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Abstract

In this research expert systems for on-line process control and fault diagnosis
have been investigated and the majority of the research is on using expert sys-
tems in on-line process fault diagnosis. Several on-line expert systems, including
a rule based controller and several fault diagnosis systems, have been developed
in this research and are reported in this thesis. The research results obtained
demonstrate that rule based controllers can be used in situations where mathe-
matical models for the controlled process cannot be obtained or are very difficult
to obtain. The research on on-line fault diagnosis emphasises deep knowledge
based approaches. Two avenues in deep knowledge based approaches, namely
causal search and qualitative modelling based diagnosis, have been investigated.
In the approach of causal search the research results reveal that diagnostic effi-
ciency can be achieved through structural decomposition. A systematic approach
for developing diagnostic rules based on structural decomposition is presented in
this thesis. Much of the research has been done on qualitative model based fault
diagnosis. A qualitative reasoning method which utilizes knowledge on the quan-
titative relations among variables to reduce ambiguity and can cope with a wider
range of situations than Raiman’s Order of Magnitude Reasoning is investigated.
In the qualitative model based diagnosis the function of the qualitative model is to
predict the behaviour of the process under various hypotheses and, therefore, to
verify these hypotheses. Further research concerning self-reasoning has been done
for the qualitative model based diagnosis approach. Self-reasoning is achieved by
backward tracing through the model of the diagnosis system and makes this diag-
nosis system more intelligent. Self-learning of heuristic rules based on qualitative
modelling is investigated and heuristic rules can add efficiency to model based
diagnosis. During investigating self-learning of heuristic rules, the good learning
property of neural networks is recognised and, neural networks based on-line fault
diagnoses are also investigated. The research results reveal that neural networks
based diagnosis systems are easy to develop and perform robustly provided that

the training data are available.
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Chapter 1

Introduction

1.1 Expert systems and their applications in pro-

cess control

Expert systems have been applied in many areas of process control. More and
more applications have been reported recently, which show the great potentials
of expert systems in process control. An expert system is a computer program
which contains expertise and knowledge about a particular domain and performs
some tasks which are usually performed by experts in that domain. With sufficient
knowledge, an expert system may even outperform an expert in some situations,
since the performance of a human expert is affected by psychological factors, such
as boredom, tiredness, and lack of motivation. The expertise of human experts
is often accumulated during a long period and, hence, it could be very valuable.
Expert system techniques provide a means for exploring and utilizing this valuable

knowledge resource.

Expertise in process control engineering includes expertise of process operators
related to the operation of a specific process and expertise of control engineers
in designing and utilizing different control structures and control algorithms. By
making full use of the expertise and knowledge, huge economic profit can result.
Good controller performance could lead to good product quality, good supervisory
control could reduce energy and raw material consumption, and earlier detection
and diagnosis of faults could reduce damage to process equipments and products
and reduce the shut down time of the process and, hence, reduce profit losses. The
objective of applying expert systems techniques in process control is to make full

use of available expertise and knowledge and to achieve cconomical advantages.
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The applications of expert systems in process control can be divided into two
categories: off-line applications and on-line applications. Some typical off-line ap-
plications include knowledge based control systems design, knowledge based system
identification, knowledge based production scheduling, and knowledge based plan-
ning. Direct on-line control, on-line fault diagnosis, and supervision are some typical

on-line applications. A survey of these applications is provided in the next chapter.

This research aims at investigating the use of expert system techniques in on-line
process control and on-line fault detection and diagnosis, and pays more attention
to the later. The research on using expert systems in on-line control intends to find
and investigate alternative control methods for situations where conventional control
methods cannot be efficiently applied instead of replacing the conventional methods
in every situation. The research on using expert systems in on-line process fault
diagnosis intends to explore more systematic and efficient approaches for building
on-line diagnosis systems. Several different expert systems have been developed

during this research, and they will be briefly introduced in the following sections.

1.2 A rule based controller

Conventional control algorithms depend on numerical models of the processes to
be controlled. However, it may be difficult to obtain the numerical models for
some processes. Such processes are usually controlled by human operators, and the
operators may have a mental model, in symbolic form, about the process being
controlled, and derive control actions from this symbolic model. Expert systems
techniques provide a means for dealing with symbolic computation and, therefore,
it is possible to develop an expert system which can handle symbolic process models

and decide control actions based upon these symbolic models.

The first expert system developed in this research is a rule based controller for
a pilot scale mixing process. The rule based controller is developed based on the
causal relations inside the process being controlled. These causal relations form a
symbolic model of the process and, in some cases, it may be more understandable

than any numerical models.

Francis and Leitch (1985a, 1985b) developed an intelligent controller where the
system being controlled is similar to the mixing process but is a single-input and
single-output (SISO) system. The rule based controller developed here shares some
of their ideas, but is an extension to multi-input and multi-output (MIMO) cases.

Details of the rule based controller is presented in Chapter 3.
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1.3 On-line process fault diagnosis through causal

search

The second expert system developed is an on-line fault diagnosis system. The knowl-
edge used for diagnosis is represented by diagnostic rules which are compiled from
the knowledge on process unit functions and process system structures. Structural
decomposition is used to narrow down diagnosis focus. Based on structural de-
composition, fault diagnosis can be performed hierarchically. Through structural
decomposition, the process being diagnosed is decomposed into several subsystems
and diagnosis is performed by searching for the source subsystem, which is the sub-
system where a fault occurs, and locating the fault in the source subsystem. Some
researchers (Finch and Kramer 1988, Steels 1989) suggest using functional decom-
position to narrow diagnosis search space. In this research, it is demonstrated that
structural decomposition can also rapidly focus diagnosis in a small region, and is

easier to implement since it corresponds to the plant topology.

A general method is proposed for developing diagnostic rules from the knowl-
edge on process system structures and component functions and this knowledge is
represented by several Boolean matrices. Diagnosis systems have been developed for
the mixing process and a continuously stirred tank reactor (CSTR) system. Details

about this are presented in Chapter 4.

1.4 Fault diagnosis based on qualitative mod-

elling

In the process control domain, process models are sometimes available, and this
knowledge can be used in fault diagnosis. For some processes, accurate model pa-
rameters may not be available, and in some cases, accurate or direct measurements
of some process variables may also be unavailable. The recently developed quali-
tative modelling techniques (Bobrow 1984) provide a means for solving this issue,
since they rely less on accurate measurements and model parameters. Qualitative
modelling techniques intend to model process qualitatively, and the qualitative be-

haviour of a process, such as the directions of deviations of process variables, can

be predicted through qualitative simulation.

Based on a qualitative model of a process, fault diagnosis can be done by a

procedure of hypothesis formulation and test. \When a fault occurs in the process,
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the actual behaviour of the process will deviate from the predicted one and this
can be used to detect the occurrence of a fault. Based on the patterns of violation
in the qualitative model and the observed abnormalities, a set of candidate failures
(hypotheses) can be formulated. Then these hypotheses are tested on the qualitative
model in that the behaviour of the process under these hypotheses is predicted
from the qualitative model, and is compared with the actual behaviour. Only the
candidate which can explain the observed abnormalities is taken as the diagnosis
result. In implementing this diagnosis scheme, it is realised that certain failures, such
as sensor failures, should be treated differently from other failures, since the effects
of these failures on the process may not be predicted through qualitative simulation.
However, these failures can also be diagnosed under the hypothesis-test framework
in that they can be discriminated by certain heuristic rules in the test phase. A
diagnosis system developed based on this scheme can provide a general framework in
that it can be modified for another process by just altering the hypothesis generating
scheme, the qualitative models, and some of the specific heuristic rules regarding

sensor failures.

A problem associated with qualitative simulation is that ambiguity often occurs
due to the lack of quantitative information. In this research, a qualitative reasoning
method, which is based on de Kleer and Brown’s (1984) confluence based qualitative
physics and uses order of magnitude information, is investigated. By taking into
account of the available order of magnitude information, ambiguity can be eliminated
in some situations. Qualitative modelling based on-line fault diagnosis systems for
the mixing process and the CSTR system are developed. The qualitative reasoning

method and the two diagnosis systems are described in detail in Chapter 5.

1.5 Qualitative model based diagnosis with self-

reasoning facilities

New generation fault diagnosis systems should have the ability to reason their own
behaviour and to learn from past experience. With such an objective, some investi-
gations have been performed in building self-reasoning fault diagnosis systems and a
self-learning diagnosis system has been developed for the mixing process. It is based

on the fault diagnosis system using qualitative simulation described in Chapter 5.

The performance of the diagnosis system described in Chapter 5 is affected by

some parameters used in diagnosis. These parameters include the threshold values
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used in qualitative simulation and parameters used in the diagnosis of sensor failures.
Any inappropriate settings of these parameters could result in a wrong diagnosis or
miss a fault. Therefore, it is desirable that a fault diagnosis system can reason its

own behaviour and find out any inappropriate parameters when it failed to give a
desired diagnosis result.

The proposed self-reasoning fault diagnosis system reasons its own behaviour
based on its own model and the self-learning is implemented by backward tracing
through this model. Once the diagnosis system fails to give a desired result, it will
set a hypothesis as its desired output. This output is propagated backwards through
the model. Any parameters which are responsible for not giving the desired output
are examined. Any inappropriate parameters could be found in such a way. Detailed

description about this self-learning diagnosis system is presented in Chapter 6.

1.6 Fault diagnosis using both deep knowledge
and heuristic rules with self-learning of heuris-

tic rules

The previously described fault diagnosis systems emphasise the use of deep knowl-
edge. Deep knowledge can provide reliable diagnosis but the diagnosis efficiency
may be affected by the deep knowledge based reasoning, since it tries to explore
the entire causal path between a fault and the observed abnormalties. Heuristic
rules, although they may not give a reliable diagnosis, can usually provide valuable
shortcuts in diagnosis since they directly associate symptoms with the corresponding
faults. A diagnosis method with the combined use of deep knowledge and heuristic
rules is investigated. In this method, heuristic rules are used to propose a hypothe-
sis, while deep knowledge, in the form of qualitative models, is used to confirm this

hypothesis. Thus, both efficiency and reliability will be enhanced.

Diagnostic rules may not be perfect, and they may propose wrong hypotheses.
Diagnostic rules may also be incomplete and therefore, in some cases, they cannot
propose a hypothesis at all. It would be desirable that the diagnosis system can
learn heuristic rules itself. Several researchers have been investigating self-learning
of heuristic rules. Pazzani (1986, 1987) investigates refining heuristic rules in the
situations where existing heuristic rules propose an incorrect hypothesis, and he
demonstrated this technique in the diagnosis of the attitude control system of a

satellite. Venkatasubramanian and Rich (1989) propose a causality-based failure-
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driven learning technique which, when the existing heuristic rules propose an in-
correct hypothesis, can refine the existing rules and can also learn a new heuristic
rule. The two techniques are both failure-driven learning in that learning is initiated
when an incorrect hypothesis is proposed. There could exist such situations that

no hypothesis can be proposed by the existing heuristic rules. It is desirable that

learning could also be initiated in such situations.

A self-learning technique, which takes into account both the situations that an
incorrect hypothesis is proposed and that no hypothesis can be proposed, is proposed
in this research. It can refine the existing heuristic rules for the first situation, and
it can also learn a new heuristic rule. The technique is demonstrated in the fault

diagnosis of the mixing process and the fault diagnosis of the CSTR system. Details
about this are presented in Chapter 7.

1.7 Process fault diagnosis using neural networks

techniques

Several knowledge based diagnosis systems have been briefly introduced so far.
These systems provide intelligent assistance to process operators when malfunctions
occur in the monitored process. However, the development of these systems may be
time consuming and requires certain knowledge and expertise. The self-reasoning
and self-learning systems described in Chapter 6 and Chapter 7 perform much bet-
ter, but they are more complicated. In investigating self-learning of heuristic rules,
the good learning property of neural networks is realised. Neural networks have been
receiving great attentions recently mainly due to their interesting learning ability
and parallel structures. As the final part of this research, the author suggests that
neural networks techniques, combined with knowledge based systems, could result
in better diagnosis systems, and a technique which uses neural networks for on-line

process fault diagnosis is proposed.

A multilayer feed forward neural network is established and is trained from
symptom-fault pairs of that process. These training pairs can be obtained from
simulation analysis or from past experience on the operation of that process. After
training, the network can find out the relations between symptoms and related faults

and, can then be used for diagnosis.

The technique is demonstrated by applying it to the fault diagnosis of the mix-
ing process and the fault diagnosis of the CSTR system. It is demonstrated that

o
o



the neural network based diagnosis systems can diagnose under partial informa-
tion and partially incorrect information and, furthermore, graceful degradation in

performance can be obtained. Details about this are available in Chapter 8.
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Chapter 2

A survey of expert system
techniques and their application

in process control

2.1 Introduction

The applications of expert systems have been dramatically increasing during the last
few years. As a mater of fact, one can find huge numbers of reported applications
in the periodicals and conference proceedings of many different subjects. An expert
system is essentially a computer program which contains expertise and knowledge
about a specific domain and performs some tasks which are traditionally carried out
by experts in that domain. The early expert systems, such as MYCIN (Harmon and
King 1985, Jackson 1986) and DENDRAL (Johnson and Keravnou 1984), contain
empirical knowledge of experts in their domains. Many latest expert systems contain
knowledge which may not necessarily be experience of some experts, and are also
called knowledge based systems. The terms “expert systems” and “knowledge based

systems” are used interchangeably in some AI literature (Harmon and King 1985).

Expert systems techniques have been applied in many aspects of process control.
These applications can be generally divided into two categories: on-line applica-
tions, including direct on-line control, on-line fault diagnosis, on-line supervision;
and off-line applications, including control system design, knowledge based system
identification, scheduling and planing etc. Expert systems provide a means for uti-
lizing the expertise and knowledge of experienced process operators and control

engineers. In on-line process control, expert systems techniques provide an alterna-
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tive method for controlling some processes where traditional control methods may
not be applied efficiently. For example, in a cement production process (King and
Karonis 1988), the process is very difficult to model and is subject to large un-
predictable disturbances, and conventional control techniques are difficult to apply.
Expert systems techniques also provide a means for developing more autonomous

systems, integrating control, supervision, and diagnosis.

This chapter is organised as follows: Section 2.2 describes some expert system
techniques, a brief description of an expert systems shell: ExTran, is given in
Section 2.3, some off-line applications of expert systems in process control are briefly
introduced in Section 2.4, discussions of expert systems in on-line control and on-line
fault diagnosis are presented in Section 2.5 and Section 2.6 respectively. The last

section contains a summary of this chapter.

2.2 Expert systems techniques

2.2.1 General structure of an expert system

The architecture of an expert system is shown in Figure 2.1. The knowledge base
contains the knowledge about a specific domain, which is supplied by experts or
knowledge engineers through the knowledge acquisition subsystem. This knowledge
includes general problem solving knowledge as well as specific domain knowledge
and is usually in the form of rules and facts. The performance of an expert system
is largely determined by the knowledge in its knowledge base, the more knowledge
it contains, the more capable it could be. The working memory is used to hold
intermediate problem solving results and temporary data about the problem solving
state. The inference engine contains the inference strategies and controls that an
expert uses when he or she manipulates the facts and rules. The inference engine
performs two major tasks. First, it examines existing facts and rules, and adds new
facts when possible. Second, it decides the order in which inferences are made. The
task of the man-machine interface is to handle all the communications between the
user and the expert system. Through this interface and the explanation subsystem,

the expert system can explain why and how a particular conclusion is derived.



2.2.2 Knowledge representation

The knowledge in the knowledge base is some facts and rules about a particular
domain. Facts describe objects, phenomena, and properties. For example, “Tem-
perature sensor readings change abruptly and randomly” is a fact which describes
an observed phenomenon. Human experts can often make decisions with uncertain
information. Similarly, facts may also have degrees of uncertainty. For instance,
“level in the reactor is high, CF=70%" is an example of inexact facts, where CF is

a certainty factor. The relations among facts are described by rules.

There are several different ways to encode the facts and the relationships that
constitute knowledge. Some of the commonly used are: semantic networks, object-

attribute-value triplets, rules, frames, and logical expressions.

1). Semantic networks. A semantic network is a collection of objects called
nodes, which are connected together by arcs or links. Generally, both the links and
the nodes are labeled. Figure 2.2 shows a fragment of a knowledge base represented

by a semantic network.

Nodes are used to represent objects and descriptors. Objects may be physical
objects that can be seen or touched or conceptual entities such as acts, events, or
abstract categories. Descriptors provide additional information about objects. Links

relate objects and descriptors.

Flexibility is a major advantage of this representational scheme. New nodes and
links can be defined as needed. Inheritance is another feature of semantic networks.
For example, in Figure 2.2 RLS (Recursive Least Squares method), RPE (Recursive
Prediction Error method), and RIV (Recursive Instruments Variable method) will
inherit the properties of the node “On-line or recursive methods”, namely requiring

less memory and suitability for real-time applications.

2). Object-attribute-value triplets. In this scheme, objects may be physical
entities or conceptual entities. Attributes are general characteristics or properties
associated with objects. The value specifies the specific nature of an attribute in a
particular situation. An example representation using O-A-V is shown in Figure 2.3,
which states that the level in the reactor is high. In this representation, the object
is “reactor”, the attribute is “level”, and the value is “high”. Object-attribute-value

triplets are commonly used to represent factual information.

3). Rules. Rules are used to represent causal relations between facts and. are

in the following general form



IF Condition(s) THEN Conclusion.
Rules and facts can produce new facts. For example, the rule

IF Sensor readings change abruptly and randomly
THEN The sensor failed

and the fact “Temperature sensor 1’s readings change abruptly and randomly” will
produce the new fact “Temperature sensor 1 failed”. A rule is proved (or fired) if
its condition part is satisfied. A rule may also have a certainty factor indicating the

degree of confidence that the conclusion can be drawn from the given data.

4). Frames. A frame is a description of an object that contains slots for all
of the information associated with the object. Slots, like attributes, may store val-
ues. Slots may also contain default values, pointers to other frames, sets of rules, or
procedures by which values may be obtained. Default values are quite useful when
representing knowledge in domains where exceptions are rare. A frame can join
together in a single representational strategy two complementary ways to state and
store facts: procedural and declarative representations. A declarative representation
of a fact is simply an assertion that the fact is true. A procedural representation
of a fact is a set of instructions that, when carried out, arrive at a result consis-
tent with the fact. To the degree that facts are independent and changing, then
declarative approaches are more understandable or transparent to readers and more
easily maintained due to their modularity. Experts and users usually feel more com-
fortable using a declarative perspective. Procedural representation, on the other
hand, is more efficient to use but harder to maintain. The outcome of a procedure
is easy to trace, since one can easily examine the flow of instructions. Knowledge
engineers are usually more comfortable using a procedural perspective. Frames gain
power, generally, and popularity by their ability to integrate both declarative and

procedural representations.

5). Logic expressions. Logic provides another way to represent knowledge and
the two most common forms of logical notions are propositional logic and predicate
calculus. Propositions are statements that are either true or false. Propositions that
are linked together with connectives, such as AND, OR, NOT, IMPLIES, and
EQUIVALENT, are called compound statements. Propositional logic is concerned
with the truthfulness of compound statements. There are rules for propagating the
truthfulness of statements, depending on the connectives. For example, if X is true
and Y is false, then the compound statement “X AND Y” is false, whereas the

compound statement “X OR Y7 is true.
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The elementary unit in predicate logic is an ob ject, and statements about objects
are called predicates. For example, “1s-high(level of(tank_1))” is an assertion that

says the level of tank 1 is high. Predicates can be linked together by ordinary
connectives.

2.2.3 Inference strategies

The inference engine performs two tasks. First, it examines existing facts and rules,
and adds new facts when possible. Second, it decides the order in which inferences
are made. The most common inference strategy used in knowledge based systems
is the application of a logical rule called modus ponens. This rule says that when
A is known to be true and if there is a rule “If A then B”, it is valid to conclude
that B is true. This rule is simple, and hence, reasoning based on it is easily
understood. Quite frequently, the information supplied to a knowledge based system
is incomplete and uncertain, and some rules may also be uncertain. In such cases, it
is required that the knowledge based system should handle uncertain information.
This could be done by assigning certainty factors to facts and rules as in MYCIN
(Harmon and King 1985, Jackson 1986), and propagating the uncertainty factors
during inference. For example, if a conclusion is drawn with a certainty factor X;,
which is in the range [0, 1], and later on the same conclusion is drawn from different
facts with a certainty factor X,, then the certainty for this conclusion is increased
to X; + (1 — X;)X,. More advanced technique for handling uncertainty information
can be found in (Pearl 1988).

The control portion of the inference engine solves two problems: 1). A knowledge
system must have a way to decide where to start; 2). The inference engine must
resolve conflicts that occur when alternative lines of reasoning emerge. The control
strategies include: backward and forward chaining, depth-first and breadth-first
search, monotonic and nonmonotonic reasoning. If the possible outcomes (i.e. the
values of the goal attribute) are known, and if they are reasonably small in number,
then backward chaining is very efficient. Backward chaining systems are sometimes
called goal-directed systems. If the number of possible outcomes is large, a forward
chaining strategy would be used. In a forward chaining system, premises of the rules
are examined to see whether or not they are true. If they are, then the conclusion
are added to the list of facts known to be true and the system examines the rules
again. Forward chaining systems are sometimes called data-driven systems. In a
depth-first search, the inference engine takes every opportunity to produce a sub-

goal. A breath-first search sweeps across all premises in a rule before digging for
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greater detail. Another distinction among inference engines is whether they support
monotonic reasoning or nonmonotonic reasoning. In a monotonic reasoning system,
all values concluded for an attribute remain true for the duration of the consultation
session. Facts that become true remain true, and the amount of true information in

the system grows steadily or monotonically. In a nonmonotonic reasoning system,
facts that are true may be retracted.

2.3 Some general features of ExTran — an ex-

pert systems shell

Since ExTran (Razzak, Hassan, and Ahmad 1986) is the expert systems shell that

is used in this research, it is briefly introduced in this section.

ExTran, which is short for Expert Translator, is an expert system generator or
shell. It is written in Fortran, and therefore, it can be easily linked with external
Fortran subroutines. This is suitable for applications, such as expert systems in
process control, where some computation is involved. The computation is carried
out by external Fortran subroutines. The main characteristics of ExTran are listed

bellow.
(1). Rule induction.

The knowledge base of expert systems developed by ExTran may be expressed as
“examples”. ExTran will then “induce” decision-rules from these examples and use
them to build a rule based inquiry system. For example, given the four examples in
Table 2.1 about when to use an umbrella, ExTran will induce rules shown in Figure
2.4. The “” in Table 2.1 denotes “don’t care”, which means that the corresponding

attribute is not important. The induced rules can be interpreted as:

if weather is wet then
if in-house is yes then
don’t use umbrella
else if in-house is no then
use your umbrella
else if weather is dry then
don’t use umbrella
else if weather is windy

don’t use umbrella
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Table 2.1: Examples on when to use an umbrella

weather in-house decisions
wet no use
dry - dontuse
windy - dontuse
- yes dontuse

The system can also accept explicit decision-rules if the knowledge is already

available.
(2). Structuring

ExTran provides facilities for flexible decision-rule structuring, which allows
hierarchical dependency to be established between decision-rules. Expert systems
developed using ExTran usually consists of a main problem and several subprob-
lems. Subproblems can be generally divided into class subproblems and attribute
subproblems. A subproblem is a class subproblem if it serves as a class value (a
conclusion of rules) of the main problem or another subproblem. A subproblem is
an attribute subproblem if it serves as an attribute (a condition of rules) of the main
problem or another subproblem. In ExTran forward and backward chainings are

implemented through class and attribute subproblems respectively.
(3). Linkage to external software

An expert system built using ExTran may run as a stand-along system or may
be a part of a large suite having several external modules. External software may
be linked to ExTran to capture data, evaluate answers asked by the expert system,

execute decisions reached by the system, act as an external utility, etc.
(4). Code generation

ExTran is capable of converting decision-rules into Fortran code and the gener-

ated codes are guaranteed to be syntactically correct. This could ease programming

effort.
(5). Versatility

Expert systems built by ExTran are versatile in the sense that they may be
configured to run in various modes. The user can decide on how the questions are

to be asked, what text is to be displayed, from where to get the answers, etc.
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ExTran is composed of two parts: ACL-Tran, which is short for Analog Con-
cept Learning Translator, and Driver, which is the rule’s driver. ACL-Tran is the
construction engine of ExTran. It enables the developer to define problems, to
enter and manage examples, to induce decision rules, to read pre-defined decision
rules from files, to test rules against trial data, to convert rules into executable
codes, etc. The Driver is a set of ob ject files that should be linked to the developed
decision-rules to create the expert system. The procedure for developing expert

systems using ExTran is illustrated in Figure 2.5, where the dashed lines indicate

alternative options.

2.4 Expert systems in process control

Expert systems techniques have been applied in many areas of process control en-
gineering. These applications can be generally divided into two categories: on-line
applications and off-line applications. The essential role of expert systems in these
applications is an intelligent decision maker, which provides intelligent decisions for
encountered situations. Expert systems techniques provide a considerable extension

in the applications of computers in process control engineering.

Expert systems in off-line applications generally include: control system design,
system identification, production scheduling and planning, training etc. Control
system design is a knowledge intensive task and is traditionally carried out by ex-
perienced control engineers. The aims of such knowledge based design systems are
usually to provide more assistance concerning some tasks which have to be solved
by the designer (Lunze 1989), such as planning the design process and execution
of a given design plan. The knowledge based system will propose an appropriate
design method and sequences of design steps depending upon the properties of the
plant and the design specifications. Pang and MacFarlane (1987) describe using ex-
pert systems to design multivariable control systems. Rao et al (1988) developed an

expert system which can determine the optimal control method for a given problem.

With the knowledge about a process, knowledge based identification systems can
determine the input signal, system model structure, and the appropriate identifica-
tion methods. Haest et al (1990) developed an expert system, ESPION, which can
determine model orders for MISO (multiple input single output) systems. Sanoff
and Wellstead (1985) developed an expert identification system which facilitates
non-specialists in using adaptive control systems. Betta and Linkens (1990) de-

scribe using knowledge based system for dynamic system identification, where the
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knowledge based system can determine the model structure, choose identification
algorithms, and validate the identified model.

Production planning is the process of establishing production rates, work force
levels, and on-hand inventories for product families. There exist several optimisa-
tion techniques that provide near optimal results for production planning problems.
However, these techniques are not widely used by management because: 1), lack of
credibility, 2), cost of developing and using models, and 3), excessive data require-
ments of some models. Most of the planning tasks are performed based on a set
of planning rules or guidelines which are formulated from the planner’s experience.
A knowledge based system can handle such knowledge efficiently and, furthermore,
its reasoning procedure is more understandable than other quantitative techniques
and, hence, knowledge based systems show their potential in performing production
planning tasks. Duchessi and O’Keefe (1990) developed a knowledge based planning
system for a company which makes and markets a variety of lawn and gardening
products. More such applications can be found in the two special issues of the
“Journal of the Operational Research Society” (Doukidis and Paul 1990 a, b).

Expert systems for on-line process control include expert systems for direct on-
line control, on-line fault diagnosis and supervision. The aim of this research empha-
sises on-line applications. Therefore, detailed surveys of expert systems for on-line
process control and on-line process fault diagnosis are presented in the next two

sections.

2.5 Expert systems for direct on-line control

In such applications, expert systems are used as controllers which derive control
actions from measurements, or as parts of controllers which supervise control al-
gorithms. Lunze (1989) refers the former as “heuristic control” and the latter as
“expert control”. Efstathiou (1989) terms the former as “high AI” and the latter

as “low AI”.

2.5.1 Heuristic control

For heuristic control, the knowledge is often represented by rules and therefore,
such systems are often called rule based control systems or fuzzy rule based control
systems if fuzzy reasoning is adopted. One common feature of such rule based

systems is that they do not relv on the numerical models of the processes being
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controlled. They are used mainly in cases where relatively accurate numerical models
cannot be built or are very difficult to build, such as cement kilns (Haspel and
Taunton 1986, King and Karonis 1988).

The rules used are in the form
IF Situation THEN Control action.

As pointed out by Efstathiou (1986), the inference mechanism used in these rule
based control systems is forward chaining since the tasks of these systems are to

derive appropriate control actions for different situations and they are data-driven.

One immediate application area of these heuristic control systems is manually
controlled processes where the control actions are determined by experienced pro-
cess operators. In such systems, the experienced operators are replaced by expert
systems whose knowledge bases contain the knowledge of experienced process op-
erators. An intelligent controller for the “hot isostotic processing” (HIP) process is
described in (Geesey and Blaxton 1988). The HIP process is traditionally manually
operated. At the start of a HIP cycle, the operator will set up pressure and tem-
perature schedules designed to produce a final part of some desired density. From
on-line measurements, the expert can observe how well the schedule specifications
are being met as well as the progress being made in densification of the part inside
the chamber and, therefore, he can readjust the temperature and pressure param-
eters on-line to more accurately control the densification process. The experience
of process operators is represented in the knowledge base of an intelligent controller
such that the intelligent controller can adjust these parameters automatically or
make suggestions on adjustments. The intelligent controller functions as a planning

system.

Several intelligent knowledge based controllers for the cement industry have been
reported recently (Haspel and Taunton 1986, King and Karonis 1988). The model
of a cement kiln is difficult to obtain and, furthermore, the input disturbances are
large and unpredictable. Therefore, traditional control methods cannot be applied
efficiently. From economic considerations, the process should be operated to max-
imise production whilst minimising energy consumption. Since an accurate model
for a cement kiln can hardly be obtained and the process is subject to a number
of significant disturbances, mathematical model based optimal control techniques
cannot successfully be applied. However, it is recognised that skilled operators can
usually maintain the process in an optimal region. These operators can describe

their control actions linguistically as a set of rules. It is demonstrated that by en-
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coding the knowledge of skilled operators as rules and using fuzzy reasoning, the
high level supervisory control and optimisation of the kilning stage can be performed

automatically by an expert system (Haspel and Taunton 1986, King and Karonis
1988).

Sriada et al (1987) describe applications of knowledge based systems in pro-
cess regulation and servo control. The servo controller implements fast open-loop
set-point changes by using two-level bang-bang control. Due to modelling errors
and disturbances, the switching parameters cannot be calculated exactly. A knowl-
edge based system is developed to perform simple learning tasks and determine the
switching parameters on-line. It is demonstrated that through this simple learn-
ing, the knowledge based controller can improve its performance gradually. In the
knowledge based regulatory control system, fuzzy heuristic rules are used to deduce
control actions. A special group of rules are developed for situations where the
process output is near its constraint and, by such means, it is demonstrated that
the knowledge based controller makes it possible to operate closer to an output con-
straint than a conventional PI controller. In many industrial applications, this will

achieve economic advantages.

2.5.2 Expert control

The term “expert control” was introduced by Astrém (Astrém et al 1986). The
knowledge based element forms a part of the controller, and it determines the ap-
propriate control algorithm for a given situation. The final control action is obtained
from the selected control algorithm rather than from the expert system. Expert con-
trol involves the construction of a composite control structure for a complex process
which includes supervisory functions, adaptive control algorithms, and low level
control laws. All of these are managed by an expert system which monitors pro-
cess parameters and control system performance. In this type of applications, an
expert controller might manage the selection and execution of different adaptive
control algorithms to maintain the controller parameters at their optimal values for
the specific process conditions. In emergency situations, an expert controller may
manage the reconfiguration of the controller structure or switch to another more

appropriate or robust control algorithm.

One function of the knowledge based elements in these types of applications is to
automatically tune a controller (Astrom 1989). The tuning knowledge of control en-
gineers is programmed in the knowledge base. Until the present, the most commonly

used controller in process control is the PID controller and several researchers have
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developed different knowledge based systems for tuning PID controller parameters
(Lebow and Blankenship 1987, Porter, Jones, and McKeown 1987, McCluskey and
Thompson 1987, 1988). In such systems, the characters of the controlled processes

are recognised from the transient responses. Controller parameters are determined

based on these recognised characters.

To use some of the newly developed control techniques, such as adaptive control,
the process operators should have sufficient knowledge related to these techniques as
well as experience on using them. However, many process operators may not have the
required knowledge and experience, which may account for the reduced popularity
of these new techniques. Expert systems can be developed to solve these issues and
make these new techniques easier to use. An expert adaptive controller, which can
assist process operators in using adaptive controllers, is described by Cooper (1987).
The knowledge based component can specify several critical start-up parameters and
decide how and when to adjust the forgetting factor, reset the covariance matrix,
perturb the process, suspend or restart parameter updating. It can help the control

engineer in determining several coeflicients in parameter estimation.

Industrial processes are subjected to various operating conditions, including var-
ious abnormal conditions. Under different conditions, different controller structures
or different control algorithms should be used to achieve the best performance and,
furthermore, some abnormal conditions, such as sensor failures, may prohibit certain
controller structures. Therefore, it is desirable to have an intelligent controller which
can adapt to various operating conditions. An expert adaptive controller for drug
delivery systems is presented in (Neat, Kaufman, and Roy 1989), which is developed
for the treatment of critically ill patients with cardiac failure in order to reduce the
work load of the attending personal. The adaptive control scheme consists of a bank
of control algorithms, including a fuzzy controller, a multiple model controller, and
a model reference controller, and the co-ordination of these control algorithms and
the system stability assessment are orchestrated by a supervisory system. Differ-
ent controllers are selected for different conditions. An expert multivariable control
system for chemical processes is described in (Tzouanas, Luyben, Georgakis, and
Ungar 1990a). The expert multivariable controller can select controlled and ma-
nipulated variables, determine controller structures, and tune controller parameters
for normal operating conditions and various faulty conditions. Applications of this

expert multivariable controller to distillation columns are presented in (Tzouanas et

al 1990b, 1990c).
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2.6 Expert systems for on-line process fault di-

agnosis

One of the first tasks assigned to expert systems in process control is that of process
fault detection and diagnosis. This task is a difficult one for process operators,
and even well trained operators may have difficulty in diagnosing unanticipated
failures, infrequently occurred malfunctions, or incidents where multiple alarms are
simultaneously triggered. Therefore, expert diagnosis systems are needed to provide
intelligent assistants to process operators. Expert fault diagnosis systems can be
divided into shallow knowledge or deep knowledge based approaches according to

the nature of the diagnostic knowledge employed.

2.6.1 Shallow knowledge based diagnosis

Shallow knowledge based diagnosis systems capture the relations between observed
abnormalities and the associated malfunction. The knowledge used is the empiri-
cal associations between symptoms of a fault and the fault itself, and is acquired
from process operators. The knowledge is represented by rules and, quite often,
uncertain reasoning is used since the knowledge is frequently uncertain. These diag-
nosis systems are similar to MYCIN (Harmon and King 1985, Jackson 1986), which
is a typical shallow knowledge based expert medical diagnosis system capable of

handling uncertain information.

A key task associated with the shallow knowledge based diagnosis systems is
knowledge acquisition. Expertise covering a wide range of malfunctions must be
encoded into the expert system. The knowledge requirements are unstructured and
may be broad in scope. The task of knowledge acquisition is very time consum-
ing since the process operators may know little about knowledge engineering and,
therefore, the interchange of information between a knowledge engineer and a pro-
cess operator may not be carried out efficiently. This issue is often referred to as
the “knowledge engineering bottle neck” (Moor and Kramer 1986, Price and Lee
1988). The knowledge base is highly specific to the particular plant and there is
no guarantee that it is complete. In an industrial process, many faults needing to
be diagnosed may never have been experienced and, for new or recently developed

plants, there may be little applicable experimential knowledge.

Due to these drawbacks, the shallow knowledge based diagnosis is often ap-

plied to a process where model based reasoning cannot be applied. or applied to
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small scale processes where the knowledge required for diagnosis is limited. Shallow
knowledge in the form of heuristic rules can usually provide valuable short cuts in
diagnosis since the rules associate symptoms directly with the corresponding mal-
functions. Therefore, shallow knowledge is often combined with, and supplements,
deep knowledge based diagnosis schemes. A diagnosis scheme which integrates deep
knowledge and shallow knowledge is described in (Venkatasubramanian and Rich
1988). Lapointe et al (1989) developed an expert diagnosis system for a waste water
treatment process — BIOXPERT, where shallow knowledge is used to diagnose the

frequently occurred faults.

2.6.2 Deep knowledge based diagnosis

The so called deep knowledge includes models of the process being diagnosed and
faulty models of different process units. The model of a process can be in various
forms. It can be in the form of a set of numerical equations, or a qualitative model, or
even in the form of rules compiled from a model. As suggested in (Scarl, Jamieson,
and Delaune 1987), diagnosis systems based on any type of models, regardless of
the depth of the models, can be called deep knowledge based systems. Based on the

deep knowledge about a process, diagnosis can be performed more reliably.

There are several different approaches in deep knowledge based diagnosis. Some
of the commonly used are causal search, diagnosis based on numerical model equa-

tions, and diagnosis based on qualitative modelling.

(1) Causal search. The diagnosis system attempts to trace the observed ab-
normalities to their origin. The knowledge used is the descriptions of unit functions
and system structures information which includes the connectivity of different units.
From this knowledge, causal paths between a fault and observed abnormalities can
be established. Fault diagnosis of electronic and digital circuits typically employs
this method (Davis 1983, 1984).

An efficient technique for representing causality relations among process variables
is the Signed Directed Graph (SDG) (Iri et al 1979). The SDG is used to represent
pathways of causality in the fault-free process. The nodes of the SDG correspond
to state variables, alarm conditions, or failure origins, and the edges represent the
causal influences between the nodes. The directions of the deviations of the nodes
are represented by the signs on the branches, + or —, indicating that the cause and
effect variables tend to change in the same or opposite directions respectively. The

earlier diagnosis systems based on SDG do not use expert system techniques (In
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et al 1979, Shiozaki et al 1985). Recently, several researchers have attempted to
formulate diagnostic rules from the SDG representation of processes. Kramer and
Palowitch (1987) demonstrate that diagnostic rules can be derived from the SDG

representation and that fault diagnosis based on these rules is more efficient.

Based on the knowledge of system structure and component functions, fault
diagnosis can be performed hierachically. The process being diagnosed can be de-
composed, either functionally or structurally, into several subsystems and, therefore,
diagnosis can be rapidly focused into a small region (Finch and Kramer 1988, Shum
et al 1988, Steels 1989).

(2) Diagnosis using numerical model equations. In the process control
domain, a model of the process and various constraints derived from mass and energy
balance in the form of numerical equations are usually available. These equations,
also called governing equations (Kramer 1987), provide important information about
the process, and can be used in diagnosis. Due to measurement noise, unmeasured
disturbances, and inaccuracies in certain parameters of these equations, there exist
equation residuals. During normal operation, the equation residuals should all be
within their tolerances. Once a fault occurs in the process, some equation residuals
will deviate from their tolerances. By analysing these residuals, a fault may be
diagnosed. Several diagnosis methods based on numerical equations are reported
recently (Kramer 1987, Lutcha and Zejda 1990, Petti, Klein, and Dhurjati 1990).

The governing equations based diagnosis are briefly summarised here. Let C{,

C:, and C? be the conditions for positive and negative constraint violations and

constraint satisfaction of the ith constraint (governing equation) respectively. Let F
be the set of all possible faults with members f. The set of faults that are sufficient

to cause violation of the ith constraint are defined as follow:

H} = {¥/,] = C})

Hi_ = {vaf - Ci—}

Let the condition of the plant be C*, where C¥ = Ci,C, or C? depending on
whether the ith constraint is violated positive, negative, or satisfied. Let H] be the

fault set activated by the condition of the ith constraint, then

C; =Cf — H; = H}

C;=C) - H =—-(HYUH])
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C;=Cr — H; = Hf
For the case of a single fault, viable single fault hypotheses are those that account

for all violated constraints. Therefore, the set of single-fault hypotheses are

S=(H:NH; NN Hyp)

where NC is the number of constraints. Formulae for resolution of multiple faults

are given in (Kramer and Palowitch 1985).

Based on numerical equations, non-Boolean reasoning can be applied and, there-
fore, graceful degradations in performance can be obtained (Kramer 1987). It is
demonstrated that through non-Boolean reasoning, the diagnosis system will not be

sensitive to measurement noise.

(3) Diagnosis based on qualitative modelling. The above described nu-
merical equation based diagnosis method may not be suitable for a process where
accurate measurements or direct measurements of some process variables are not
available, or some model parameters are not known accurately. For such situations,
qualitative modelling techniques (Bobrow 1984) can be used in diagnosis. The quali-
tative model of a process is often obtained from its quantitative model and, therefore,
it can correctly describe the process. Through qualitative simulation, the deviations

of certain process variables can be obtained.

Qualitative simulation based diagnosis is usually performed through the hypothesis-
test strategy (Moor and Kramer 1986). Because qualitative simulation can predict
the deviations of certain process variables under normal operating conditions as
well as various faulty conditions, diagnosis can be done by first formulating a set
of hypotheses, and then testing these hypotheses using the qualitative model; the

hypothesis which can explain the observed abnormalities is the diagnosis result.

Several researchers have been investigating using qualitative modelling in pro-
cess fault diagnosis. Qualitative modelling of chemical processes is investigated by
Oyeleye and Kramer (1988) and Waters and Ponton (1989). Herbert and Williams
(1986, 1987) investigated using qualitative modelling in the diagnosis in power plant.
The author has performed research in qualitative simulation incorporating order of
magnitude information, and using qualitative simulation in on-line process fault

diagnosis. These will be described in detail in Chapters 5, 6, and 7.

A problem associated with qualitative modelling is that ambiguity often occurs
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due to the lack of quantitative information. Ambiguity prevents further discrimina-
tion of a set of plausible hypotheses, which could be discriminated with a detailed
quantitative model. Several approaches have been investigated to reduce ambiguity.
Raiman (1986) investigates using order of magnitude information among variables
to reduce ambiguity. Oyeleye and Kramer (1988) show that additional qualitative

constraints could be derived from redundant numerical equations and ambiguity

could be reduced.

2.7 Conclusions

In this chapter expert systems and their applications in process control are briefly in-
troduced. The basic structure of an expert system, various knowledge representation
schemes and inference strategies are presented. Some general features of ExTran,
an expert systems shell used in this research, is also briefly described in this chapter.
A review of applications of expert systems in process control, especially in on-line

process control and fault diagnosis, is provided.

Expert systems for on-line process control can be generally divided into “heuristic
control” and “expert control” according to the roles of expert systems. Heuristic
control can be used to automate some manually controlled processes which are
difficult to be controlled by conventional methods. Expert control is generally used
to provide some supervisory functions. for conventional control algorithms, such as
controller parameter tuning, determining controller structure, and to assist process
operators in using advanced control techniques, such as adaptive control. Expert
systems for on-line process fault diagnosis can be generally divided into a shallow
knowledge based approach and a deep knowledge based approach according to the
knowledge used. The shallow knowledge based approach is generally used in small
scale processes or in some processes where a deep knowledge based approach cannot
be applied. Shallow knowledge is often used to supplement deep knowledge to
improve diagnostic efficiency. Deep knowledge based approaches can usually provide

reliable diagnosis for a wide range of faults.

The discussion in this chapter provides an environment encompassing the re-
search of this thesis. The research on on-line process fault diagnosis provided in this
thesis aims to develop, investigate and explore more systematic, more efficient, and

more reliable fault diagnosis methods.
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[ weather]

wet : [ in house]
yes : dontuse
no : use
dry : dontuse
windy : dontuse

Figure 2.4 ExTran induced rules
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Chapter 3

Modelling and rule based control

of a mixing process

3.1 Introduction

To investigate using expert systems in on-line process control, the pilot scale mixing
rig in the Control Engineering Laboratory has been taken as an example of an
industrial process. Several real-time expert systems, including a rule based control
system and various different on-line fault diagnosis systems, have been developed for
this process. During the initial developing and testing stage, it would be desirable
to develop and test a prototype expert system on the simulation of the process
instead of the real one for the following reasons: 1) the simulated process can be
run economically, the only demand is computation facilities, while testing on the
real process can cost much; 2) the simulated process can be brought to various
testing conditions very quickly since it is not running in real time where, in contrast,
real industrial processes usually have significantly large time constants and it may
take quite a long time to bring a process to a new operating condition; 3) for
fault diagnosis systems, any malfunctions can be easily initiated by changing some
parameters of the model used in simulation, whereas it may not be convenient to
initiate a fault on the real process. From the above considerations, a mathematical
model of the mixing process was developed at the initial stage of this research. All
the expert systems developed for the mixing process are first tested by simulation.

After running satisfactorily on the simulated process, they are then applied to the

real process.

The first expert system developed in this research is a rule based on-line control
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system for the mixing process. It derives control actions from the causal relations
among process variables, where the causal relations form a symbolic model of the
process. Since the symbolic model captures the causal relations inside a system,
for some situations, it can be more understandable than any numerical modcgl. The
rule based controller is developed based on the ARTIFACT shell (Francis and Leitch
1985a, b) but is for the multi-input and multi-output case.

The modelling of the mixing process is presented in the next section. The rule
based control system is described in Section 3.3, where the causal relations in the
mixing process, the control rules, and the performance of the rule based control

system are described in detail. The last section contains some concluding remarks.

3.2 Modelling the mixing process

3.2.1 The mixing process

The mixing process is shown in Figure 3.1, where two tanks in cascade and of
rectangular cross-section receive hot and cold water input streams. The hot water,
at about 80°C, is supplied from an electrically heated header tank, while the cold
water is supplied from the mains. Both streams enter tank 1 where mixing takes
place. The contents of tank 1 pass to tank 2 and subsequently out to the pool tank
from which they are recycled to the header tank. A number of hand valves can be
seen in the mixing process of Figure 3.1. These hand valves are either kept fully open
or fully closed during normal operation, as their function is simply to allow different
system configurations. For example, if hand valves 1 and 2 are closed and hand
valves 3 and 4 are open, then the system becomes a one tank system since only tank
1 can be used. In this research, the two tanks configuration is used and, therefore,
hand valves 1 , 2, 3 and 5 are fully open and hand valve 4 is closed. Measurement
of level and temperature of the contents of both tanks is available and, hence, it is

possible to control level and temperature in either tank.

3.2.2 Model development

A dynamic model of the mixing process can be developed from mass and heat

balances in the process. From the mass balance in tank 1, the following equation

can be obtained,



d(A,H,
ANIRD) — Qe+ Q1) - 0@ (3.1)

where A; is the cross-sectional area of tank 1, H is the level in tank 1, p is the

density of water, Q. and Q,, are the input cold and hot water flow rates respectively,

and Q,, is the output flow rate from tank 1 to tank 2. Eq(3.1) can be simplified to

dH
Al# =Qc+Qn—Qa (3.2)

The mass balance in tank 2 can be expressed as

d(A,H
_(Z—th = p(Qo1 — Qu2) (3.3)

where A; and H, are the cross-sectional area and level of tank 2 respectively, and

Qo2 is the output flow rate from tank 2.

Eq(3.3) can be simplified as

dH,

A2—th_ = Qol - Qo2 (34)

The heat balance in tank 1 can be represented as

d(CpAl H] T])
dt

where C is the specific heat of water, T, and T}, are the temperatures of input cold

= CpQ.T. + CpQuTh — CpQu T (3.5)

and hot water respectively, and T; is the temperature in tank 1. Eq(3.5) can be

simplified to

dT; dH
A — + ATi—= = QT+ QiTh — QT (3.6)

Multiply the two sides of Eq(3.2) by T} and then substitute it into Eq(3.6), gives

AAHi— = QT.+QTh+ QaTi — Q11 — @QrThi + QuTh
= QT. = T)+ Qu(Th — Th) (3.7)

The heat balance in tank 2 gives

d(CpAQHzTQ)
dt

where T, is the temperature in tank 2. Eq(3.8) can be simplified to

= CpQo1 Ty — CpQ,2 T3 (3.8)
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dT, dH,

A2H2"2t_ + Aszd—t = Qali — QT (3.9)

Multiplying Eq(3.4) by T and then substitute it into Eq(3.9), gives

dT
Aszd—t2 = Qoali— QT — QuTs + Q. T,

= Qu(Th —T3) (3.10)

The output flows from the two tanks, Q,; and Q,;, are determined by pressure

differences and valve parameters, and can be represented as

Qo = K\\/H, — H, (3.11)

Qo2 = Kz\/Fz (3.12)

where K; and K, are the restriction parameters of hand valve 1 and hand valve 2

respectively.

So far, the model of the mixing process is obtained and is listed below.

Adh gt oi- 0. (3.13)
Agd—fti = Qo1 — Quz (3.14)

A S = QT ~ Th) + Qu(Ti ~ ) (3.15)
A2H2£d]t'é = Qo (11 — T3) (3.16)

Qo = K/ Hy — Hy (3.17)

Qo2 = 1{2 V H2 (318)

The cross-sectional areas of tank 1 and tank 2 are 17%x16.8 cm? and 12.41x12.1

cm? respectively. The temperature of hot water. T}. is approximately 80°C. and the
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temperature of the cold water, T}, is approximately 20°C. The other two unknown

parameters, K, and K, are determined from experiments.

3.2.3 Model parameter estimation

The only unknown parameters in the model are the restriction parameters of hand

valve 1 and hand valve 2. These parameters are determined from experiments.

An experiment is designed such that the mixing process is operated at its steady

state and, therefore, the following equations will hold.

Qo1 = Qc+ Qr (3.19)

Qo2 = Qo (3.20)

And from Eq(3.17) and Eq(3.18)

Qc+Qh ‘——I{l\/H] —H2 (321)

0.+ 01 = KT 822

In Eq(3.21) and Eq(3.22), H, and H, are measured variables, Q, and Q; are
determined by the controlling inputs to the control valves and their values can be
calculated from the calibration curves (Ellis et al 1986) for the control valves and,

therefore, K; and K, can be calculated.

During the experiment, a set of different values of Q. and @}, are applied as inputs
to the process, and the corresponding steady state measurements of H, and H; are
recorded. The set of experimental data is listed in Table 3.1. The parameters A,

and K, can be determined from the least squares estimation algorithm(Soderstrom

and Stoica 1989).

For the following model equation
y(t) = o' (1)8 (3.23)

where y(t) is the output, T (t) is the input vector, and 8 is the parameter vector, if

N sets of input and output data are given, then the least squares estimate for 6 is
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Table 3.1: Experiment data for estimating K; and K,

Hi(em) | Hy(em) | Q.+ Qn(em3/Sec)
6.15 2.52 55.6
12.81 5.67 75.3
20.02 8.57 92.5
20.07 10.17 94.3
27.0 15.4 104.0

N N
0 =1 e(t)e" IR e(t)y(1)] (3.24)
t=1 t=1
The least squares estimate gives
K, = 29.07(cm%/Sec)

K, = 29.46(cm%/56c)

3.3 Rule based control of the mixing process

As a first step in this research, a rule based controller for the mixing process is
developed. It belongs to the category of “heuristic control” described in Chapter 2 in
that the control actions are directly obtained from the expert system. The rule based
controller derives control actions from the causal relations between subsystems of the
process being controlled. These causal relations form a symbolic model of the process
and, for some situations, it can be more understandable than any numerical model.
Francis and Leitch (1985a, b) developed an intelligent control system: ARTIFACT,
where the process being controlled is similar to the mixing process but is a single-
input and single-output (SISO) system. The rule based controller developed here is
a development of the ARTIFACT to the multi-input and multi-output case.

3.3.1 Causal relations between subsystems

Level and temperature of tank 2 are to be controlled. The controller is designed
based on the causal relations between subsystems and the control actions are inferred

from the measurements of both controlled and non-controlled variables.
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The mixing process is divided into two subsystems: tank 1 and tank 2. Level
and temperature of tank 2 are directly affected by those of tank 1, and the level and
temperature of tank 1 are directly affected by the inlet hot and cold flow streams.

These causal relations are used to infer control actions.

Based on steady state conditions, an increase in inlet flow will cause the level in
tank 1 to increase whereas a decrease in inlet flow will cause the level in tank 1 to
decrease. An increase in inlet hot flow or a decrease in inlet cold flow will cause the
temperature of tank 1 to increase, while a decrease in inlet hot flow or an increase
in inlet cold flow will cause the temperature of tank 1 to decrease. An increase in
level and temperature of tank 1 will cause the level and temperature of tank 2 to
increase respectively, and a decrease in level and temperature of tank 1 will cause
the level and temperature of tank 2 to decrease respectively. These causal relations

form a symbolic model of the system.

Based on the symbolic model and the current state of the system, control actions
can be inferred. For example, if level 2 is lower than its desired value, then it needs
to be increased. If the level in tank 2 is currently not increasing, then the level in
tank 1 should be increased. If the level in tank 1 is required to be increased then

the inlet flow should be increased.

3.3.2 Control rules
The control rules are in the following form:
Goal + Condition = Subgoal

where “Goal” is the destination to be achieved, “Condition” is the current state,
and the “Subgoal” is the intermediate goal to be achieved under the particular

«“Condition” in order to achieve “Goal”. For example, the following rule:

level 2 T + level2 - T = level 1 1

can be interpreted as: “To increase level 2 while level 2 is not increasing, level 1

should be increased.”

Since for the level and temperature control loops the symbolic models are iden-

tical, they have the same control rules. The full rule sets are listed below.

Rule set 1:



X2 correct + X2 low = X2 1
X2 correct + X2 correct = X2 steady
X2 correct + X2 high = X2 |

Rule set 2:
X2T+X2-1=3X11
X2T+[X21,X1<A] = X111
X271+ [X21, X1>A] = X1 steady

where A is a parameter which is defined later.

Rule set 3:
X2 steady + X2 T = X1 |
X2 steady + X2 steady = X1 steady
X2 steady + X2 | = X1 1

Rule set 4:
X2 +X2-]=X1|
X2 | 4+ [X2],X1>B] = X1 |
X2 | + [X2 |, X1<B] = X1 steady

where B is a parameter which is defined later.

Rule set 5:
X1T+X1-17=Q1
X1 T+ X171 = Q steady

Rule set 6:
X1 steady + X1 T = Q|
X1 steady + X1 steady = Q steady
X1 steady + X1 | = Q1

Rule set T:
X1]+X1-1=Q]
X1 | + X1 | = Q steady

When dealing with the level control loop, X1, X2 and Q stand for level in tank 1.
level in tank 2, and inlet cold flow respectively. When dealing with the temperature
control loop, X1, X2 and Q stand for temperature in tank 1, temperature in tank 2.

and inlet hot flow respectively. Within the rule sets the change in Q is proportional to
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the error between desired value and measured value, with a proportional parameter
K. The rules are developed heuristically and the objective is to provide a fast
response with low overshoot. This is similar to the ITAE (minimise Integral Time

weighted Absolute Error) criterion in optimal control.

These rules are similar to those given by Francis and Leitch (1985a, b) in their
ARTIFACT shell. However, rule sets 2 and 4 are different in that the “Condition”
parts of the last two rules in each rule set contain extra measurement requirements
from tank 1. In rule sets 2 and 4, A and B are determined by the steady state
value of X1 corresponding to the setpoint of X2, A is slightly lower than that value
whereas B is slightly higher than that value. These two modified rule sets provide

a faster response.

3.3.3 Decoupling problem

According to the previous work on controlling this mixing process (Ellis et al 1986),
the hot inlet flow is used to control temperature and the cold inlet flow is used to
control level. Since either hot inlet flow or cold inlet flow can affect both temperature
and level, interaction exists between the two control loops. It is necessary to design

a decoupling scheme to eliminate the interaction. Heuristic decoupling is used here.

After the control actions for the individual loops have been inferred from the
above control rules, they should be modified in order to eliminate interactions. To
do this, two situations need to be considered. The first situation is when the hot
water flow is changing while the cold flow is being kept steady. Here, in order to
eliminate the effect of changing hot flow on the level control loop, the total amount

of inlet water flow should be unchanged. That is:

AQ.+AQyL=0 (3.25)

Therefore

AQ. = —AQh (3.26)

So, in this situation, the final control action is that the cold water inlet flow

should be changed by —AQs.

The other situation is when the hot water inlet flow is being kept unchanged

while the cold water inlet flow is changing. Here, in order to eliminate the effect of
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changing the cold water inlet flow on the temperature control loop, the total input
heat should be unchanged. That is:

AQpC(T. — Th) + AQwpC(Ty — T) = 0 (3.27)

Therefore

AQ = (Ty — T)Q./(Tp — T)) (3.28)

So, in this situation, the final control action is that the hot water inlet flow

should be changed by (T; — T.)AQ. /(T — T}).

In Equations (3.25) - (3.28), AQ, is the change in cold inlet flow, AQ; is the
change in hot inlet flow, p and C are the density and specific heat of the inlet water
respectively, T is the temperature of tank 1, 7, is the temperature of inlet cold flow,

and T} is the temperature of the inlet hot flow.

3.3.4 Knowledge base and inference engine

The knowledge base consists of the control rules, the decoupling rules, and some gen-
eral knowledge about the control system, such as control valve saturation. When
a control valve saturates, its output will not change, and this situation should be
dealt with differently from that discussed above. The inference engine simply per-
forms forward chaining (Johnson and Keravnou 1984, Jackson 1986). Control rules
are chained together by the “Goal” and “Subgoal” parts of each rule. Initially, the
“Goal” is assigned a value: X2 correct. The rule satisfies the current condition and
the value of the “Goal” is employed and the value of the “Sub-goal” is renewed. The
inference engine continuously performs this procedure until the value of the “Goal”

refers to inlet flow. Then using decoupling rules to eliminate interactions, control

actions are obtained.

3.3.5 Performance of the rule based controller

The rule based controller has been implemented using a BASIC program running
on a BBC microcomputer. Its performance is very satisfactory as can be seen from
Figures 3.2 and 3.3, where the performance of the rule based controller has been
compared with that of a conventional decoupling PI controller designed by Ellis «/

al (1986), for step changes in temperature and level respectively. It can be scen
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that the performance of the rule based controller matches, qualitatively, that of the
decoupling PI controller. The response of the rule based controller has low overshoot
and undershoot and the interaction between the two loops is also very slight. From
Figure 3.2 it can be seen that the rule based controller has been attempting to

achieve the objective “fast response with low overshoot”.

The tuning of the rule based controller is done on-line by adjusting the parame-
ters K, A and B, and is relatively easy. It has been found that the controller is not
very sensitive to change of tuning parameters. This suggests that the properties of a
rule based controller is largely determined by its rules. The role of controller param-

eters is less crucial in rule based controllers than that in conventional controllers.

3.4 Conclusions

A mathematical model for the mixing process has been developed in this chapter.
The model is used to test several prototype real-time expert systems developed for
the mixing process. By such means, real-time expert systems can be developed

quickly.

The rule based controller described in this chapter has been observed to per-
form satisfactorily. This suggests that it could be an alternative for conventional
controllers in cases where numerical models for the controlled processes are not avail-
able or are difficult to obtain. The properties of a rule based controller are mainly
determined by its rules, and it is observed that the rule based controller is not very
sensitive to the changes in its parameters. This may demonstrate the robustness of

rule based controllers.
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Chapter 4

Process fault diagnosis from
knowledge on system structures

and component functions

4.1 Introduction

Process equipments are subject to failures during operation. Failures may cause
poor product quality, reduce production efficiency, damage equipment, lead to plant
shutdowns, or even result in a hazardous condition. Therefore, it is important to
continuously monitor the process in order to detect and diagnose faults promptly.
This task is traditionally carried out by process operators. As the process becomes
more and more complex, the number of measurements and alarms increase and may
cause cognitive overload to process operators (Paterson, Sachs, and Turner 1985). In
such situations, the process operator may not provide the correct diagnosis in limited
time and, furthermore, the reliability of an operator is likely to suffer when forced
to make quick judgment or forced to depend upon operating and safety manuals
which may not be written in a clear or concise fashion. Therefore, automated fault
diagnosis is required, the importance of which increases as the processes become

more and more complex. Knowledge based systems show a great potential in this

field.

As described in Chapter 2, knowledge based diagnosis systems can be generally
divided into shallow knowledge based and deep knowledge based approaches. In
the shallow knowledge based approach, the diagnostic knowledge used is the process

operators’ experience, which directly reflects the relations between symptoms and
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faults, and is organised as cause consequence rules as used, for example, in MYCIN
(Johnson and Keravnou 1984, Harmon and King 1985). Although these heuristic
rules possess real-time efficiency, they lack process generality and they tend to fail
under novel circumstances. Recently reported diagnosis systems for industrial pro-
cesses often use the deep knowledge based approach or use a combined approach
where deep knowledge plays a dominant role. The advantages of deep knowledge
based approaches are that they can provide reliable diagnosis for infrequently oc-
curred faults, and some of the deep knowledge is general in nature and can be used

in the development of diagnosis systems for other processes.

One of the deep knowledge based approaches is causal search (Moor and Kramer
1986). In this approach, the diagnosis system will try to explore the causal path
from the observed abnormalities to their causes and, therefore, locate any associated
faults. To improve efficiency, the process under consideration can be decomposed
into several subsystems. Finch and Kramer (1988) propose a diagnostic method
based on functional decomposition of an industrial process. In their approach, the
process under consideration is decomposed into several subsystems according to their
functions, then diagnosis is performed by identifying the source system, which is the
subsystem where the fault occurs, and then locating this fault in the source system.
Steels (1989) investigates a similar approach where the function of the system being

diagnosed is hierachically decomposed.

In this research, a diagnosis approach based on structural decomposition is in-
vestigated. Since structural decomposition corresponds to plant topology, it may be
easier to implement. The relations between subsystems, the relations among mea-
sured variables inside a subsystem or in two related subsystems, and the relations
between faults and measurements in a subsystem are represented by several matri-
ces. Diagnostic rules can be developed from this knowledge. Benefits of rule-based
format are that the rules can be evaluated efficiently and can be combined with
other rules pertaining to plant operations. When abnormalities occur in a process
subsystem under consideration, they are traced through other subsystems affecting
this subsystem until a source subsystem is located. Once a source subsystem is

located, the diagnosis system will identify the malfunction in the source subsystem.

A general structure for the on-line diagnosis system is described in the next
section, all the diagnosis systems developed in this research are based on this struc-
ture. Section 4.3 describes how to formulating diagnostic rules from knowledge on
structures and functions. Section 4.4 describes the development of an on-line fault

diagnosis system for the pilot scale mixing process. A fault diagnosis system for a
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simulated continuously stirred tank reactor (CSTR) process is described in Section
4.5, where the modelling of the CSTR is also presented. The last section contains
some conclusions.

4.2 General structure of the on-line diagnosis

system

The on-line fault diagnosis system resides in the supervisory layer of a hierachical
control system shown in Figure 4.1, where a process is controlled by a controller in
the control layer, and this control layer also communicates with the supervisory layer.
There are many supervisory functions, such as determining the optimal setpoints and
monitoring the condition of the control system, and fault detection and diagnosis is
one of them. The controller in the control layer simply performs regulation tasks, and
the sampling interval of the controller is T'. The communication interval between the
supervisory layer and the control layer is nT', where n is a positive adjustable integer.
This communication interval can be set longer for normal operating conditions and

shorter for abnormal conditions.

The diagnosis system contains two parts: abnormal behaviour detection and fault
diagnosis. During normal operation, the supervisory layer receives data from the
regulatory layer at the interval nT. The fault diagnosis system examines the data to
find out if it is abnormal or not. If it is abnormal, then the communication interval
between the supervisory and the regulatory layers is reduced. The diagnosis system
then swiftly collects several additional sets of data, and examines if the detected
abnormalities are present in the majority of those sets of data. Suppose N sets of

data are collected, then

AB(m;) < N™ > N,

which states that abnormal behaviour in m; is detected if the number of sets of data
where m; is abnormal, N™  is greater than or equal to its threshold value ;. Once
abnormal behaviour of the process is detected, the diagnosis system begins to locate
the associated fault. By swiftly collecting several additional sets of data, the effect

of measurement noise can be eliminated to some extent.

Abnormal behaviour detection can be performed by checking certain measure-
ments against their constraint values, checking the range of change of some mea-

surements, and examining if some constraints, such as those imposed by energy and

mass balance, are violated.
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The diagnosis system diagnoses faults based on on-line information, which con-
tains on-line measurements and controller outputs. It is suggested that performing
tests on the diagnosed system could help the generation of hypotheses and the dis-
crimination of candidate faults (Milne 1987). This is used in the diagnosis of elec-
tronic and digital circuits (Davis 1983, 1984). In the method proposed by Yamada
and Motoda (1983), tests using redundant components are used to discriminate sus-
pects. In general, for control systems without redundant components, performing
tests may disturb the process. To avoid this, the diagnosis systems developed in this
research diagnose faults from the available on-line information and do not perform
any intrusive tests on the process. Therefore, employing such diagnosis systems will
not have any side effects on the controlled process. Even though it may provide
a wrong diagnosis or miss a fault, the diagnosis system will never affect the con-
trolled process. Since most of the reported on-line fault diagnosis systems are tested
on pilot scale processes or simulated processes, the above consideration would be

important for developing on-line fault diagnosis systems for real industrial process.

One feature of a real-time diagnosis system is that it has a dynamic knowledge
base. The factual knowledge is dynamically changing. During diagnosis, not only
the current on-line information but a history of the process states is needed. The
diagnosis system will maintain a memory of a short history of the monitored process

and this memory is dynamically renewed by on-line information.

The diagnosis system also has a “repair flag”, which will be set automatically
after a diagnosis to disable the diagnosis system. After repairing, the process op-
erators can reset this flag to enable the fault diagnosis system. During setpoint
changes, this flag is also set automatically for a period to allow the process to settle

down. Process operators can set or reset this flag as is required.

4.3 Formulating diagnostic rules from knowledge

on system structures and component func-

tions

4.3.1 Description of system structures

In order to narrow the diagnosis focus the process under consideration is struc-
turally decomposed into several subsystems, where the structural decomposition

corresponds to the plant topology. The process can be briefly represented by a
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diagnosis graph, which contains nodes and directed arcs. Each node represents a
subsystem and the arcs represent interactions between subsystems. The diagnosis
graph is similar to the Signed Directed Graph (SDG) (Iri et al 1979). In a SDG,
each node represents a process variable, whereas in the diagnosis graph each node
represents a subsystem. An example diagnosis graph is shown in Figure 4.2, where
the process is divided into four subsystems. Directed arcs in Figure 4.2 show that
subsystem S; can affect subsystem S,, subsystems S, and S; can affect each other,

and subsystem S4 can affect both subsystems S, and S;.

The interactions among subsystems can be represented by the Connection Ma-

trix, C. If the process is decomposed into n subsystems, then C is an n X n matrix.
The element of C, C;;, is defined as follows:

O = { 1, if subsystem S; can directly affect subsystem S;,
ty —

0, otherwise.

The diagonal elements of the Connection Matrix are all ones since a subsystem

can affect itself.

The state of a subsystem is described by its measurements and a subsystem is

abnormal if one of its measurements is abnormal, that is
AB(S,) < 3k, k€ 1,m;, AB(m,k)

which states that if there exists a measurement, m;;, which is abnormal, in subsys-
tem S;, then subsystem S; is abnormal. In the above expression, AB is a predicate
meaning abnormal, m; is the total number of measurements in S;, my; is the kth

measurement in S;.

In the connection matrix, if C;; = 1, then subsystem S; can affect subsystem
S;. This means that one or some of the process variables in S; can affect those
in S;. The connection matrix only provides a rough description on the relations
among subsystems. A refined description can be given by the Measurement Causal
Matrix, CM;;. If there are n measurements in S; and m measurements in 5;, then
the Measurement Causal Matrix between S; and S;, CM;;, is an n X m matrix. The
element of CM;;, CM,-’;-I, is determined as

1, if the kth measured variable in S; can directly
C/\I,-’;l = affect the lth measured variable in 5j,

0, otherwise.
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There also exist causal relations between measured variables within a subsystem.
These relations are represented by the Self-Causal Matrix. If there are n measure-
ments in subsystem S;, then the Self-Causal Matrix for subsystem S;, CS;, is an

n X n matrix. The element of CS; is determined as follows:

1, if the kth measured variable in S; can directly
CSH = affect the [th measured variable in S;,

0, otherwise.

The diagonal elements of the Self-Causal Matrix are all ones since a measurement

can affect itself.

To locate faults in a subsystem, the relations between faults and measurements
in that subsystem should be taken into account. These relations can be represented
by the Fault-Measurement Matrix. If there are n possible malfunctions and m
measurements in subsystem S;, then the Fault-Measurement Matrix for subsystem
Si, FM;, is an n X m matrix. The element of FM;, FM¥ is determined as

1, if the kth malfunction in S; can directly
FMHF = affect the [th measurement in S;,

0, otherwise.

The diagnosis graph and the above defined matrices give a description of the

process being diagnosed. Diagnostic rules can be generated from this description.

4.3.2 Fault diagnosis based on knowledge of system struc-

ture and component functions

With the above described structural decomposition and knowledge on system struc-
tures and component functions, fault diagnosis can be performed in the following
two step procedure: source subsystem identification and fault location in the source
subsystem. Because of the dependence between subsystems, the effect of a fault
can propagate through connected subsystems and, therefore, a fault can not only
affect measurements of the subsystem where it occurs but also affect measurements
of other connected subsystems. When abnormal behaviour is detected, the first step
in diagnosis is to identify the source subsystem by causally tracing the observed ab-
normalities. To facilitate diagnosis, the “single-failure assumption”, which is used in

most fault diagnosis systems (Davis 1983, 1984, Finch and Kramer 1988), is adopted
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here. This assumption is also practical since the probability of simultaneous occur-
rence of two or more independent faults is usually negligible. Suppose that two
independent faults F; and F; occur with probabilities P, and P, respectively, then
the probability of a simultaneous occurrence of Fy and F; is P, P,, which in general

would be too small to take into account.

Suppose that the jth measurement in the ith subsystem is abnormal, that is
AB(m;;), then a search is conducted to causally search any measured variables in
Si; which can cause the observed abnormality in m;; and, if such a variable exists,
then it is activated, which means that it is responsible for the observed abnormality.
This search is guided by the Self-Causal Matrix of subsystem S;. Similar searches
are also conducted to find further causes in S; for the activated variable. Suppose
that the finally activated variable in S; is m;;, then a search is conducted to find all

the subsystems that are connected to S;. These subsystems form the set

{V]a Sj, Cij = 1’ J# Z} (41)

Next, pick a subsystem from the above set, for example S;, and conduct a search
to find all the measured variables in S; that could affect m;;. These measurements

form a set

{Vl, m;i, CM;f = 1} (4.2)

The above set can be refined by examining the deviations of these measurements
and their causal relations with m;, and only the measurements which could result
in the observed deviations in m;; are retained. If the refined set is empty, then try
other subsystems in Set(4.1), and if the resulting sets are all empty, then subsystem
S; is a source subsystem. If there exists a refined set which is not empty, then pick
a measurement from the set as an activated variable and conduct further searches

similar as above.

Once a source subsystem is identified, the remaining task is to locate the fault in
the source subsystem. Suppose that S is a source subsystem and my is the finally

activated measurement, then a candidate fault set is formulated as
{Vi, Fii, FM{' =1} (4.3)

where F}; is the ith malfunction in subsystem Sx. The above set can be refined by
examining the patterns of deviations of measurement my and its causal relations
with these candidate faults and only the malfunctions which can lead to the observed
deviations in my; are retained. Certain process specific heuristic rules can be used

in this stage. Based on the above consideration, diagnostic rules can be formulated.
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A benefit of the rule based format is that the diagnostic rules can be augmented by
any available heuristic knowledge about a particular process. The above described
procedure will be demonstrated in the development of diagnostic rules for a pilot

scale mixing process and a simulated CSTR system in the next two sections.

4.4 On-line fault diagnosis of the mixing process

The first diagnosis system developed in this research is the on-line fault diagno-
sis system for the mixing process. It is initially developed using Fortran (Zhang,
Roberts, and Ellis 1988). After the Control Engineering Centre has purchased an

expert system shell: ExTran, the diagnosis system is redeveloped using ExTran.

4.4.1 Abnormal behaviour detection

Constraint values have been assigned to every measured variable and, if the measure-
ment exceeds its constraint value, it is considered to represent abnormal behaviour.
For the controlled variables, in addition to the constraint values, error tolerances
have been set which, together with the changing direction of the controlled variables,
can be used to detect abnormal behaviour, and thus the abnormal behaviour can be
found quickly. Some general knowledge about the system performance is also used
to detect abnormality. For example, in the steady state, the level in tank 1 cannot
be lower than that in tank 2 and the temperatures of the contents of the two tanks
are roughly the same. Any abrupt changes in sensor readings are also considered as

abnormal.

After receiving the data, the diagnosis system examines them to see whether
they are normal or not. A memory of a short history of the process is kept which
is used to determine any abnormal behaviour and is also used for diagnosis. Under
normal conditions, the memory is renewed by newly received data, in that the
new data replaces the earlier data in the memory. When an abnormal condition
is detected the earlier data in memory is retained and several sets of additional
data are swiftly collected by increasing the speed of communication between the
two layers. The resulting information is used to confirm the abnormality detection
and is also used for diagnosis. After this data has been collected the communication
speed is set to normal again. If the majority of the collected data declare the same
abnormality, then the abnormal behaviour is confirmed, otherwise, the behaviour 1s

still considered to be normal. By this means the effects of noise on the measurements
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can be considerably reduced.

In this system, the controller sampling time is 4 seconds and, under normal
conditions, the local controller sends data to the supervisory layer every 20 seconds,
that is every 5 samples. Four sets of data are kept as a short history. If the
received data indicates an abnormal condition, the controller then sends data to the

supervisory layer every 4 seconds, that is at every sample, until 4 more sets of data

have been transmitted.

4.4.2 Formulation of diagnostic rules

The mixing process is divided into two subsystems. The first subsystem includes
the following components: controller, hot and cold water control valves, tank 1
and the associated sensors. Components in the second subsystem are hand valves
1 and 2, tank 2 and the associated sensors. The diagnosis graph corresponding
to this decomposition is shown in Figure 4.3, from which it can be seen that the
two subsystems can affect each other. The level and temperature in the second
subsystem are affected by those in the first subsystem. The controller outputs in
the first subsystem are affected by the controlled variables in the second subsystem.

The Connection Matrix for the mixing process is

11
e-[11] »

The on-line information in the first subsystem includes level and temperature
measurements and controller outputs to the cold and hot water control valves. The

Self-Causal Matrix for the first subsystem 1is

H T Q. Qs
H [1 0 0o o
CSi= T, |0 1 0 (4.5)
Q. |1 0 1 o0
@ |01 0 1]

The labels on the top and the left of the matrix, Hy, T1, Q., and @4, are level
and temperature measurements in tank 1, and controller outputs to cold water and
hot water control valves respectively. In the mixing process, either Q. or @, can
affect both H; and T, however, since Q, is used to control level and @4 is used

to control temperature, the effect of Q. on T and the effect of Qs on H, can be
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eliminated by the feedback control loops and, therefore, Eq(4.5) indicates that Q.

cannot affect T; and Q; cannot affect H;.

The on-line information for the second subsystem is the level and temperature

measurements in tank 2. The Self-Causal Matrix for the second subsystem is

H, T,
CS;= H, [1 o0 (4.6)
T, [0 1

The labels on the top and the left of the matrix, H, and T, are the level and

temperature measurements in tank 2 respectively.

The Measurement Causal Matrix from subsystem 1 to subsystem 2 is

H, T,
H [1 o]
CMy,= T, 0 1 (4.7)
Q. 0 O
Qv |0 0]

The above equation indicates that Q. and @} cannot affect H, and T3, which is
due to the fact that Q. and @ cannot directly affect H, and T3 since their influence

on H; and T is exerted via measured variables H; and T; respectively.

The Measurement Causal Matrix from subsystem 2 to subsystem 1 is

Hl Tl Qc Qh
CM;, = H, 0 01 0 (4.8)
T, 0 0 0 1

The controller used here is a multivariable controller and, therefore, either H, or
T, can affect both Q. and Q,. However, Eq(4.8) indicates that H; can only affect
Q., and T; can only affect Q. This is due to the fact that Q. and @} are dominantly
affected by H, and T3 respectively.

The faults that may occur in the first subsystem are considered to be: controller
failure, control valve failures, and sensor failures. The Fault Measurement Matrix

for the first subsystem is
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Hl Tl Qc Qi:

c [1 0 0 o
H [0 1 0 o
FM, = 4.9
Tt o 1 0 o (4.9)
SL1 |1 0 0 o
co [0 0 1 1|

The labels on the left of the matrix, C, H,ST1,SL1, and CO, stand for cold
and hot water control valve failures, temperature and level sensor failures, and
controller failure respectively. The above equation indicates that cold water control
valve failure cannot affect Ty and hot water control valve failure cannot affect H,.
This is due to the fact that the effects of cold water control valve failure on T; and

hot water control valve failure on H; are compensated by feedback control loops.

The faults that may occur in the second subsystem are considered to be: blockage
of hand valves 1 and 2, and sensor failures. The Fault Measurement Matrix for the

second subsystem is

H, T,
vi [1 o]
FMy= V2 |1 o0 (4.10)
sT2 |0 1
SL2 |1 0|

The labels on the left of the matrix, V1,V2, ST2, and SL2, stand for blockages
of hand valve 1 and 2, and failures of temperature sensor and level sensor in tank 2

respectively.

Based on the above described system structures, diagnostic rules can be devel-
oped. The rules are developed using the ExTran expert system shell (Razzak,
Hassan, and Ahmad, 1986) and the diagnosis system is defined by a main problem
and six subproblems. The main problem classifies the observed abnormalities, and
different abnormalities are treated by different subproblems. Since there are only
four measurements, correspondingly, there are four kinds of abnormalities. The out-
comes of the main problem are four different subproblems each corresponding to a
type of abnormality. The rule files for the main problem and other six subproblems
are shown in Figure 4.4, and the definitions of the attribute values are given in Table
4.1. The values of these attributes are evaluated by external Fortran subroutines

from on-line measurements.
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It can be seen from Table 4.1 that the information handled by the diagnosis sys-
tem is in qualitative form which is converted from on-line quantitative information.
The conversion is usually performed by comparing on-line information with certain
threshold values. The threshold values used in fault detection and fault diagnosis
will affect the performance of the diagnosis system and should be set properly. Small
threshold values could make the diagnosis system sensitive to process disturbances
and measurement noise, and may result in spurious diagnosis. Large threshold values
may miss a diagnosis. During the current studies, it is found that the proper setting
of these threshold values used in fault detection can remarkably reduce spurious di-
agnoses. These parameters are set based on previous operational experience of the
process and should be set reasonably large so that any fluctuations in measurements

caused by disturbances will not trigger the diagnosis system.

Subproblem TEMP2 will be invoked if abnormalities are present in the mea-
surement of T;. The rules for this subproblem are developed from the following
considerations. There are two situations when 7T, is abnormal, one is that T, is
lower than its set point, and another one is that T; is higher than its set point.
Consider the first situation. Following the procedure described in the previous sec-
tion, a search is conducted to find if there are any measured variables in the second
subsystem which can affect T;. From Eq(4.6), it can be seen that no such variables
exist. Eq(4.4) indicates that the first subsystem can affect the second subsystem
and, furthermore, Eq(4.7) shows that only T in the first subsystem can affect T3 in
the second subsystem. Then T; should be examined to locate the source subsystem.
If T is decreasing, then it is activated, otherwise the second subsystem is a source
subsystem. If T} is activated, then from Eq(4.5) it can be seen that the controller
output to the hot water control valve, @, can affect T;. If @ is decreasing, then
it is responsible for the decrease in T; and is activated. In this case, the search
for the source subsystem is terminated since both subsystems have been explored
and no further variables can be activated, and the task is to locate a fault in the
first subsystem. Eq(4.9) suggests that only controller failure can affect @, and,
therefore, the conclusion is controller failure. If @j is not decreasing, then from
Eq(4.9) the candidate failures would be hot water control valve failure and sensor
Ty failure. Sensor T failure can be ruled out by the single failure assumption since
it cannot explain the abnormality in T,. If 7} is not decreasing, then the second
subsystem would be a source subsystem. In this case, Eq(4.10) suggests that only
sensor T, failure can affect T,, and then the subproblem SENST2, which contains
several heuristic rules for diagnosing sensor failure, is used to further confirm that

sensor T, has failed. The rules for the second situation where T} is not lower than
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Table 4.1: Definitions of attributes in the diagnosis system for the mixing process

Attributes Definitions
ABS2 Subsystem 2 is abnormal
ABT1 Temp. 1 is abnormal
ABT?2 Temp. 2 is abnormal
T2LTSP Temp. 2 is lower than its setpoint
T1DCR Temp. 1 is decreasing
T1INC Temp. 1 is increasing
H1DCR Level 1 is decreasing
HI1INC Level 1 is increasing
QCDCR Q. is decreasing
QCINC Q. is increasing
QHDCR Q1 1s decreasing
QHINC @}, 1s increasing
H2LTSP Level 2 is lower than its setpoint
H2COND Level 2 is continuously decreasing
H2CONI Level 2 is continuously increasing
T2SC There are abrupt changes in temp. 2
T1SC There are abrupt changes in temp. 1
H2SC There are abrupt changes in level 2
H2SC There are abrupt changes in level 1
T1IT2S Temp. 1 increasing & temp. 2 steady
T1DT2S Temp. 1 decreasing & temp. 2 steady
H1IH2S Level 1 increasing & level 2 steady
H1DH2S Level 1 decreasing & level 2 steady
T2NRSP Temp. 2 is near its setpoint
H2NRSP Level 2 is near its setpoint
DTH Deference between temp. 1 & 2 is high
DHH Deference between level 1 & 2 is high
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its set point are developed similarly as above.

If an abnormality is present in Hj, then subproblem LEVEL2 will be used. The
development of rules for this subproblem is based on the following considerations.
From Eq(4.4) it can be seen that S can affect S; and, furthermore, Eq(4.7) shows
that only H, in S; can affect H,. Consider the situation where H, is lower than
its set point. If H, is decreasing, then S; will be a source subsystem and H; is
activated, otherwise, S is a source subsystem. If H; is activated, from Eq(4.5) Q.
can affect Hy, and if Q. is decreasing then Q. is activated, and Eq(4.9) suggests that
the only candidate fault is controller failure. If Q. is not decreasing, then Eq(4.9)
shows that two failures: cold water control vale failure and level sensor 1 failure,
could affect H;. The single failure assumption rules out the failure of level sensor 1
since it cannot account for the abnormality in H,. If S; is a source subsystem,then
Eq(4.10) suggests three candidate failures: level sensor 2 failure, blockages of hand
valves 1 and 2. The blockage of hand valve 2 is ruled out since it could not cause
H, to decrease. The remaining two candidates are discriminated by the heuristic
that if hand valve 1 is blocked H, will decrease continuously. Therefore, if H; is
decreasing continuously, then hand valve 1 is blocked, otherwise, sensor H; may
fail which is further discriminated by the subproblem SENSH2. The derivation of
diagnostic rules for the situation that H, is higher than its set point is similar to

the above considerations.

The subproblems SENST2 and SENSH2 are used to discriminate failures of sen-
sor T; and sensor H; respectively. The rules for the two subproblems are similar
and contain some heuristics about sensor failure. The first heuristic is that abrupt
changes in sensor readings indicate sensor failure. Since the measured variables
in the mixing process have large time constants, especially the levels, they cannot
change abruptly. Another heuristic is that if T} (or H,) is changing in the direction
to move Ty (or H,) to its set point, but T; (or H;) does not change, then sensor
T, or (H,) failure is indicated. The subproblems SENST1 and SENSH1 are used
to discriminate failures of sensor T; and sensor H; respectively. The rules for the
two subproblems are similar and the first rule is the same as that in SENST?2 and
SENSH?2. The second heuristic is that if H; (or T3) is near to its set point and the
difference between H; and H, (or T and T3) is high, then sensor H, (or Ty) failure

is indicated.
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4.4.3 Performance of the fault diagnosis system

The fault diagnosis system has been successfully applied to the mixing process.
In the mixing process, the possible faults that can occur are: controller failure,
sensor failure, hot and cold water control valves failure, hand valve 1 blocked, and
hand valve 2 blocked. During the experiments, these faults have been separately
initiated, and they were diagnosed quite successfully. The failures of control valves
are initiated by turning off the hand valves in series with the control valves totally
or partially, the blockages of hand valves are initiated by turning them off totally
or partially, and sensor failures are initiated by disconnecting them from the A/D

(analogue to digital) converter.

The on-line measurements covering the event where hot water control valve fail-
ure was initiated and diagnosed are shown in Figure 4.5. The failure was initiated
by turning off the hand valve in series with the hot water control valve (see Figure
3.1). The fault diagnosis system detected abnormality in measurements after 356
seconds then, as indicated in Figure 4.5, the diagnosis system swiftly collected an-
other four more sets of data to confirm abnormal behaviour detection, after which
the diagnosis system begins to diagnose the fault. The reasoning procedure of the
fault diagnosis system is recorded in a file by ExTran and is shown in Figure 4.6,
which indicates that the correct diagnosis is presented. After diagnosis, the fault is
removed and all measurements settle down to their steady state values as indicated
in Figure 4.5. Figure 4.5 also indicates that abnormalities in measurements were
detected after 240 seconds, but after collecting another four more sets of data, ab-
normal behaviour was not detected. This could have resulted from a disturbance in

the process.

Table 4.2 shows the result of the experiments in which every fault was initiated
five times. It can be seen that the performance of the fault diagnosis system is very
satisfactory. Since the detection of abnormal behaviour is based on steady state
measurements, when changing setpoints, it is important to wait for sufficient time

to allow transient effects to decay before initiating the fault diagnosis system.

Most of the existing fault diagnosis systems are based on a single failure as-
sumption (Davis 1983, 1984, Scarl, Jamieson, and Delaune 1987, Finch and Kramer
1988). The fault diagnosis system presented here is also designed for diagnosis of
a single fault. After one fault has been diagnosed, any further faults will not be
diagnosed. During some experiments, several faults were initiated simultaneously
and, in most of the cases, one of the initiated faults can be diagnosed. Table 4.3

shows the performance of the diagnosis system when several faults were initiated
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Table 4.2: Performance under a single failure

fault initiated no. of successful diagnoses

temp. sensor 1 fail 5
temp. sensor 2 fail
level sensor 1 fail
level sensor 2 fail
hand valve 1 blocked
hand valve 2 blocked

hot water control valve fail

v v v Ot v O Ot

cold water control valve fail

simultaneously.

4.5 Fault diagnosis of a CSTR system

Following similar procedures as described in the previous section, a fault diagnosis
system is developed for a simulated CSTR system, similar to that used by Kramer
and co-workers (Kramer and Palowitch 1987, Finch and Kramer 1988, Oyeleye and
Kramer 1988, Kramer and Finch 1989). The CSTR system is shown in Figure 4.7,
where a hypothetical exothermic reaction takes place in the reactor vessel, cooled by
recycle through an external heat exchanger. Temperature and level in the reactor,
as well as the recycle flow rate, are controlled by feedback control systems (cascade

control for the case of temperature).

4.5.1 Modelling of the CSTR system

A dynamic model of the CSTR system is developed using some results presented
in Franks (1972). The model is used to simulate the process and serves as a test
bed for several fault diagnosis systems. Several assumptions have been made in
modelling the system and, hence, the developed model may not be very accurate. It
is assumed that perfect mixing takes place in the reactor and perfect heat exchange
takes place in the heat exchanger. To simplify the model, it is also assumed that
the reactant and the product have the same density and specific heat. The model

is developed based on mass and heat balances in the process and is listed below:
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Table 4.3: Performance under multiple failures

faults initiated fault diagnosed
hot water control valve fail cold water control
cold water control valve fail valve fail

level sensor 1 fail

temp. sensor 1 fail temp. sensor 1 fail

level sensor 2 fail

temp. sensor 2 fail temp. sensor 2 fail
hand valve 2 blocked
cold water control valve fail hand valve 2 blocked

temp. sensor 1 fail

level sensor 2 fail

hot water control valve fail temp. sensor 1 fail
A%It—{- =1+ Q22— Qs (4.11)
AHddC;“ = Q)(Cao— C.) — o AH (4.12)
AH%Ct—b =r,AH — C,Q1 (4.13)
AHBzd;t: = BQi(Ty —T) — B;Q(T - T2) + H,r, (4.14)
By = C0pC + (1 — Cu0)p0Co (4.15)
By = pC(C, + Cy) + (1 = Cy — C)poClo (4.16)
ro = K,.C!' (n>0) (4.17)
K, = a,e”/T (4.18)
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Q2 = K, A, VP (4.19)

Qs = K AVP (4.20)
Qs =Q2+ Qs (4.21)
P=Py+AP (4.22)
Py = H[(Ca+ Cy)p + (1 = Ca — Cs)po] (4.23)
Qs = Ks5As\/Ps (4.24)

T, = CopoQsTs + Q. T[Cp(C, + Cb) + Copo(1 — C, — Cy)]
CopoQs + Q2[Cp(C, + Cb) + Copo(1 — Co — C))

(4.25)

where
H = level in the reactor (cm)
T = temperature in the reactor (°C)
A = cross-sectional area of the reactor (cm?)
@, = flow rate of input reactant (cm?®/Sec)
@, = flow rate of the recycled reactant (¢cm®/Sec)
Q3 = flow rate of the liquid leaving the reactor (cm?/Sec)
C, = concentration of reactant in the reactor
Cy, = concentration of product in the reactor
C,o = concentration of reactant in the input stream
r. = reaction rate (g/Sec)
H, = reaction heat constant (KJ/g)
T, = temperature of input reactant (°C)
T, = temperature of the recycled reactant after heat exchange (°C)
p = density of the reactant (g/cm?)
C = specific heat of the reactant (J/g°C)
po = density of the solvent (g/cm?®)
C, = specific heat of the solvent (J/¢°C)
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K, = reaction rate constant (g/Sec)

a, = constant peculiar to reaction (g/Sec)

b, = constant peculiar to reaction (°C)

K; = restriction parameter of valve 3 (cm*/g'/?Sec)

A, = fractional opening of valve 3

P = pressure of liquid leaving the pump (g/cm?)

Q4 = flow rate of the product (em?/Sec)

K, = restriction parameter of valve 1 (cm*/g'/%Sec)

A4 = fractional opening of valve 1

Py = pressure at the bottom of the reactor (g/cm?)

AP = pressure increase caused by pump (g/cm?)

Ts = temperature of cold water entering heat exchanger (°C)
@s = flow rate of cold water entering heat exchanger (cm3/Sec)
K5 = restriction parameter of valve 2 (cm*/g'/?Sec)

As = fractional opening of valve 2

P; = pressure of feed cold water to the heat exchanger (g/cm?)

The model parameters and the nominal values of certain process variables are

given in Table 4.4. The controllers used are PI controllers of the form

u(t) = K(e(t) + _%?ﬂ)

where u(t), e(t), K, and T; are the control signal, error signal, controller gain, and
integration time respectively. The parameters of the controllers, together with the

setpoints of the controlled variables, are given in Table 4.5.

4.5.2 Formulation of diagnostic rules

The CSTR system is decomposed into three subsystems. The first subsystem, 5, 1s
the external reactant feed subsystem, which includes pipe 1 and associated sensors.
The second subsystem, S,, is the reaction subsystem including the reaction vessel,
pipe 2, pump, pipe 3, valve 1, pipe 11 and associated sensors. The remaining
components form the third subsystem, S;, which is the heat exchange subsystem.

The diagnosis graph corresponding to this decomposition is shown in Figure 4.8.

The Connection Matrix 1s



Table 4.4: Model parameters and nominal values of certain process variables

Parameters or variables values

A 300.0cm?

a, 0.8g/Sec

b, 66.9°C

H, 430K J/g

K, 3.26cm*/g/?Sec
K, 4.34cm*/g'/?Sec
Ks 4.7cm?*[g/?Sec
Q1 300.0cm3/Sec
T; 20°C
Cao 0.8

P 1.2g/cm?

Po 1.1g/cm®

C 0.9J/¢°C

Co 0.8J/¢°C

P 200.0g/cm?

Ts 20°C
AP 200.0g/cm?

Table 4.5: Controller parameters and set points

Control loops Setpoints Controller parameters
K T;
H 30.0cm 6.0 10.0
Q- 200.0cm3/Sec 0.2 3.0
T 50.0°C 4.0° 8.0"
0.1*" 6.0*"

* Primary control loop

** Secondary control loop
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The Self-Causal Matrix for the first subsystem is

Ql Tl Ca.O
Qi |1 0 0
T, |0 1 0
Cao |0 0 1

which suggests that the three measurements in the first subsystem cannot affect each
other. The labels on the top and the left of the matrix, @, T}, and C,o, are the

flow rate, temperature, and concentration of the external feed reactant respectively.

The Self-Causal Matrix for the second subsystem is

H T Q4 Ca CQ4
H [1 10 1 1]
Cs, = T (o1 0 1 o0 (1.28)
O |1 01 0o o
c, oo o0 1 o
CQs |0 0 1 0 1]

The labels on the top and the left of the matrix, H,T,Q4,C,, and CQq, are
level and temperature in the reactor, flow rate through valve 1, concentration of the

reactant in the product, and controller output to valve 1 respectively.

The Self-Causal Matrix for the third subsystem is

Q: CQy @ CQs CT P T

Q [1 1 o o o0 0 0]
cQ, |1 1 0 0 0
o5 @ |0 0 11 0 0 0 (4.29)
cQs |0 o 1 1 0 0 0
cr o 0o 0o 1 1 0 0
P o o 1 o o0 10
T, [0 0 0 0 0 0 1

The labels on the top and the left of the matrix, Qz,CQ2,Qs,CQs,CT, P. and

Ts. are the flow rate through valve 3, controller output to valve 3, flow rate through
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valve 2, controller output to valve 2, prime controller output of the cascade con-

troller, pressure and temperature of the cold water to the heat exchanger respec-

tively.

The Measurement Causal Matrix from S; to S, is

H'T Q4 Ca CQ4
C M,y = @1 1 0 0 0 O
Ty 0 1 0 0 O
Cao 0 1 0 1 0

The Measurement Causal Matrix from S, to S5 is

Q: CQ;: Qs CQs CT P

H 0 0 0
T

4

Ca
CQ4

o O = O
o © o o O
o o o O
o © o O
o O O =

-

The Measurement Causal Matrix from S3 to S is

4 Ca CQ4

O
[4,]
©O o 0o o o o ~ T

r e
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0

S O © O ©O o ©

L -

The Fault Measurements Matrix for S; is

o © o o O

Ts

o © o o O

(4.30)

(4.31)

(4.32)



_Ql Tl CaﬂO
Pt [1 0 o
FT |o 1 o
FQl |1 0 o
FM=pca0 |0 0 1 (4.33)
SQL |1 0 o0
ST1 |0 1 o
SCa0 |0 0 1 |

The labels on the left of the matrix, P1, FT, FQ, FCa0,SQ1,ST1, and SCa0,
stand for pipe 1 blockage, feed reactant temperature, flow rate, and concentration

abnormal, sensor failures of @), 7}, and Cjq respectively.

The Fault Measurement Matrix for S, is

HT Q C. CQq
P2 [1 01 0 o]
P10 1 01 0 0
1% 1 01 0 0
FM;= SH 1 0 0 0 1 (4.34)
ST |0 1 0 0 0
SQ4 |0 0 1 0 O
SCa |0 0 0 1 O
co4 [0 0 0 0 1

The labels on the left of the matrix, P2, P10,V1,SH, ST, SQ4,5Ca, and CO4,
stand for blockages of pipes 2 and 3, valve 1 fails high, sensor failures for H, T, Q4.

and C,, and level controller failure respectively.

The Fault Measurements Matrix for S3 is



Q: CQ; Qs CQs CT P T
0 0 0 0]

-

P4
P17
V2
V3
Tc
P
SQ2
SQ5
STc
SP
CO2

FM; = (4.35)

o O O O = O O = O O =
- O O O = O O O O o O
©c © O = O O O O O O

o = O O O = O O O o O

©C O O = O - O O = =
OO O O O O © O © O ©C
©c O = O O O - O o O

L )

The labels on the left of the matrix, P4, P7,V2,V3,T¢c, P,5Q2,5Q5,ST¢c,SP,
and CO2, stand for pipe 4 blockage, pipe 7 blockage, valve 2 fails high, valve 3
fails high, feed cold water temperature and pressure abnormal, sensor failures for

Q@2,Qs,T'c,and P, and @, controller failure respectively.

Abnormal behaviour detection is similar to that for the mixing process. A set
of error tolerances are defined for controlled variables and if any controlled variable
exceeds its tolerance then abnormal behaviour is indicated. A set of varying ranges
are defined for other variables and abnormal behaviour is indicated if any variable
exceeds its varying range. Manipulated variables should change in the same direction

as the corresponding controller outputs and if they do not, abnormal behaviour is

identified.

Diagnostic rules are formulated from the knowledge on system structures and
component functions in a similar way as that for the mixing process. The diagnosis
system is defined by a main problem CSTRD and 11 subproblems. The rule file for
the main problem is shown in Figure 4.9. The function of the main problem is to
classify the observed abnormalities. The outcomes of the main problem are several

subproblems each corresponding to a type of abnormality.

The subproblem RLEVEL will be used if abnormalities are present in the mea-
surement of level in the reactor and its rules are shown in Figure 4.10. The definitions
of attributes used in CSTRD and RLEVEL are given in Table 4.6. These rules are
developed from the following considerations. There are two situations when the
level in the reactor is abnormal, one is that the level is higher than its set point

and another is that the level is lower than its set point. Consider the first situation.

e
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From Eq(4.28) it can be seen that only Q4 in S; can affect H. If Q4 is high, then it is
responsible for abnormality in H and is activated. If Q, is activated, then Eq(4.28)
suggests that only CQ, in S; can affect Q4. If CQy is high then it is responsible
for Q4 being high and is activated. If CQ, is activated then Eq(4.28) shows that H
can affect CQ4 and, since H is lower than its set point, it is not responsible for CQ,
being high. Therefore, Eq(4.30) and Eq(4.32) show that no variable can affect CQ,.
In this case, Eq(4.34) suggests that the only failure would be controller failure. If
Q4 1s activated and CQ, is not then, from Eq(4.30) and Eq(4.32), it can be seen
that no other variables in S; or S3 can affect Q4, and Eq(4.34) suggests that pipe 2
blockage, pipe 10 blockage control valve 1 fails high, and sensor Q4 failure are the
candidate failures. The first two failures can be ruled out as Q, is high and pipe 2
or pipe 10 blockage cannot cause Q)4 being high. The last one can be ruled out by
the single failure assumption as it will not cause abnormality in H and, therefore,
the failure is control valve 1 fails high. If Q4 is not activated, then Eq(4.30) suggests
that @, in S; can affect H. If Q, is low then it is activated and in this case, Eq(4.33)
shows that the candidate failures are pipe 1 blockage, external feed reactant flow
rate abnormal, and sensor @, failure. Sensor failure is again ruled out by the single
failure assumption and the diagnosis result at this stage would be pipe 1 blockage
or feed reactant flow low. If Q; is not activated, then Eq(4.32) shows that only Q-
in S; can affect H, and if @), is low then it is responsible for H being low and is
activated. If Q, is activated then Eq(4.29) shows that CQ, in S, can affect @, and
CQ, will be activated if it is low. If CQ, is activated, then Eq(4.29) and Eq(4.31)
suggest that only Q; can affect CQ,, but Q, will not be responsible since Q3 is low.
In this case, Eq(4.35) suggests that the only failure would be controller failure. If
only Q, is activated then Eq(4.35) suggests that the failures would be pipe 2 block-
age or sensor @, failure and the last is ruled out by the single failure assumption.
If only H is activated, then Eq(4.34) suggests that the candidate failures would be
pipe 2 blockage, pipe 10 blockage, control valve 1 fails high, and sensor failure. The
first two failures can be ruled out as they will not cause H to increase and the third
one can also be ruled out as it will cause Q4 to be high, which is not observed.
Therefore, the only possible failure is sensor H failure. The formulation of rules for

the situation where H is higher than its set point is similar to the above.

The developed diagnosis system has been tested on the simulation of the CSTR
system. In the simulation, the sampling time is 4 seconds and the diagnosis system
collects and examines process data every 20 seconds during normal operation and
every 4 seconds when abnormal behaviour is detected. The possible faults that

may occur are initiated separately during simulation and they were diagnosed quite
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Table 4.6: Definitions of attributes used in CSTRD and RLEVEL

Attributes Definitions

ABS2 Subsystem 2 is abnormal

ABS3 Subsystem 3 is abnormal

ABH Reactor level is abnormal

ABT Reactor temperature is abnormal
ABQ1 Q: is abnormal

ABQ2 Q2 is abnormal

ABQ4 Q4 is abnormal

ABQ5 @5 is abnormal

ABT1 T is abnormal

ABTS5 T’s is abnormal

HLTSP Reactor level is lower than its setpoint
Q1LO Feed reactant flow low

Q1HI Feed reactant flow high

Q2LO Q- is low

CQ2LO Controller output to valve 3 is low
Q4LO Q4 is low

Q4HI Q4 is high

CQ4LO Controller output to valve 1 is low
CQ4HI Controller output to valve 1 is high

successfully.

4.6 Conclusions

A method for formulating diagnostic rules from knowledge of system structures and
component functions has been developed. Based on this deep knowledge, diagnosis
can be performed hierarchically, and it is shown that structural decomposition can
rapidly narrow diagnostic focus. Since structural decomposition corresponds to plant
topology, it could be easier to implement. Advantages of a rule based format are
that rules are efficient to evaluate and diagnostic rules can be combined with other
rules pertaining to plant operations. The successful application of this method in
developing diagnosis systems for the pilot scale mixing process and a simulated

CSTR system suggests that this method provides a systematic and efficient means



for the design of on-line rule based fault diagnosis systems.
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Supervisory layer:

Fault detection and

diagnosis

!

Control layer:

Performing regulation
task

Process

Figure 4.1 A hierarchical control system
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Fig.4.2 A diagnosis graph
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Figure 4.3 Diagnosis graph for the mixing process
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@tdiag

[abs?2 ]
n : [abtl ]
n : examining if sensor hl failed (senshl)
y : examining if sensor tl failed (senstl)
y : [abt?2 ]

n : performing subproblem level2 (level?2)
y : performing subproblem temp2 (temp2)

Figure 4.4 (a). Diagnostic rules for main problem TDIAG

@temp?2
[t21tsp ]
y : [tldcr ]
y : [ghdcr ]
y : controller failure
n : hot water control valve failure
giving low output
n : examining if sensor t2 failed (senst2)
n : [tlinc ]
n : examining if sensor t2 failed (senst2)

y : [ghinc ]
n : hot water control valve failure
giving high output
y : controller failure

Figure 4.4 (b). Diagnostic rules for subproblem TEMP2
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@level?2

[h21ltsp ]
y : [hldcr ]
y : [gcdcr ]
y ¢ controller failure
n : cold water control valve failure
giving low output
n : [h2cond ] :
y : hand wvalve 1 is blocked
n : examining if sensor h2 failed (sensh?2)
n : [hlinc ] :

n : [h2coni ]
y : hand valve 2 is blocked
n : examining if sensor h2 failed (sensh?2)

y : [gcinc ]
y : cold water control valve failure
giving high output
n : controller failure

Figure 4.4 (c). Diagnostic rules for subproblem LEVEL2

sensor t2 failure
no failure found so far

@senst?2
[t2sc ]
y : sensor t2 failure
n : [t2ltsp ]
y : [tlit2s ]
Y sensor t2 failure
n no failure found so far
n : [tldt2s ]
Y
n

Figure 4.4 (d). Diagnostic rules for subproblem SENST2
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@sensh?

[h2sc ]
Yy : sensor h2 failure
n : [h2ltsp ] :
y : [hlih2s

]
Y : sensor h2 failure
n : no failure found so far

n : [hldh2s ] :

1% sensor h2 failure

n no failure found so far

Figure 4.4 (e). Diagnostic rules for subproblem SENSH2

@senstl

[tlsc ]
y : sensor tl failure
n : [t2nrsp ]

y : [dth ]
y : sensor tl failure
n : no failure found so far

n : no failure found so far

Figure 4.4 (f). Diagnostic rules for subproblem SENST1
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@senshl
[hlsc ]
y : sensor hl failure
n : [h2nrsp 1 :
y : [dhh ]
y : sensor hl failure
n : no failure found so far
n : no failure found so far

Figure 4.4 (g). Diagnostic rules for subproblem SENSH1
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Figure 4.5(a) On-line level measurements
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Figure 4.5(b) On-line temperature measurements
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THE CURRENT PROBLEM SUITE IS { tanksd }

adiad e et e i e e e B e i e e e e L . VI VN
T R I

adiadiadadiadiadiodiediadiedie dhe A i e e e i e e e i et e R T I R
~

Since
subsystem 2 is abnormal
the decision cannot be any of
examining if sensor hl failed
examining if sensor tl failed
and temperature 2 is abnormal
the decision cannot be
performing subproblem level2

Hence, the decision is

performing subproblem temp?2

A DECISION WAS REACHED FOR PROBLEM {temp2 }

P P N R A A PN T N P e A P P P PN P i N P N P A P I A e Pt I Pt i g N N I P A Ny PN I e N It Pt Pt Pt P s e Pt Nt St e Nt s It P N A P o Ao e

Since
t2 1s lower than its setpoint
the decision cannot be
hot water control valve failure giving high output
and tl is decreasing
the decision cannot be
examining if sensor t2 failed
and gh is not decreasing
the decision cannot be
controller failure

Hence, the decision is

hot water control valve failure giving low output

Figure 4.6 Reasoning procedures of the diagnosis system
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Fig.4.7 Continuous stirred tank reactor with recycle

97



St D2 53

Figure 4.8 Diagnosis graph for the CSTR system
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@cstrd.rul

[abs?2 ]
y : [abh ]
y : perform subproblem rlevel
n : [abt ]
y : perform subproblem rtemp
n : [(abg4 ] :
y ¢ perform subproblem flow4
n : perform subproblem ca
n : [abs3 ]
y : [abgZ2 ]
y ¢ perform subproblem flow?2
n : [abgs ] o
y : perform subproblem flow5
n : [abth ]
y : perform subproblem tempb
n : perform subproblem pres
n : [abgl ] ¢
y : perform subproblem flowl
n : [abtl ]

y : perform subproblem templ
n : perform subproblem ca0

Figure 4.9 Diagnostic rules for the main problem CSTRD
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@rlevel.rul

(hltsp ] =
y : [g4hi
y
n
n : [g4lo
y
n

]
[cg4dhi ]
y : controller Q4 failure
n : control valve 1 fails high
[gllo ]
y : pipe 1 is blocked

n : [g2lo |
y ¢ [cg2l ]
y : controller Q2 failure
n : pipe 2 is blocked
n : sensor H failure
] ¢
[cgdlo ]
y : controller Q4 failure
n : [g2lo ]

y : pipe 2 is blocked
n : pipe 10 is blocked

[glhi ]
y : external feed reactant flow high
n : sensor H failure

Figure 4.10 Diagnostic rules for subproblem RLEVEL
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Chapter 5

On-line fault diagnosis based on

qualitative simulation

5.1 Introduction

The previous chapter describes a deep knowledge based approach, causal search,
which is based on knowledge of system structure and component functions. One
of the frequently used human diagnostic strategies is the hypothesis-test strategy
(Rasmussen 1980). From the observed patterns of abnormalities, the operator hy-
potheses a potential cause of the upset and then mentally simulates the effect of the
hypothesized malfunction on process behaviour. If the simulated behaviour matches
the observed one, the hypothesis is retained, otherwise, an alternative hypothesis
may be formed. The procedure can be implemented automatically on a computer
using the recently developed qualitative reasoning techniques (Bobrow 1984). When
the monitored process contains a large number of variables, the qualitative reason-
ing method may be used to simplify the computation. The qualitative reasoning
method is also appropriate as it depends less on accurate quantitative information.

This is particularly useful in simulating the effect of a fault as the exact severity of

a fault i1s generally not known.

There are several different approaches in qualitative reasoning such as de Kleer
and Brown’s confluence based qualitative reasoning (de Kleer and Brown 1984), For-
bus’ qualitative process theory (Forbus 1984), and Kuipers’ qualitative simulation
(Kuipers 1986). In this research, de Kleer and Brown’s confluence based qualitative
reasoning method is used. The qualitative model used in this approach is a set

of confluences which are qualitative equations and are derived from a quantitative
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model of the process under concern. This would be suitable for process control as
a quantitative model of a process can usually be developed. A further advantage of
this approach is that the effect of a fault can be easily represented by the deviation
of the corresponding process variable. For example, a blockage or a partial blockage

of a valve can be represented by a decrease in the opening area of the valve in the

form

0A = —

where A is the opening area of the valve. By setting 64 in the model to “—”,
the model can be used to simulate the process under this fault. Therefore, the
qualitative model can easily be used to simulate the process under normal or various

faulty conditions.

However, due to the lack of quantitative information, ambiguity often occurs
in qualitative reasoning, especially when a large number of qualitative variables are
involved. This ambiguity can be reduced by taking account of the order of magnitude
of different variables. Raiman (1986) has proposed a method of order of magnitude
reasoning to reduce the ambiguity, but his method only reduces the ambiguity in
some specific cases where some variables’ magnitudes are negligible compared with
those of others. In this research, a method for reducing ambiguity in more general
cases by taking account of the relative magnitude relations among variables has been

investigated.

The diagnostic strategy used in this chapter is the “hypothesis-test strategy”
(Rasmussen 1980, Moor and Kramer 1986). Unlike the failures of other compo-
nents, the effect of sensor failures on process behaviour cannot be easily represented
and, therefore, sensor failures are treated differently from other failures. Since the
diagnosis systems described in this chapter are real-time diagnosis systems based
on on-line measurements, it would be necessary to determine whether sensors are
working normally before considering other components. Thus, when generating a
hypothesis, sensor failures are considered first. If a hypothesis is a sensor failure,
then it is confirmed or denied by a set of heuristics relating to the diagnosis of sensor
failures. If a hypothesis is the failure of other components rather than sensors, then
the diagnosis system will predict the behaviour of the process under this hypoth-
esis and compare the prediction with the actual measurements. The hypothesis is

confirmed if the actual behaviour follows the predicted behaviour, otherwise, it 1s

denied.

In the next section, a brief review of confluence based qualitative reasoning 1s

given and is followed by a new approach for reducing ambiguity in qualitative rea-

102



soning. Section 5.3 describes the use of the qualitative reasoning approach to solve a
two mass collision problem, which suggests that the proposed qualitative reasoning
approach can produce a better solution than that of Raiman (1986). Qualitative
modelling of the mixing process and the development of a fault diagnosis system
based on qualitative reasoning for the mixing process is presented in Section 5.4.
Section 5.5 describes the development of a fault diagnosis system based on quali-

tative simulation for the CSTR system. The last section contains some concluding

remarks.

5.2 Qualitative reasoning

5.2.1 Qualitative reasoning based on confluence

De Kleer and Brown (de Kleer and Brown 1984) discuss a qualitative reasoning
method based on confluences. This method is also referred to as Incremental Qual-
itative Analysis (IQA) (Herbert and Williams 1986, 1987). Since one of the most
important features of a physical variable is whether it is increasing, decreasing, or
unchanging; +, — and 0 are defined as the quantity space where +, — and 0 repre-
sent the cases that a variable is increasing, decreasing, and unchanging respectively.
More generally, the qualitative value of a physical variable X corresponding to a

specified landmark value a is denoted as [X], and

+, if X > a,
[X]e =% 0, if X =a,
—, if X <a.

Usually the landmark value used is 0, and [X]o is denoted as [X] for simplicity.
For practical applications, such as fault diagnosis, threshold values are defined for

the conversion from quantitative values to qualitative values, such that

+, if X > X4,
[X]=1¢ 0, ifX_ <X <Xy,
— f X < X_.

)

where X, and X_ are the threshold values for the physical variable X.

Addition and multiplication of qualitative variables are defined in Table 5.1 and

Table 5.2 respectively. In Table 5.1, “?” stands for unknown, it may be any one of

the values: +,0, and —.
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Table 5.1: Addition of qualitative variables [A] and [B]

[B]
[A] —~ 0 +
~ - -
0 — 0 +
+ ? + o+

[B]
[A] — 0 +
- + 0 —
0 0 0 0
+ - 0 +

The qualitative behaviour of a physical system can be described by a set of con-
fluences which are formally derived from the quantitative equations for the system.

This ensures that the qualitative model is consistent with the quantitative one.

From Table 5.1 it can be seen that the addition of two qualitative variables with
opposite values + and — is unknown. Ambiguity is a major problem associated with
qualitative reasoning. Ambiguity is due to the lack of quantitative information and,
with the addition of some available quantitative information, this ambiguity may be
reduced. Raiman (1986) investigates using order of magnitude reasoning to reduce
ambiguity. As suggested by Oyeleye and Kramer (1988), ambiguity could also be
reduced by qualitative constraints derived from redundant numerical equations. For

example, considering the following two equations
X1 + X2 - X3 = 0

2X:1+ X2+ X5=0

from which the following qualitative constraints can be derived.
(Xs] = [X1] + [Xa)

[X1] = [X3] = [X3]
[X2] = [Xa] = [X3]
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Table 5.3: Solution of [X,] and [X3]

possible solutions viable
(Xl  [X3]  [X5)
+ + + No
+ + 0 No
+ + - No
+ 0 + No
+ 0 0 No
+ 0 — No
+ — + Yes
+ — 0 Yes
+ — - Yes

[Xs] = —[X1] — [Xa]

[X1] = —[Xz2] — [X3]

[X2] = —[X1] — [X3]
Suppose that [X;] = +, then the solutions for [X;] and [X3] from the above
qualitative constraints are provided in Table 5.3, from which it can be seen that the

solution for [X3] is ambiguous. A redundant numerical equation can be derived by

substracting the first numerical equation from the second and is given bellow:
X1+2X53=0

from which an additional qualitative constraint can be obtained as
[X1] = —[X3]

which gives an unambiguous solution [X3] = —.

5.2.2 Order of magnitude reasoning

To reduce the ambiguity in qualitative reasoning, Raiman (1986) developed a formal
system FOG which takes account of the information on the order of magnitude of
physical variables to remove ambiguity. In FOG, three operators, Ne, Vo, and Co,

are defined to represent the order of magnitude relations between physical variables

such that
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A Ne B stands for A is negligible in relation to B,
A Vo B stands for A is close to B,

A Co B stands for A has the same sign and order of magnitude as B.

To perform qualitative reasoning, 31 inference rules are defined. From the three
defined operators, it can be seen that this method can only reduce ambiguity in
some specific cases where some variables’ magnitudes are negligible to those of other
variables. This can be illustrated by a simple example. Consider the situation where
[A] = —[B] and A Ne B. The addition of [A] and [B] will be [B] instead of unknown.
However, if the relation between [A] and [B] is not “negligible”, then ambiguity

cannot be removed.

Here a new approach which can reduce ambiguity in more general cases is in-
troduced. In this approach, four operators, Rmh, Rmc, Rml, and Rmn, are defined
such that

A Rmh B stands for the relative order of magnitude of A is higher than
that of B,

A Rmc B stands for the relative order of magnitude of A is close to that
of B,

A Rml B stands for the relative order of magnitude of A is lower than

that of B,

A Rmn B stands for the relative order of magnitude of A is negligible
to that of B.

Note in the above definitions, Rmn is a subclass of Rm! and the relations between

two variables can only be either Rmh, Rmc, or Rml.

To perform qualitative reasoning, the following 18 inference rules are defined:
Rl: ARmhB& BRmlA
R2: ARmcB= BRmcA
R3: ARmnB=ARmlB

Ri: AxB, BxC= Ax(C

(* stands for any operators)
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R5: ARmcB, BxC = AxC

R6: A Rmh B, C Rmn B=>C Rmn A

R7: A Rmh B = [A] + [B] = [A]

R8: A Rmc B, [A]= —[B]= [A]+[B] =0

R9: [A]l=[B]+[C), [A]=—[B]=[C] = [A], C Rmh B
R10: ARmcB,CxD=A-CxB-D

R11: AxB,C*xD=A-C*B-D

R12: (A+ B) Rmc (C+ D), [A+ B] = [C + D],
[A]=[C], ARmcC = [B]=[D], B Rme D

R13: A Rmc (B+C) or A Rmh (B + C),
[B]=[C]= A Rmh B, A Rmh C

R14: (A+ B) Rmc (C + D), A Rmc C, [A] = [C],
[B] = [D] = B Rmc C, [A] + [B] = [C] + [D]

R15: (A+ B) Rmc (C + D), [A]+ [B] =[C] + [D],
[A] =[C], A Rmc C = [B] =[D], B Rmc D

R16: AxB, C Rmc D, [A]=(C), [B] =[D] = (A+C) * (B + D)

R17: (A+ B) Rmh C or (A+ B) Rmc C, [A] = —[B],
A Rmh B= A Rmh C

R18: (A+ B) Rmc0= A Rmc B

Now recall the above example, suppose [A] = —[B] and A ERml B, from Rule 7,
the result of [A] + [B] would be [B] and ambiguity is removed.
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This approach may be used as a complement to the qualitative reasoning method

of de Kleer and Brown. It could reduce ambiguity to some extent by using available
information on quantitative relations among variables. Its applications in solving

a mass collision problem and in fault diagnosis will be described in the following

sections.

5.3 Solving the two mass collision problem through

qualitative reasoning

The qualitative reasoning method described in the previous section is used here to
solve the two mass collision problem which is used in (Raiman 1986) and, therefore,

the result presented in this section can be compared with that of Raiman (1986).

5.3.1 The two mass collision problem

The two mass collision problem is shown in Figure 5.1, where two masses with
weight M and m coming from opposite directions with close velocities V; and v;. It
is required to obtain the qualitative values of the velocities of the two masses after
collision, i. e. the directions of the two masses, through qualitative reasoning. In
(Raiman 1986), it is assumed that M is much larger than m. If it is only known that
M > m, then no result can be obtained from Raiman’s method since the relation
“>” (greater than) is not reflected by the operators he defined. However, this could
be solved by the approach presented here.

5.3.2 Qualitative reasoning about the two mass collision

problem
Qualitative constraints

From momentum and energy conservations, the following equations can be obtained,

MV; + mv; = MV; + mvy (5.1)

MV? mv} MV} mvf
= +

5.2
2+2 2 2 (5:2)
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where M, V;, and V; are the mass, initial and final velocities for the first object

respectively, and m, v;, and vy are those for the second object respectively.

From Eq(5.1) and Eq(5.2), the following equation can be obtained

V,-I'-Vf = v; + vy (5.3)

Since it is assumed that the two masses have the same initial velocity, therefore

vy =2V, +V; (5.4)

From the above equations, the following constraints can be obtained.

(MV; + mv;) Rme (MV; + mvy) (5.5)
[MV; + mv;] = [MV; + mvy] (5.6)
(Vi + V;) Rmc (v; + vy) (5.7)

[Vi + V}] = [v; + vy] (5.8)

(MV? 4+ mv?) Rmec (MV} + mv}) (5.9)
[v] = [2V; + V}] (5.10)

v; Rme (2V; + V) (5.11)

The initial conditions of the problem are given by the following constraints.

[Vi] = + (5.12)

[vi] = — (5.13)
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Vi Rme v; (5.14)

M Rmh m (5.15)
% Rml % (5.16)
[M] =+ (5.17)
[m] =+ (5.18)

Qualitative reasoning

Applying R10 to Eq(5.14) and Eq(5.15), the following equation can be obtained.

MV, Rmh muv; (5.19)

From R7 and Eq(5.19), the following can be obtained.

[MV; + mv;] = [MV]] = + (5.20)

The qualitative value of V; can be either 4, 0, or —, three hypotheses are gen-

erated.
(a). V] =+

In this case,

[V, + Vf] =+ (5.21)

Applying R9 to Eq(5.8), Eq(5.13), and Eq(5.21), the following can be obtained.

il =[Vi+ Vs] =+ (5.22)

vf Rmh [ (523)
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Applying R13 to Eq(5.11), Eq(5.12), and hypothesis (a) gives

vy Rmh 2V, (5.24)

From Eq(5.17), Eq(5.18), Eq(5.22), and hypothesis (a), the following can be
obtained.

[MV;] = + (5.25)

[mvy] = + (5.26)

Applying R13 to Eq(5.5), Eq(5.25), and Eq(5.26) gives

(MV; + mv;) Rmh MV; (5.27)

Eq(5.12), Eq(5.13), Eq(5.17), and Eq(5.18) give

[MV] = —[muv] (5.28)
Applying R17 to Eq(5.27), Eq(5.28), and Eq(5.19) gives
MV, Rmh MV} (5.29)

from which the following can also be obtained

V,' Rmh Vf (5.30)

V; RmlV, (5.31)

(b).[Vs] = -
From Eq(5.6) and Eq(5.20) it follows that

[MVf + mvf] =+ (5.32)

Eq(5.17) and hypothesis (b) give
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[MVj] = -

Applying R9 to Eq(5.32) and Eq(5.33) gives

[mvs] = +

mvy Rmh MV}

Eq(5.34) and Eq(5.18) imply that

[vsl = +

R1 and Eq(5.16) give

1 1
— R il
m mhM

Applying R11 to Eq(5.35) and Eq(5.37) gives
Uy Rmh Vf

Subhypothesis 1: vy Rml v;

From R7, we have

[vi +vg] = [oi] = -

From Eq(5.8)

[‘/;+vf]:[vi+’l)f]=—

Applying R9 to Eq(5.40) and Eq(5.12) gives

Applying R4 to Eq(5.40) and Eq(5.12) gives
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(5.36)
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(5.38)

(5.39)

(5.40)
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vy Rmh'V, (5.42)
Applying R5 to Eq(5.42) and Eq(5.14) gives
Uy Rmh Uy

which contradicts the subhypothesis and, therefore, the subhypothesis is false.

Subhypothesis 2, vy Rmc v;

From RS, Eq(5.13), Eq(5.36), Eq(5.7), and Eq(5.8)

Vi + Vf] = [’U,' + vf] =0 (5.43)
(Vi + Vs) Rme (v; + vs) Rmc 0 (5.44)
Applying R18 to Eq(5.44) gives
V,‘ Rmece Vf
Applying R2 to the above equation gives
Vf Rmc ‘/, (545)
Applying R4 to Eq(5.45) and Eq(5.14) gives

Vi Rmc v;

Applying R4 to the above equation and subhypothesis (2) gives
Vf Rmc vy

which contradicts Eq(5.38) and, hence, this subhypothesis is false. Therefore,

vy Rmh V; (5.46)

Applying R5 to Eq(5.46) and Eq(5.14) gives

vy Rmh v,
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From R7 and the above equation

[vi +vs] = [vs] = +
Eq(5.8) becomes
Vi+ Vil = [vi+vs] =+
Applying R9 to hypothesis (b) and the above equation gives
V; Rmh V;

Applying Rl to the above equation gives

Vi RmlV, (5.47)
(c) V5] =0.
Eq(5.10) becomes
[vs] = [2vi] = [vi] = + (5.48)
vy Rmc 2v; (5.49)

To summarise, the result is

1) Vil=+, Vs BmlV
[v)] =+, vy Rmh 2V,

(2) Vil=—, Vs EmlV,
[vs] =+, vy Bmh Vi

3) V]=0
[v)] =+, vy Rmc2V,
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5.3.3 Comparison with analytical solution

The analytical solution of the two mass collision problem is

M —3m
V,= =My
f M+m‘4 (5.50)
3M —m
=— "V
T Mtm (5-51)

There exist three possible situations.

(1). M > 3m. In this case,

Vi>0, v;>0, vs>2V,
(2). M = 3m. In this case,

Vi=0, vy>0, vy=2V.
(3). M < 3m. In this case,

Ve <0, vy>0, v>V,.

It can be seen that the qualitative reasoning described above gives the correct

solution.

5.4 Fault diagnosis of the mixing process

5.4.1 Qualitative modelling of the mixing process

The qualitative model is in the form of a set of confluences which are derived from
the quantitative model of the mixing process. The dynamic model of the mixing

process, which is developed in Chapter 3, is listed below:

dH
A—= = Qe+ Qn— Qu (5.52)
dH
Az'gti = Qo1 — Qo2 (5-53)
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dT,

A Hy,— T = Qc(Tec — Th) + Qu(T — Ty) (5.54)
dT.
A2H2d—t2 = Qu(Ty - T) (5.55)

Qa1 = K1\/H, — H, (5.56)

Qo2 = Ko\/H, (5.57)

The parameters and variables in the model are defined in Chapter 3.

One way to derive the confluences is to compare the dynamic model at present
state with that at a previous steady state. Compare Eq(5.52) at time ¢2 with that

at time t1, we have

dH
W | — 4 dt1 |t1 = Qc |t2 - Qc Itl + Qh |t2 - Qh |t1 - Qol |t2 + Qol |t1 (5-58)

Taking the qualitative values of the two sides of Eq(5.58), we have

[Alﬁl |t2 Al%? Itl] = [Qc |t2 - Qc |t1] + [Qh |t2 - Qh |t1] - [Qol |t2 - Qol lu]
= 612Qc + 612Qn — 612Q01 (5.59)

where 8, 2Q., 6;2Qx and 8 2Q,1 are the qualitative values of the increments of Q.,

Qh and Q,; over the time interval [t1,12] respectively.

Suppose the system is steady at time ¢1, then Eq(5.59) becomes

dH
[ dtl |t2] 51.2Qc + 51,2Qh - 51,2Qol (5.60)

Eq(5.60) is the confluence for predicting the qualitative value of s at time 2.

Applying the same procedure to Egs (5.53) to (5.57), gives

ng

[ li2] = 61,2Q01 — 612Q02 (5.61)

dT
[gil |t2] = 51,2Qh - 51,2Qc - 51,2T1 (5-62)

116



dT,

[E’ o] = [T1 — T2)61,2Q01 + 61,21 — 61275 (5.63)
61,2Q01 = 612(Hy — H,) (5.64)
61,2Q02 = 61,2 H; (5.65)

Eqs(5.60) to (5.65) are the set of confluences which describe the qualitative
behaviour of the mixing process. Since these confluences are formally derived from

the dynamic model, they are consistent with the dynamic model.

It can be seen that the qualitative model is simpler than the quantitative one.
The parameters A;, A,, K;, and K, do not appear in the qualitative model, and
therefore, the inaccuracies in these parameters will not affect the qualitative model.
Compared with the quantitative model, the qualitative one is more robust to slight

inaccuracies in measurements or system parameters.

In Eq(5.60), if hand valve 1 is working correctly, 6;2Q.1 is determined by the
difference of H; and H,, and H, is determined by Q. and Q. So, 1 2@ 1s the feed-
back effect of 8; Q.+ 8, 2@, and it will have the same sign as é; ,Q. + 61 2Qs. This
results in ambiguity. Here, to solve this ambiguity, we adopt the same heuristic used
by Oyeleye and Kramer (1988). The heuristic is that “an effect cannot compensate

for its own cause”. Thus,

612Qo1 Bml 612Qc + 612Qn (5.66)

Applying Rule 7 to Eq(5.66) and (5.60), gives

dH
[d—t1 2] = 61,2Qc + 61,2Qn (5.67)

Eq(5.67) is used instead of Eq(5.60) when hand valve 1 is working normally.
Similarly, if hand valve 2 is working normally, Eq(5.61) can be reduced to

dH
[EE 2] = 612Qa (5.68)

Eq(5.62) and Eq(5.63) can be reduced to
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dT
[d_tl 2] = 612Qn — 61,2Qc (5.69)

dT.
[ﬁtl 2] = [Th — T2)612Qo1 + 61,2Th (5.70)

In the above equations, Q. and Q) are not measured. Under normal operating
conditions, they should change in the same directions as the corresponding con-
troller outputs which are known. Therefore, in normal conditions, é; 2Q. and &, ;Q},
are replaced by é;,I., where I, is the controller output to the cold water control
valve, and 6,515, where I, is the controller output to the hot water control valve,

respectively.

5.4.2 Fault detection and diagnosis
Fault detection

Fault detection and diagnosis is based on the qualitative model of the mixing process.
The qualitative model provides a set of constraints for the process which should
not be violated if there is no fault in the system. The qualitative values of iﬁ—?,
%1, 5'%1, and %2, 1. e. the changing directions of H,, H,, T}, and T, respectively,
can be calculated from the qualitative model and are compared with the on-line
measurements of Hy, Hy, Ty, and T; respectively. If the predicted values agree with
the actual measurements, there is no fault in the process. Otherwise, it indicates
that a fault occurs in the process. Once the presence of a fault is detected, the

diagnosis system begins to determine the details of the associated fault.

To reduce the effects of measurement noise, when the predicted behaviour does
not agree with the actual measurements, several sets of additional measurements
are collected to check model consistency. If in the majority of the cases the model is
violated, then there is a fault in the process. Otherwise, the system is still considered

to be at a normal condition.

It will waste computer time if the calculations of the expected changing directions
are continued regardless whether the measurements are normal or not. To avoid this,
an enable condition, which comprises a set of constraint values for the measurements,
is defined for the fault detection. If the enable condition is not satisfied, i. e. all the
measurements are within their constraint values, the process is considered to be at

a normal condition and it is not necessary to calculate the changing directions. It
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is only when the enable condition is satisfied, that the diagnosis system begins to

calculate the expected changing directions from the qualitative model.

Fault diagnosis

Fault diagnosis is performed based on the qualitative model of the mixing process.
The model is used to generate the expected behaviour under certain failure hy-
potheses. Diagnosis is performed by the “hypothesis-test” strategy which contains
a procedure of hypothesis generation, simulation and comparison. The procedure is
as follows: first, generate a hypothesis based on a particular failure, then simulate
the behaviour of the process under this failure. The expected behaviour is compared
with the actual measurements, if they agree, this hypothesis is retained. Continu-
ously perform this procedure until all the generated hypotheses have been tested. If
no hypothesis is retained, it is an unsuccessful diagnosis. The retained hypotheses

are the possible faults.

It will be inefficient when the process being diagnosed contains a large number
of components, since the more components it contains, the more hypotheses it will
generate. To improve efficiency, the process being diagnosed is decomposed into

several subsystems such that the number of components in each subsystem is limited.

The mixing process is divided into two subsystems. The first subsystem includes
the hot and cold water control valves, tank 1, and the associated sensors. The second

subsystem includes hand valve 1, hand valve 2, tank 2 and the associated sensors.

The possible faults that may occur are considered to be: sensor failures, hot
and cold water control valve failures, hand valve 1 and hand valve 2 blocked, and
controller failure. Since the parameters, and the inputs and outputs of the controller
are known exactly, it is not necessary to derive a qualitative model for the controller
to replace the quantitative one. Controller failure is diagnosed by checking the
consistency between its inputs and outputs. Sensor failure is diagnosed differently
from the failures of other components. Since it is not straight forward to predict the
output of a failed sensor, sensor failure is diagnosed from heuristic considerations.
These heuristics comprise previous experience on sensor failures and some general
knowledge about sensors. During previous operation of the mixing process, the level
sensor of tank 2 failed several times. When it failed, its output was fixed at a certain
value. Later it is found that this is due to the blockage of the conduit connecting the
level sensor and the tank. This gives a heuristic that when a sensor’s output is fixed

at a certain value, but where other sensor outputs which can directly or indirectly
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reflect the same measured variable are changing, then the sensor whose output is
fixed fails. Another heuristic is that since sensor readings reflect associated process
variables and if the process variable changes continuously, the sensor readings should
also change continuously, i. e. the change between two successive samples is limited.
In the mixing process, the measured variables have large time constants, especially
the level variable, and so any abrupt changes in sensor readings reflect sensor failure.
From previous experience, when the wires connecting sensors and the computer are

broken, the data collected by the computer will change randomly.

To simulate the behaviour of the system under a particular failure, the effect of
this failure on the system’s model should be characterised. The effects of failures are
represented by the deviations of certain process variables and, hence, the qualitative

model can be used to simulate the process under normal or faulty conditions.

When hand valve 1 is blocked or partially blocked, the water flow between tank

1 and tank 2 will decrease, thus

61,2Q01 = - (571)

Similarly, if hand valve 2 is blocked or partially blocked,

51,2Q02 = - (5'72)

If the cold water control valve fails, its average output flow rate will be either
higher or lower than the normal one. Ifit is lower, the level in tank 1 will decrease and
subsequently cause the level in tank 2 to decrease. Since level 2 is being controlled,
the decrease in level 2 will cause the input to the cold water control valve to increase.
Similarly, if the output flow rate of the cold water control valve is higher than the
normal value, the input to the cold water control valve will decrease. Therefore,

when the cold water control valve fails

51,2Qc = _51,210 (573)

Similarly, when the hot water control valve fails

612Qn = —b121 (5.74)

When a fault is detected, the hypothesis generator generates an hypothesis based

on the observed symptom which comprises the information on which measurements
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suggest different behaviour from the predictions.

From Equations (5.67) to (5.70), it can be seen that T} and Q,, appear in the
models of both subsystems. Q,; is determined by Equation (5.56). So, the failure
of hand valve 1, the failures of both level sensors, and the failure of the temperature
sensor of tank 1 will affect both subsystems. These failures are arranged together
to form a common list, while the other failures are arranged into another two lists
corresponding to the subsystem to which they belong. The arrangement of candidate

lists is shown in Figure 5.2.

If only the model of the first subsystem is violated, then the hypothesis is gener-
ated from list 1, whereas if only the model of the second subsystem is violated, the
hypothesis is generated from list 2. If the models of both subsystems are violated,
then the hypothesis is initially generated from the common list. If all the candi-
dates in the common list have been tried, and the models of both subsystems are
still violated, then the hypothesis is generated from list 1 and list 2. The hypothesis

18 generated by heuristic rules which are in the following form:
IF Symptom THEN Hypothesis

where the symptom includes the pattern of abnormal measurements, i. e. which
particular measurements significantly deviate from their steady state values, and
the pattern of contradictions, i. e. which variable’s behaviour is different from its
prediction. For example, if only the temperature measurements are abnormal, then
the hypothesis is generated from the set of failures which can affect the temperature

control loop, i. e. temperature sensor failures and hot water control valve failure.

Since sensor failures will affect the qualitative simulation, they are arranged to
be at the top of candidate lists such that they can be hypothesised prior to other
component failures. Therefore, when a fault is detected, the diagnosis system first
tries to find out if the sensors are working normally. If the sensors are working
normally, then the measurements are reliable, and thus, the qualitative simulation

will also be reliable.

5.4.3 Performance of the diagnosis system

The fault diagnosis system has been successfully applied to the mixing process.
During the experiments, all the faults mentioned above were separately initiated, and

they were diagnosed very successfully. Table 5.4 shows the result of the experiment
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Table 5.4: Performance under a single failure

fault initiated no. of successful diagnosis

temp. sensor 1 fail 3

temp. sensor 2 fail
level sensor 1 fail
level sensor 2 fail
hand valve 1 blocked
hand valve 2 blocked

hot water control valve fail

Ut U Ot O W W

cold water control valve fail

in which every fault was initiated five times. It can be seen that the performance is

very satisfactory.

The result of the experiment shows that the performance of the diagnosis system
subjected to sensor failures is not as good as that subjected to other component
failures. This is due to the fact that measurements in the mixing process are not
abundant and, therefore, sensor failures are diagnosed mainly by detecting abrupt
changes in sensor readings. Sometimes, when a sensor fails, the change in its reading
is not abrupt and, therefore, this fault is missed. In a sensor rich environment, sensor

failures are easier to diagnose (Scarl, Jamieson, Delaune 1987).

During simulation studies and experiments, it has been found that the diagnosis
system can diagnose partial blockage of hand valves. The simulation result shows

that this fault can still be diagnosed when the hand valves are only 20% blocked.

Experiments have been conducted when several faults were initiated simultane-
ously. Since each different fault takes a different time to affect the control system,

only the fault with a quick effect was diagnosed.

5.5 Fault diagnosis of a CSTR system

A qualitative modelling based diagnosis system is also developed for the CSTR

system in a similar way as that described in the previous section.
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5.5.1 Qualitative modelling of the CSTR system

The qualitative model of the CSTR system is derived from its dynamic model, which

is developed in the previous chapter and is listed below.

Add_lt{ =@Q1+Q2—Qs (5.75)

AH ddct,, = Q1(Cso— C,) — T, AH (5.76)
AH %’1 =r,AH — C,Q, (5.77)
AHBZ%— = BiQ1(Ty — T) — B,Qo(T — T») + H,rq (5.78)
By = Cu0pC + (1 — Ca0)poCo (5.79)

B; = pC(Cq + Cy) + (1 — Ca — C3)poCo (5.80)
re = K,C* (n>0) (5.81)

K, = a,e™/" (5.82)

Q; = K,A;VP (5.83)

Q4 = K4AsVP (5.84)

Qs = Q2+ Q4 (5.85)

P =P+ AP (5.86)
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Py = H[(Ca+ Cy)p+ (1 = C, — Cy)po (5.87)

Qs = K5A5\/175 (5.88)

T, = CopoQsTs + Q2T [Cp(Cy + Ch) + Copo(1 — C, — Cy)]
CopoQs + Q2[Cp(C, + Cy) + Copo(1 — C, — Cy)]

(5.89)

The parameters and variables in the model are defined in the previous chapter.

It is assumed that the process is operating at a steady state prior to the oc-
currence of a fault. Therefore, the qualitative model for the CSTR system can be
derived based on its steady state model. Under this assumption, from Eq(5.75) and
Eq(5.84) to Eq(5.87) the following equation can be obtained.

Q1 = Q4
= K4A4\/ﬁ
= K,AnJH[(Co + Cy)p + (1 — Ca — Cy)po] + AP (5.90)

In steady state, Eq(5.76) to Eq(5.78) become

Ql(cao - Ca) = TaAH (591)
Q:Cy, =1, AH (5.92)
(B1Q1 + B2Q2)T = Bi@Th + B,Q:T2 + H,r, (5.93)

The qualitative model is obtained by first differentiating and then taking quali-
tative values of the two sides of the quantitative equations as used in (de Kleer and
Brown 1984). To simplify the qualitative model, several practical assumptions are

also made.

Differentiating the two sides of Eq(5.90) gives

W = K {H[(C.+Cy)p+ (1~ Ca—Ci)po] + AP}
+I{4A4{[(Ca + Cb)p + (1 - Ca - Cb)po]%{-
+H(p— po)(%5= + %) + 92F

124



In the above equation, it is assumed that the changes in C, and C, cannot
significantly affect the average density of the content in the reactor and, therefore

cannot significantly affect the pressure at the bottom of the reactor, then the above
equation can be simplified as

K4A[(Ca+ Cy)p+ (1 - Cy — c,,)po]d_H
= dgl K {H[(Co+ Cy)p+ (1 - C, = Cy)po]

dAP

dA
+AP}—2 ! KA, — (5.94)

Taking the qualitative value of the two sides of Eq(5.94) and using 6 X to denote
[ ], Eq(5.94) becomes

Similarly, differentiating and taking the qualitative value of the two sides of
Eq(5.91) and Eq(5.92) gives

§C, = 8Qy + 6Cuo — §H — 6T (5.96)

§Cy = 6H + 8T + 6C, — 6Q, (5.97)

In Eq(5.93), it is assumed that the changes in C,9, C,4, and C} will not signifi-
cantly affect the densities and specific heats of the input reactant and the content
in the reactor, therefore, B; and B, in Eq(5.93) can approximately be treated as
constants. Then, differentiating the two sides of Eq(5.93) gives

(B1Q1 + BQ2) L + TB, % + TB,%%
=B %8 + B1Tl% + Bzngz + BszdT?f

1dC Cla,b.e b'/T dT
+Hr[KrnC: '_1 + J__Q_—— dt

The above equation can be re-formulated as

H,C;‘a,b,e‘b'/T)dT
T? dt

(B1@Q1 + B2Q2 —
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dTl dT2 dQl

= BlQl_dt +BzQ2—dt —Bl(T—Tl)—dt -
dQ; dC
By(T — T,)—== n—1_~a
2T —To)—~ + H, K;nC, — (5.98)

From the parameter values provided in the previous chapter, the value of the
expression in the round bracket of the left hand side of Eq(5.98) is positive, therefore,
taking qualitative values of the two sides of Eq(5.98) gives

6T = 6T1 + 5T2 - 6Q1 - 5Q2 + 6Ca (599)

Similarly, the following can be obtained from Eq(5.83) to Eq(5.89).

6Q, = 6A, + 6P (5.100)
§Qs=6A4+ 6P (5.101)

6Q3 = 6Q2 +6Q4 (5.102)

6P = 6Py + SAP (5.103)

6Py = 6H (5.104)

§Qs = 6As + 6P; (5.105)

§Ty = 8T5 + 6T + 6Q; — 6Qs (5.106)

So far the qualitative model for the CSTR system has been developed. To sim-
ulate the effect of a fault, the fault should be represented as a deviation in the
corresponding process variable as described in the previous section. The represen-

tations of the possible faults (except sensor failures) in the CSTR system are given

in Table 5.5.
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Table 5.5: Representations of faults

Faults Representations
Pipe 1 is blocked 6@ = —
External feed reactant flow high Q1 =+
Pipe 2 or 3 is blocked or pump fails 0AP = —
External feed reactant temp. high 0Ty = +
External feed reactant temp. low 0T, = —
Pipe 10 or 11 is blocked
or control valve 1 fails low 0Ay = —
Control valve 2 fails high 0As = +
Pipe 7, 8, or 9 is blocked
or control valve 2 fails low 6As = —
Control valve 1 fails high 0A4 =+
Pipe 4, 5, or 6 is blocked
or control valve 3 fails low 6A; = —
Control valve 3 fails high 0A; =+

External feed reactant

concentration too low 6Cpo = —
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5.5.2 Fault detection and diagnosis

The on-line fault diagnosis system for the CSTR system is similar to that for the
mixing process described in the previous section. An enable condition, which con-
sists of several constraints on the measurements, is defined. Only when this enable
condition is satisfied, does the diagnosis system begin to detect and diagnose faults.
Fault detection is performed by predicting the behaviour of the process under nor-
mal operating conditions and comparing this with the actual measured behaviour.

A fault is detected if the predicted behaviour differs from the actual one.

To improve efficiency, the CSTR system is decomposed into two subsystems.
The first subsystem includes pipe 1, reactor, pump, pipes 2, 3, 10, 11, valve 1, and
sensors associated with these components. The rest form the second subsystem.
Fault diagnosis is performed through the “hypothesis-test” strategy. If a hypothesis
is a sensor failure, then it is discriminated by heuristic rules. Other hypotheses are

discriminated through qualitative simulation.

5.6 Conclusions

Process fault diagnosis based on qualitative modelling is investigated in this chapter.
It is demonstrated that qualitative reasoning depends less on accurate process model
parameters and accurate measurements and, consequently, the result obtained from
qualitative reasoning is less accurate than that of quantitative reasoning. How-
ever, for the purpose of fault diagnosis, accurate reasoning is generally not needed
and, sometimes, is difficult to implement. Ambiguity is a problem associated with
qualitative reasoning. It is demonstrated in this chapter that ambiguity could be
reduced by taking account of certain available quantitative information. The model
of a process can be greatly simplified if only the signs (4, 0, —) of process variables
are concerned. If the order of magnitude information is used in qualitative reason-
ing, then only limited simplification is allowed to preserve the order of magnitude
information. There is a conflict between model simplification and obtaining a less

ambiguous result.

Based on qualitative modelling, process fault diagnosis can be performed through
the “hypothesis-test” strategy. Since the behaviour of the process under certain
failures, such as sensor failures, may not be predicted efficiently through qualitative
simulation, an approach combining qualitative reasoning and heuristic reasoning

should be used. Through decomposing the system being diagnosed into several
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subsystems, diagnosis can be rapidly focused in a small region.
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Fig.5.1 Two mass collision problem
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Common list:

level sensor 1 fail
level sensor 2 fail
temp. sensor 1 fail
hand valve 1 blocked

1
List 1: List 2:
|
cold water control temp. sensor 2 fail }
valve fail |
hot water..control hand valve 2 blocked
valve fail

Figure 5.2 Candidate lists
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Chapter 6

Qualitative simulation based fault
diagnosis with self-reasoning

facility

6.1 Introduction

With the increasing complexity of expert systems, it would be desirable to design a
system that can reason its own behaviour and thus find its own defects and improve
its performance by correcting these defects. That is it can learn from past experience.
Since diagnosis is a dominant application area of expert systems, the ability of
learning would be a desirable property for a fault diagnosis system and, recently,
several fault diagnosis systems with a learning property have been reported (Pazzani
1986, 1987, Rich and Venkatasubramanian 1989). They are called failure-driven
learning diagnosis systems because learning is initiated when a failure occurs in

diagnosis.

In these systems, fault diagnosis is based on a set of heuristic rules, which are

believed to give efficient diagnosis. These heuristic rules are in the form:

IF Symptoms THEN Fault.

Since the heuristic rules may not be perfect, a failure may occur during diagnosis
in that the hypothesis proposed by a rule is incorrect. Once such a failure has
occurred, the heuristic rule generating the wrong hypothesis is modified and a new
rule is generated. The task of learning is carried out based on a deep model of the

system being diagnosed. From this deep model, the other effects of the proposed
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fault, which are not included in the condition part of the failed heuristic rule, can
be obtained and another fault, which may cause the same symptom as the condition
part of the failed heuristic rule, can also be obtained. The failed heuristic rule is
modified by including additional features in its condition part, which are obtained
from reasoning through the deep model, such that its applicability is limited and
will not be employed in future similar situations. A new heuristic rule corresponding

to the newly discovered fault from reasoning through the deep model is added.

Generally, in the diagnosis of a complex system, such as a nuclear reactor (Nelson
1982), the diagnosis result is usually obtained by the chaining of a set of rules, and
some of the rules are not in the form: IF Symptoms THEN Fault. Therefore, when
a failure occurs in fault diagnosis, it may not be easy to decide which particular rule
is responsible for this failure and, hence, the above described method may not be

applied in a straight forward manner to the diagnosis of complex systems.

In this Chapter, a self-learning fault diagnosis system, where the task of learning
is carried out differently from above, is described. It is based on the fault diagnosis
system described in Chapter 5, which diagnoses faults based on a deep qualitative
model of the process being monitored. More such qualitative model based fault
diagnosis systems have been reported recently (Herbert and Williams 1986, 1987,
Oyeleye and Kramer 1988, Waters and Ponton 1989), which demonstrates the pop-
ularity of the qualitative model based approach in process fault diagnosis. From
this qualitative model, the expected behaviour of the process can be generated and,
if it is different from the actual one, then it is perceived that a fault (or faults)
occurs in the process. Fault diagnosis is performed by generating a set of hypothe-
ses, each assuming a specific fault occurring, which are tested using heuristic rules
or qualitative simulation depending on the nature of a particular hypothesis. The
hypotheses assuming sensor failures are discriminated by a set of heuristic rules,
while other hypotheses are tested by qualitatively simulating the effect of a par-
ticular fault on the process and comparing this with the actual measurements and,
depending on whether they match or not, a hypothesis is confirmed or rejected. The
threshold values for converting quantitative values to qualitative values and those
used in sensor failure diagnosis will affect the performance of the system, and the
inappropriate settings of these parameters are considered as a major reason for fail-
ures in diagnosis. Once such a failure occurs, the self-learning fault diagnosis system
will examine the recorded problem solving history and reason its own behaviour. It
will try to find any inappropriate threshold values and give a diagnosis result under
new values. The self-learning fault diagnosis system can be viewed as a hierarchical

fault diagnosis system where the lower level diagnosis system is an ordinary one as

133



described in the previous chapter and the upper level one can reason the behaviour

of the lower level one if it failed to give a correct result.

In the next section, a detailed description of the self-learning diagnosis system
18 given. Section 6.3 describes the application in the fault diagnosis of the mixing
process. A case study is given to illustrate how the self-learning fault diagnosis
system works, and this is followed by a description of the performance of the system.

The last section contains some concluding remarks.

6.2 Self-learning fault diagnosis

When the self-learning fault diagnosis system fails to give a correct result, it begins
to investigate its own behaviour. There are two kinds of such failures: one is that
the diagnosis result is wrong, another one is that the system has perceived that
a fault (or faults) occurs in the process but no diagnosis result is presented. The
reasons for the failures are considered to be: incorrect qualitative models, this could
be either that the model developed for the normal operating conditions is incorrect,
which could lead to a wrong fault detection, or some of the models developed for
various faulty condition are invalid, which could result in a wrong diagnosis; incor-
rect generation of hypothesis, for example, the generated hypotheses do not include
the real fault; and incorrect settings of certain parameters which set the thresholds
for converting quantitative values to qualitative values and the thresholds used to
diagnose sensor failures. Here the major reason is considered to be inappropriate set-
tings of certain thresholds. These will dramatically affect the diagnosis. Sometimes,
if the effect of a malfunction is slight, then certain measurements may be at their
thresholds and, therefore, the diagnosis is sensitive to the incremental changes in the
plant state. This is referred to as diagnostic instability (Kramer 1987). Shiozaki et
al (1985) show the superiority of using five-range patterns of abnormality to using
three-range patterns of abnormality. In their work, they use SDG (Signed, Directed
Graphs) with five-range patterns of abnormality to diagnose chemical plant faults.
In the previous SDG approach (Iri, O’Shima, and Matsuyama 1979), the state of
a process variable is described by one of the following signs: +, 0, and —, where
+ stands for higher than normal, 0 for normal, and — for lower than normal. The
problem with this approach is that it is difficult to determine the threshold values,
and any inappropriate values can result in a wrong diagnosis. Shiozaki et al (1983)
modify this approach by using five-range patterns ( +, +7, 0, =7, — ) to describe

the states of process variables, where +? and —? indicate the uncertainties between
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+ and 0, and — and O respectively. It is shown that by such means the possibility
of a wrong diagnosis can be reduced. Here a possible range for each threshold value
is defined, such that the threshold values can vary within their ranges. Through
reasoning its own behaviour, the diagnosis system will find any inappropriate pa-
rameters and suggest correct ones. It will then present the diagnosis result under
the new parameters. This can also be viewed as failuredriven learning since learning

is initiated when the diagnosis system fails to give a correct result.

As pointed out by Hudlickd and Lesser (1987), a problem solving system has
the following characteristics: 1) complete knowledge of internal system structure;
2) availability of the intermediate problem solving states; 3) large amount of data
to process during diagnosis; 4) in some cases, lack of absolute standards for correct
behaviour. With the first two properties, it would be desirable to design a self-
learning fault diagnosis system which investigates its own behaviour based on its

own model.

6.2.1 Model of the fault diagnosis system

The fault diagnosis system contains two parts: fault detection and fault diagnosis.
Fault detection is performed by comparing the actual behaviour of the process being
diagnosed, which comprises the qualitative increments (increase, steady, or decrease)
of certain measured variables over a period, with its prediction, as is illustrated in

Figure 6.1.

In Figure 6.1, the controlling input to the process being diagnosed and the result-
ing on-line measurements are converted into qualitative values by a quantitative to
qualitative value converter. A qualitative simulator then simulates the process and
predicts the qualitative increments of certain measured variables. These predictions
are compared with the qualitative increments converted from on-line measurements.
If they are identical, then no fault is identified. If they are different, then the
measurements of several successive samples are taken to eliminate the effect of mea-
surement noise. Here NV.S (Number of Violated Samples) is used to represent the
number of samples in which the actual and predicted qualitative increments are dif-
ferent. If NV S is greater than a pre-defined threshold, Ny, then, and only then, is
it perceived that a fault (or faults) occurs in the process. Once such a situation is

encountered, the diagnosis system begins to diagnose faults.

The diagnosis methods for sensor failures and other component failures are dif-

ferent, as illustrated in Figure 6.2. If the generated hypothesis indicates a sensor
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failure, then it is confirmed or denied by a set of heuristics. In these heuristic rules,
symptoms are linked by logical operators: AND and OR, as is illustrated in Figure
6.3 where, if symptom C is presented, or both symptoms A and B are presented, then
it is indicated that the sensor has failed. The symptoms are determined by compar-
ing the on-line measurements with pre-defined thresholds. For example, one of the
heuristic rules is to check if the increment of a measurement between two successive
samples is too high and, if it is, then it indicates sensor failure. The quantitative
increment of a measurement between two successive samples is compared with a

threshold to determine if it is too high or not.

If the generated hypothesis indicates the failure of other components rather than
sensors, then it is discriminated through qualitative simulation as illustrated in
Figure 6.4. It can be seen that the diagnosis of the failures of non-sensor components
is similar to the fault detection shown in Figure 6.1. The difference is: for fault
detection, the qualitative simulator simulates the behaviour of the process under
normal conditions; while, for the diagnosis of non-sensor components, the simulator
simulates the behaviour under a given hypothesis which is the assumption that
some components have failed. In Figure 6.4, the qualitative increments of certain
measured variables are compared with their predictions which are calculated through
qualitative simulation. This procedure is repeated for all the recorded successive
samples. If NV S is less than a pre-defined threshold value, Ny, then the hypothesis
is confirmed. If the generated hypothesis is not confirmed, the fault diagnosis system
will generate another hypothesis and repeat the above procedure until a fault is

diagnosed or all the possible candidates have been tested.

6.2.2 Reasoning the behaviour of the fault diagnosis sys-

tem

Reasoning the behaviour of the fault diagnosis system can be done by backward
tracing through its model. When a failure occurs in diagnosis, an expected output
of the system is set, which is propagated backwards through the model of the fault
diagnosis system. The threshold values which are responsible for not giving the
expected output are then examined to determine the change of which threshold

values will give the expected output.

As mentioned previously, any inappropriate threshold values could result in fail-
ures in fault diagnosis, and there are two kinds of such failures. One is that the

diagnosis result is wrong, and the other is that it is detected that a fault (or faults)
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occurs in the process but no diagnosis result is presented. The failure may lie in the
fault detection part, that is there is actually no fault but it is detected that a fault
(or faults) occurs, or the fault diagnosis part, that is the diagnosis result is wrong
or no result is given. Since the fault diagnosis starts when it has detected that a
fault (or faults) occurs in the process, the self-learning diagnosis system will first
examine the fault detection part. It will then try to find out whether there really is

a fault in the process being monitored.

Examining the fault detection part

To examine the fault detection part the self-learning fault diagnosis system will carry
out backward tracing through the model of this part as shown in Figure 6.1. It will
try to deny the fault detection by changing certain threshold values within acceptable
ranges. To do this, it will first give an expectation that there is no fault at the output
of the fault detection part. Then this expectation is propagated backwards through
the model. To deny the fault detection, NV S should be decreased such that it
is lower than N;. The value of NV S is determined by the discrepancies between
predicted behaviour and actual behaviour and to reduce NV S, it will then examine
which variable’s qualitative increment is different from its prediction. Then it will
try to change the threshold values, which are related to the conversion of this variable
from its quantitative value to a qualitative value and to the qualitative simulation
for predicting this variable’s qualitative increment, within certain ranges to see if
NV S can be decreased below the defined threshold value N;. If it can, then the
fault detection is denied and the new threshold values are recorded. Otherwise, the

fault detection cannot be denied and the fault diagnosis part should be examined.

The conversion from a quantitative value to a qualitative value of a variable A
is performed by comparing the quantitative value with pre-defined threshold values
A, and A_ such that

+, A> A+7
[A] = Oa A_ SASA+a
-, A<A_.

It can be seen that the qualitative value may change when the threshold values are
changed. To reduce NVS, the associated threshold values should be changed such
that the predicted and actual qualitative increments will move towards correspon-
dence. For example, if the predicted and actual qualitative increments are + and
— respectively, then the associated threshold values should be changed in such a

way that the two qualitative increments will move towards 0, while if the predicted
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and actual increments are + and 0 respectively, then the associated threshold values
should be changed so as to either move the predicted value to 0 or move the actual
value to +. Since the result of changing the threshold values related to the de-
termination of actual qualitative increment can be easily obtained, these threshold
values are changed first such that the actual qualitative increment can be moved
towards its prediction. The way to change threshold values is illustrated by the
following example. Suppose that it is required to change [A] in the above equation
from — to 0, then the threshold value A_ should be reduced to increase the range
[A-, A;] which corresponds to the qualitative value 0. If by this means NV S can be
reduced below its threshold Ny, then the fault detection is denied. Otherwise, the
threshold values relating to the calculation of the predicted qualitative increments
are changed such that the predicted values will change towards the actual ones.
If NVS can be reduced below its threshold Ny, then the fault detection is denied
and the new threshold values are recorded. If the fault detection cannot be denied,
then it is believed that there is really a fault (or faults) in the process and the fault

diagnosis part should be examined.

Examining the fault diagnosis part

A failure in the fault diagnosis part can be in the form that a diagnosis result is
wrong or that no diagnosis result is presented. The self-learning diagnosis system
will examine the recorded problem solving history. It will examine the generated
hypothesis and try to confirm the hypothesis which is denied by the diagnosis system

and to deny the wrong diagnosis. This can be summarised as an algorithm:

Step 1. Let the hypothesis be the initially generated hypothesis.

Step 2. If this hypothesis was confirmed by the fault diagnosis system in that it is
the diagnosis result, then perform the sub-task: deny hypothesis, if it can be
denied the new threshold values will be recorded, then, go to Step 3; if this
hypothesis was denied by the diagnosis system, then perform the sub-task:
confirm hypothesis, if it is confirmed, then record the new threshold values

and exit, else, go to Step 3.

Step 3. If the hypothesis is the last one in the recorded problem solving history,
then exit; else, let the hypothesis be the next generated hypothesis and go to

Step 2.
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Since sensor failures are diagnosed differently from other component failures,
the sub-tasks of denying and confirming hypotheses for these particular failures are
carried out differently. If the task is to deny a sensor failure, then the self-learning
system will trace backwards through the recorded diagnosis history and find out
which symptom resulted in this diagnosis. Next, it will examine if this symptom
can be eliminated by changing the related threshold values within certain ranges. If

it can, then this hypothesis can be denied by changing the related threshold values.

If the task is to confirm sensor failure, then the selflearning diagnosis system
will trace through the recorded diagnosis history and examine if some symptoms
necessary for confirming sensor failure can be established by changing the related
threshold values. If, indeed, it is found that these symptoms can be established by

changing certain threshold values, then this hypothesis can be confirmed.

The tasks of confirming or denying other component failures are carried out by
backward tracing through the model of the fault diagnosis part as shown in Figure
6.4. Hypothesis confirmation is performed in a similar way as the task of denying
fault detection which is described earlier. To confirm a hypothesis, NV S should
be reduced such that it is lower than the threshold N;. This may be achieved by
changing the associated threshold values in a similar way, as described previously,

to deny fault detection.

To deny a hypothesis, NV S should be increased such that it is not lower than
the threshold N;. The associated threshold values should be changed in such a way
that the predicted qualitative increment and the actual one will move in opposite
directions to extend their differences, and so that NV S will increase. For example, if
the predicted and actual qualitative increments have the value +, then the associated
threshold values should be such changed that one of the qualitative increments will

move to 0.

6.3 Implementation

6.3.1 Fault diagnosis of a mixing process

The above described self-learning diagnosis techniques have been applied to the fault
diagnosis of the pilot scale mixing process. A fault diagnosis system which diagnoses
faults based on a qualitative model of the mixing process has been developed and

described in the previous chapter. Based on the qualitative model, the qualitative
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increments of the measured variables are calculated and are compared with the
actual measurements. If they do not match, then it is detected that a fault (or
faults) occurs, and the diagnosis system begins to diagnose this fault. Within this
diagnosis system, the identification of sensor failures is based on heuristic rules while
the other system component failures are diagnosed by simulating the process under
a hypothesis and comparing the simulated behaviour with the actual one. If the

actual behaviour follows the simulated one, then the hypothesis is confirmed.

The performance of the fault diagnosis system is affected by the threshold values
which are related with the conversion from quantitative values to qualitative values
and the determination of symptoms in the diagnosis of sensor failures. It would be
desirable that the fault diagnosis system can reason its own behaviour such that any
inappropriate settings of threshold values can be determined and the performance
of the system will be improved. A self-learning fault diagnosis system is developed
for achieving such a requirement. When the system fails to give a correct result, the
self-learning fault diagnosis system will examine its own behaviour and determine
any inappropriate threshold values. To do this, a set of ranges in which each thresh-
old value can vary are defined. The threshold values used, together with their ranges
are shown in Table 6.1, where CT1(1) to CT1(17) are the currently used threshold
values, VT'1 and VT2 are the corresponding maximum and minimum possible val-
ues for each threshold. The threshold values with units “cm” and “°C” are used
for level and temperature measurements respectively, while the others are used for
outputs of control valves with “%” indicating the percentage of opening. The first
nine threshold values are used to convert quantitative increments, in measurements
and controller outputs, to their qualitative forms. For example, CT1(1) is used to

determine the qualitative increment of temperature in tank 1 as follow:

+, if ATy > CT1(1),
[AT1)=1¢ 0, if —CT1(1) £ ATy £ CT1(1),
—, if ATy < =CT1(1).

The other threshold values are used in the diagnosis of sensor failures.

6.3.2 Implementation language

The self-learning fault diagnosis system has been implemented in an expert system
shell: ExTran (Razzak, Hassan, and Ahmad 1986). The self-learning fault diagnosis
system is defined by a main problem, EFD, together with 26 sub-problems. Each

sub-problem performs a specified task. Corresponding to each problem, there is a
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Table 6.1: The used threshold values and their ranges

CT1 VT1 VT2
1 0.15°C 0.4°C 0.0°C
2 0.15°C 0.4°C 0.0°C
3 0.1ecm 0.3cm 0.0cm
4 0.1cm 0.3cm 0.0cm
5 8.0% 20.0% 0.0%
6 8.0% 20.0% 0.0%
7 2.0% 6.0% 0.0%
8 1.5% 3.0% 0.0%
9 2.0°C 5.0°C 0.0°C
10 4.0cm 6.0cm 2.0cm
11 8.0°C 10.0°C 5.0°C
12 0.1cm 0.4cm 0.08cm
13 0.04cm 0.06cm 0.0cm
14 0.3°C 0.6°C 0.2°C
15 0.05°C 0.1°C 0.0°C
16 3.0°C 7.0°C 2.5°C
17 3.0cm 4.0cm 2.0cm
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rule file. The rules in these files can be provided by the designer or induced by
ExTran from given examples. Since the self-learning diagnosis system reasons its

own behaviour from its model, the rules are provided by the designer.

6.3.3 A case study

Since the fault diagnosis system for the mixing process described in Chapter 5 is
well tuned, all the threshold values are set appropriately. To test the self-learning
diagnosis system, initially it is required to deviate some threshold values from their
pre-set values. In this example, we have set the 16th threshold value, CT'1(16), re-
lated to the diagnosis of temperature sensor failure, to 6.0°C. Its previous value was
3.0°C and its range is considered to be [2.5°C, 7.0°C]. The corresponding diagnostic

rule is:

IF Temperature in tank 2 is at its setpoint
AND
The difference between temperatures in tank 1 and
tank 2 is greater than CT1(16)

THEN Temperature sensor in tank 1 has failed

The threshold value was set by entering the conversational mode of the super-
visory program. The conversation between the process operator and the computer
covering this event is shown in Figure 6.5, where the italics are the operator’s reply.
After changing this threshold value, the failure of temperature sensor 1 is initiated.
The diagnosis result under this inappropriate threshold is “Hot water control valve
fail”. After being informed that the diagnosis result is wrong, the self-learning di-
agnosis system begins to examine its own behaviour. It then finds that the 16th
threshold value is set too high, and if this threshold value is reduced to 5.0°C, the
diagnosis result would be “Temperature sensor 1 fail”. Figure 6.6 is a copy of the in-
formation displayed on the screen. In Figure 6.6, the process is initially operated at
its steady state. After time block number 44, a temperature sensor 1 failure, in the
form that its output deviated to 35°C instead of the normal value 40°C, is initiated,
and a diagnosis result is given after time block number 45. The self-learning fault
diagnosis system was informed that the diagnosis result is wrong after time block
number 48. This was done by entering the conversational mode of the supervisory
program and, the conversation between process operator and the computer covering

this event is presented in Figure 6.7, where the italics are the operator’s reply.
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6.3.4 Performance of the self-learning fault diagnosis sys-

tem

The self-learning fault diagnosis system has been tested for several threshold values
in a similar way as in the above example, and the results of these experiments are
shown in Table 6.2. In the first three cases, faults are detected but no diagnosis result
is presented. Then the self-learning fault diagnosis system immediately reasons its
behaviour. Any inappropriate thresholds are found and the diagnosis result under
the new thresholds is presented. By this means, the fault diagnosis is not delayed
by the inappropriate settings of certain threshold values. In the last three cases,
the diagnosis results are wrong, as found by the process operator. After being
informed that the diagnosis result is wrong, the self-learning fault diagnosis system
examines its own behaviour, and finds any inappropriate threshold values and the
diagnosis result under the new threshold values. From safety considerations, the self-
learning fault diagnosis system will not make any changes in threshold but makes
recommendations to operators, who can change the threshold values based on his

own judgment.

6.4 Conclusions

This chapter describes a self-learning fault diagnosis system based on qualitative
modelling. As the qualitative model based approach is gaining its popularity in pro-
cess fault diagnosis, the technique presented in this chapter could have its practical
values. The ability for reasoning its own behaviour is a desirable property for any
future generation fault diagnosis system. With such a property, the fault diagnosis
system will become more autonomous; in that it can explain its own behaviour, aid
a developer with debugging, and adapt its behaviour to a changing environment.
Through reasoning its own behaviour, the fault diagnosis system can improve its

own performance over time and, hence, exhibits self-learning attributes.

By recording the problem solving history, all the intermediate problem solving
states are available. Since the model of a diagnosis system is also available, learn-
ing can be achieved by reasoning the behaviour of a fault diagnosis system from

its model. This fundamental idea may also be applied in other knowledge-based

problem solving systems.

Apart from inappropriate parameters, there are other reasons for failures in

diagnosis, such as incorrect models and incorrect generating of hypothesis, which
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Table 6.2: Performance of the self-learning fault diagnosis system

inappropriate initiated  failure in  result of
threshold values  fault diagnosis  self-learning
level fault is CT2(12) = 0.14cm
CT1(12) =0.3cm sensor 2  detected  level sensor
fail but not 2 fail
diagnosed
hot water CT2(1) =0.12°C
CT1(1) = 0.3°C  control same as hot water
valve above control
fail valve fail
cold water CT2(3) =0.17cm
CT1(3) = 0.2cm  control same as cold water
valve above control
fail valve fail
temp. wrong CT2(16) = 5.0°C
CT1(16) = 6.0°C  sensor 1 diagnosis:  temp. sensor
fail hot water 1 fail
control
valve
fail
level wrong CT2(17) = 3.0cm
CT1(17) = 2.0cm  sensor 1 diagnosis:  level sensor
fail cold water 1 fail
control
valve
fail
CT1(9) = 4.0°C  temp. wrong
CT1(14) = 0.6°C  sensor 2 diagnosis: CT(14) = 0.43°C
fail hand valve temp. sensor
1 blocked 2 fail
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are not concerned here. These could be investigated in future researches.
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»-0CT-1989 11:51:10.11

BLOCK TEMP1 TEMP2 LEVELl LEVEL2 HOTV  COLDV SP:T SP:L
*********************************************************************
41 40.03 40.03 32.198 15.04 39.32 78.48 40.00 15.00
42 40.03 40.03 32.14 15.01 39.32 78.48 40.00 15.00
43 40.03 40.03 32.10 14.98 39.32 78.48 40.00 15.00
44 40.03 40.03 32.006 14.96 39.32 78.48 40.00 15.00
2-0CT-1989 11:52:02.74
BLOCK TEMP1 TEMPZ2 LEVEL1 LEVEL2 HOTV COLDV SP:T SP:L
Ak kI h A A KA A A Ahkhk kA AR AR AR AR AR AR Ak kA Ak k Ak kA kk kA kk Ak kkkkkkkkk kk k kk x k% % % X
45 35.00 40.03 32.02 14.94 39.38 78.42 40.00 15.00
A KKK KAKAKARKAAKRAKAkKhkhkhkhkhkhkhkkkkhkkkkkkkkxkxkx
* kK Kk Kk ok ok gk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
———————— MALFUNCTION!!-——====-———~
HOT WATER CONTROL VALVE FAIL
kkkAkkhkhkkhkhkkkhkhkkhkhkhkkhkkhkkkkhkkkhkkhkkkkhkkkhkkkkxkx
AKXKKAKAAKRKIKARAKRKARAAAKARKARKRKKXKA ARk kkkkkkkhkkkx
46 40.04 40.04 31.98 14.92 39.42 78.61 40.00 15.00
47 40.04 40.04 32.04 14.92 39.91 79.58 40.00 15.00
48 40.04 40.04 32.10 14.95 39.74 79.23 40.00 15.00
2-0CT-1989 11:52:05.17
BLOCK TEMP1 TEMPZ2 LEVEL1 LEVEL?2 HOTV COLDV SP:T SP:L

* Kk )k Kk Kk Kk ok k Kk ok Kk k Kk k Kk ok ok %k ok sk k ko ki kK k% ok ok ok sk ok sk ok sk ok %k sk ok sk ke ok ke ok ok sk sk ok ke ke kR ke ki ke ok ok ok ok ke ke ki ok ok ok ke ok

* Kk K Kk dk sk dk gk k ok ok ok ok %k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko

SUGGESTIONS:
CT: 16
OLD VALUE NEW VALUE
6.0000 5.0000

* Kk K Kk ok k Kk ok Kk k ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
Ahkkkkkhkkhkkkhkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkhkkkhkkkhkkkhkxk
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49 40.04 40.04 32.14 14.97 39.74 79.23
50 40.04 40.04 32.18 14.99 39.74 79.23
Figure 6.6 On-line displayed information
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Figure 6.7 Inform a wrong diagnosis
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Chapter 7

Fault diagnosis by the combined
use of deep knowledge and
heuristics — with the heuristics
learned from deep knowledge

based diagnosis

7.1 Introduction

As mentioned in Chapter 2, expert systems for industrial process fault diagnosis can
generally be divided into two categories: a shallow knowledge based approach and a
deep knowledge based approach. In the first category the knowledge base contains
heuristic rules which encode the experiences of process operators. This type of expert
system can usually diagnose faults very efficiently because heuristics can provide
valuable short cuts (Lapointe et al 1989, Moor and Kramer 1986). Lapointe et al
(1989) developed an expert system for waste water treatment process diagnosis —
BIOEXPERT, in which shallow knowledge is used for diagnosing the more common
faults. Since the knowledge base does not contain any deep knowledge, such as the
knowledge about system structure and component functions, it may have difficulties
when dealing with novel faults and infrequently occurred faults. In contrast, in the
deep knowledge based approach, the knowledge base contains information on system
structures and unit functions as well as physical laws governing the process. With

such a knowledge base, fault diagnosis can be carried out with greater reliability.
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However, the diagnostic efficiency is affected by its detailed knowledge base, because

the diagnosis system needs to explore the entire causal path from a failed component

to the observed abnormalities.

To enhance both efficiency and reliability, a combination of the two approaches
should be considered. There is a trend towards building fault diagnosis systems
using both shallow and deep knowledge (Lapointe et al 1989, Moor and Kramer 1986,
Venkatasubramanian and Rich 1988). Venkatasubramanian and Rich (1988) discuss
a fault diagnosis system for a chemical process using both types of knowledge. They
propose a two-tier architecture for integrating compiled and deep level knowledge in
that the process specific compiled knowledge is stored at the top tier, while the lower
tier holds deep knowledge. During diagnosis, the compiled knowledge is invoked first.
If a diagnosis result cannot be obtained from the compiled knowledge, the diagnosis

will drop down to the deep level knowledge.

To reduce the effort of encoding and debugging diagnostic heuristics from diag-
nostic experts, machine learning techniques (Michalski et al 1983, Forsyth and Rada
1986) can be used to automatically acquire diagnostic heuristics. Recently several
researchers have attempted to incorporate a learning mechanism into process fault
diagnosis systems to make them more intelligent (Ishida 1988, Pazzani 1986, 1987,
Rich and Venkatasubramanian 1989). In Pazzani’s approach (Pazzani 1986, 1987),
a set of initially developed heuristic rules are used to propose a hypothesis when
an abnormal condition is encountered, and a deep model is then used to confirm
this hypothesis. If it cannot be confirmed, then the heuristic rule which proposed
this hypothesis is considered to have failed and it is revised by adding additional
terms to its condition part to limit its applicability. This is called failure-driven
learning since learning is initiaed when a hypothesis failure occurs. Through this
failure-driven learning, the existing heuristic rules can be refined but there may
exist situations where there are no heuristic rules corresponding to some failures,
especially failures which occur infrequently. In such situations, it would be desirable
that the system can still diagnose the fault and learn a new heuristic rule. This
is not addressed in Pazzani’s approach (Pazzani 1986, 1987). Rich and Venkata-
subramanian (1989) discuss a causality-based failure-driven learning approach. In
their approach, when a heuristic rule fails to propose the right hypothesis, the rule
is revised and the system will drop down to deep knowledge based diagnosis, and it
could learn a new heuristic rule. This method is developed for off-line diagnosis as
can be seen from the context of Venkatasubramanian and Rich (1988), and Rich and
Venkatasubramanian (1989). The condition parts of some heuristic rules include the

negation of the failures of some other compo-nents, and this information is obtained
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from the operator. The aim of these failure-driven learning approaches is mainly to

refine the existing heuristic rules.

Apart from these failure-driven learning approaches, Ishida (1988) demonstrates
that diagnostic heuristics can be learnt from qualitative simulation of the process
behaviour. Simulation of a process is conducted by inserting a fault as a disturbance
to the qualitative model. The qualitative deviations of certain process variables are

calculated and compiled to form a rule corresponding to this fault.

In this research, an on-line fault diagnosis system which uses both deep knowl-
edge and heuristics is investigated. During diagnosis, the system will first invoke
the heuristic rules to propose a hypothesis. If a hypothesis can be proposed, then
a deep model is used to discriminate this hypothesis. Otherwise, the diagnosis is
based entirely on the deep model. The fault diagnosis system will test a set of can-
didate faults by inserting each fault as a disturbance to the qualitative model. The
candidate which can explain the observed abnormalities is taken as the diagnosis
result. The system can learn new diagnostic heuristic rules and refine existing ones
during diagnosis. Learning is initiated not only when a heuristic rule proposes a
wrong hypothesis, but also when there is not a heuristic rule corresponding to a
successful diagnosis. Initially, there can be a few, or even no, heuristic rules and,
during diagnosis, the system will continuously learn heuristics such that rules can

be gradually built up.

In the next section, diagnosis using both heuristics and deep knowledge is de-
scribed. Section 7.3 describes the procedure of learning new diagnostic rules and
refining existing ones. An illustrative application to the on-line fault diagnosis of
the mixing process is presented in Section 7.4. Section 7.5 describes the application

to the CSTR system. The last section contains some concluding remarks.

7.2 Fault diagnosis using both heuristics and deep
knowledge

Taking account of issues of efficiency and reliability, an on-line system which uses
both heuristics and deep knowledge to diagnose faults has been investigated. The
heuristics, in the form of rules, are used to propose a hypothesis. The deep knowl-
edge, in the form of a deep qualitative model, is used to confirm the proposed hy-
pothesis. Therefore, when abnormalities occur in the measurements, the diagnosis

system will match the observed abnormalities with the condition parts of heuristic
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rules, and the rule whose condition part matches the observed abnormalities is used
to propose a hypothesis. The qualitative model is then used to predict the behaviour
of the process under this hypothesis by means of qualitative simulation techniques
(Bobrow 1984). This prediction is compared with the actual behaviour of the pro-
cess and, depending on whether they agree or not, the hypothesis is confirmed or
denied. This is referred to as the “hypothesis-test strategy” (Moor and Kramer
1986). By this means, diagnostic efficiency is achieved by the use of heuristic rules

and diagnostic reliability is ensured by the use of a deep qualitative model.

The heuristic rules may be incomplete and some of them may be incorrect such
that the hypothesis proposed may later be denied by the deep model of the process,
or no hypothesis can be generated by the heuristic rules. This is referred to as “fail-
ures in using heuristic rules”. When such cases are encountered, the fault diagnosis
system will rely on the deep model based approach. It will use a hypothesis-test
strategy to test a set of candidate failures. The desired behaviour of the process
corresponding to each candidate failure is predicted through qualitative simulation
and is compared with the actual behaviour of the process, and the candidate which
can explain the observed abnormalities is taken as the diagnosis result. Therefore,

the incompleteness in heuristic rules will not obstruct the diagnosis.

Since the incompletenessin the rules will reduce the diagnostic efficiency, it would
be desirable that the fault diagnosis system can learn heuristic rules itself. This is
also desirable from the point of view of easing the task of knowledge acquisition,
which often needs considerable effort because process experts usually have little
knowledge about knowledge engineering. Furthermore, it is also often difficult for
a knowledge engineer to fully understand the operation of a specific process, and
this issue is often referred to as the “knowledge engineering bottleneck” (Moor and
Kramer 1986, Price and Lee 1988). By means of machine learning techniques, the
diagnosis system can automatically build up its heuristic rule base and, hence, the

diagnostic efficiency will be gradually improved.

The fault diagnosis system described in this chapter is designed to fulfill the above
requirement. Initially the heuristic rule base contains a limited number of heuristic
rules, or may even be empty. After each diagnosis, in which the diagnosed fault is
not proposed by the heuristic rules, the system will learn a new rule by recognising
any significant patterns in the deviations of measurements and compiling them to

form a heuristic rule. By such means, the heuristic rule base will gradually be

assembled.

During diagnosis, the number of occurrences of each fault is recorded, and the
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heuristic rules corresponding to the frequently occurred failures are arranged at
the top of the rule base. Therefore, the fault diagnosis system can diagnose more

frequently occurred faults more efficiently.

7.3 Learning diagnostic heuristic rules

After a successful diagnosis, the system will examine the result and decide if learning
should be initiated, which occurs when failures arise in using heuristic rules. These
failures include the following situations: 1), there is no heuristic rule corresponding
to the diagnosed fault and no heuristic rule is employed; 2), there is no heuristic
rule corresponding to the diagnosed fault but one of the heuristic rules is mistakenly
used; 3), there is a heuristic rule corresponding to the diagnosed fault, but none of
these rules is used; 4), there is a heuristic rule corresponding to the diagnosed fault,

but it is not employed and, instead, one of the other rules is erroneously employed.

For the first two situations, a new heuristic rule needs to be learnt from the
successful diagnosis since there is no rule corresponding to the diagnosed fault and,
furthermore, for the second situation, apart from learning this new heuristic rule,
the rule which proposed a wrong hypothesis should also be refined so that it will not
erroneously be employed in future similar situations. For the last two situations,
the condition part of the existing heuristic rule corresponding to the diagnosed fault
should be revised such that it can match the current condition a