem 1 to subsystem 2 is 

H2 T2 

HI 1 0 

CMI2 = TI 0 1 (4.7) 

Qc 0 0 

Qh 0 0 

The above equation indicates that Qc and Qh cannot affect H2 and T2, which is 

due to the fact that Qc and Qh cannot directly affect H2 and T2 since their influence 

on H2 and T2 is exerted via measured variables HI and TI respectively. 

The Measurement Causal Matrix from subsystem 2 to subsystem 1 is 

TI Qc 

o 1 (4.8) 

o 0 

The controller used here is a multivariable controller and, therefore, either H2 or 

T2 can affect both Qc and Qh. However, Eq( 4.8) indicates that H2 can only affect 

Qc, and T2 can only affect Qh. This is due to the fact that Qc and Qh are dominantly 

affected by H 2 and T2 respectively. 

The faults that may occur in the first subsystem are considered to be: controller 

failure, control valve failures, and sensor failures. The Fault Measurement Matrix 

for the first subsystem is 
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HI TI Qc Qh 
C 1 0 0 0 

FMI = 
H 0 1 0 0 

STl 
(4.9) 

0 1 0 0 

SLl 1 0 0 0 

CO 0 0 1 1 

The labels on the left of the matrix, C, H, ST1, SL1, and CO, stand for cold 

and hot water control valve failures, temperature and level sensor failures, and 

controller failure respectively. The above equation indicates that cold water control 

valve failure cannot affect Tl and hot water control valve failure cannot affect HI. 

This is due to the fact that the effects of cold water control valve failure on TI and 

hot water control valve failure on HI are compensated by feedback control loops. 

The faults that may occur in the second subsystem are considered to be: blockage 

of hand valves 1 and 2, and sensor failures. The Fault Measurement Matrix for the 

second subsystem is 

H2 T2 

VI 1 0 

FM2 = V2 1 0 (4.10) 

ST2 0 1 

SL2 1 0 

The labels on the left of the matrix, VI, V2, ST2, and SL2, stand for blockages 

of hand valve 1 and 2, and failures of temperature sensor and level sensor in tank 2 

respectively. 

Based on the above described system structures, diagnostic rules can be devel­

oped. The rules are developed using the ExTran expert system shell (Razzak, 

Hassan, and Ahmad, 1986) and the diagnosis system is defined by a main problem 

and six subproblems. The main problem classifies the observed abnormalities, and 

different abnormalities are treated by different subproblems. Since there are only 

four measurements, correspondingly, there are four kinds of abnormalities. The out­

comes of the main problem are four different subproblems each corresponding to a 

type of abnormality. The rule files for the main problem and other six subproblems 

are shown in Figure 4.4, and the definitions of the attribute values are given in Table 

4.1. The values of these attributes are evaluated by external Fortran subroutines 

from on-line measurements. 
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It can be seen from Table 4.1 that the information handled by the diagnosis sys­

tem is in qualitative form which is converted from on-line quantitative information. 

The conversion is usually performed by comparing on-line information with certain 

threshold values. The threshold values used in fault detection and fault diagnosis 

will affect the performance of the diagnosis system and should be set properly. Small 

threshold values could make the diagnosis system sensitive to process disturbances 

and measurement noise, and may result in spurious diagnosis. Large threshold values 

may miss a diagnosis. During the current studies, it is found that the proper setting 

of these threshold values used in fault detection can remarkably reduce spurious di­

agnoses. These parameters are set based on previous operational experience of the 

process and should be set reasonably large so that any fluctuations in measurements 

caused by disturbances will not trigger the diagnosis system. 

Subproblem TEMP2 will be invoked if abnormalities are present in the mea­

surement of T2 • The rules for this subproblem are developed from the following 

considerations. There are two situations when T2 is abnormal, one is that T2 is 

lower than its set point, and another one is that T2 is higher than its set point. 

Consider the first situation. Following the procedure described in the previous sec­

tion, a search is conducted to find if there are any measured variables in the second 

subsystem which can affect T2 • From Eq( 4.6), it can be seen that no such variables 

exist. Eq( 4.4) indicates that the first subsystem can affect the second subsystem 

and, furthermore, Eq( 4.7) shows that only TI in the first subsystem can affect T2 in 

the second subsystem. Then TI should be examined to locate the source subsystem. 

If TI is decreasing, then it is activated, otherwise the second subsystem is a source 

subsystem. If TI is activated, then from Eq( 4.5) it can be seen that the controller 

output to the hot water control valve, Qh, can affect TI. If Qh is decreasing, then 

it is responsible for the decrease in TI and is activated. In this case, the search 

for the source subsystem is terminated since both subsystems have been explored 

and no further variables can be activated, and the task is to locate a fault in the 

first subsystem. Eq( 4.9) suggests that only controller failure can affect Qh and, 

therefore, the conclusion is controller failure. If Qh is not decreasing, then from 

Eq( 4.9) the candidate failures would be hot water control valve failure and sensor 

TI failure. Sensor TI failure can be ruled out by the single failure assumption since 

it cannot explain the abnormality in T2. If TI is not decreasing, then the second 

subsystem would be a source subsystem. In this case, Eq( 4.10) suggests that only 

sensor T2 failure can affect T2, and then the subproblem SENST2, which contains 

several heuristic rules for diagnosing sensor failure, is used to further confirm that 

sensor T2 has failed. The rules for the second situation where T2 is not lower than 
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Table 4.1: Definitions of attributes in the diagnosis system for the mixing process 

Attributes 

ABS2 

ABTI 

ABT2 

T2LTSP 

TIDCR 

TIINC 

HIDCR 

HlINC 

QCDCR 

QCINC 

QHDCR 

QHINC 

H2LTSP 

H2COND 

H2CONI 

T2SC 

TlSC 

H2SC 

H2SC 

TlIT2S 

TlDT2S 

HlIH2S 

HlDH2S 

T2NRSP 

H2NRSP 

DTH 

DHH 

Definitions 

Subsystem 2 is abnormal 

Temp. 1 is abnormal 

Temp. 2 is abnormal 

Temp. 2 is lower than its setpoint 

Temp. 1 is decreasing 

Temp. 1 is increasing 

Level 1 is decreasing 

Level 1 is increasing 

Q c is decreasing 

Q c is increasing 

Q h is decreasing 

Q h is increasing 

Level 2 is lower than its setpoint 

Level 2 is continuously decreasing 

Level 2 is continuously increasing 

There are abrupt changes in temp. 2 

There are abrupt changes in temp. 1 

There are abrupt changes in level 2 

There are abrupt changes in levell 

Temp. 1 increasing & temp. 2 steady 

Temp. 1 decreasing & temp. 2 steady 

Level 1 increasing & level 2 steady 

Level 1 decreasing & level 2 steady 

Temp. 2 is near its set point 

Level 2 is near its setpoint 

Deference between temp. 1 & 2 is high 

Deference between level 1 & 2 is high 
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its set point are developed similarly as above. 

If an abnormality is present in H2 , then subproblem LEVEL2 will be used. The 

development of rules for this subproblem is based on the following considerations. 

From Eq(4.4) it can be seen that SI can affect S2 and, furthermore, Eq(4.7) shows 

that only HI in SI can affect H2. Consider the situation where H2 is lower than 

its set point. If HI is decreasing, then SI will be a source subsystem and HI is 

activated, otherwise, S2 is a source subsystem. If HI is activated, from Eq( 4.5) Qc 

can affect HI, and if Qc is decreasing then Qc is activated, and Eq(4.9) suggests that 

the only candidate fault is controller failure. If Qc is not decreasing, then Eq( 4.9) 

shows that two failures: cold water control vale failure and level sensor 1 failure, 

could affect HI. The single failure assumption rules out the failure of level sensor 1 

since it cannot account for the abnormality in H2. If S2 is a source subsystem, then 

Eq( 4.10) suggests three candidate failures: level sensor 2 failure, blockages of hand 

valves 1 and 2. The blockage of hand valve 2 is ruled out since it could not cause 

H2 to decrease. The remaining two candidates are discriminated by the heuristic 

that if hand valve 1 is blocked H2 will decrease continuously. Therefore, if H2 is 

decreasing continuously, then hand valve 1 is blocked, otherwise, sensor H2 may 

fail which is further discriminated by the subproblem SENSH2. The derivation of 

diagnostic rules for the situation that H2 is higher than its set point is similar to 

the above considerations. 

The subproblems SENST2 and SENSH2 are used to discriminate failures of sen­

sor T2 and sensor H2 respectively. The rules for the two subproblems are similar 

and contain some heuristics about sensor failure. The first heuristic is that abrupt 

changes in sensor readings indicate sensor failure. Since the measured variables 

in the mixing process have large time constants, especially the levels, they cannot 

change abruptly. Another heuristic is that if Tl (or HI) is changing in the direction 

to move T2 (or H2 ) to its set point, but T2 (or H2) does not change, then sensor 

T2 or (H2) failure is indicated. The subproblems SENSTI and SENSHI are used 

to discriminate failures of sensor Tl and sensor HI respectively. The rules for the 

two subproblems are similar and the first rule is the same as that in SENST2 and 

SENSH2. The second heuristic is that if H2 (or T2) is near to its set point and the 

difference between HI and H2 (or Tl and T2) is high, then sensor HI (or Td failure 

is indicated. 
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4.4.3 Performance of the fault diagnosis system 

The fault diagnosis system has been successfully applied to the mixing process. 

In the mixing process, the possible faults that can occur are: controller failure , 
sensor failure, hot and cold water control valves failure, hand valve 1 blocked, and 

hand valve 2 blocked. During the experiments, these faults have been separately 

initiated, and they were diagnosed quite successfully. The failures of control valves 

are initiated by turning off the hand valves in series with the control valves totally 

or partially, the blockages of hand valves are initiated by turning them off totally 

or partially, and sensor failures are initiated by disconnecting them from the AID 

(analogue to digital) converter. 

The on-line measurements covering the event where hot water control valve fail­

ure was initiated and diagnosed are shown in Figure 4.5. The failure was initiated 

by turning off the hand valve in series with the hot water control valve (see Figure 

3.1). The fault diagnosis system detected abnormality in measurements after 356 

seconds then, as indicated in Figure 4.5, the diagnosis system swiftly collected an­

other four more sets of data to confirm abnormal behaviour detection, after which 

the diagnosis system begins to diagnose the fault. The reasoning procedure of the 

fault diagnosis system is recorded in a file by ExTran and is shown in Figure 4.6, 

which indicates that the correct diagnosis is presented. After diagnosis, the fault is 

removed and all measurements settle down to their steady state values as indicated 

in Figure 4.5. Figure 4.5 also indicates that abnormalities in measurements were 

detected after 240 seconds, but after collecting another four more sets of data, ab­

normal behaviour was not detected. This could have resulted from a disturbance in 

the process. 

Table 4.2 shows the result of the experiments in which every fault was initiated 

five times. It can be seen that the performance of the fault diagnosis system is very 

satisfactory. Since the detection of abnormal behaviour is based on steady state 

measurements, when changing setpoints, it is important to wait for sufficient time 

to allow transient effects to decay before initiating the fault diagnosis system. 

Most of the existing fault diagnosis systems are based on a single failure as­

sumption (Davis 1983, 1984, Scarl, Jamieson, and Delaune 1987, Finch and Kramer 

1988). The fault diagnosis system presented here is also designed for diagnosis of 

a single fault. After one fault has been diagnosed, any further faults will not be 

diagnosed. During some experilnents, several faults were initiated simultaneously 

and, in most of the cases, one of the initiated faults can be diagnosed. Table 4.3 

shows the perfornlance of the diagnosis system when several faults were initiated 

74 



Table 4.2: Performance under a single failure 

fault initiated no. of successful diagnoses 

temp. sensor 1 fail 5 

temp. sensor 2 fail 5 

level sensor 1 fail 5 

level sensor 2 fail 5 

hand valve 1 blocked 5 

hand valve 2 blocked 5 

hot water control valve fail 5 

cold water control valve fail 5 

simultaneously. 

4.5 Fault diagnosis of a CSTR system 

Following similar procedures as described in the previous section, a fault diagnosis 

system is developed for a simulated CSTR system, similar to that used by Kramer 

and co-workers (Kramer and Palowitch 1987, Finch and Kramer 1988, Oyeleye and 

Kramer 1988, Kramer and Finch 1989). The CSTR system is shown in Figure 4.7, 

where a hypothetical exothermic reaction takes place in the reactor vessel, cooled by 

recycle through an external heat exchanger. Temperature and level in the reactor, 

as well as the recycle flow rate, are controlled by feedback control systems (cascade 

control for the case of temperature). 

4.5.1 Modelling of the CSTR system 

A dynamic model of the CSTR system is developed using some results presented 

in Franks (1972). The model is used to simulate the process and serves as a test 

bed for several fault diagnosis systems. Several assumptions have been made in 

modelling the system and, hence, the developed model may not be very accurate. It 

is assumed that perfect mixing takes place in the reactor and perfect heat exchange 

takes place in the heat exchanger. To simplify the model, it is also assumed that 

the reactant and the product have the same density and specific heat. The model 

is developed based on mass and heat balances in the process and is listed below: 
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Table 4.3: Performance under multiple failures 

faults initiated 

hot water control valve fail 

cold water control valve fail 

level sensor 1 fail 

temp. sensor 1 fail 

level sensor 2 fail 

tern p. sensor 2 fail 

hand valve 2 blocked 

cold water control valve fail 

temp. sensor 1 fail 

level sensor 2 fail 

hot water control valve fail 
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fault diagnosed 

cold water control 

valve fail 

temp. sensor 1 fail 

temp. sensor 2 fail 

hand valve 2 blocked 

tern p. sensor 1 fail 

(4.11 ) 

(4.12) 

(4.13) 

(4.14 ) 

(4.15) 

( 4.16) 

( 4.17) 

(4.18) 



where 

p = Po+~P 

Qs = I{sAs/Ps 

T2 = CoPoQsTs + Q2T[C p( Ca + Cb) + COPo(1- Ca - Cb)] 
CoPoQs + Q2[C p( Ca + Cb) + CoPo(l - Ca - Cb)] 

H = level in the reactor (cm) 

T = temperature in the reactor (OC) 

A = cross-sectional area of the reactor (cm 2
) 

QI = flow rate of input reactant (cm3 
/ Sec) 

Q2 = flow rate of the recycled reactant (cm3 
/ Sec) 

Q3 = flow rate of the liquid leaving the reactor (cm3 / Sec) 

Ca = concentration of reactant in the reactor 

Cb = concentration of product in the reactor 

CaO = concentration of reactant in the input stream 

Ta = reaction rate (g/ Sec) 

Hr = reaction heat constant (I{ J / g) 
TI = temperature of input reactant (OC) 
T2 = temperature of the recycled reactant after heat exchange (OC) 

P = density of the reactant (g/cm3
) 

C= specific heat of the reactant (J / gOC) 

Po = density of the solvent (g / cm3
) 

Co = specific heat of the solycnt (J / gOC) 
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Kr = reaction rate constant (gl Sec) 

ar = constant peculiar to reaction (g 1 Sec) 

br = constant peculiar to reaction (OC) 

K2 = restriction parameter of valve 3 (cm4Ig1/2Sec) 

A2 = fractional opening of valve 3 

P = pressure of liquid leaving the pump (glcm2) 

Q 4 = flow rate of the product (cm3 1 Sec) 

K4 = restriction parameter of valve 1 (cm4Ig1/2Sec) 

A4 = fractional opening of valve 1 

Po = pressure at the bottom of the reactor (glcm2) 

6.P = pressure increase caused by pump (glcm2) 

Ts = temperature of cold water entering heat exchanger (OC) 

Qs = flow rate of cold water entering heat exchanger (cm3 ISec) 

l<s = restriction parameter of valve 2 (cm4Ig1/2Sec) 

As = fractional opening of valve 2 

Ps = pressure of feed cold water to the heat exchanger (g 1 cm 2 ) 

The model parameters and the nominal values of certain process variables are 

given in Table 4.4. The controllers used are PI controllers of the form 

u(t) = 1«e(t) + L:!=1 e(i)) 
Ti 

where u(t), e(t), 1<, and Ti are the control signal, error signal, controller gain, and 

integration time respectively. The parameters of the controllers, together with the 

setpoints of the controlled variables, are given in Table 4.5. 

4.5.2 Formulation of diagnostic rules 

The CSTR system is decomposed into three subsystems. The first subsystem, Sl, is 

the external reactant feed subsystem, which includes pipe 1 and associated sensors. 

The second subsystem, S2, is the reaction subsystem including the reaction vessel, 

pipe 2, pump, pipe 3, valve 1, pipe 11 and associated sensors. The remaining 

components form the third subsystem, S3, which is the heat exchange subsystem. 

The diagnosis graph corresponding to this decomposition is shown in Figure 4.8. 

The Connection Matrix is 
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Table 4.4: Model parameters and nominal values of certain process variables 

Parameters or variables values 

A 300.0em2 

ar 0.8g/See 

br 66.9°G 

Hr 430KJ/g 

]{2 3.26em4 / gl/2 Sec 

K4 4.34em4 / gl/2 Sec 

I{s 4.7em4/g1/ 2See 

Ql 300.0em3 / Sec 

Tl 200G 

GaO 0.8 

P 1.2g/em3 

Po 1.1g/em3 

G 0.9J/goG 

Go 0.8J/goG 

Ps 200.0g/em2 

Ts 200G 

Cl.P 200.0g/em2 

Table 4.5: Controller parameters and set points 

Control loops Setpoints Controller parameters 

I{ Ti 

H 30.0em 6.0 10.0 

Q2 200.0em3
/ Sec 0.2 3.0 

T 50.00G 4.0· 8.0· 

O.l*'" 6.0*'" 

• Primary control loop 

•• Secondary control loop 
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110 

G = 0 1 1 

011 

The Self-Causal Matrix for the first subsystem is 

Q1 T1 GaO 

G81 = Q1 1 0 0 

T1 0 1 0 

GaO 0 0 1 

( 4.26) 

( 4.27) 

which suggests that the three measurements in the first subsystem cannot affect each 

other. The labels on the top and the left of the matrix, Q1, T1, and GaO, are the 

flow rate, temperature, and concentration of the external feed reactant respectively. 

The Self-Causal Matrix for the second subsystem is 

H T Q4 Ga GQ4 

H 1 1 0 1 1 

G82 = 
T 0 1 0 1 0 

( 4.28) 
Q4 1 0 1 0 0 

Ga 0 0 0 1 0 

GQ4 0 0 1 0 1 

The labels on the top and the left of the matrix, H, T, Q4, Ga, and GQ4, are 

level and temperature in the reactor, flow rate through valve 1, concentration of the 

reactant in the product, and controller output to valve 1 respectively. 

The Self-Causal Matrix for the third subsystem is 

Q2 CQ2 Qs CQs GT p Ts 

Q2 1 1 0 0 0 0 0 

GQ2 1 1 0 0 0 0 0 

Qs 0 0 1 1 0 0 0 
( 4.29) C83 = 

CQs 0 0 1 1 0 0 0 

GT 0 0 0 1 1 0 0 

p 0 0 1 0 0 1 0 

Ts 0 0 0 0 0 0 1 

The labels on the top and the left of the matrix, Q2, CQ2, Qs, CQs, CT, p, and 

Ts, are the flow rate through valve 3, controller output to vah'e 3, flow rate through 
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valve 2, controller output to valve 2, prime controller output of the cascade con­

troller, pressure and temperature of the cold water to the heat exchanger respec­

tively. 

The Measurement Causal Matrix from S1 to S2 is 

H T Q4 Ca CQ4 

CM12 = 
Q1 1 0 0 0 0 

( 4.30) 
T1 0 1 0 0 0 

CaO 0 1 0 1 0 

The Measurement Causal Matrix from S2 to S3 is 

Q2 CQ2 Q5 CQ5 CT P T5 

H 1 0 0 0 0 0 0 

T 0 0 0 0 1 0 0 
(4.31 ) CM23 = 

0 0 0 0 Q4 1 0 0 

Ca 0 0 0 0 0 0 0 

CQ4 0 0 0 0 0 0 0 

The Measurement Causal Matrix from S3 to S2 is 

H T Q4 Ca CQ4 

Q2 1 0 1 0 0 

CQ2 0 1 0 0 0 

Q5 0 0 0 0 0 
( 4.32) CM32 = 

CQ5 0 0 0 0 0 

CT 0 0 0 0 0 

p 0 0 0 0 0 

T5 0 1 0 0 0 

The Fault Measurements Matrix for S1 is 
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Ql Tl CaO 
PI I 0 0 

FT 0 I 0 

FMl = 
FQI I 0 0 

( 4.33) 
FCaO 0 0 I 

SQI I 0 0 

STI 0 I 0 

SCaO 0 0 I 

The labels on the left of the matrix, PI, FT, FQ, FCaO, SQI, STI, and SCaO, 

stand for pipe I blockage, feed reactant temperature, flow rate, and concentration 

abnormal, sensor failures of Ql, T1 , and CaO respectively. 

The Fault Measurement Matrix for S2 is 

H T Q4 Ca CQ4 

P2 I 0 I 0 0 

PIO I 0 I 0 0 

VI I 0 I 0 0 

FM2 = SH I 0 0 0 I ( 4.34) 

ST 0 I 0 0 0 

SQ4 0 0 I 0 0 

SCa 0 0 0 I 0 

C04 0 0 0 0 I 

The labels on the left of the matrix, P2, PIO, VI, SH, ST, SQ4, SCa, and C04, 

stand for blockages of pipes 2 and 3, valve I fails high, sensor failures for H, T, Q4, 

and Ca, and level controller failure respectively. 

The Fault Measurements Matrix for S3 is 

82 



Q2 CQ2 Qs CQs CT P Ts 

P4 1 0 0 0 0 0 0 

P7 0 0 1 0 0 0 0 

V2 0 0 1 0 0 0 0 

V3 

Tc 

P 

SQ2 

SQ5 

STc 

SP 

C02 

1 

o 
o 
1 

o 
o 
o 
o 

o 
o 
o 
1 

o 
o 
o 
1 

o 
o 
1 

o 
1 

o 
o 
o 

o 
o 
o 
o 
1 

o 
o 
o 

o 
o 
o 
o 
o 
o 
o 

o 0 

o 1 

1 0 

o 0 

o 0 

o 1 

1 0 

o 0 0 

(4.35) 

The labels on the left of the matrix, P4, P7, V2, V3, Tc, P, SQ2, SQ5, STc, SP, 

and C02, stand for pipe 4 blockage, pipe 7 blockage, valve 2 fails high, valve 3 

fails high, feed cold water temperature and pressure abnormal, sensor failures for 

Q2, Qs, Tc, and P, and Q2 controller failure respectively. 

Abnormal behaviour detection is similar to that for the mixing process. A set 

of error tolerances are defined for controlled variables and if any controlled variable 

exceeds its tolerance then abnormal behaviour is indicated. A set of varying ranges 

are defined for other variables and abnormal behaviour is indicated if any variable 

exceeds its varying range. Manipulated variables should change in the same direction 

as the corresponding controller outputs and if they do not, abnormal behaviour is 

identified. 

Diagnostic rules are formulated from the knowledge on system structures and 

component functions in a similar way as that for the mixing process. The diagnosis 

system is defined by a main problem CSTRD and 11 subproblems. The rule file for 

the main problem is shown in Figure 4.9. The function of the main problem is to 

classify the observed abnormalities. The outcomes of the main problem are several 

subproblems each corresponding to a type of abnormality. 

The subproblem RLEVEL will be used if abnormalities are present in the mea­

surement of level in the reactor and its rules are shown in Figure 4.10. The definitions 

of attributes used in CSTRD and RLEVEL are given in Table 4.6. These rules are 

developed from the following considerations. There are two situations when the 

level in the reactor is abnormal, one is that the level is higher than its set point 

and another is that the level is lower tban its set point. Consider the first situation. 
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From Eq( 4.28) it can be seen that only Q4 in 52 can affect H. If Q4 is high, then it is 

responsible for abnormality in H and is activated. If Q4 is activated, then Eq( 4.28) 

suggests that only CQ4 in 82 can affect Q4' If CQ4 is high then it is responsible 

for Q4 being high and is activated. If CQ4 is activated then Eq(4.28) shows that H 

can affect CQ4 and, since H is lower than its set point, it is not responsible for CQ4 

being high. Therefore, Eq( 4.30) and Eq( 4.32) show that no variable can affect CQ4' 

In this case, Eq( 4.34) suggests that the only failure would be controller failure. If 

Q4 is activated and CQ4 is not then, from Eq( 4.30) and Eq( 4.32), it can be seen 

that no other variables in 81 or 53 can affect Q4, and Eq( 4.34) suggests that pipe 2 

blockage, pipe 10 blockage control valve 1 fails high, and sensor Q4 failure are the 

candidate failures. The first two failures can be ruled out as Q 4 is high and pipe 2 

or pipe 10 blockage cannot cause Q4 being high. The last one can be ruled out by 

the single failure assumption as it will not cause abnormality in H and, therefore, 

the failure is control valve 1 fails high. If Q4 is not activated, then Eq( 4.30) suggests 

that Q1 in 51 can affect H. If Q1 is low then it is activated and in this case, Eq( 4.33) 

shows that the candidate failures are pipe 1 blockage, external feed reactant flow 

rate abnormal, and sensor Q1 failure. Sensor failure is again ruled out by the single 

failure assumption and the diagnosis result at this stage would be pipe 1 blockage 

or feed reactant flow low. If Q1 is not activated, then Eq( 4.32) shows that only Q2 

in 83 can affect H, and if Q2 is low then it is responsible for H being low and is 

activated. If Q2 is activated then Eq( 4.29) shows that CQ2 in 52 can affect Q2, and 

CQ2 will be activated if it is low. If CQ2 is activated, then Eq( 4.29) and Eq( 4.31) 

suggest that only Q2 can affect CQ2, but Q2 will not be responsible since Q2 is low. 

In this case, Eq( 4.35) suggests that the only failure would be controller failure. If 

only Q2 is activated then Eq( 4.35) suggests that the failures would be pipe 2 block­

age or sensor Q2 failure and the last is ruled out by the single failure assumption. 

If only H is activated, then Eq( 4.34) suggests that the candidate failures would be 

pipe 2 blockage, pipe 10 blockage, control valve 1 fails high, and sensor failure. The 

first two failures can be ruled out as they will not cause H to increase and the third 

one can also be ruled out as it will cause Q4 to be high, which is not observed. 

Therefore, the only possible failure is sensor H failure. The formulation of rules for 

the situation where H is higher than its set point is similar to the above. 

The developed diagnosis system has been tested on the simulation of the CSTR 

system. In the simulation, the sampling time is 4 seconds and the diagnosis system 

collects and examines process data every 20 seconds during normal operation and 

every 4 seconds when abnormal behayiour is detected. The possible faults that 

may occur are initiated separately during sin1ulation and they were diagnosed quite 

84 



Table 4.6: Definitions of attributes used in CSTRD and RLEVEL 

successfully. 

Attributes 

ABS2 

ABS3 

ABH 

ABT 

ABQl 

ABQ2 

ABQ4 

ABQ5 

ABTI 

ABT5 

HLTSP 

QILO 

QIHI 

Q2LO 

CQ2LO 

Q4LO 

Q4HI 

CQ4LO 

CQ4HI 

4.6 Conclusions 

Defini tions 

Subsystem 2 is abnormal 

Subsystem 3 is abnormal 

Reactor level is abnormal 

Reactor temperature is abnormal 

Ql is abnormal 

Q2 is abnormal 

Q 4 is abnormal 

Q 5 is abnormal 

TI is abnormal 

T5 is abnormal 

Reactor level is lower than its setpoint 

Feed reactant flow low 

Feed reactant flow high 

Q2 is low 

Controller output to valve 3 is low 

Q4 is low 

Q4 is high 

Controller output to valve 1 is low 

Controller output to valve 1 is high 

A method for formulating diagnostic rules from knowledge of system structures and 

component functions has been developed. Based on this deep knowledge, diagnosis 

can be performed hierarchically, and it is shown that structural decomposition can 

rapidly narrow diagnostic focus. Since structural decomposition corresponds to plant 

topology, it could be easier to inlplement. Advantages of a rule based format are 

that rules are efficient to evaluate and diagnostic rules can be combined with other 

rules pertaining to plant operations. The successful application of this method in 

developing diagnosis systems for the pilot scale mixing process and a simulated 

CSTR systenl suggests that this nlcthod provides a systematic and efficient means 
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for the design of on-line rule based fault diagnosis systems. 
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Superu isory layer: 

Fault detection and 

diagnosis 

Contro 1 1 ayer : 

Perforning regulation 

task 

• 

Process 

Figure 4.~ A hierarchical control systeM 
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Fig.4.2 A diagnosis graph 
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Figure 4.3 Diagnosis graph for the ffilxlng process 
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@tdiag 
[abs2 

n 
] 
[abtl ] 

n : examining if sensor hI failed (senshl) 
y : examining if sensor tl failed (senstl) 

y [abt2 J: 
n performing subproblem leve12 (leve12) 
y : performing subproblem temp2 (temp2) 

Figure 4.4 (a). Diagnostic rules for main problem TDIAG 

@temp2 
[t2ltsp 

y : 

n 

] 
[tIdcr 

y : 

n : 
[t I inc 

] 
[qhdcr ] 

y controller failure 
n : hot water control valve failure 

giving low output 
examining if sensor t2 failed (senst2) 

] 
n examining if sensor t2 failed (senst2) 
y : [qhinc ] 

n hot water control valve failure 
giving high output 

y controller failure 

Figure 4.4 (b). Diagnostic rules for subproblem TEMP2 
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@leve12 
[h2ltsp 

y : 

n 

] 
[h1dcr ] 
y : [qcdcr ] 

y : controller failure 
n : cold water control valve failure 

giving low output 
n [h2cond] 

y : hand valve 1 is blocked 
n : examining if sensor h2 failed (sensh2) 

[h1inc ]: 
n : [h2coni ] : 

y : hand valve 2 is blocked 
n : examining if sensor h2 failed (sensh2) 

y [qcinc ] 
y cold water control valve failure 

giving high output 
n controller failure 

Figure 4.4 (c). Diagnostic rules for subproblem LEVEL2 

@senst2 
[t2sc 

y 
n 

sensor t2 failure 
[t2ltsp ] : 

y : [t1it2s 

n [t1dt2s 

y 
n 
] 
y 
n 

sensor t2 failure 
no failure found so far 

sensor t2 failure 
no failure found so far 

Figure 4.4 (d). Diagnostic rules for subproblem SENST2 
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@sensh2 
[h2sc 

y 
n 

] 
sensor h2 failure 
[h2ltsp ] : 

y : [hlih2s ] : 
y : sensor h2 failure 
n : no failure found so far 

n : [hldh2s ] : 
y : sensor h2 failure 
n no failure found so far 

Figure 4.4 (e). Diagnostic rules for subproblem SENSH2 

@senstl 
[tlsc 

y 
n : 

. . 
sensor tl failure 
[t2nrsp ] : 

y : [dth 
y sensor tl failure 
n : no failure found so far 

n : no failure found so far 

Figure 4.4 (f). Diagnostic rules for subproblem SENSTl 
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@senshl 
[hlsc 

y 
n 

] 
sensor hI failure 
[h2nrsp ] : 

y : [dhh ]: 
y sensor hI failure 
n no failure found so far 

n no failure found so far 

Figure 4.4 (g). Diagnostic rules for subproblem SENSHl 
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Figure 4.S(a) On-line level measurements 
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Figure 4.5(b) On-line temperature measurements 
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THE CURRENT PROBLEM SUITE IS { tanksd } 
----------------------------------------------------------------

A DECISION WAS REACHED FOR PROBLEM {tdiag } 
----------------------------------------------------------------
Since 
subsystem 2 is abnormal 

the decision cannot be any of : 
examining if sensor hI failed 
examining if sensor tl failed 

and temperature 2 is abnormal 
the decision cannot be : 

performing subproblem leve12 

Hence, the decision is 

performing subproblem temp2 

A DECISION WAS REACHED FOR PROBLEM {temp2 } 

Since 
t2 is lower than its setpoint 

the decision cannot be : 
hot water control valve failure giving high output 

and tl is decreasing 
the decision cannot be : 

examining if sensor t2 failed 
and qh is not decreasing 

the decision cannot be 
controller failure 

Hence, the decision is 

hot water control valve failure giving low output 

Figure 4.6 Reasoning procedures of the diagnosis system 
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pipe 1 

pipe 6 

VAL 3 

HTX 

CWR 

CSTF 
pipe 9 

pipe 11 

pipe 2 

PUMP 

Fig.4.7 Continuous stirred tank reactor with recycle 
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Figure 4.8 Diagnosis graph for the CSTR system 
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@cstrd.rul 
[abs2 ] 

y : [abh 
y 

n 

n : 

[abs3 
y : 

n 

] 
perform 
[abt 

subproblem rlevel 
] 

y 
n : 

] 

perform subproblem rtemp 
[abq4 ] 
y perform subproblem flow4 
n : perform subproblem ca 

[abq2 ] 
y perform subproblem flow2 
n : [abqS ] 

y perform subproblem flowS 
n : [abtS ] 

y perform subproblem tempS 
n perform subproblem pres 

[abql ] 
y perform subproblem flowl 
n . [abtl ] . 

y perform subproblem templ 
n perform subproblem caO 

Figure 4.9 Diagnostic rules for the main problem CSTRD 
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@rlevel.rul 
[hltsp ] 

y : [q4hi 
y : 

n 

n 

[q4lo 
y : 

n 

] 
[cq4hi ] 

y : controller Q4 
n : control valve 

failure 
1 fails high 

[q1lo ] 
y pipe 1 
n : [q2lo 

y : 

is blocked 
] : 

[cq2lo 

] : 
[cq4lo 

n 

y : controller Q2 failure 
n : pipe 2 is blocked 

sensor H failure 

y controller Q4 failure 
n : [q2lo ] 

[q1hi 
Y 
n : 

y pipe 2 is blocked 
n : pipe 10 is blocked 

external feed reactant flow high 
sensor H failure 

Figure 4.10 Diagnostic rules for subproblem RLEVEL 
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Chapter 5 

On-line fault diagnosis based on 

qualitative simulation 

5.1 Introduction 

The previous chapter describes a deep knowledge based approach, causal search, 

which is based on knowledge of system structure and component functions. One 

of the frequently used human diagnostic strategies is the hypothesis-test strategy 

(Rasmussen 1980). From the observed patterns of abnormalities, the operator hy­

potheses a potential cause of the upset and then mentally simulates the effect of the 

hypothesized malfunction on process behaviour. If the simulated behaviour matches 

the observed one, the hypothesis is retained, otherwise, an alternative hypothesis 

may be formed. The procedure can be implemented automatically on a computer 

using the recently developed qualitative reasoning techniques (Bobrow 1984). When 

the monitored process contains a large number of variables, the qualitative reason­

ing method may be used to simplify the computation. The qualitative reasoning 

method is also appropriate as it depends less on accurate quantitative information. 

This is particularly useful in simulating the effect of a fault as the exact severity of 

a fault is generally not known. 

There are several different approaches in qualitative reasoning such as de Kleer 

and Brown's confluence based qualitative reasoning (de Kleer and Brown 1984), For­

bus' qualitative process theory (Forbus 1984), and Kuipers' qualitative simulation 

(Kuipers 1986). In this research, de Kleer and Brown's confluence based qualitative 

reasoning method is used. The qualitative model used in this approach is a set 

of confluences which are qualitative equations and are derived from a quantitative 
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model of the process under concern. This would be suitable for process control as 

a quantitative model of a process can usually be developed. A further advantage of 

this approach is that the effect of a fault can be easily represented by the deviation 

of the corresponding process variable. For example, a blockage or a partial blockage 

of a valve can be represented by a decrease in the opening area of the valve in the 

form 

6A= -

where A is the opening area of the valve. By setting 6A in the model to " " 
the model can be used to simulate the process under this fault. Therefore, the 

qualitative model can easily be used to simulate the process under normal or various 

faulty conditions. 

However, due to the lack of quantitative information, ambiguity often occurs 

in qualitative reasoning, especially when a large number of qualitative variables are 

involved. This ambiguity can be reduced by taking account of the order of magnitude 

of different variables. Raiman (1986) has proposed a method of order of magnitude 

reasoning to reduce the ambiguity, but his method only reduces the ambiguity in 

some specific cases where some variables' magnitudes are negligible compared with 

those of others. In this research, a method for reducing ambiguity in more general 

cases by taking account of the relative magnitude relations among variables has been 

investigated. 

The diagnostic strategy used in this chapter is the "hypothesis-test strategy" 

(Rasmussen 1980, Moor and Kramer 1986). Unlike the failures of other compo­

nents, the effect of sensor failures on process behaviour cannot be easily represented 

and, therefore, sensor failures are treated differently from other failures. Since the 

diagnosis systems described in this chapter are real-time diagnosis systems based 

on on-line measurements, it would be necessary to determine whether sensors are 

working normally before considering other components. Thus, when generating a 

hypothesis, sensor failures are considered first. If a hypothesis is a sensor failure, 

then it is confirmed or denied by a set of heuristics relating to the diagnosis of sensor 

failures. If a hypothesis is the failure of other components rather than sensors, then 

the diagnosis system will predict the behaviour of the process under this hypoth­

esis and compare the prediction with the actual measurements. The hypothesis is 

confirmed if the actual behaviour follows the predicted behaviour, otherwise, it is 

denied. 

In the next section, a brief review of confluence based qualitative reasoning is 

given and is followed by a new approach for reducing ambiguity in qualitative rea-
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soning. Section 5.3 describes the use of the qualitative reasoning approach to solve a 

two mass collision problem, which suggests that the proposed qualitative reasoning 

approach can produce a better solution than that of Raiman (1986). Qualitative 

modelling of the mixing process and the development of a fault diagnosis system 

based on qualitative reasoning for the mixing process is presented in Section 5.4. 

Section 5.5 describes the development of a fault diagnosis system based on quali­

tative simulation for the CSTR system. The last section contains some concluding 

remarks. 

5.2 Qualitative reasoning 

5.2.1 Qualitative reasoning based on confluence 

De Kleer and Brown (de Kleer and Brown 1984) discuss a qualitative reasoning 

method based on confluences. This method is also referred to as Incremental Qual­

itative Analysis (IQA) (Herbert and Williams 1986, 1987). Since one of the most 

important features of a physical variable is whether it is increasing, decreasing, or 

unchanging; +, - and ° are defined as the quantity space where +, - and ° repre­

sent the cases that a variable is increasing, decreasing, and unchanging respectively. 

More generally, the qualitative value of a physical variable X corresponding to a 

specified landmark value a is denoted as [X]a and 

+, if X > a, 

[X]a = 0, if X = a, 

if X < a. 

Usually the landmark value used is 0, and [X]o is denoted as [X] for simplicity. 

For practical applications, such as fault diagnosis, threshold values are defined for 

the conversion from quantitative values to qualitative values, such that 

+, if X > X+, 

[X] = 0, if X_ < X < X+, 

if X < X_. 

where X+ and X_ are the threshold values for the physical variable X. 

Addition and multiplication of qualitative variables are defined in Table 5.1 and 

Table 5.2 respectively. In Table 5.1, "?'" stands for unknown, it may be anyone of 

the values: +,0, and -. 
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Table 5.1: Addition of qualitative variables [A] and [B] 

[B] 
[A] o + 

? 
o o + 
+ ? . + + 

Table 5.2: Multiplication of qualitative variables [A] and [B] 

[B] 
[A] o + 

+ 0 

o o o o 

+ o + 

The qualitative behaviour of a physical system can be described by a set of con­

fluences which are formally derived from the quantitative equations for the system. 

This ensures that the qualitative model is consistent with the quantitative one. 

From Table 5.1 it can be seen that the addition of two qualitative variables with 

opposite values + and - is unknown. Ambiguity is a major problem associated with 

qualitative reasoning. Ambiguity is due to the lack of quantitative information and, 

with the addition of some available quantitative information, this ambiguity may be 

reduced. Raiman (1986) investigates using order of magnitude reasoning to reduce 

ambiguity. As suggested by Oyeleye and Kramer (1988), ambiguity could also be 

reduced by qualitative constraints derived from redundant numerical equations. For 

example, considering the following two equations 

from which the following qualitative constraints can be derived. 

[.Xd = [X3 ] - [X2] 

[X2 ] = [);3] - [Xl] 
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Table 5.3: Solution of [X2] and [X3 ] 

possible solutions 

[Xl] 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

[X2] [X3 ] 

+ + 
+ 0 

+ 
0 + 
0 0 

0 

+ 
0 

[X3 ] = -[Xl] - [X2] 

[Xl] = -[X2] - [X3 ] 

[X2] = - [Xl] - [X3 ] 

viable 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Suppose that [Xl] = +, then the solutions for [X2] and [X3 ] from the above 

qualitative constraints are provided in Table 5.3, from which it can be seen that the 

solution for [X3 ] is ambiguous. A redundant numerical equation can be derived by 

substracting the first numerical equation from the second and is given bellow: 

from which an additional qualitative constraint can be obtained as 

which gives an unambiguous solution [X3 ] = -. 

5.2.2 Order of magnitude reasoning 

To reduce the ambiguity in qualitative reasoning, Raiman (1986) developed a formal 

system FOG which takes account of the information on the order of magnitude of 

physical variables to remove ambiguity. In FOG, three operators, N e, \'0, and Co, 

are defined to represent the order of magnitude relations between physical variables 

such that 

105 



A NeB stands for A is negligible in relation to B, 

A V 0 B stands for A is close to B, 

A Co B stands for A has the same sign and order of magnitude as B. 

To perform qualitative reasoning, 31 inference rules are defined. From the three 

defined operators, it can be seen that this method can only reduce ambiguity in 

some specific cases where some variables' magnitudes are negligible to those of other 

variables. This can be illustrated by a simple example. Consider the situation where 

[A] = -[B] and A NeB. The addition of [A] and [B] will be [B] instead of unknown. 

However, if the relation between [A] and [B] is not "negligible", then ambiguity 

cannot be removed. 

Here a new approach which can reduce ambiguity in more general cases is in­

troduced. In this approach, four operators, Rmh, Rmc, Rml, and Rmn, are defined 

such that 

A Rmh B stands for the relative order of magnitude of A is higher than 

that of B, 

A Rmc B stands for the relative order of magnitude of A is close to that 

of B, 

A Rml B stands for the relative order of magnitude of A is lower than 

that of B, 

A Rmn B stands for the relative order of magnitude of A is negligible 

to that of B. 

Note in the above definitions, Rmn is a subclass of Rml and the relations between 

two variables can only be either Rmh, Rmc, or Rml. 

To perform qualitative reasoning, the following 18 inference rules are defined: 

Rl: A Rmh B {:} B Rml A 

R2: A Rmc B * B Rmc A 

R3: A Rmn B * A Rml B 

R4: A * B, B * C * A * C 
(* stands for any operators) 
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R5: A Rmc B, B * C =} A * C 

R6: A Rmh B, C Rmn B =} C Rmn A 

R7: A Rmh B =} [A] + [B] = [A] 

R8: A Rmc B, [A] = - [B] =} [A] + [B] = 0 

R9: [A] = [B] + [C], [A] = -[B] =} [C] = [A], C Rmh B 

RIO: A Rmc B, C * D =} A . C * B . D 

Rll : A * B, C * D =} A . C * B . D 

R12: (A+B) Rmc (C+D), [A+B] = [C+D], 

[A] = [C], A Rmc C =} [B] = [D], B Rmc D 

R13: A Rmc (B + C) or A Rmh (B + C), 

[B] = [C] =} A Rmh B, A Rmh C 

R14: (A + B) Rmc (C + D), A Rmc C, [A] = [C], 

[B] = [D] =} B Rmc C, [A] + [B] = [C] + [D] 

R15: (A + B) Rmc (C + D), [A] + [B] = [C] + [D], 

[A] = [C], A Rmc C =} [B] = [D], B Rmc D 

R16: A * B, C Rmc D, [A] = [C], [B] = [D] =} (A + C) * (B + D) 

R17: (A + B) Rmh C or (A + B) Rmc C, [A] = -[B], 

A Rmh B =} A Rmh C 

R18: (A + B) Rmc 0 =} A Rmc B 

Now recall the above example, suppose [A] = -[B] and A Rml B, from Rule 7, 

the result of [A] + [B] would be [B] and ambiguity is removed. 
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This approach may be used as a complement to the qualitative reasoning method 

of de Kleer and Brown. It could reduce ambiguity to some extent by using available 

information on quantitative relations among variables. Its applications in solving 

a mass collision problem and in fault diagnosis will be described in the following 

sections. 

5.3 Solving the two mass collision problem through 

qualitative reasoning 

The qualitative reasoning method described in the previous section is used here to 

solve the two mass collision problem which is used in (Raiman 1986) and, therefore, 

the result presented in this section can be compared with that of Raiman (1986). 

5.3.1 The two mass collision problem 

The two mass collision problem is shown in Figure 5.1, where two masses with 

weight M and m coming from opposite directions with close velocities Vi and Vi. It 

is required to obtain the qualitative values of the velocities of the two masses after 

collision, i. e. the directions of the two masses, through qualitative reasoning. In 

(Raiman 1986), it is assumed that M is much larger than m. If it is only known that 

M > m, then no result can be obtained from Raiman's method since the relation 

">" (greater than) is not reflected by the operators he defined. However, this could 

be solved by the approach presented here. 

5.3.2 Qualitative reasoning about the two mass collision 

problem 

Qualitative constraints 

From momentum and energy conservations, the following equations can be obtained, 

kl\li + mVi = MVJ + mVJ (5.1 ) 

Al ~~2 mv; MVl mVJ 
2 +-2-= 2 +-2- (5.2) 
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where M, Vi, and Vj are the mass, initial and final velocities for the first object 

respectively, and m, Vi, and Vj are those for the second object respectively. 

From Eq{5.1) and Eq{5.2), the following equation can be obtained 

(5.3) 

Since it is assumed that the two masses have the same initial velocity, therefore 

(5.4) 

From the above equations, the following constraints can be obtained. 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(My? + mvl) Rmc (MVl + mVJ) (5.9) 

(5.10) 

(5.11 ) 

The initial conditions of the problem are given by the following constraints. 

[Vi] = + (5.12) 

(5.13) 
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Qualitative reasoning 

M Rmhm 

1 1 
-Rm/­
M m 

[M] = + 

[m] = + 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

Applying RIO to Eq(5.14) and Eq(5.15), the following equation can be obtained. 

(5.19) 

From R7 and Eq(5.19), the following can be obtained. 

(5.20) 

The qualitative value of VI can be either +, 0, or -, three hypotheses are gen­

erated. 

(a). [VI] = + 
In this case, 

(5.21) 

Applying R9 to Eq(5.8), Eq(5.13), and Eq(5.21), the following can be obtained. 

(5.22) 

VI Rmh Vi (5.23) 
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Applying R13 to Eq(5.11), Eq(5.12), and hypothesis (a) gives 

VJ Rmh 2Vi (5.24) 

From Eq(5.17), Eq(5.18), Eq(5.22), and hypothesis (a), the following can be 

obtained. 

[MVJ] = + (5.25) 

(5.26) 

Applying R13 to Eq(5.5), Eq(5.25), and Eq(5.26) gives 

(5.27) 

Eq(5.12), Eq(5.13), Eq(5.17), and Eq(5.18) give 

(5.28) 

Applying R17 to Eq(5.27), Eq(5.28), and Eq(5.19) gives 

MVi Rmh MVJ (5.29) 

from which the following can also be obtained 

(5.30) 

(5.31) 

(b).[Vf ] = -

From Eq(5.6) and Eq(5.20) it follows that 

(5.32) 

Eq( 5.17) and hypothesis (b) give 
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Applying R9 to Eq(5.32) and Eq(5.33) gives 

Eq{5.34) and Eq(5.18) imply that 

Rl and Eq{5.16) give 

1 1 
-Rmh­
m M 

Applying Rll to Eq{5.35) and Eq{5.37) gives 

Subhypothesis 1: Vj Rml Vi 

From R7, we have 

From Eq(5.8) 

Applying R9 to Eq(5.40) and Eq{5.12) gives 

Applying R4 to Eq(5.40) and Eq(5.12) gives 
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(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5..11 ) 



Vi Rmh Vi 

Applying R5 to Eq(5.42) and Eq(5.14) gives 

Vi Rmh Vi 

(5.42) 

which contradicts the subhypothesis and, therefore, the subhypothesis is false. 

Subhypothesis 2, vi Rmc Vi 

From R8, Eq(5.13), Eq(5.36), Eq(5.7), and Eq(5.8) 

(Vi + Vi) Rmc (Vi + Vi) Rmc 0 

Applying RI8 to Eq(5.44) gives 

Applying R2 to the above equation gives 

Applying R4 to Eq(5.45) and Eq(5.I4) gives 

Applying R4 to the above equation and subhypothesis (2) gives 

Vi Rmc vi 

(5.43) 

(5.44) 

(5.45) 

which contradicts Eq(5.38) and, hence, this subhypothesis is false. Therefore 1 

Vi Rmh Vi ( 5.46) 

Applying R5 to Eq(5.46) and Eq(5.I4) gives 
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From R7 and the above equation 

Eq(5.8) becomes 

Applying R9 to hypothesis (b) and the above equation gives 

Applying R1 to the above equation gives 

(5.47) 

Eq(5.10) becomes 

(5.48) 

Vi Rmc 2Vi (5.49) 

To summarise, the result is 

(1) [Vi] = +, Vi Rml Vi 

[vi]=+, vi Rmh 2Vi 

(2) [Vi] = -, Vi Rml Vi 

[vi] = +, vi Rmh Vi 

(3) [Vi] = 0 

[vi] = +, vi Rmc 2Vi 
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5.3.3 Comparison with analytical solution 

The analytical solution of the two mass collision problem is 

M-3m 
v'J = Yo 

M+m I 

3M-m 
vJ= M+m Vi 

There exist three possible situations. 

(1). M > 3m. In this case, 

VJ > 0, vJ > 0, vJ > 2Vi. 

(2). M = 3m. In this case, 

VJ = 0, vJ > 0, vJ = 2Vi. 

(3). M < 3m. In this case, 

(5.50) 

(5.51) 

It can be seen that the qualitative reasoning described above gives the correct 

solution. 

5.4 Fault diagnosis of the mixing process 

5.4.1 Qualitative modelling of the mixing process 

The qualitative model is in the form of a set of confluences which are derived from 

the quantitative model of the mixing process. The dynamic model of the mixing 

process, which is developed in Chapter 3, is listed below: 

(5.52) 

(5.53) 
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(5.54) 

(5.55) 

(5.56) 

(5.57) 

The parameters and variables in the model are defined in Chapter 3. 

One way to derive the confluences is to compare the dynamic model at present 

state with that at a previous steady state. Compare Eq(5.52) at time t2 with that 

at time tl, we have 

Taking the qualitative values of the two sides of Eq(5.58), we have 

[AI dIftl In - Al dIftl ItI] = [Qc It2 - Qc ItI ] + [Qh In - Qh ItI] - [QoI In - QoI ItI ] 
= bI,2Qc + bI,2Qh - bI,2QoI (5.59) 

where bl,2Qc, bl,2Qh and bl,2Qol are the qualitative values of the increments of Qc, 

Qh and QoI over the time interval [tl, t2] respectively. 

Suppose the system is steady at time tl, then Eq(5.59) becomes 

dHI [Tt In] = bI,2Qc + b1,2Qh - bl,2QoI (5.60) 

Eq(5.60) is the confluence for predicting the qualitative value of dIftl at time t2. 

Applying the same procedure to Eqs (5.53) to (5.57), gives 

(5.61 ) 

(5.62) 

116 



(5.63) 

(5.64) 

(5.65) 

Eqs(5.60) to (5.65) are the set of confluences which describe the qualitative 

behaviour of the mixing process. Since these confluences are formally derived from 

the dynamic model, they are consistent with the dynamic model. 

It can be seen that the qualitative model is simpler than the quantitative one. 

The parameters AI, A 2, KI, and K2 do not appear in the qualitative model, and 

therefore, the inaccuracies in these parameters will not affect the qualitative model. 

Compared with the quantitative model, the qualitative one is more robust to slight 

inaccuracies in measurements or system parameters. 

In Eq(5.60), if hand valve 1 is working correctly, 81,2Qol is determined by the 

difference of HI and H2 , and HI is determined by Qc and Qh. So, 81,2Qol is the feed­

back effect of 81,2Qc + 81,2Qh, and it will have the same sign as 81,2Qc + 81,2Qh. This 

results in ambiguity. Here, to solve this ambiguity, we adopt the same heuristic used 

by Oyeleye and Kramer (1988). The heuristic is that "an effect cannot compensate 

for its own cause". Thus, 

(5.66) 

Applying Rule 7 to Eq(5.66) and (5.60), gives 

(5.67) 

Eq(5.67) is used instead of Eq(5.60) when hand valve 1 is working normally. 

Similarly, if hand valve 2 is working normally, Eq(5.61) can be reduced to 

(5.68) 

Eq(5.62) and Eq(5.63) can be reduced to 
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(5.69) 

(5.70) 

In the above equations, Q e and Q h are not measured. Under normal operating 

conditions, they should change in the same directions as the corresponding con­

troller outputs which are known. Therefore, in normal conditions, 81,2Qe and 81,2Qh 

are replaced by 81,2Ie, where Ie is the controller output to the cold water control 

valve, and 81,2 Ih, where Ih is the controller output to the hot water control valve, 

respecti vely. 

5.4.2 Fault detection and diagnosis 

Fault detection 

Fault detection and diagnosis is based on the qualitative model of the mixing process. 

The qualitative model provides a set of constraints for the process which should 

not be violated if there is no fault in the system. The qualitative values of d~l, 

d~2, dTtl, and dTt2, i. e. the changing directions of HI, H2, TI, and T2 respectively, 

can be calculated from the qualitative model and are compared with the on-line 

measurements of HI, H2, T I , and T2 respectively. If the predicted values agree with 

the actual measurements, there is no fault in the process. Otherwise, it indicates 

that a fault occurs in the process. Once the presence of a fault is detected, the 

diagnosis system begins to determine the details of the associated fault. 

To reduce the effects of measurement noise, when the predicted behaviour does 

not agree with the actual measurements, several sets of additional measurements 

are collected to check model consistency. If in the majority of the cases the model is 

violated, then there is a fault in the process. Otherwise, the system is still considered 

to be at a normal condition. 

It will waste computer time if the calculations of the expected changing directions 

are continued regardless whether the measurements are normal or not. To avoid this, 

an enable condition, which comprises a set of constraint values for the measurements, 

is defined for the fault detection. If the enable condition is not satisfied, i. e. all the 

measurelnents are within their constraint values, the process is considered to be at 

a normal condition and it is not necessary to calculate the changing directions. It 
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is only when the enable condition is satisfied, that the diagnosis system begins to 

calculate the expected changing directions from the qualitative model. 

Fault diagnosis 

Fault diagnosis is performed based on the qualitative model of the mixing process. 

The model is used to generate the expected behaviour under certain failure hy­

potheses. Diagnosis is performed by the "hypothesis-test" strategy which contains 

a procedure of hypothesis generation, simulation and comparison. The procedure is 

as follows: first, generate a hypothesis based on a particular failure, then simulate 

the behaviour of the process under this failure. The expected behaviour is compared 

with the actual measurements, if they agree, this hypothesis is retained. Continu­

ously perform this procedure until all the generated hypotheses have been tested. If 

no hypothesis is retained, it is an unsuccessful diagnosis. The retained hypotheses 

are the possible faults. 

It will be inefficient when the process being diagnosed contains a large number 

of components, since the more components it contains, the more hypotheses it will 

generate. To improve efficiency, the process being diagnosed is decomposed into 

several subsystems such that the number of components in each subsystem is limited. 

The mixing process is divided into two subsystems. The first subsystem includes 

the hot and cold water control valves, tank 1, and the associated sensors. The second 

subsystem includes hand valve 1, hand valve 2, tank 2 and the associated sensors. 

The possible faults that may occur are considered to be: sensor failures, hot 

and cold water control valve failures, hand valve 1 and hand valve 2 blocked, and 

controller failure. Since the parameters, and the inputs and outputs of the controller 

are known exactly, it is not necessary to derive a qualitative model for the controller 

to replace the quantitative one. Controller failure is diagnosed by checking the 

consistency between its inputs and outputs. Sensor failure is diagnosed differently 

from the failures of other components. Since it is not straight forward to predict the 

output of a failed sensor, sensor failure is diagnosed from heuristic considerations. 

These heuristics comprise previous experience on sensor failures and some general 

knowledge about sensors. During previous operation of the mixing process, the level 

sensor of tank 2 failed several times. When it failed, its output was fixed at a certain 

value. Later it is found that this is due to the blockage of the conduit connecting the 

level sensor and the tank. This gives a heuristic that when a sensor's output is fixed 

at a certain value, but where other sensor outputs which can directly or indirectly 
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reflect the same measured variable are changing, then the sensor whose output is 

fixed fails. Another heuristic is that since sensor readings reflect associated process 

variables and if the process variable changes continuously, the sensor readings should 

also change continuously, i. e. the change between two successive samples is limited. 

In the mixing process, the measured variables have large time constants, especially 

the level variable, and so any abrupt changes in sensor readings reflect sensor failure. 

From previous experience, when the wires connecting sensors and the computer are 

broken, the data collected by the computer will change randomly. 

To simulate the behaviour of the system under a particular failure, the effect of 

this failure on the system's model should be characterised. The effects of failures are 

represented by the deviations of certain process variables and, hence, the qualitative 

model can be used to simulate the process under normal or faulty conditions. 

When hand valve 1 is blocked or partially blocked, the water flow between tank 

1 and tank 2 will decrease, thus 

(5.71) 

Similarly, if hand valve 2 is blocked or partially blocked, 

b1,2Qo2 = - (5.72) 

If the cold water control valve fails, its average output flow rate will be either 

higher or lower than the normal one. If it is lower, the level in tank 1 will decrease and 

subsequently cause the level in tank 2 to decrease. Since level 2 is being controlled, 

the decrease in level 2 will cause the input to the cold water control valve to increase. 

Similarly, if the output flow rate of the cold water control valve is higher than the 

normal value, the input to the cold water control valve will decrease. Therefore, 

when the cold water control valve fails 

(5.73) 

Similarly, when the hot water control valve fails 

(5.74) 

When a fault is detected, the hypothesis generator generates an hypothesis based 

on the observed symptoln which comprises the information on which measurements 
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suggest different behaviour from the predictions. 

From Equations (5.67) to (5.70), it can be seen that Tt and Qot appear in the 

models of both subsystems. Qot is determined by Equation (5.56). So, the failure 

of hand valve 1, the failures of both level sensors, and the failure of the temperature 

sensor of tank 1 will affect both subsystems. These failures are arranged together 

to form a common list, while the other failures are arranged into another two lists 

corresponding to the subsystem to which they belong. The arrangement of candidate 

lists is shown in Figure 5.2. 

If only the model of the first subsystem is violated, then the hypothesis is gener­

ated from list 1, whereas if only the model of the second subsystem is violated, the 

hypothesis is generated from list 2. If the models of both subsystems are violated, 

then the hypothesis is initially generated from the common list. If all the candi­

dates in the common list have been tried, and the models of both subsystems are 

still violated, then the hypothesis is generated from list 1 and list 2. The hypothesis 

is generated by heuristic rules which are in the following form: 

IF Symptom THEN Hypothesis 

where the symptom includes the pattern of abnormal measurements, i. e. which 

particular measurements significantly deviate from their steady state values, and 

the pattern of contradictions, i. e. which variable's behaviour is different from its 

prediction. For example, if only the temperature measurements are abnormal, then 

the hypothesis is generated from the set of failures which can affect the temperature 

control loop, i. e. temperature sensor failures and hot water control valve failure. 

Since sensor failures will affect the qualitative simulation, they are arranged to 

be at the top of candidate lists such that they can be hypothesised prior to other 

component failures. Therefore, when a fault is detected, the diagnosis system first 

tries to find out if the sensors are working normally. If the sensors are working 

normally, then the measurements are reliable, and thus, the qualitative simulation 

will also be reliable. 

5.4.3 Performance of the diagnosis system 

The fault diagnosis system has been successfully applied to the mIXIng process. 

During the experiments, all the faults mentioned above were separately initiated, and 

they were diagnosed very successfully. Table 5.4 shows the result of the experiment 
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Table 5.4: Performance under a single failure 

fault initiated no. of successful diagnosis 

temp. sensor 1 fail 3 

temp. sensor 2 fail 4 

level sensor 1 fail 3 

level sensor 2 fail 4 

hand valve 1 blocked 5 

hand valve 2 blocked 5 

hot water control valve fail 5 

cold water control valve fail 5 

in which every fault was initiated five times. It can be seen that the performance is 

very satisfactory. 

The result of the experiment shows that the performance of the diagnosis system 

subjected to sensor failures is not as good as that subjected to other component 

failures. This is due to the fact that measurements in the mixing process are not 

abundant and, therefore, sensor failures are diagnosed mainly by detecting abrupt 

changes in sensor readings. Sometimes, when a sensor fails, the change in its reading 

is not abrupt and, therefore, this fault is missed. In a sensor rich environment, sensor 

failures are easier to diagnose (Scad, Jamieson, Delaune 1987). 

During simulation studies and experiments, it has been found that the diagnosis 

system can diagnose partial blockage of hand valves. The simulation result shows 

that this fault can still be diagnosed when the hand valves are only 20% blocked. 

Experiments have been conducted when several faults were initiated simultane­

ously. Since each different fault takes a different time to affect the control system, 

only the fault with a quick effect was diagnosed. 

5.5 Fault diagnosis of a CSTR system 

A qualitative modelling based diagnosis system is also developed for the CSTR 

system in a similar way as that described in the previous section. 
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5.5.1 Qualitative modelling of the CSTR system 

The qualitative model of the CSTR system is derived from its dynamic model, which 

is developed in the previous chapter and is listed below. 

(5.75) 

dGa ( ) AHTt = Ql GaO - G a - Ta AH (5.76) 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

(5.83) 

(5.84 ) 

(5.85) 

P = Po + 6.P (5.86) 
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Qs = KsAs/Ps 

T2 = CoPoQsTs + Q2T[C p{ Ca + Cb) + COPo{1 - Ca - Cb)] 
CoPoQs + Q2[Cp{Ca + Cb) + CoPo{l - Ca - Cb)] 

(5.87) 

(5.88) 

(5.89) 

The parameters and variables in the model are defined in the previous chapter. 

It is assumed that the process is operating at a steady state prior to the oc­

currence of a fault. Therefore, the qualitative model for the CSTR system can be 

derived based on its steady state model. Under this assumption, from Eq(5.75) and 

Eq{5.84) to Eq(5.87) the following equation can be obtained. 

Ql = Q4 

= K4 A4v'P 
~---------------------------

= ]{4A4V H[{Ca + Cb)p + (I - Ca - Cb)Po] + ~p (5.90) 

In steady state, Eq(5.76) to Eq{5.78) become 

(5.91) 

(5.92) 

(5.93) 

The qualitative model is obtained by first differentiating and then taking quali­

tative values of the two sides of the quantitative equations as used in (de Kleer and 

Brown 1984). To simplify the qualitative model, several practical assumptions are 

also made. 

Differentiating the two sides of Eq(5.90) gives 

% = K4{H[(Ca + Cb)p + (1 - Ca - Cb)Po] + ~P}~ 
+]{4A4{[(Ca + Cb)p + (1 - Ca - Cb)PO]~ 
+H(p - PO)(dftA + ~) + d~t} 

124 



In the above equation, it is assumed that the changes in Ca and C
b 

cannot 

significantly affect the average density of the content in the reactor and therefore , , 
cannot significantly affect the pressure at the bottom of the reactor, then the above 

equation can be simplified as 

(5.94) 

Taking the qualitative value of the two sides of Eq(5.94) and using 8X to denote 

[dd~], Eq(5.94) becomes 

(5.95) 

Similarly, differentiating and taking the qualitative value of the two sides of 

Eq(5.91) and Eq(5.92) gives 

(5.96) 

(5.97) 

In Eq(5.93), it is assumed that the changes in CaO, Ca, and Cb will not signifi­

cantly affect the densities and specific heats of the input reactant and the content 

in the reactor, therefore, BI and B2 in Eq(5.93) can approximately be treated as 

constants. Then, differentiating the two sides of Eq(5.93) gives 

The above equation can be re-formulated as 
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(5.98) 

From the parameter values provided in the previous chapter, the value of the 

expression in the round bracket of the left hand side of Eq(5.98) is positive, therefore, 

taking qualitative values of the two sides of Eq(5.98) gives 

(5.99) 

Similarly, the following can be obtained from Eq(5.83) to Eq(5.89). 

(5.100) 

(5.101) 

(5.102) 

SP = SPo + S~P (5.103) 

SPo = SH (5.104) 

(5.105) 

(5.106) 

So far the qualitative model for the CSTR system has been developed. To sim­

ulate the effect of a fault, the fault should be represented as a deviation in the 

corresponding process variable as described in the previous section. The [epresen­

tations of the possible faults (except sensor failures) in the CSTR system are given 

in Table 5.5. 
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Table 5.5: Representations of faults 

Faults 

Pipe 1 is blocked 

External feed reactant flow high 

Pipe 2 or 3 is blocked or pump fails 

External feed reactant temp. high 

External feed reactant temp. low 

Pipe 10 or 11 is blocked 

or control valve 1 fails low 

Control valve 2 fails high 

Pipe 7, 8, or 9 is blocked 

or control valve 2 fails low 

Control valve 1 fails high 

Pipe 4, 5, or 6 is blocked 

or control valve 3 fails low 

Control valve 3 fails high 

External feed reactant 

concentration too low 
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Representations 

8Ql =-

8Ql = + 
8LlP = -

8Tl = + 
8Tl =-

8A4 =-

8A5 = + 

8A5 =-

8A4 = + 

8eao = -



5.5.2 Fault detection and diagnosis 

The on-line fault diagnosis system for the CSTR system is similar to that for the 

mixing process described in the previous section. An enable condition, which con­

sists of several constraints on the measurements, is defined. Only when this enable 

condition is satisfied, does the diagnosis system begin to detect and diagnose faults. 

Fault detection is performed by predicting the behaviour of the process under nor­

mal operating conditions and comparing this with the actual measured behaviour. 

A fault is detected if the predicted behaviour differs from the actual one. 

To improve efficiency, the CSTR system is decomposed into two subsystems. 

The first subsystem includes pipe 1, reactor, pump, pipes 2, 3, 10, 11, valve 1, and 

sensors associated with these components. The rest form the second subsystem. 

Fault diagnosis is performed through the "hypothesis-test" strategy. If a hypothesis 

is a sensor failure, then it is discriminated by heuristic rules. Other hypotheses are 

discriminated through qualitative simulation. 

5.6 Conclusions 

Process fault diagnosis based on qualitative modelling is investigated in this chapter. 

It is demonstrated that qualitative reasoning depends less on accurate process model 

parameters and accurate measurements and, consequently, the result obtained from 

qualitative reasoning is less accurate than that of quantitative reasoning. How­

ever, for the purpose of fault diagnosis, accurate reasoning is generally not needed 

and, sometimes, is difficult to implement. Ambiguity is a problem associated with 

qualitative reasoning. It is demonstrated in this chapter that ambiguity could be 

reduced by taking account of certain available quantitative information. The model 

of a process can be greatly simplified if only the signs (+, 0, -) of process variables 

are concerned. If the order of magnitude information is used in qualitative reason­

ing, then only limited simplification is allowed to preserve the order of magnitude 

information. There is a conflict between model simplification and obtaining a less 

ambiguous result. 

Based on qualitative modelling, process fault diagnosis can be performed through 

the "hypothesis-test" strategy. Since the behaviour of the process under certain 

failures, such as sensor failures, may not be predicted efficiently through qualitative 

simulation, an approach combining qualitative reasoning and heuristic reasoning 

should be used. Through decomposing the system being diagnosed into several 
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subsystems, diagnosis can be rapidly focused in a small region. 
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Fig.5.1 Two mass collision problem 

130 



Common list: 

level sensor 1 fail 
level sensor 2 fail 
temp. sensor 1 fail 
hand valve 1 blocked 

List 1: 

cold water control 
valve fail 
hot water:.ocontrol 
valve fail 

Figure 5.2 Candidate lists 

131 

List 2: 

temp. sensor 2 fail 

hand valve 2 blocked 



Chapter 6 

Qualitative simulation based fault 

diagnosis with self-reasoning 

facility 

6.1 Introduction 

With the increasing complexity of expert systems, it would be desirable to design a 

system that can reason its own behaviour and thus find its own defects and improve 

its performance by correcting these defects. That is it can learn from past experience. 

Since diagnosis is a dominant application area of expert systems, the ability of 

learning would be a desirable property for a fault diagnosis system and, recently, 

several fault diagnosis systems with a learning property have been reported (Pazzani 

1986, 1987, Rich and Venkatasubramanian 1989). They are called failure-driven 

learning diagnosis systems because learning is initiated when a failure occurs in 

diagnosis. 

In these systems, fault diagnosis is based on a set of heuristic rules, which are 

believed to give efficient diagnosis. These heuristic rules are in the form: 

IF Symptoms THEN Fault. 

Since the heuristic rules may not be perfect, a failure may occur during diagnosis 

in that the hypothesis proposed by a rule is incorrect. Once such a failure has 

occurred, the heuristic rule generating the wrong hypothesis is modified and a new 

rule is generated. The task of learning is carried out based on a deep model of the 

system being diagnosed. From this deep model, the other effects of the proposed 
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fault, which are not included in the condition part of the failed heuristic rule, can 

be obtained and another fault, which may cause the same symptom as the condition 

part of the failed heuristic rule, can also be obtained. The failed heuristic rule is 

modified by including additional features in its condition part, which are obtained 

from reasoning through the deep model, such that its applicability is limited and 

will not be employed in future similar situations. A new heuristic rule corresponding 

to the newly discovered fault from reasoning through the deep model is added. 

Generally, in the diagnosis of a complex system, such as a nuclear reactor (Nelson 

1982), the diagnosis result is usually obtained by the chaining of a set of rules, and 

some of the rules are not in the form: IF Symptoms THEN Fault. Therefore, when 

a failure occurs in fault diagnosis, it may not be easy to decide which particular rule 

is responsible for this failure and, hence, the above described method may not be 

applied in a straight forward manner to the diagnosis of complex systems. 

In this Chapter, a self-learning fault diagnosis system, where the task of learning 

is carried out differently from above, is described. It is based on the fault diagnosis 

system described in Chapter 5, which diagnoses faults based on a deep qualitative 

model of the process being monitored. More such qualitative model based fault 

diagnosis systems have been reported recently (Herbert and Williams 1986, 1987, 

Oyeleye and Kramer 1988, Waters and Ponton 1989), which demonstrates the pop­

ularity of the qualitative model based approach in process fault diagnosis. From 

this qualitative model, the expected behaviour of the process can be generated and, 

if it is different from the actual one, then it is perceived that a fault (or faults) 

occurs in the process. Fault diagnosis is performed by generating a set of hypothe­

ses, each assuming a specific fault occurring, which are tested using heuristic rules 

or qualitative simulation depending on the nature of a particular hypothesis. The 

hypotheses assuming sensor failures are discriminated by a set of heuristic rules, 

while other hypotheses are tested by qualitatively simulating the effect of a par­

ticular fault on the process and comparing this with the actual measurements and, 

depending on whether they match or not, a hypothesis is confirmed or rejected. The 

threshold values for converting quantitative values to qualitative values and those 

used in sensor failure diagnosis will affect the performance of the system, and the 

inappropriate settings of these parameters are considered as a major reason for fail­

ures in diagnosis. Once such a failure occurs, the self-learning fault diagnosis system 

will examine the recorded problem solving history and reason its own behaviour. It 

will try to find any inappropriate threshold values and give a diagnosis result under 

new values. The self-learning fault diagnosis system can be viewed as a hierarchical 

fault diagnosis system where the lower level diagnosis system is an ordinary one as 
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described in the previous chapter and the upper level one can reason the behaviour 

of the lower level one if it failed to give a correct result. 

In the next section, a detailed description of the self-learning diagnosis system 

is given. Section 6.3 describes the application in the fault diagnosis of the mixing 

process. A case study is given to illustrate how the self-learning fault diagnosis 

system works, and this is followed by a description of the performance of the system. 

The last section contains some concluding remarks. 

6.2 Self-learning fault diagnosis 

When the self-learning fault diagnosis system fails to give a correct result, it begins 

to investigate its own behaviour. There are two kinds of such failures: one is that 

the diagnosis result is wrong, another one is that the system has perceived that 

a fault (or faults) occurs in the process but no diagnosis result is presented. The 

reasons for the failures are considered to be: incorrect qualitative models, this could 

be either that the model developed for the normal operating conditions is incorrect, 

which could lead to a wrong fault detection, or some of the models developed for 

various faulty condition are invalid, which could result in a wrong diagnosis; incor­

rect generation of hypothesis, for example, the generated hypotheses do not include 

the real fault; and incorrect settings of certain parameters which set the thresholds 

for converting quantitative values to qualitative values and the thresholds used to 

diagnose sensor failures. Here the major reason is considered to be inappropriate set­

tings of certain thresholds. These will dramatically affect the diagnosis. Sometimes, 

if the effect of a malfunction is slight, then certain measurements may be at their 

thresholds and, therefore, the diagnosis is sensitive to the incremental changes in the 

plant state. This is referred to as diagnostic instability (Kramer 1987). Shiozaki et 

al (1985) show the superiority of using five-range patterns of abnormality to using 

three-range patterns of abnormality. In their work, they use SDG (Signed, Directed 

Graphs) with five-range patterns of abnormality to diagnose chemical plant faults. 

In the previous SDG approach (Iri, O'Shima, and Matsuyama 1979), the state of 

a process variable is described by one of the following signs: +, 0, and -, where 

+ stands for higher than normal, 0 for normal, and - for lower than normal. The 

problem with this approach is that it is difficult to determine the threshold values, 

and any inappropriate values can result in a wrong diagnosis. Shiozaki et a/ (1985) 

modify this approach by using five-range patterns ( +, +?, 0, -?, - ) to describe 

the states of process variables, where +? and -? indicate the uncertainties between 
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+ and 0, and - and 0 respectively. It is shown that by such means the possibility 

of a wrong diagnosis can be reduced. Here a possible range for each threshold value 

is defined, such that the threshold values can vary within their ranges. Through 

reasoning its own behaviour, the diagnosis system will find any inappropriate pa­

rameters and suggest correct ones. It will then present the diagnosis result under 

the new parameters. This can also be viewed as failuredriven learning since learning 

is initiated when the diagnosis system fails to give a correct result. 

As pointed out by Hudlicka and Lesser (1987), a problem solving system has 

the following characteristics: 1) complete knowledge of internal system structure; 

2) availability of the intermediate problem solving states; 3) large amount of data 

to process during diagnosis; 4) in some cases, lack of absolute standards for correct 

behaviour. With the first two properties, it would be desirable to design a self­

learning fault diagnosis system which investigates its own behaviour based on its 

own model. 

6.2.1 Model of the fault diagnosis system 

The fault diagnosis system contains two parts: fault detection and fault diagnosis. 

Fault detection is performed by comparing the actual behaviour of the process being 

diagnosed, which comprises the qualitative increments (increase, steady, or decrease) 

of certain measured variables over a period, with its prediction, as is illustrated in 

Figure 6.1. 

In Figure 6.1, the controlling input to the process being diagnosed and the result­

ing on-line measurements are converted into qualitative values by a quantitative to 

qualitative value converter. A qualitative simulator then simulates the process and 

predicts the qualitative increments of certain measured variables. These predictions 

are compared with the qualitative increments converted from on-line measurements. 

If they are identical, then no fault is identified. If they are different, then the 

measurements of several successive samples are taken to eliminate the effect of mea­

surement noise. Here NV S (Number of Violated Samples) is used to represent the 

number of samples in which the actual and predicted qualitative increments are dif­

ferent. If NV S is greater than a pre-defined threshold, N" then, and only then, is 

it perceived that a fault (or faults) occurs in the process. Once such a situation is 

encountered, the diagnosis system begins to diagnose faults. 

The diagnosis methods for sensor failures and other component failures are dif­

ferent, as illustrated in Figure 6.2. If the generated hypothesis indicates a sensor 
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failure, then it is confirmed or denied by a set of heuristics. In these heuristic rules, 

symptoms are linked by logical operators: AND and OR, as is illustrated in Figure 

6.3 where, if symptom C is presented, or both symptoms A and B are presented, then 

it is indicated that the sensor has failed. The symptoms are determined by compar­

ing the on-line measurements with pre-defined thresholds. For example, one of the 

heuristic rules is to check if the increment of a measurement between two successive 

samples is too high and, if it is, then it indicates sensor failure. The quantitative 

increment of a measurement between two successive samples is compared with a 

threshold to determine if it is too high or not. 

If the generated hypothesis indicates the failure of other components rather than 

sensors, then it is discriminated through qualitative simulation as illustrated in 

Figure 6.4. It can be seen that the diagnosis of the failures of non-sensor components 

is similar to the fault detection shown in Figure 6.1. The difference is: for fault 

detection, the qualitative simulator simulates the behaviour of the process under 

normal conditions; while, for the diagnosis of non-sensor components, the simulator 

simulates the behaviour under a given hypothesis which is the assumption that 

some components have failed. In Figure 6.4, the qualitative increments of certain 

measured variables are compared with their predictions which are calculated through 

qualitative simulation. This procedure is repeated for all the recorded successive 

samples. If NV S is less than a pre-defined threshold value, Nd, then the hypothesis 

is confirmed. If the generated hypothesis is not confirmed, the fault diagnosis system 

will generate another hypothesis and repeat the above procedure until a fault is 

diagnosed or all the possible candidates have been tested. 

6.2.2 Reasoning the behaviour of the fault diagnosis sys­

tem 

Reasoning the behaviour of the fault diagnosis system can be done by backward 

tracing through its model. When a failure occurs in diagnosis, an expected output 

of the system is set, which is propagated backwards through the model of the fault 

diagnosis system. The threshold values which are responsible for not giving the 

expected output are then examined to determine the change of which threshold 

values will give the expected output. 

As mentioned previously, any inappropriate threshold values could result in fail­

ures in fault diagnosis, and there are two kinds of such failures. One is that the 

diagnosis result is wrong, and the other is that it is detected that a fault (or faults) 
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occurs in the process but no diagnosis result is presented. The failure may lie in the 

fault detection part, that is there is actually no fault but it is detected that a fault 

(or faults) occurs, or the fault diagnosis part, that is the diagnosis result is wrong 

or no result is given. Since the fault diagnosis starts when it has detected that a 

fault (or faults) occurs in the process, the self-learning diagnosis system will first 

examine the fault detection part. It will then try to find out whether there really is 

a fault in the process being monitored. 

Examining the fault detection part 

To examine the fault detection part the self-learning fault diagnosis system will carry 

out backward tracing through the model of this part as shown in Figure 6.1. It will 

try to deny the fault detection by changing certain threshold values within acceptable 

ranges. To do this, it will first give an expectation that there is no fault at the output 

of the fault detection part. Then this expectation is propagated backwards through 

the model. To deny the fault detection, NV S should be decreased such that it 

is lower than Nf . The value of NV S is determined by the discrepancies between 

predicted behaviour and actual behaviour and to reduce NV S, it will then examine 

which variable's qualitative increment is different from its prediction. Then it will 

try to change the threshold values, which are related to the conversion of this variable 

from its quantitative value to a qualitative value and to the qualitative simulation 

for predicting this variable's qualitative increment, within certain ranges to see if 

NV S can be decreased below the defined threshold value Nf . If it can, then the 

fault detection is denied and the new threshold values are recorded. Otherwise, the 

fault detection cannot be denied and the fault diagnosis part should be examined. 

The conversion from a quantitative value to a qualitative value of a variable A 

is performed by comparing the quantitative value with pre-defined threshold values 

A+ and A_ such that 

+, A> A+, 

[A] = 0, A_ < A < A+, 

A< A_. 

It can be seen that the qualitative value may change when the threshold values are 

changed. To reduce NV S, the associated threshold values should be changed such 

that the predicted and actual qualitative increments will move towards correspon­

dence. For example, if the predicted and actual qualitative increments are + and 

- respectively, then the associated threshold values should be changed in such a 

way that the two qualitative increments will move towards 0, while if the predicted 
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and actual increments are + and 0 respectively, then the associated threshold values 

should be changed so as to either move the predicted value to 0 or move the actual 

value to +. Since the result of changing the threshold values related to the de­

termination of actual qualitative increment can be easily obtained, these threshold 

values are changed first such that the actual qualitative increment can be moved 

towards its prediction. The way to change threshold values is illustrated by the 

following example. Suppose that it is required to change [A] in the above equation 

from - to 0, then the threshold value A_ should be reduced to increase the range 

[A_, A+] which corresponds to the qualitative value o. If by this means NV S can be 

reduced below its threshold N" then the fault detection is denied. Otherwise, the 

threshold values relating to the calculation of the predicted qualitative increments 

are changed such that the predicted values will change towards the actual ones. 

If NV S can be reduced below its threshold N" then the fault detection is denied 

and the new threshold values are recorded. If the fault detection cannot be denied, 

then it is believed that there is really a fault (or faults) in the process and the fault 

diagnosis part should be examined. 

Examining the fault diagnosis part 

A failure in the fault diagnosis part can be in the form that a diagnosis result is 

wrong or that no diagnosis result is presented. The self-learning diagnosis system 

will examine the recorded problem solving history. It will examine the generated 

hypothesis and try to confirm the hypothesis which is denied by the diagnosis system 

and to deny the wrong diagnosis. This can be summarised as an algorithm: 

Step 1. Let the hypothesis be the initially generated hypothesis. 

Step 2. If this hypothesis was confirmed by the fault diagnosis system in that it is 

the diagnosis result, then perform the sub-task: deny hypothesis, if it can be 

denied the new threshold values will be recorded, then, go to Step 3; if this 

hypothesis was denied by the diagnosis system, then perform the sub-task: 

confirm hypothesis, if it is confirmed, then record the new threshold values 

and exit, else, go to Step 3. 

Step 3. If the hypothesis is the last one in the recorded problem solving history, 

then exit; else, let the hypothesis be the next generated hypothesis and go to 

Step 2. 
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Since sensor failures are diagnosed differently from other component failures, 

the sub-tasks of denying and confirming hypotheses for these particular failures are 

carried out differently. If the task is to deny a sensor failure, then the self-learning 

system will trace backwards through the recorded diagnosis history and find out 

which symptom resulted in this diagnosis. Next, it will examine if this symptom 

can be eliminated by changing the related threshold values within certain ranges. If 

it can, then this hypothesis can be denied by changing the related threshold values. 

If the task is to confirm sensor failure, then the selflearning diagnosis system 

will trace through the recorded diagnosis history and examine if some symptoms 

necessary for confirming sensor failure can be established by changing the related 

threshold values. If, indeed, it is found that these symptoms can be established by 

changing certain threshold values, then this hypothesis can be confirmed. 

The tasks of confirming or denying other component failures are carried out by 

backward tracing through the model of the fault diagnosis part as shown in Figure 

6.4. Hypothesis confirmation is performed in a similar way as the task of denying 

fault detection which is described earlier. To confirm a hypothesis, NV S should 

be reduced such that it is lower than the threshold Nd • This may be achieved by 

changing the associated threshold values in a similar way, as described previously, 

to deny fault detection. 

To deny a hypothesis, NV S should be increased such that it is not lower than 

the threshold Nd• The associated threshold values should be changed in such a way 

that the predicted qualitative increment and the actual one will move in opposite 

directions to extend their differences, and so that NV S will increase. For example, if 

the predicted and actual qualitative increments have the value +, then the associated 

threshold values should be such changed that one of the qualitative increments will 

move to O. 

6.3 Implementation 

6.3.1 Fault diagnosis of a mixing process 

The above described self-learning diagnosis techniques have been applied to the fault 

diagnosis of the pilot scale mixing process. A fault diagnosis system which diagnoses 

faults based on a qualitative model of the mixing process has been developed and 

described in the previous chapter. Based on the qualitative model, the qualitative 
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increments of the measured variables are calculated and are compared with the 

actual measurements. If they do not match, then it is detected that a fault (or 

faults) occurs, and the diagnosis system begins to diagnose this fault. Within this 

diagnosis system, the identification of sensor failures is based on heuristic rules while 

the other system component failures are diagnosed by simulating the process under 

a hypothesis and comparing the simulated behaviour with the actual one. If the 

actual behaviour follows the simulated one, then the hypothesis is confirmed. 

The performance of the fault diagnosis system is affected by the threshold values 

which are related with the conversion from quantitative values to qualitative values 

and the determination of symptoms in the diagnosis of sensor failures. It would be 

desirable that the fault diagnosis system can reason its own behaviour such that any 

inappropriate settings of threshold values can be determined and the performance 

of the system will be improved. A self-learning fault diagnosis system is developed 

for achieving such a requirement. When the system fails to give a correct result, the 

self-learning fault diagnosis system will examine its own behaviour and determine 

any inappropriate threshold values. To do this, a set of ranges in which each thresh­

old value can vary are defined. The threshold values used, together with their ranges 

are shown in Table 6.1, where CT1(1) to CT1(17) are the currently used threshold 

values, VT1 and VT2 are the corresponding maximum and minimum possible val­

ues for each threshold. The threshold values with units "em" and "OC" are used 

for level and temperature measurements respectively, while the others are used for 

outputs of control valves with "%" indicating the percentage of opening. The first 

nine threshold values are used to convert quantitative increments, in measurements 

and controller outputs, to their qualitative forms. For example, CT1(1) is used to 

determine the qualitative increment of temperature in tank 1 as follow: 

+, if ~Tl > CT1(1), 

[~Tl] = 0, if -CT1(1) < ~Tl < CT1(1), 

if ~Tl < -CT1(1). 

The other threshold values are used in the diagnosis of sensor failures. 

6.3.2 Implementation language 

The self-learning fault diagnosis system has been implemented in an expert system 

shell: ExTran (Razzak, Hassan, and Ahmad 1986). The self-learning fault diagnosis 

system is defined by a main problem, EFD, together with 26 sub-problems. Each 

sub-problem performs a specified task. Corresponding to each problem, there is a 
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Table 6.1: The used threshold values and their ranges 

eTl VT1 VT2 

1 0.15°e OAoe o.ooe 

2 0.15°e OAoe o.ooe 

3 O.lem 0.3em O.Oem 

4 O.lem 0.3em O.Oem 

5 8.0% 20.0% 0.0% 

6 8.0% 20.0% 0.0% 

7 2.0% 6.0% 0.0% 

8 1.5% 3.0% 0.0% 

9 2.0oe 5.0oe o.ooe 

10 4.0em 6.0em 2.0em 

11 8.0oe 10.0oe 5.0oe 

12 O.lem OAem 0.08em 

13 0.04em 0.06em O.Oem 

14 0.3°e 0.6°e 0.2°e 

15 0.05°e O.l°e o.ooe 

16 3.0oe 7.0oe 2.5°e 

17 3.0em 4.0em 2.0em 
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rule file. The rules in these files can be provided by the designer or induced by 

ExTran from given examples. Since the self-learning diagnosis system reasons its 

own behaviour from its model, the rules are provided by the designer. 

6.3.3 A case study 

Since the fault diagnosis system for the mixing process described in Chapter 5 is 

well tuned, all the threshold values are set appropriately. To test the self-learning 

diagnosis system, initially it is required to deviate some threshold values from their 

pre-set values. In this example, we have set the 16th threshold value, CTl(16), re­

lated to the diagnosis of temperature sensor failure, to 6.0°C. Its previous value was 

3.0°C and its range is considered to be [2.5°C, 7.0°C]. The corresponding diagnostic 

rule is: 

IF Temperature in tank 2 is at its setpoint 

AND 

The difference between temperatures in tank 1 and 

tank 2 is greater than CTl(16) 

THEN Temperature sensor in tank 1 has failed 

The threshold value was set by entering the conversational mode of the super­

visory program. The conversation between the process operator and the computer 

covering this event is shown in Figure 6.5, where the italics are the operator's reply. 

After changing this threshold value, the failure of temperature sensor 1 is initiated. 

The diagnosis result under this inappropriate threshold is "Hot water control valve 

fail". After being informed that the diagnosis result is wrong, the self-learning di­

agnosis system begins to examine its own behaviour. It then finds that the 16t h 

threshold value is set too high, and if this threshold value is reduced to 5.0°C, the 

diagnosis result would be "Temperature sensor 1 fail". Figure 6.6 is a copy of the in­

formation displayed on the screen. In Figure 6.6, the process is initially operated at 

its steady state. After time block number 44, a temperature sensor 1 failure, in the 

form that its output deviated to 35°C instead of the normal value 40°C, is initiated, 

and a diagnosis result is given after time block number 45. The self-learning fault 

diagnosis system was informed that the diagnosis result is wrong after time block 

number 48. This was done by entering the conversational mode of the supen'isory 

program and, the convcrsation between process operator and the computer covcring 

this event is presented in Figure 6.7, where the italics are the operator's reply. 
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6.3.4 Performance of the self-learning fault diagnosis sys­
tem 

The self-learning fault diagnosis system has been tested for several threshold values 

in a similar way as in the above example, and the results of these experiments are 

shown in Table 6.2. In the first three cases, faults are detected but no diagnosis result 

is presented. Then the self-learning fault diagnosis system immediately reasons its 

behaviour. Any inappropriate thresholds are found and the diagnosis result under 

the new thresholds is presented. By this means, the fault diagnosis is not delayed 

by the inappropriate settings of certain threshold values. In the last three cases, 

the diagnosis results are wrong, as found by the process operator. After being 

informed that the diagnosis result is wrong, the self-learning fault diagnosis system 

examines its own behaviour, and finds any inappropriate threshold values and the 

diagnosis result under the new threshold values. From safety considerations, the self­

learning fault diagnosis system will not make any changes in threshold but makes 

recommendations to operators, who can change the threshold values based on his 

own judgment. 

6.4 Conclusions 

This chapter describes a self-learning fault diagnosis system based on qualitative 

modelling. As the qualitative model based approach is gaining its popularity in pro­

cess fault diagnosis, the technique presented in this chapter could have its practical 

values. The ability for reasoning its own behaviour is a desirable property for any 

future generation fault diagnosis system. With such a property, the fault diagnosis 

system will become more autonomous; in that it can explain its own behaviour, aid 

a developer with debugging, and adapt its behaviour to a changing environment. 

Through reasoning its own behaviour, the fault diagnosis system can improve its 

own performance over time and, hence, exhibits self-learning attributes. 

By recording the problem solving history, all the intermediate problem solving 

states are available. Since the model of a diagnosis system is also available, learn­

ing can be achieved by reasoning the behaviour of a fault diagnosis system from 

its model. This fundamental idea may also be applied in other knowledge- based 

problem solving systems. 

Apart from inappropriate parameters, there are other reasons for failures in 

diagnosis, such as incorrect models and incorrect generating of hypothesis, which 
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Table 6.2: Performance of the self-learning fault diagnosis system 

inappropriate initiated failure in result of 
threshold values fault diagnosis self-learning 

level fault is CT2(12) = O.14cm 
CTl(12) = O.3cm sensor 2 detected level sensor 

fail but not 2 fail 

diagnosed 

hot water CT2(1) = O.12°C 

CTl(l) = O.3°C control same as hot water 

valve above control 

fail valve fail 

cold water CT2(3) = O.17cm 

CTl(3) = O.2cm control same as cold water 

valve above control 

fail valve fail 

temp. wrong CT2(16) = 5.0°C 

CTl(16) = 6.0°C sensor 1 diagnosis: temp. sensor 

fail hot water 1 fail 

control 

valve 

fail 

level wrong CT2(17) = 3.0cm 

CTI (17) = 2.0cm sensor 1 diagnosis: level sensor 

fail cold water 1 fail 

control 

valve 

fail 

CTl(9) = 4.0°C temp. wrong 

CTl(14) = O.6°C sensor 2 diagnosis: CT(14) = O.43°C 

fail hand valve tern p. sensor 

1 blocked 2 fail 



are not concerned here. These could be investigated in future researches. 
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2-0CT-1989 11:51:10.11 
BLOCK TEMP 1 TEMP2 LEVELl LEVEL2 HOTV COLDV SP:T SP:L 
********************************************************************* 

41 40.03 40.03 32.19 15.04 39.32 78.48 40.00 15.00 
42 40.03 40.03 32.14 15.01 39.32 78.48 40.00 15.00 
43 40.03 40.03 32.10 14.98 39.32 78.48 40.00 15.00 
44 40.03 40.03 32.06 14.96 39.32 78.48 40.00 15.00 

2-0CT-1989 11:52:02.74 
BLOCK TEMPI TEMP2 LEVELl LEVEL2 HOTV COLDV SP:T SP:L 
********************************************************************* 

45 35.00 40.03 32.02 14.94 39.38 78.42 40.00 15.00 
********************************* 
********************************* 
--------MALFUNCTION! !------------

HOT WATER CONTROL VALVE FAIL 
********************************* 
********************************* 
46 40.04 40.04 31.98 14.92 39.42 78.61 40.00 15.00 
47 40.04 40.04 32.04 14.92 39.91 79.58 40.00 15.00 
48 40.04 40.04 32.10 14.95 39.74 79.23 40.00 15.00 

2-0CT-1989 11:52:05.17 
BLOCK TEMPI TEMP2 LEVELl LEVEL2 HOTV COLDV SP:T SP:L 
********************************************************************* 

********************************* 
SUGGESTIONS: 

CT: 16 
OLD VALUE 

6.0000 
NEW VALUE 

5.0000 
********************************* 
********************************* 
--------MALFUNCTION! !-----------­

TEMP. SENSOR 1 FAIL 
********************************* 
********************************* 
49 
50 

40.04 
40.04 

40.04 
40.04 

32.14 
32.18 

14.97 
14.99 

39.74 
39.74 

79.23 
79.23 

Figure 6.6 On-line displayed information 
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TYPE: "1" TO CHANGE SET POINTS 
"2" TO LIST/CHANGE OTHER PARAMETERS 
"3" TO CHANGE PRINT MODE 
"4" TO CHANGE BBC MONITORING MODE 
"5" TO SHUT DOWN 
" 6 " TO EXIT CONVERSATIONAL MODE 
"7" TO SET REPAIR FLAG 
"8" TO CHANGE THRESHOLD VALUES 

7 
TYPE "0" FOR FINISHING REPAIR 

"1" FOR UNDER REPAIRING 
"2" FOR INCORRECT DIAGNOSIS 

2 

TYPE: "1" TO CHANGE SET POINTS 
"2" TO LIST/CHANGE OTHER PARAMETERS 
"3" TO CHANGE PRINT MODE 
"4" TO CHANGE BBC MONITORING MODE 
"5" TO SHUT DOWN 
"6" TO EXIT CONVERSATIONAL MODE 
"7" TO SET REPAIR FLAG 
"8" TO CHANGE THRESHOLD VALUES 

6 

Figure 6.7 Inform a wrong diagnosis 
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Chapter 7 

Fault diagnosis by the combined 

use of deep knowledge and 

heuristics with the heuristics 

learned frolll deep kno\V ledge 

based diagnosis 

7.1 Introduction 

As mentioned in Chapter 2, expert systems for industrial process fault diagnosis can 

generally be divided into two categories: a shallow knowledge based approach and a 

deep knowledge based approach. In the first category the knowledge base contains 

heuristic rules which encode the experiences of process operators. This type of expert 

system can usually diagnose faults very efficiently because heuristics can provide 

valuable short cuts (Lapointe et al 1989, Moor and Kramer 1986). Lapointe et al 

(1989) developed an expert system for waste water treatment process diagnosis -

BIOEXPERT, in which shallow knowledge is used for diagnosing the more common 

faults. Since the knowledge base does not contain any deep knowledge, such as the 

knowledge about system structure and component functions, it may have difficulties 

when dealing with novel faults and infrequently occurred faults. In contrast, in the 

deep knowledge based approach, the knowledge base contains information on system 

structures and unit functions as well as physical laws governing the process. \\"ith 

such a knowledge base, fault diagnosis can be carried out with greater reliability. 
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However, the diagnostic efficiency is affected by its detailed knowledge base, because 

the diagnosis system needs to explore the entire causal path from a failed component 

to the observed abnormalities. 

To enhance both efficiency and reliability, a combination of the two approaches 

should be considered. There is a trend towards building fault diagnosis systems 

using both shallow and deep knowledge (Lapointe et ai1989, Moor and Kramer 1986, 

Venkatasubramanian and Rich 1988). Venkatasubramanian and Rich (1988) discuss 

a fault diagnosis system for a chemical process using both types of knowledge. They 

propose a two-tier architecture for integrating compiled and deep level knowledge in 

that the process specific compiled knowledge is stored at the top tier, while the lower 

tier holds deep knowledge. During diagnosis, the compiled knowledge is invoked first. 

If a diagnosis result cannot be obtained from the compiled knowledge, the diagnosis 

will drop down to the deep level knowledge. 

To reduce the effort of encoding and debugging diagnostic heuristics from diag­

nostic experts, machine learning techniques (Michalski et ai1983, Forsyth and Rada 

1986) can be used to automatically acquire diagnostic heuristics. Recently several 

researchers have attempted to incorporate a learning mechanism into process fault 

diagnosis systems to make them more intelligent (Ishida 1988, pazzani 1986, 1987, 

Rich and Venkatasubramanian 1989). In Pazzani's approach (Pazzani 1986, 1987), 

a set of initially developed heuristic rules are used to propose a hypothesis when 

an abnormal condition is encountered, and a deep model is then used to confirm 

this hypothesis. If it cannot be confirmed, then the heuristic rule which proposed 

this hypothesis is considered to have failed and it is revised by adding additional 

terms to its condition part to limit its applicability. This is called failure-driven 

learning since learning is initiaed when a hypothesis failure occurs. Through this 

failure-driven learning, the existing heuristic rules can be refined but there may 

exist situations where there are no heuristic rules corresponding to some failures, 

especially failures which occur infrequently. In such situations, it would be desirable 

that the system can still diagnose the fault and learn a new heuristic rule. This 

is not addressed in pazzani's approach (Pazzani 1986, 1987). Rich and Venkata­

subramanian (1989) discuss a causality-based failure-driven learning approach. In 

their approach, when a heuristic rule fails to propose the right hypothesis, the rule 

is revised and the system will drop down to deep knowledge based diagnosis, and it 

could learn a new heuristic rule. This method is developed for off-line diagnosis as 

can be seen from the context of Venkatasubramanian and Rich (1988), and Rich and 

Venkatasubramanian (1989). The condition parts of some heuristic rules include the 

negation of the failures of some other compo-nents, and this information is obtained 
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from the operator. The aim of these failure-driven learning approaches is mainly to 

refine the existing heuristic rules. 

Apart from these failure-driven learning approaches, Ishida (1988) demonstrates 

that diagnostic heuristics can be learnt from qualitative simulation of the process 

behaviour. Simulation of a process is conducted by inserting a fault as a disturbance 

to the qualitative model. The qualitative deviations of certain process variables are 

calculated and compiled to form a rule corresponding to this fault. 

In this research, an on-line fault diagnosis system which uses both deep knowl­

edge and heuristics is investigated. During diagnosis, the system will first invoke 

the heuristic rules to propose a hypothesis. If a hypothesis can be proposed, then 

a deep model is used to discriminate this hypothesis. Otherwise, the diagnosis is 

based entirely on the deep model. The fault diagnosis system will test a set of can­

didate faults by inserting each fault as a disturbance to the qualitative model. The 

candidate which can explain the observed abnormalities is taken as the diagnosis 

result. The system can learn new diagnostic heuristic rules and refine existing ones 

during diagnosis. Learning is initiated not only when a heuristic rule proposes a 

wrong hypothesis, but also when there is not a heuristic rule corresponding to a 

successful diagnosis. Initially, there can be a few, or even no, heuristic rules and, 

during diagnosis, the system will continuously learn heuristics such that rules can 

be gradually built up. 

In the next section, diagnosis using both heuristics and deep knowledge is de­

scribed. Section 7.3 describes the procedure of learning new diagnostic rules and 

refining existing ones. An illustrative application to the on-line fault diagnosis of 

the mixing process is presented in Section 7.4. Section 7.5 describes the application 

to the CSTR system. The last section contains some concluding remarks. 

7.2 Fault diagnosis using both heuristics and deep 

knowledge 

Taking account of issues of efficiency and reliability, an on-line system which uses 

both heuristics and deep knowledge to diagnose faults has been investigated. The 

heuristics, in the form of rules, are used to propose a hypothesis. The deep knowl­

edge, in the form of a deep qualitative model, is used to confirm the proposed hy­

pothesis. Therefore, when abnormalities occur in the measurements, the diagnosis 

system will match the observed abnormalities with the condition parts of heuristic 
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rules, and the rule whose condition part matches the observed abnormalities is used 

to propose a hypothesis. The qualitative model is then used to predict the behayiour 

of the process under this hypothesis by means of qualitative simulation techniques 

(Bobrow 1984). This prediction is compared with the actual behaviour of the pro­

cess and, depending on whether they agree or not, the hypothesis is confirmed or 

denied. This is referred to as the "hypothesis-test strategy" (Moor and Kramer 

1986). By this means, diagnostic efficiency is achieved by the use of heuristic rules 

and diagnostic reliability is ensured by the use of a deep qualitative model. 

The heuristic rules may be incomplete and some of them may be incorrect such 

that the hypothesis proposed may later be denied by the deep model of the process, 

or no hypothesis can be generated by the heuristic rules. This is referred to as "fail­

ures in using heuristic rules". When such cases are encountered, the fault diagnosis 

system will rely on the deep model based approach. It will use a hypothesis- test 

strategy to test a set of candidate failures. The desired behaviour of the process 

corresponding to each candidate failure is predicted through qualitative simulation 

and is compared with the actual behaviour of the process, and the candidate which 

can explain the observed abnormalities is taken as the diagnosis result. Therefore, 

the incompleteness in heuristic rules will not obstruct the diagnosis. 

Since the incompleteness in the rules will reduce the diagnostic efficiency, it would 

be desirable that the fault diagnosis system can learn heuristic rules itself. This is 

also desirable from the point of view of easing the task of knowledge acquisition, 

which often needs considerable effort because process experts usually have little 

knowledge about knowledge engineering. Furthermore, it is also often difficult for 

a knowledge engineer to fully understand the operation of a specific process, and 

this issue is often referred to as the "knowledge engineering bottleneck" (Moor and 

Kramer 1986, Price and Lee 1988). By means of machine learning techniques, the 

diagnosis system can automatically build up its heuristic rule base and, hence, the 

diagnostic efficiency will be gradually improved. 

The fault diagnosis system described in this chapter is designed to fulfill the above 

requirement. Initially the heuristic rule base contains a limited number of heuristic 

rules, or may even be empty. After each diagnosis, in which the diagnosed fault is 

not proposed by the heuristic rules, the system will learn a new rule by recognising 

any significant patterns in the deviations of measurements and compiling them to 

form a heuristic rule. By such means, the heuristic rule base will gradually be 

assembled. 

During diagnosis, the number of occurrences of each fault is recorded, and the 
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heuristic rules corresponding to the frequently occurred failures are arranged at 

the top of the rule base. Therefore, the fault diagnosis system can diagnose more 

frequently occurred faults more efficiently. 

7.3 Learning diagnostic heuristic rules 

After a successful diagnosis, the system will examine the result and decide if learning 

should be initiated, which occurs when failures arise in using heuristic rules. These 

failures include the following situations: 1), there is no heuristic rule corresponding 

to the diagnosed fault and no heuristic rule is employed; 2), there is no heuristic 

rule corresponding to the diagnosed fault but one of the heuristic rules is mistakenly 

used; 3), there is a heuristic rule corresponding to the diagnosed fault, but none of 

these rules is used; 4), there is a heuristic rule corresponding to the diagnosed fault, 

but it is not employed and, instead, one of the other rules is erroneously employed. 

For the first two situations, a new heuristic rule needs to be learnt from the 

successful diagnosis since there is no rule corresponding to the diagnosed fault and, 

furthermore, for the second situation, apart from learning this new heuristic rule, 

the rule which proposed a wrong hypothesis should also be refined so that it will not 

erroneously be employed in future similar situations. For the last two situations, 

the condition part of the existing heuristic rule corresponding to the diagnosed fault 

should be revised such that it can match the current condition and, hence, propose 

the correct hypothesis in future similar conditions. For the last situation, in addition, 

the incorrectly employed rule should be revised such that its applicability should be 

limited. To summarise, there are two basic learning tasks, namely to learn new 

diagnostic heuristic rules and to refine existing rules. 

7.3.1 Learning new diagnostic heuristic rules 

After a successful diagnosis a new rule can be constructed from the recorded on-line 

measurements and controller outputs used for this diagnosis and its result. The 

consequence part of the rule is simply the diagnosed fault while the condition part 

of this rule contains symptoms associated with this fault. These symptoms are the 

qualitative increments (increase, steady, and decrease) of certain measurements and 

controller outputs over an interval. 

The diagnostic heuristic rules are organised in the form of a table, as shown in 

Figure 7.1, where each row corresponds to a specific rule and the empty rows are used 
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to hold new rules. Hanakuma (1989) describes a fault diagnosis system for use at 

petrochemical plants, where diagnostic rules are stored in the form of a table similar 

to Figure 7.1, and the table is called CSM (Cause-Symptom Matrix). The last box 

in each row contains the consequence part of the rule. The other boxes correspond 

to the on-line measurements and controller outputs used in diagnosis and are used 

for holding symptoms which comprise the conjunctive qualitative increments of the 

on-line measurements and controller outputs. Each of these boxes is filled by one 

of the signs, +, 0, -, and *, to represent increase, steady, decrease, and unused, 

respectively. Since some measurements are not needed in the diagnosis of a specific 

fault, the boxes corresponding to these measurements are filled by "*,, to indicate 

that they are not needed. For example, the first row of the table in Figure 7.1 can 

be interpreted as: 

IF HI increases 

H2 increases 

Qc decreases 

Q h increases 

THEN Cold water control valve fails 

Learning a heuristic rule is simply performed by filling the empty boxes in the 

the first empty row. This is essentially the signature table method (Forsyth and 

Rada 1986) in machine learning. The box for holding the conel usion part of the 

heuristic rule is simply filled with the diagnosed fault. The symbols in the other 

boxes are entered by comparing the increments of the on-line measurements and 

controller outputs over an interval with the correspondingly pre-defined thresholds. 

By this means the qualitative increments of all the measurements and controller 

outputs can be obtained. Some of the measurements may not be affected by this 

fault and, therefore, the boxes corresponding to these measurements should be filled 

with "*". The problem here is how can the computer know which measurements 

are not affected by a specific fault. Since the hypothesis is discriminated by com­

paring the predicted behaviour of the process, obtained from qualitative simulation, 

with its actual behaviour, these predictions can be used to guide the determination 

of symptoms. If some variables' predicted qualitative increments under a fault are 

identical with the predictions under normal operating conditions, then these vari­

ables are assumed not to be affected by this fault, and the boxes corresponding to 

these measurements should be filled in with "*". This information can also be input 

by the process operators. 

This method is similar to Ishida's n1ethod for learning diagnostic rules from 
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qualitative simulation (Ishida 1988). In his approach, since the deviations of certain 

variables caused by a fault are obtained from qualitative simulation, ambiguity needs 

to be given crucial consideration. In the method presented here, since all these values 

are directly calculated from on-line measurements, there is no ambiguity, but they 

may be affected by measurement noise and disturbances. Therefore, it is helpful to 

take several sets of measurements when determining the qualitative deviations. 

7.3.2 Refining the existing heuristic rules 

There are two situations in which some of the existing heuristic rules should be 

refined. One is that the hypothesis proposed by a heuristic rule is denied by the 

deep model, and another is that the diagnosed fault is not proposed by the existing 

corresponding heuristic rule. For the first situation, the reason may be that the 

heuristic rule which proposed a wrong hypothesis is too general in that its condition 

part does not contain sufficient symptoms of the associated fault. Therefore, the 

value of the boxes marked with "*,, should be redetermined to see if some of these 

values can be changed such that this rule will not be employed in future similar 

cases. The failure driven-learning described in (Pazzani 1986, 1987) and (Rich and 

Venkatasubramanian 1989) are mainly concerned with this type of failure. In (paz­

zani 1986, 1987) and (Rich and Venkatasubramanian 1989), the initially developed 

diagnostic heuristic rules are crude in that only some of the symptoms are included 

in the condition parts of the diagnostic rule and, therefore, may often generate a 

wrong hypothesis. 

One reason for the second situation is that some symptoms in the condition part 

of the failed heuristic rule may be incorrect due to inappropriate threshold values 

being used for determining the symptoms and, therefore, they should be corrected. 

This can be performed by changing the related thresholds in a certain range such 

that the condition part of this rule can match the current situation. Another possible 

reason is that the fault may behave in different ways. For example, a control valve 

may fail high in that its output flow is higher than the value corresponding to its 

input, or fail low in that its output flow is lower than the value corresponding to 

its input. For this type of failure, a new rule is initially learnt for this immediate 

diagnosis as described previously, and then its condition part is compared with that 

of the previous rule corresponding to the same failure. Then if only few terms are 

different they can be regarded as unused terms and, therefore, the corresponding 

boxes are filled with "*", and the new and old rules are merged together. If there 

are many different tern1S between the condition parts of the new and old rules, then 
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it is considered that the fault behaves in different ways and the two rules represent 

two different forms of the same fault. In this case, both of the rules are retained. 

If the heuristic rules are presented by the designer, as in (pazzani 1986, 1987) 

and (Rich and Venkatasubramanian 1989), then the condition parts of the rules 

generally contain less symptoms and, in this case, the first type of failure may often 

occur. However, for rules learned on-line, the condition parts often include many 

terms and, in this case, the second type of failure may often occur. 

7.3.3 Rearrangement of heuristic rules 

After learning a new rule or refining an old one, the heuristic rules are rearranged 

in the order of the frequencies that the related faults occurred, such that the rule 

related to the most frequently occurred fault will be on the top of the rule base. 

Through such a dynamically reordering of the heuristic rules, the system will be 

efficient in diagnosis of frequently occurred faults. This is in contrast to the method 

of Rich and Venkatasubramanian (1989), which assumes that the initially developed 

diagnostic heuristic rules are related with frequently occurred faults and, therefore, 

in their method there is no reordering of the diagnostic rules. 

7.4 Application to the on-line fault diagnosis of 

the mixing process 

7.4.1 Fault diagnosis of a mixing process based on its qual­

itative model 

The on-line learning method described above has been incorporated into the fault 

diagnosis system for the mixing process described in Chapter 5. The modified 

diagnosis system will use both heuristic rules, which can be learnt on-line, and a deep 

qualitative model. When abnormal behaviour is detected, the diagnosis system will 

first try to generate a hypothesis using heuristic rules and then to confirm or reject 

the hypothesis through qualitative simulation. If no hypothesis can be generated, 

then the fault diagnosis system will work in the same way as that presented in 

Chapter 5. During diagnosis, the system can continuously learn new diagnostic 

rules and refine existing rules. 
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7.4.2 Learning heuristic rules from deep knowledge based 

diagnosis 

Unlike failures of other components, sensor failures will not usually result in a rela­

tively fixed symptom and, therefore, currently, the diagnosis system is designed for 

learning heuristic rules related only to the failures of non-sensor components. In the 

mixing process these failures would be: the blockage of hand valve 1 and hand valve 

2, and the failure of hot and cold water control valves. Initially, the heuristic rule 

base is empty and, after a successful diagnosis of one of these faults, a corresponding 

diagnostic heuristic rule is learnt. Once such a rule exists, the system will try to use 

this rule to generate a hypothesis in the next diagnosis. The heuristic rule base will 

thus be gradually assembled. 

7.4.3 Case studies 

After the mixing process has been operating at steady state, a failure, in which the 

cold water control valve fails and gives a high output flow, is initiated. The on-line 

measurements and the controller outputs covering this event are shown in Figure 

7.2, where Figure 7.2 (a) illustrates the data of level measurements, Figure 7.2 (b) 

shows the temperature measurements, and the controller outputs are presented in 

Figure 7.2 (c). Before 480 seconds, the process is operating at steady state. Then 

the failure is initiated, and it is observed that after the failure has been diagnosed 

it is removed and the measurements return to their steady state values. 

The diagnosis result is shown in Figure 7.3. Since initially there is no heuristic 

rule, the system generated two hypotheses to obtain the diagnosis result. After 

diagnosis, it learnt the rule: 

IF 

Level in tank 1 increases 

Level in tank 2 increases 

Cold water flow decreases 

Hot water flow increases 

THEN 
Cold water control valve fails 

After the process has returned to its steady state, the same failure is initiated 

again and the resulting on-line nleasurements and the controller outputs are shown 
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in Figure 7.4. The diagnosis result is shown in Figure 7.3, and it can be seen that 

this time the diagnosis result is directly proposed by the on-line learnt heuristic 

rule. After diagnosis, the failure is corrected and all the measurements return to 

their steady state values. 

After the process settles down, another fault in which hand valve 2 becomes 

blocked is initiated. The resulting on-line measurements and controller outputs are 

shown in Figure 7.5 and the diagnosis result is given in Figure 7.6. It can be seen 

that six hypotheses have been generated to diagnose this fault and, after diagnosis, 

the system learnt the new rule: 

IF 

Level in tank 1 steady 

Level in tank 2 increases 

Cold water flow decreases 

Hot water flow decreases 

THEN 
Hand valve 2 is blocked 

After diagnosis, the failure is corrected and Figure 7.5 shows the measurements 

return to their steady state values. The same failure is initiated again after the 

process has settled down, and the on-line measurements and the controller outputs 

are shown in Figure 7.7, with the diagnosis result given in Figure 7.6. It can be seen 

that this time the diagnosed fault is directly proposed by the newly learnt rule. 

7.5 Application to the fault diagnosis of the CSTR 

system 

7.5.1 Learning diagnostic rules for the CSTR system 

A similar modification is also made to the fault diagnosis system for the CSTR 

system described in Chapter 5. The modified system uses both heuristic rules and 

a qualitative model in a similar manner to that described in the previous section. 

In the CSTR system, there are a lot of measurements and possible faults and, in 

this case, the learning method described in the previous section may not be efficiently 

applied since the large number of measurements could make the condition parts of 

the learnt rules very bulky. To overcome this, the CSTR system is decomposed into 
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Table 7.1: Performance of the diagnosis system without heuristic rules 

Initiated faults 

Pipe 1 is blocked 

External feed flow rate high 

Pi pe 2 or 3 is blocked 

or pump fails 

Pi pe 10 or 11 is blocked 

or control valve 1 fails low 

External feed reactant 

temperature is abnormal 

Control valve 2 fails high 

Pipe 7 or 8 or 9 is blocked, 

or control valve 2 fails low 

Control valve 1 fails high 

Pipe 4 or 5 or 6 is blocked, 

or control valve 3 fails low 

Control valve 3 fails high 

External feed reactant 

concentration too low 

No. of hypotheses 

generated & tested 

8 

9 

16 

11 

12 

4 

5 

13 

6 

7 

14 

two subsystems as described in Chapter 5. The diagnosis system will learn locally 

valid diagnostic rules for each subsystem. The rules for a subsystem is only valid if 

the qualitative model of that subsystem is violated. 

7.5.2 Performance of the diagnosis system 

Simulation studies have been performed to investigate the performance of the di­

agnosis system. Initially, the heuristic rule base is empty and, in this case, the 

performance is the same as that described in Chapter 5. All the failures, excluding 

sensor failures, were initiated individually. Table 7.1 shows the numbers of hypothe­

ses generated during diagnosis. It can be seen that a large number of hypotheses 

have to be generated and tested to diagnose some faults. 

After these faults have been initiated and diagnosed, the diagnosis system learnt 

a diagnostic rule for each fault. These rules are arranged into two groups corre-
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sponding to the two subsystems of the CSTR system, and are listed below: 

Rule set 1: (for the first subsystem) 

Rule 1.1 

IF 

FLOW OF STREAM 1 

TEMP. OF FLOW STREAM 1 

EXTERNAL FEED CONC. 

LEVEL IN REACTOR 

TEMP. IN REACTOR 

FLOW OF STREAM 4 

CONC. CA AFTER REACTION 

INPUT SIGNAL TO VALVE 1 

THEN 
PIPE 1 BLOCKED 

Rule 1.2 

IF 

FLOW OF STREAM 1 

TEMP. OF FLOW STREAM 1 

EXTERNAL FEED CONC. 

FLOW OF STREAM 4 

CONC. CA AFTER REACTION 

INPUT SIGNAL TO VALVE 1 

THEN 
EXTERNAL FEED FLOW TOO HIGH 

Rule 1.3 

IF 
FLOW OF STREAM 1 

TEMP. OF FLOW STREAM 1 

EXTERNAL FEED CONC. 

LEVEL IN REACTOR 

TEMP. IN REACTOR 

FLOW OF STREAM 4 

CONC. CA AFTER REACTION 

INPUT SIGNAL TO VALVE 1 
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DECREASE 

STEADY 

STEADY 

DECREASE 

INCREASE 

DECREASE 

DECREASE 

INCREASE 

INCREASE 

STEADY 

STEADY 

INCREASE 

INCREASE 

DECREASE 

STEADY 

STEADY 

STEADY 

INCREASE 

DECREASE 

DECREASE 

STEADY 

DECREASE 



THEN 
PIPE 2 OR 3 BLOCKED, OR PUMP FAIL 

Rule 1.4 

IF 

FLOW OF STREAM 1 

TEMP. OF FLOW STREAM 1 

EXTERNAL FEED CONC. 

LEVEL IN REACTOR 

TEMP. IN REACTOR 

FLOW OF STREAM 4 

CONC. CA AFTER REACTION 

INPUT SIGNAL TO VALVE 1 

THEN 

STEADY 

STEADY 

STEADY 

INCREASE 

DECREASE 

DECREASE 

INCREASE 

DECREASE 

PIPE 10 OR 11 BLOCKED, OR CONTROL VALVE 1 

FAIL LOW 

Rule 1.5 

IF 
FLOW OF STREAM 1 

TEMP. OF FLOW STREAM 1 

EXTERNAL FEED CONC. 

LEVEL IN REACTOR 

TEMP. IN REACTOR 

FLOW OF STREAM 4 

INPUT SIGNAL TO VALVE 1 

THEN 

STEADY 

INCREASE 

STEADY 

STEADY 

INCREASE 

STEADY 

STEADY 

EXTERNAL FEED TEMP. ABNORMAL 

Rule 1.6 

IF 
FLOW OF STREAM 1 

TEMP. OF FLOW STREAM 1 

EXTERNAL FEED CONC. 

LEVEL IN REACTOR 

TEMP. IN REACTOR 

FLOW OF STREAM 4 
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STEADY 

DECREASE 

STEADY 

STEADY 

DECREASE 

STEADY 



INPUT SIGNAL TO VALVE 1 

THEN 
STEADY 

EXTERNAL FEED TEMP. ABNORMAL 

Rule 1.7 

IF 
FLOW OF STREAM 1 

TEMP. OF FLOW STREAM 1 

EXTERNAL FEED CONC. 

FLOW OF STREAM 4 

CONC. CA AFTER REACTION 

INPUT SIGNAL TO VALVE 1 

THEN 
CONTROL VALVE 1 FAIL HIGH 

Rule 1.8 

IF 

FLOW OF STREAM 1 

TEMP. OF FLOW STREAM 1 

EXTERNAL FEED CONC. 

LEVEL IN REACTOR 

TEMP. IN REACTOR 

FLOW OF STREAM 4 

CONC. CA AFTER REACTION 

INPUT SIGNAL TO VALVE 1 

THEN 
EXTERNAL FEED CONC. TOO LOW 

Rule set 2: (for the second subsystem) 

Rule 2.1 

IF 

FLOW OF STREAM 2 

STEADY 

STEADY 

STEADY 

INCREASE 

STEADY 

INCREASE 

STEADY 

STEADY 

DECREASE 

STEADY 

DECREASE 

STEADY 

DECREASE 

STEADY 

STEADY 

FLOW OF STREAM 5 INCREASE 

PRESSURE OF FEED COLD WATER STEADY 

TEMP. OF FEED COLD \VATER STEADY 
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INPUT SIGNAL TO VALVE 3 

INPUT SIGNAL TO VALVE 5 

THEN 
CONTROL VALVE 2 FAIL HIGH 

Rule 2.2 

IF 
FLOW OF STREAM 2 

FLOW OF STREAM 5 

STEADY 

DECREASE 

STEADY 

DECREASE 

PRESSURE OF FEED COLD WATER STEADY 

TEMP. OF FEED COLD WATER 

INPUT SIGNAL TO VALVE 3 

INPUT SIGNAL TO VALVE 5 

THEN 

STEADY 

STEADY 

INCREASE 

PIPE 7 OR 8 OR 9 BLOCKED, OR CONTROL 

VALVE 2 FAIL LOW 

Rule 2.3 

IF 
FLOW OF STREAM 2 

FLOW OF STREAM 5 

DECREASE 

INCREASE 

PRESSURE OF FEED COLD WATER STEADY 

TEMP. OF FEED COLD WATER 

INPUT SIGNAL TO VALVE 3 

THEN 

STEADY 

INCREASE 

PIPE 4 OR 5 OR 6 BLOCKED, OR CONTROL 

VALVE 3 FAIL LOW 

Rule 2.4 

IF 
FLOW OF STREAM 2 

FLOW OF STREAM 5 

INCREASE 

STEADY 

PRESSURE OF FEED COLD WATER STEADY 

TEMP. OF FEED COLD WATER 

INPUT SIGNAL TO VALVE 3 

INPUT SIGNAL TO VALVE 5 

THEN 
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CONTROL VALVE 3 FAIL HIGH 

After these rules have been learnt, all those faults were initiated individually 

again and, in this case, they were all directly proposed by the learnt heuristic rules. 

This suggests an improvement in performance. 

7.6 Conclusions 

Diagnosis using both deep knowledge and heuristic rules would be a desirable way to 

enhance diagnostic efficiency and reliability. Valuable shortcuts for diagnosis may 

be available in the form of heuristic rules. A method for learning heuristic rules 

from deep knowledge based diagnosis has been presented in this chapter. This may 

be suitable for developing an on-line fault diagnosis system for a new process where 

heuristic rules for diagnosis may not be available or for a complex process where 

the rules cannot easily be obtained. For such applications, a deep knowledge based 

diagnosis system is first developed and, after each diagnosis, the significant patterns 

in the on-line measurements are recognised and are compiled to form a heuristic 

rule. By this means the heuristic rule base can be automatically assembled. 
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HI H2 TI T2 Qc Qh FAULT 

+ + * * - + Cold water 
valve fail 

0 + * * - - Hand valve 
2 blocked 

Figure 7.1 Heuristic rules 
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Performance 
before learning 

Initiated fault: 
Cold water control 
valve fail 

Proposed by a 
heuristic rule? 
No 

No. of hypothesis 
generated & tested: 

2 

On-line learnt rule: 
IF 
Level in tank 1 lncrease 
Level in tank 2 lncrease 
Cold water flow decrease 
Hot water flow increase 
THEN 
Cold water control 
valve fail 

Performance 
after learning 

Initiated fault: 
Cold water control 
valve fail 

Proposed by a 
heuristic rule? 
Yes 

L-______________ --L _________________ ---

Figure 7.3 Performance of the diagnosis system 

for case study No. 1 
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Performance 
before learning 

Initiated fault: 
Hand valve 2 blocked 

Proposed by a 
heuristic rule? 
No 

No. of hypothesis 
generated & tested: 

6 

On-line learnt rule: 
IF 
Level In tank 1 steady 
Level In tank 2 lncrease 
Cold water flow decrease 
Hot water flow decrease 
THEN 
Hand valve 2 lS blocked 
valve fail 

Performance 
after learning 

Initiated fault: 
Hand valve 2 blocked 

Proposed by a 
heuristic rule? 
Yes 

Figure 7.6 Performance of the diagnosis system 

for case study No.2 
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Chapter 8 

On-line fault diagnosis using 

neural network techniques 

8.1 Introduction 

Several different knowledge based fault diagnosis systems have been described in the 

previous several chapters. The satisfactory performance of these systems suggests 

that knowledge based expert systems may be used to achieve reliable automated fault 

diagnosis. However, there are some limitations associated with current knowledge 

based expert systems. The task of knowledge acquisition is often tedious because 

a knowledge engineer may often have little knowledge about the operation of a 

specific process and an experienced process operator may also know little about 

knowledge engineering, and this issue is referred to as the "knowledge engineering 

bottle neck" (Moor and Kramer 1986, Price and Lee 1988). This is especially the 

case for most experience based (or shallow knowledge based) expert systems. The 

knowledge base of a deep knowledge based expert system contains information on 

process unit functions, process system structures, as well as a model of the process, 

and the development of such a knowledge base is also time consuming. 

The performance of knowledge based diagnosis systems is affected by the accu­

racy of their knowledge. The incompleteness in the knowledge base of an expert 

system could result in potential failures and, furthermore, the performance o1ay not 

degrade gracefully but could collapse suddenly (Price and Lee 1988). For rule based 

diagnosis systems, any inaccuracies in the rules can result in a wrong diagnosis (Paz­

zani 1986 1987 Rich and VenkatasubraIuanian 1989). As demonstrated in Chapter , , 
6, the inappropriate parameters in deep knowledge based diagnosis systems can also 
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result in poor performance. The performance of anyon-line diagnosis systems is 

also affected by measurement noise and, therefore, it is important to pre-process the 

raw data from on-line measurements (Doraiswam and Jiang 1989). 

Taking account of these limitations, an alternative approach, which uses neural 

network techniques (Vemuri 1988, Wasserman 1989, Aleksander and Morton 1990) 

to diagnose process faults, is investigated in this chapter. The idea for investigating 

such an approach has its root in the work presented in the previous chapter. In 

investigating self-learning of heuristic rules described in the previous chapter, the 

good learning property of neural networks is recognised and it is realised that the 

data used in learning heuristic rules can also be used to train a neural network. A 

multi-layer feed forward neural network is established and is trained by symptom­

fault pairs obtained from past experience or from simulation analysis. The neural 

network can abstract the relations between symptoms and faults in the training data 

and store this information as the trained network weights and, therefore, the trained 

network can then be used to diagnose faults. With the properties of learning, gen­

eralisation, and abstraction (Wasserman 1989), a neural network based diagnosis 

system can overcome some of the limitations of current knowledge based systems. 

Furthermore, it is easy to develop and performs in a robust manner. Several neural 

network based diagnosis systems have been reported recently. Dietz et al (1989) 

developed a real-time fault diagnosis system for jet and rocket engines using neural 

networks. Venkatasubramanian and Chan (1989) describe a neural network based 

diagnosis system for a fluidized catalytic cracking unit. Watanabe et al (1989) inves­

tigate the use of neural networks to diagnose incipient faults in chemical processes. 

In this chapter neural network based on-line fault diagnosis systems are developed 

for the pilot scale mixing process and the continuously stirred tank reactor (CSTR) 

system. The performance of the systems is investigated under partial information 

and under partially incorrect information. The feasibility of applying a neural net­

work based diagnosis system, developed using simulation data, to a real process is 

also demonstrated. 

The chapter is organised as follows: the next section briefly describes some fun­

damental concepts in neural networks and the backpropagation training technique. 

Section 8.3 describes the architecture of a neural network based on-line fault di­

agnosis system, and the application of such a diagnosis system to the pilot scale 

mixing process is presented in Section 8.4, where the performance of the system is 

investigated through a series of experiments. Section 8.5 presents a neural network 

based diagnosis system for the CSTR system, which is more complicated than the 

mixing process, and the last section contains some concluding relnarks. 
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8.2 Neural network techniques 

This section presents a brief introduction to neural network techniques, detailed de­

scriptions can be found in the literature (Vemuri 1988, Wasserman 1989, Aleksander 
and Morton 1990). 

8.2.1 The artificial neuron 

An artificial neuron, which intends to mimic the function of a human neuron, is 

shown in Figure 8.1, where a set of inputs, Xl, X 2 ,' • " X n , are multiplied by their 

corresponding weights, WI, W2 ,' ", Wn , and summed in the neuron to produce the 

signal, NET. The output of the neuron, OUT, is obtained by applying NET to an 

activation function, F. The computation of NET and OUT is listed as follows: 

OUT = F(NET) 

A commonly used activation function is 

OUT= 1 
1 + e-NET 

(8.1 ) 

(8.2) 

(8.3) 

which is known as the logistic function or "Sigmoid" (Vemuri 1988, Wasserman 

1989). 

8.2.2 Artificial neural networks 

A typical artificial neural network is shown in Figure 8.2, where neurons are organ­

ised into several layers. The output of each neuron is connected to the inputs of all 

the neurons in the successive layer through corresponding weights. The layer which 

accepts inputs from the outside world is called the input layer, while the layer which 

provides outputs to the outside world is called the output layer, and the other layers 

are called hidden layers. There is only one hidden layer in Figure 8.2. The outputs 

of the network are affected by both its inputs and its weights. 

There are two main operations in the use of neural networks: training (learn­

ing) and generalisation. The process of training can be divided into supervised 

training and unsupervised training. In supervised training, the network is provided 

with input vectors and corresponding target vectors, which are called training pairs. 
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An input vector is applied and the output vector of the network is calculated and 

compared with the corresponding target vector. The difference (error) is fed back 

through the network and the weights are adjusted according to an algorithm which 

tends to minimise the error. The input vectors in the training set are applied se­

quentiallyand the errors are calcuated and weights adjusted for each training pair, 

until the error for the entire training set is at an acceptable level. Unsupervised 

training, on the other hand, requires no target vectors for the outputs. The training 

algorithm modifies the network weights to produce output vectors that are consis­

tent, in that both the application of one of the training vectors and the application 

of a vector that is sufficiently similar to it will produce the same pattern of outputs. 

On completion of training the network can operate in a generalisation phase where 

it produces outputs for similar or novel input patterns. 

8.2.3 Backpropagation training 

In this chapter the algorithm, used in developing neural network based diagnosis 

systems, is the backpropagation training algorithm (Lippmann 1987, Wasserman 

1989), which belongs to the category of supervised training. The backpropagation 

training process contains a "forward pass" phase, in which an input vector is applied 

to the network to produce an output vector, and a "reverse pass" phase, in which 

the differences between targets and outputs are calculated and the network weights 

are adjusted to minimise the differences. The weights are adjusted by the following 

algorithm which minimizes the squared errors. 

(8.4) 

(8.5) 

where W k(n) is the value of the weight from neuron p in the jth layer to neuron pq, 
q in the next layer ( kth layer) at step n (before adjustment), Wpq,k( n + 1) is the 

weight at step n + 1 (after adjustment), LlWpq,k(n + 1) is the adjustment in weight, 

OUTp,i is the value of OUT for neuron p in the jth layer, Sq,k is a common factor 

in the gradient of the squared error, 7J is the training rate coefficient, and Q is the 

momentum coefficient. For output-layer neurons (if the kth layer is the output 

layer ), 
(8.6) 

where Target q is the qth element of the target vector corresponding to the qth 

element of the output vector, OUTq,k. Finally, for hidden layer neurons (if the kth 
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layer is a hidden layer), 

bq,k = OUTq,k(l - OUTq,k)(Lbr,IWqr,l) (8.7) 
r 

where Wqr,l is the weight from neuron q in the kth layer to neuron r in the next layer 

(the lth layer). Eq(8.7) recursively determines the b values for each hidden layer. 

8.3 On-line process fault diagnosis using neural 

networks 

8.3.1 System structure 

The proposed fault diagnosis system is based on the fact that a neural network can 

learn. The training pairs used are a set of symptoms and the corresponding faults. 

After training, the neural network will determine the relationship between a specific 

symptom and the corresponding fault, and store this information as the trained 

weights. Since the information about the monitored process is obtained through 

on-line measurements, the symptoms are represented by on-line measurements. The 

proposed neural network based diagnosis system is shown in Figure 8.3. The on-line 

measurements are processed, for example scaled, by an information pre-processor 

into a suitable form which can be directly applied to the network. This processed 

information is known as the "symptom vector", S, and the outputs of the network 

indicate the diagnosis result and is termed the "diagnosis vector", D. 

The training data can be obtained from past experience or from simulation anal­

ysis. Ishida (1988) describes a method for the automatic generation of diagnostic 

rules through qualitative simulation. Instead of generating rules, the simulation 

data can also be used to train a neural network. 

8.3.2 Operation of neural network based diagnosis systems 

There are two kinds of operations: training and generalisation. Training is done 

off-line while generalisation is performed on-line. During the training phase, a set 

of symptom-fault pairs are applied to the network, and the network weights are 

adjusted by the backpropagation training algorithm. The training time is affected 

by the network structure, training parameters, and the number of training pairs, 

and may take a long time and, therefore, it is performed off-line. Once a network 
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is trained it is ready to be used for diagnosis. When abnormalities occur in the 

on-line measurements, the information pre-processor will process the measurements 

and produces a symptom vector which is then applied to the trained network and , 
the diagnosis result is presented by the diagnosis vector. The generalisation phase 

can then be performed in a sufficiently short time for implementation on-line. The 

network can also be re-trained when the new training data are available to improve 
its performance. 

8.4 Neural network based on-line diagnosis of 

the mixing process 

8.4.1 Neural network based fault diagnosis 

The above described neural network based on-line diagnosis technique has been 

applied to the pilot scale mixing process. 

The information pre-processor 

The information pre-processor shown in Figure 8.3 for this application is a quanti­

tative to qualitative value converter, which converts the quantitative increments in 

measurements and controller outputs into their qualitative forms: increase, steady, 

and decrease. The reason for employing such an information pre-processor is that 

several qualitative model based diagnosis systems have been developed for the mixing 

process, and from which the training data for the neural network can be obtained, 

where the elements of the symptom vector are qualitative deviations in measure­

ments and manipulated variables. Here the numbers 0, 1, 2, and 3 are used to 

represent information unavailable, decrease, steady, and increase respectively. The 

assumption that some information may be unavailable has practical meaning. For 

example, during operation, some sensors may be out of service and, therefore, the 

information from these sensors is unavailable. 

The network structure 

The available on-line information on the mixing process are four measurements and 

two controller outputs, which determines that there should be six neurons in the 

input layer, each corresponding to a particular information source. The possible 
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Table 8.1: Training steps for two networks 

training steps training steps 
a TJ (1 hidden layer) (2 hidden layers) 

0.9 0.6 unconverge un converge 
0.9 0.1 550 1681 
0.8 0.5 274 un converge 
0.8 0.4 380 907 
0.8 0.2 534 2240 

0.6 0.9 828 1361 

0.6 0.2 1324 3898 

0.5 0.4 1131 2297 

0.5 0.2 1796 5215 

faults that may occur are considered to be: sensor failures, hand valve 1 is blocked, 

hand valve 2 is blocked, cold water control valve fails and gives a high output, 

cold water control valve fails and gives a low output, hot water control valves fails 

and gives a high output, and hot water control valve fails and gives a low output. 

Since sensor failures may be present in several forms and do not result in relatively 

fixed symptoms, at this stage, only the other six failures are considered, which 

determines that there should be six output-layer neurons. Each output-layer neuron 

corresponding to a particular fault and its output lies in the range (0,1). When its 

output is close to 1, it indicates that the corresponding fault has occurred. This 

output can be taken as an approximate measure of the possibility that a fault has 

occurred, and only those faults with more than 60% possibility are accepted. 

A single hidden layer with five neurons in this network has been chosen. Two 

hidden layers, each with five neurons, have also been investigated. The training steps 

required for the two networks to be trained to 95% accuracy under different training 

parameters are listed in Table 8.1, from which it can be seen that the network with 

only one hidden layer can be trained very quickly. Therefore, the single hidden layer 

network has been adopted. 
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Table 8.2: Training data for the neural network based diagnosis system for the 

mIXIng process 

Training pairs Faults 

s: 1 1 1 1 3 3 Hot water control 

T: 0 0 0 0 0 1 val ve fails low 

s: 2 2 1 1 3 1 Cold water control 

T: 0 0 0 0 1 0 valve fails low 

s: 2 2 3 1 3 2 Hand valve 1 

T: 0 0 0 1 0 0 is blocked 

s: 3 2 2 3 1 2 Hand valve 2 

T: 0 0 1 0 0 0 is blocked 

s: 3 3 3 2 1 1 Hot water control 

T: 0 1 0 0 0 0 val ve fails high 

s: 2 2 3 3 1 3 Cold water control 

T: 1 0 0 0 0 0 val ve fails high 

s: 2 2 2 2 2 2 

T: 0 0 0 0 0 0 No fault 

8.4.2 Network training 

Training data 

The training data has been obtained from the diagnosis system described in Chapter 

5, by inserting a fault to the process model and recording the resulting deviations 

in simulated measurements and controller outputs. The complete training data is 

listed in Table 8.2, where Sand T are the symptom and target vectors respectively. 

The elements of S: 81,82"",86, are qualitative deviations of temperatures in tank 

1 and tank 2, levels in tank 1 and tank 2, and cold and hot water control valve 

openings respectively. Each element of a target vector corresponds to a specific 

fault and can take the values of either 1 or 0, with 1 representing the occurrence of 

the corresponding fault and 0 for no occurrence. 

Training parameters 

The learning rate parameter, 1] , was set at 0.8, the momentum coefficient, Q, was set 

at 0.5, and the initial weights were assigned to small uniformly-distributed random 

191 



values between -0.1 and 0.1. The stopping criterion used for the training process 

is that the largest error in the error space is less than 5%. 

An experiment has been performed in which the network was trained under 

different parameters, and the results are listed in Table 8.1. It can be seen that 

smooth adjustment of weights (relatively large Q and relatively small TJ) may provide 

fast training. 

8.4.3 Performance of the neural network based diagnosis 

system 

The trained network has been tested on a set of incomplete and partially incorrect 

symptoms, in which some elements in the symptom vector were different from their 

corresponding items in the training data. These partially incorrect symptoms may 

be due to measurement noise, or some inappropriate parameters in the information 

pre-processor as described in Chapter 6. If the training data are obtained from sim­

ulation analysis, then any model-plant mismatch may also result in these incorrect 

symptoms. 

The symptoms and the diagnosis results are shown in Table 8.3, where the in­

correct elements in the symptom vector are marked with "*", and the unavailable 

elements are marked with "?". It can be seen that the neural network based diagno­

sis system under partially incorrect and partially unavailable information performs 

well. One explanation for the good performance could be that the neural network 

has the ability of abstraction in that it can extract the essential features in the 

training data. Therefore, when some new data, resembling the training data to 

some extent, is applied to the neural network, the network can classify the data into 

appropriate categories. 

The network trained on the simulation data has been applied to the real process 

and the results are also very satisfactory. For instance, consider the following exam­

ple. A hot water control valve failure giving a low output was initiated by turning 

off the hand valve in series with the valve (see Figure 3.1). The measurements cov­

ering this event are shown in Figure 8.4. The diagnosis system observed that the 

temperature measurements were abnormal at 440 seconds, when it swiftly collected 

another four sets of measurements to eliminate measurement noise. The abnormal­

ity was presented in all the five sets of measurements, and then the information 
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Table 8.3: Performance of the diagnosis system under partial and partially incorrect 

information 

Test No. Symptom vectors, Diagnosis vectors, Faults 

s: 01 1 1 1 3 2-

1 D: 0.0108 0.0002 0.0013 0.1356 0.0481 0.7257 

Fault: Hot water control valve fails low 

s: 2 2 01 2- 3 1 

2 D: 0.0001 0.0773 0.0863 0.0043 0.8554 0.0075 

Fault: Cold water control valve fails low 

s: 2 1- 3 1 3 1-

3 D: 0.0177 0.0315 0.0000 0.9412 0.0252 0.0109 

Fault: Hand valve 1 is blocked 

S: 2- 2 2 3 1 1-

4 D: 0.0179 0.2686 0.6050 0.0005 0.0287 0.0013 

Fault: Hand valve 2 is blocked 

S: 3 3 2- 2 01 1 

5 D: 0.0051 0.8508 0.1028 0.0041 0.0791 0.0001 

Fault: Hot water control valve fails high 

S: 01 2 3 2- 1 3 

6 D: 0.8003 0.0012 0.0007 0.5242 0.0001 0.2958 

Fault: Cold water control valve fails high 
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pre-processor calculated the symptom vector as 

ST = (1 1 1 2 3 3). 

Comparing this with the first training pair in Table 8.2, it is observed that the 4th 

element is different from its counterpart in the training data. The diagnosis result 
for this symptom is 

nT = (0.0343 0.0000 0.0127 0.0264 0.0186 0.9641), 

which indicates that the failure, hot water control valve fails giving a low output, 

has occurred with a high possibility. It can be seen that the diagnosis result is very 

accurate. 

Several faults have been tested in a similar way as in the above example. The 

symptom vectors, obtained from on-line measurements, and the diagnosis results 

are shown in Table 8.4. The elements in the symptom vectors, which are different 

from their counterparts in the training pairs, are marked with "*". It can be seen 

from Table 8.4 that the network trained by simulation data performs extremely 

well on the real process. In Tests 1 and 2, the same failure was initiated, and the 

resulting symptom vectors are different, which may be due to measurement noise or 

to the operating conditions being different when the failure was initiated. However, 

the correct diagnosis result has been obtained for both tests, demonstrating the 

robust nature of the neural network based diagnosis system, in that it can tolerate 

measurement noise and model-plant mismatch to some extent. In Test 1, the 4th 

element of the symptom vector is different from its counterpart in the training data, 

and the diagnosis result shows high accuracy (0.9641). In Test 2, in addition to the 

4th element, the 3rd element is also different from its counterpart in the training 

data and, in this case, the diagnosis accuracy drops down a little bit (0.8769). This 

demonstrates the graceful degradation in the performance of neural network based 

diagnosis systems. 

8.5 Neural network based diagnosis of a CSTR 

system 

8.5.1 Neural network based diagnosis 

A neural network based diagnosis system is also developed for the CSTR sy~tenl. 

Since a qualitative model based diagnosis system has been developed for the rSTH. 
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Table 8.4: Performance of the diagnosis system on the real process 

Test No. Symptom vectors, Diagnosis vectors, Faults 

s: 1 1 1 2* 3 3 

1 D: 0.0343 0.0000 0.0127 0.0264 0.0186 0.9641 

Fault: Hot water control valve fails low 

s: 1 1 2* 2* 3 3 

2 D: 0.1577 0.0001 0.0027 0.1549 0.0036 0.8769 

Fault: Hot water control valve fails low 

S: 2 2 1 1 3 1 

3 D: 0.0000 0.0303 0.0111 0.0333 0.9557 0.0235 

Fault: Cold water control valve fails low 

S: 2 3* 1 1 3 1 

4 D: 0.0000 0.0433 0.0163 0.0234 0.9535 0.0159 

Fault: Cold water control valve fails low 

S: 2 2 3 1 2* 3* 

5 D: 0.1251 0.0066 0.0000 0.8939 0.0032 0.0542 

Fault: Hand valve 1 is blocked 

S: 2* 2 2 3 1 2 

6 D: 0.2032 0.0156 0.6780 0.0003 0.0018 0.0280 

Fault: Hand valve 2 is blocked 
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system in Chapter 5, training data can be obtained from that system. The symp­

toms are the qualitative deviations in on-line measurements and controller outputs. 

Hence, the information pre-processor used is also a quantitative to qualitative ,"alue 

converter. 

There are eleven measurements and three controller outputs, and, therefore, 

there should be fourteen input-layer neurons, each corresponding to a particular 

information source. It is assumed that there are eleven possible faults which de­

termines that there should be eleven output-layer neurons, each corresponding to 

a particular fault. Furthermore, a single hidden layer with ten neurons has been 

located in the network. 

The training data, which is obtained by inserting a fault to the simulated process 

and recording the resulting qualitative deviations in measurements and controller 

outputs, is listed in Table 8.5. The elements of the symptom vector, 81,82, ... ,814, 

are the qualitative deviations in the flow rate, temperature, and concentration of 

external feed reactant, level and temperature in the reactor, flow rate and concen­

tration of the output product, the opening of control valve 1, the recycle flow rate, 

the flow rate, pressure, and temperature of the cold water to the heat exchanger, 

and the openings of control valve 3 and control valve 2 respectively. The learning 

rate coefficient, "7, is set to 0.6, the momentum coefficient, Q, is set to 0.8, and the 

initial weights are randomised between -0.1 and 0.1. 
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Table 8.5: Training data for the neural network based diagnosis system for the 

CSTR system 

Training pairs Faults 

s: 1 2 2 1 3 1 1 

3 2 3 2 2 2 3 

T: 0 0 0 0 0 0 0 Pipe 1 is blocked 

0 0 0 1 

s: 3 2 2 3 1 3 3 

1 2 1 2 2 2 1 

T: 0 0 0 0 0 0 0 External feed reactant 

0 0 1 0 flow too high 

s: 2 2 2 3 1 1 2 

1 1 1 2 2 3 1 

T: 0 0 0 0 0 0 0 Pipe 2 or 3 is blocked 

0 1 0 0 or pump fails 

s: 2 2 2 3 1 1 3 

1 2 1 2 2 2 1 Pipe 10 or 11 is blocked 

T: 0 0 0 0 0 0 0 or control valve 1 

1 0 0 0 fails low 

s: 2 3 2 2 3 2 2 

2 2 3 2 2 2 3 

T: 0 0 0 0 0 0 1 External feed reactant 

0 0 0 0 temperature abnormal 

s: 2 2 2 2 1 2 2 

2 2 3 2 2 2 1 

T: 0 0 0 0 0 1 0 Control valve 2 

0 0 0 0 fails high 
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( Table 8.5 continued) 
Training pairs Faults 

s: 2 2 2 2 3 2 2 

2 2 1 2 2 2 3 Pipe 7, 8 or 9 is 
T: 0 0 0 0 1 0 0 blocked or control 

0 0 0 0 val ve 2 fails low 

s: 2 2 2 1 3 3 2 

3 2 3 2 2 2 3 

T: 0 0 0 1 0 0 0 Control valve 1 

0 0 0 0 fails high 

s: 2 2 2 2 3 2 2 

2 1 3 2 2 3 2 Pipe 4, 5, or 6 is 

T: 0 0 1 0 0 0 0 blocked or control 

0 0 0 0 val ve 3 fails low 

s: 2 2 2 2 2 2 2 

2 3 2 2 2 1 2 

T: 0 1 0 0 0 0 0 Control valve 3 

0 0 0 0 fails high 

s: 2 2 1 2 1 2 1 

2 2 1 2 2 2 1 External feed reactant 

T: 1 0 0 0 0 0 0 concentration 

0 0 0 0 too low 

s: 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 

T: 0 0 0 0 0 0 0 No fault 

0 0 0 0 

8.5.2 Performance of the neural network based diagnosis 

system 

After training, the neural network is ready to be used for diagnosis. The trained 

network has been tested on a set of symptoms which, together with the diagnosis re­

sults, are listed in Table 8.6. The symptoms used correspond to the first eleven items 

in Table 8.5, and are obtained by making some measurements unavailable (marked 

with "?") and changing some qualitative increments (marked with "*"). It call be 

seen that satisfactory diagnosis can still be obtained under partially unavailable and 
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partially incorrect symptoms. 

The good performance of neural networks based diagnosis systems demonstrates 

their feasibility in on-line process fault diagnosis. In some cases it would be bet­

ter to develop a neural network based diagnosis system rather than a rule based 

diagnosis system. For example, Hanakuma (1989) describes an expert system for 

fault diagnosis at petrochemical plants, where diagnosis rules are represented by a 

table, representing relations between conceivable faults and observable symptoms, 

called the Cause-Symptom Matrix (CSM). The CSM is essentially a set of training 

pairs and can be used to train a network. The trained network will perform better 

than a rule based system using rules obtained entirely from the CSM. Ishida (1988) 

demonstrates that diagnostic rules can be obtained through qualitative simulation. 

A diagnostic rule is constructed by inserting a fault as a disturbance to the quali­

tative model of the process, and recording the observable qualitative deviations in 

measurements. The data obtained from qualitative simulation can also be used to 

train a network which will then perform even better. 
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Table 8.6: Performance of the neural network based diagnosis system for the CSTR 
system 

Test No. Symptom vectors, Diagnosis vectors, Faults 

S: 1 2 07 1 3 07 1 
3 3* 3 2 3* 2 3 

1 SD: 0.0023 0.0113 0.0061 0.0110 0.0053 
0.0112 0.0325 0.0001 0.0058 0.0000 0.9629 

Fault: Pipe 1 is blocked 

S: 3 07 2 2* 1 3 3 
1 2 1 3* 2 07 1 

2 SD: 0.0844 0.2207 0.0001 0.1529 0.0002 

0.3512 0.0003 0.0035 0.0000 0.7242 0.0000 

Fault: External feed reactant flow too high 

S: 07 2 2 3 1 1 1· 

1 2* 1 2 2 3 07 

3 SD: 0.0231 0.0000 0.0151 0.0000 0.0048 

0.0113 0.0001 0.0207 0.9369 0.0009 0.0331 

Fault: Pipe 2 or 3 is blocked or pump fails 

S: 2 2 2 2* 1 1 3 

07 1* 1 2 3* 2 1 

4 SD: 0.0002 0.0041 0.0008 0.0000 0.0013 

0.0279 0.0445 0.9089 0.0430 0.0106 0.0006 

Fault: Pipe 10 or 11 is blocked or control valve 1 fails low 

S: 2 3 2 07 2* 2 3· 

2 2 3 2 3* 2 3 

5 SD: 0.0000 0.0658 0.0180 0.1835 0.0001 

0.2600 0.7801 0.0002 0.0000 0.0009 0.0223 

Fault: External feed reactant temperature abnormal 
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(Table 8.6 continued) 
Test No. Symptom vectors, Diagnosis vectors, Faults 

S: 2 2 2 2 07 2 2 
2 1· 3 1* 2 2 o? 

6 SD: 0.0022 0.0017 0.0189 0.0131 0.0000 
0.9757 0.0028 0.0023 0.0005 0.0090 0.0032 

Fault: Control valve 2 fails high 

S: 2 3· 2 2 3 2 07 

2 3· 1 2 07 2 3 
7 SD: 0.0254 0.0124 0.0015 0.0117 0.9648 

0.0000 0.0025 0.0001 0.0026 0.0046 0.0108 

Fault: Pipe 7, 8, or 9 is blocked or control valve 2 fails low 

S: 2 3· 1· 07 3 3 2 

3 2 3 2 07 2 3 

8 SD: 0.0008 0.3924 0.0014 0.9037 0.0019 

0.0271 0.0890 0.0000 0.0000 0.0188 0.0015 

Fault: Control valve 1 fails high 

S: 07 2 2 2 3 2 3* 

2 1 3 1· 2 3 2 

9 SD: 0.0000 0.0000 0.8435 0.0128 0.0061 

0.0054 0.4570 0.0001 0.0012 0.0072 0.0024 

Fault: Pipe 4, 5, or 6 is blocked or control valve 3 fails low 

S: 2 07 2 2 3· 2 2 

3· 3 2 2 2 1 2 

10 SD: 0.0664 0.6525 0.0001 0.2882 0.1443 

0.0006 0.0041 0.0001 0.0000 0.0007 0.1039 

Faults: Control valve 3 fails high 

S: 2 2 o? 2 1 2 07 

2 1· 1 2 2 2 07 

11 SD: 0.9021 0.0024 0.0022 0.3043 0.0012 

0.1016 0.0000 0.0000 0.0020 0.1281 0.0011 

Fault: External feed concentration too low 
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8.6 Conclusions 

Neural network based on-line fault diagnosis systems have been developed for in­

dustrial processes. It is demonstrated that a neural network can acquire diagnostic 

knowledge from a set of symptom-fault pairs, which may be obtained from expe­

rience or from simulation analysis. This is performed automatically by a training 

algorithm in a much easier manner than the development of a knowledge based 

diagnosis system. It is also demonstrated that the performance of the neural net­

work based diagnosis systems under partially incorrect and partially unavailable 

information is very satisfactory. This suggests that neural network based diagnosis 

systems can tolerate measurement noise and model-plant mismatch to some extent. 

and shows the feasibility of applying it to on-line process fault diagnosis. 

To obtain good performance the training data must cover all the faults that may 

occur. Neural network based diagnosis systems cannot diagnose faults which are 

not presented in the training data. On the other hand, a knowledge based diagnosis 

system may provide some useful guidance when it cannot diagnose a novel fault and, 

furthermore, knowledge based diagnosis systems often have transparent knowledge 

bases and can provide good explanation facilities. The combined use of knowledge 

based expert systems techniques with the neural networks technique could enhance 

the advantages in both areas and would be a useful future research topic. 
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Chapter 9 

Conclusions and suggestions for 

future work 

The research carried out has been concerned with applications of expert systems 

techniques to on-line process control and fault diagnosis, and the majority of this 

research is on knowledge based systems for on-line process fault diagnosis. Several 

on-line expert systems have been developed and tested. The research results on 

rule based control demonstrate that rule based controllers are useful in cases where 

mathematical models of the controlled process cannot be obtained or are very diffi­

cult to obtain and, therefore, conventional control algorithms may not be efficiently 

applied. The research work described in Chapter 3 also suggests that the property 

of a rule based controller is largely determined by the rules and, therefore, unlike 

conventional controllers, such as PID controllers, the performance of a rule based 

controller is not very sensitive to its parameter changes compared with that of a 

conventional controller. 

On-line fault diagnosis is regarded as a supervisory task in this research. Knowl­

edge based systems have more perspectives in performing such supervisory tasks 

than performing lower level regulatory tasks, since many supervisory tasks cannot 

be represented by a concise mathematical algorithm. 

Several different knowledge based approaches for on-line fault diagnosis have 

been investigated in this research. The research emphasises deep knowledge based 

approaches, where the deep knowledge can be qualitative models and/or knowledge 

on the connectivity and functions of process units. The research work described in 

Chapter 4 suggests that developing diagnostic rules based on knowledge on system 

structure and component functions would be a systematic way for developing rule 
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based diagnosis systems. Diagnostic rules developed in such a way could cover a 

large range of potential faults. Inference based on these rules has higher certainty 

since these rules capture the underlying first principles of the diagnosed process. 

Any experimental knowledge can also be integrated with the rules developed from 

knowledge of system structures and component functions. By decomposing the pro­

cess being diagnosed into several subsystems, the search for a fault can be conducted 

very efficiently. 

Qualitative modelling provides a means for reasoning based on inaccurate pro­

cess models and inaccurate measurements. Qualitative reasoning is suitable for the 

purpose of fault diagnosis for which exact reasoning may not be necessary and, 

furthermore, the exact severity of a fault is usually not known and to simulate the 

effect of a fault, qualitative simulation could be more appropriate. The fault diagno­

sis systems described in Chapter 5 demonstrate that the confluence based qualitative 

reasoning technique (De Kleer and Brown 1984) is very suitable for process fault 

diagnosis. The set of confluences for a process can be derived from its mathemati­

cal model. Using the confluence representation, various fault models can be easily 

handled. The effect of a fault can be represented by setting some variables in the 

qualitative model to certain specified values and, therefore, it is not necessary to 

have different models for different conditions. To simulate the effect of a fault, it is 

only necessary to alter some variables in the qualitative model and all the operations 

based on the model are not changed, that is, it is not required to have different fault 

simulation procedures for different faults. 

The order of magnitude reasoning approach described in Chapter 5 suggests 

that by using certain available quantitative information, ambiguity in qualitative 

reasoning can be reduced to a certain extent. 

The works described in Chapter 6 and Chapter 7 are based on, and supplement, 

the qualitative modelling based diagnosis approach described in Chapter 5. The 

ability of reasoning about its own behaviour could make a knowledge based systenl 

more intelligent and autonomous. The self-learning diagnosis system described in 

Chapter 6 can be understood as a hierarchical diagnosis system, where the lower 

level fault diagnosis system is an ordinary one, identical to that described in Chapter 

5, and the upper level diagnosis system will reason about the lower level one if any 

undesirable performance occurs there. By such means, any inappropriate parame­

ters in the fault diagnosis system could be found. Therefore, the diagnosi~ system 

possesses adapti ve properties. 

The research presented in Chapter 7 suggests that the combined ust' of det'p 
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knowledge and heuristics could improve both diagnostic efficiency and reliability. 

Heuristics in the form of rules are efficient to use, and deep knowledge could e~­
hanee diagnostic reliability and can cover a wide range of potential faults. By using 

machine learning techniques, heuristic rules can be automatically acquired, and 

this eases the knowledge acquisition task. Through self-learning of heuristic rules, 

the diagnosis system can gradually improve its performance in terms of diagnostic 

efficiency. The diagnosis systems described in Chapter 6 and Chapter 7 are modi­

fications of those described in Chapter 5 and they can be combined to form a new 

diagnosis system which can reason its own behaviour, learn diagnostic rules, and 

enhance diagnostic reliability and efficiency. 

Chapter 8 presents a different approach to process fault diagnosis which uses 

neural network techniques. An advantage of such systems is that they are easy to 

develop provided that training data are available. Training data could be obtained 

from past operating experience on a process or from simulation analysis. The re­

search results presented in Chapter 8 suggest that neural network based diagnosis 

systems could work under incomplete information and partially incorrect informa­

tion and, therefore, they can tolerate the effect of measurement noise, process dis­

turbances, and model plant mismatch in the case that training data are obtained 

from simulation analysis. This demonstrates the robustness of neural network based 

diagnosis systems. A further advantage of the neural network based approach is the 

parallel nature in neural network operations, which can be ideally implemented with 

the recently developed parallel processing techniques to meet real-time requirements. 

The neural network based diagnosis system can also be combined with other diag­

nosis systems described in this thesis to form a diagnosis system which can diagnose 

faults based on different methodologies. 

The research results presented in this thesis have shown the great potential of 

knowledge based systems in performing on-line process control tasks including both 

lower level regulation tasks and higher level supervisory tasks. The on-line fault 

diagnosis systems described in this thesis have been successfully applied to pilot 

scale and simulated processes. Further extensions of the applications to industrial 

scale processes could be investigated in future research. As described in Section 4.2, 

the on-line diagnosis systems developed in this research will not have any side effects 

on the monitored process, they could be ready for industrial trial. Further research 

is needed to explore the perspectives of knowledge based systems, as well as other 

techniques in the field of artificial intelligence, ill process control. 

The well recognised learning properties of neural networks can be used in the 
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identification of highly non-linear plants. Neural networks can also be used to act as 

a controller which will learn the plant dynamics and provide control actions accord­

ingly. The generation of control signals could be commissioned by a knowledge based 

system, and the knowledge based element and the neural network will collectively 

form a new type of controller. 

The recently emerged topic in artificial intelligence - Genetic Algorithms (GA) 

(Goldburg 1989), which imitates the process of biological evolution, has shown re­

markable performance in optimisation and machine learning. This new technique 

also has potential perspectives in process control. Genetic algorithms based optimi­

sation could be used in performing optimisation tasks in process control. Genetic 

algorithms based machine learning can be incorporated into knowledge based sys­

tems for process control, and makes them more intelligent and autonomous. 

Apart from the knowledge based approaches to process fault diagnosis, there also 

exist other approaches, such as those based on parameter estimation, state estima­

tion, and filtering. These approaches usually require that a mathematical model of 

the diagnosed process can be developed and the relations between model parame­

ters, or states, and physical parameters of the process are generally required. The 

combination of a knowledge based approach and a parameter estimation approach 

would be a future topic of research. Under such a scheme, parameter estimation, 

state estimation, and filtering can function as parts of the information pre-processor, 

which provides the knowledge based element with more information about the pro­

cess. Such a system could then be sensitive to slight faults, and could also cope with 

the situations where accurate theoretical modelling is difficult to conduct. 

Process supervisory tasks include on-line fault diagnosis and other tasks such 

as suggesting repairing procedures after a fault has been diagnosed, suggesting dif­

ferent controller structures and control algorithms in cases of occurrences of faults. 

Knowledge based supervisory could be more important for large scale processes 

where knowledge based systems can be used to provide intelligent coordinations be­

tween subsystems of the process to achieve overall profit and to provide alternative 

control configurations in case of abnormal operating conditions. These tasks which 

are not investigated in this research could be investigated in future researches. The 

methodology for performing these tasks could be quite process specific. 
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