
              

City, University of London Institutional Repository

Citation: Banal-Estanol, A. & Rupérez Micola, A. (2011). Behavioural simulations in spot 

electricity markets. European Journal of Operational Research, 214(1), pp. 147-159. doi: 
10.1016/j.ejor.2011.03.041 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/7693/

Link to published version: https://doi.org/10.1016/j.ejor.2011.03.041

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Behavioural simulations in spot electricity markets�

Albert Banal-Estañoly Augusto Rupérez Micola

February 7, 2011

Abstract

We study the consistency of behavioural simulation methods used to model the operations

of wholesale electricity markets. We include di¤erent supply and demand representations and

propose the Experience-Weighted Attractions method (Camerer and Ho, 1999) to encompass several

behavioural paradigms. We compare the results across assumptions and to standard economic

theory predictions. The match is good under �at and upward-slopping supply bidding, and also

for plausible demand elasticity assumptions. Learning is in�uenced by the number of bids per

plant and the initial conditions. The simulations perform best under reinforcement learning, less

well under best-response and especially poorly under �ctitious play. The overall conclusion is that

simulation assumptions are far from innocuous. We link their performance to underlying features,

and identify those that are better suited to model liberalised electricity markets.

1 Introduction

The electricity industry is undergoing fundamental changes leading to a more liberal regime and

the alteration of its business logic. As part of the process, vertically integrated utilities and simple

transfer pricing rules are substituted by sophisticated �nancial trading arrangements. De-regulated

electricity markets feature imperfect competition, very low demand elasticity, discontinuously convex

supply functions, high-frequency repeated trading, several production tecnologies and high potential

for collusion (Wilson, 2002). As a result, prices in the new electricity hubs are volatile and often

characterised by strategic behaviour and learning, which poses new challenges both for the operations

and scholarly study of the industry.

Simulations have hence emerged as a natural way to study the operations of de-regulated electricity

markets. An important part of the literature employs behavioural methods, with �rms modelled as

�This paper was presented at the EURO (2009, Bonn), INFORMS (2009, San Diego), Computational Economics and
Finance (2010, London) conferences, as well as in seminars at Cass, Darden, UCIII, Universidade Católica Portuguesa
and UPF. We thank seminar participants, two referees, Ido Erev, Derek Bunn, Pär Holmberg, Andreas Krause, Leigh
Tesfatsion and Ann van Ackere for their comments.

yBoth authors are with Universitat Pompeu Fabra and the Barcelona GSE. Albert Banal-Estañol is also with City
University, albert.banalestanol@upf.edu, augusto.ruperezmicola@upf.edu
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interacting, boundedly-rational agents (see Marks, 2006; Weidlich and Veit, 2008 for surveys).1 The

literature includes models commissioned by large �rms (e.g. Gaz de France, E.ON, Shell) and the UK�s

Competition Commission as well as some calibrations of the US market, like the �Electricity Market

Complex Adaptive System� (EMCAS) (Macal and North, 2005) and the �Agent-based Modeling of

Electricity Systems�(AMES) (Sun and Tesfatsion, 2007).

One of the advantages of behavioural simulations is that they are tailored to �t closely the oper-

ations in each industry. However, this is a disadvantage when it comes to understanding the factors

driving the results because there is no consensus on the techniques appropriate for each situation. As

a consequence, simulation results are often not comparable (Fagiolo et al., 2007) and these methods

are struggling to reach their full potential (e.g. Leombruni et al., 2006). First, some papers assume

that �rms behave according to the reinforcement model while other papers use more complex forms

of behaviour like �ctitious play or best response. Second, few papers specify the initial conditions.

Third, demand is assumed to be elastic in some cases and inelastic in others. Finally, several papers

use stepwise schedules to model the supply part of the market, while in others sellers bid linearly

increasing functions.

This paper explores the consistency of the behavioural simulation techniques used in the literature

to model the operations of the new wholesale electricity auctions. We investigate the e¤ects of the as-

sumptions on simulation outcomes and how these outcomes compare to simple, empirically-supported,

theoretical predictions. Speci�cally, we cast light on whether the results are consistent with the stan-

dard claim that pivotal dynamics determine the relationship between competition and prices. A �rm

is pivotal if the quantity demanded exceeds the sum of production capacities of all other �rms and,

as a result, it is necessary to ful�ll demand. There is wide consensus on the importance of pivotal

dynamics in spot electricity markets. In our setting, all �rms are pivotal when there are few of them

but none of them is pivotal if there are many of them. As a consequence, our theoretical results

predict that prices will be high under monopoly, will decrease with competition, drastically change at

a pivotal dynamics �switching point�, and will approach marginal costs beyond that point.

We adopt a stylised setting that allows us to include alternative implementations of demand, supply

and �rm behaviour, which yield many of the literature�s models as particular cases. Demand can be

inelastic or price-sensitive, with a wide range of levels and elasticity speci�cations. Firms are allowed

to submit either �at bids or increasing supply schedules, with single or multiple bids per plant. Firms�

behaviour is governed by Camerer and Ho�s (1999) Experience-Weighted Attraction algorithm (EWA)

which includes reinforcement learning, �ctitious play and best-response as particular cases and allows

for the speci�cation of di¤erent initial conditions.

1This trend is part of a �economic engineering�approach (Roth, 2002). Behavioural simulations have also been used
to model competitive strategy (e.g. Denrell, 2004), innovation (e.g. Adner and Levinthal, 2001), �nancial markets (e.g.
Noe et al. 2003; Pouget, 2007), or business organisation (e.g. Rivkin and Siggelkow, 2001). See Tesfatsion and Judd
(2006) and http://www.econ.iastate.edu/tesfatsi/ace.htm for information about agent-based methods.
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Simulation outcomes are consistent with our theoretical predictions under �at and supply function

bidding, and under several plausible elasticities. However, the performance of the simulations is

in�uenced by the number of bids per plant and the initial conditions. The performance of �ctitious

play is poor, and it is clearly outperformed by best-response and especially reinforcement learning. The

results call into question a large part of the extant behavioural electricity research and can potentially

enhance the practical implementation of these techniques in the operation of the energy industry. We

also �nd some evidence suggesting that experimental research can help us identify the most suitable

assumptions in market simulations. Weighted �ctitious play, and especially power choice rules and

regret-feedback models improve over some of the standard models.

This paper is part of a new literature examining the consistency of behavioural simulations in

various de-regulated market settings (e.g. Fagiolo et al., 2007; Leombruni et al., 2007; Marks, 2007;

and Midgley et al., 2007). In the electricity industry, we are only aware of two related working papers.

Li et al. (2009) check the robustness of several reinforcement learning parameters, elasticity, and

price caps in the AMES model, and Kimbrough and Murphy (2009) compare step and supply function

bidding in a stylised setting. The question of validation, that is which models best �t real market

data, is complementary to ours. Our approach mainly focuses on theoretical reliability, and includes

comparisons of demand, supply, and behavioural speci�cations.

The remainder of the paper is organised as follows. In part 2 we discuss the literature. In part 3,

we present our framework and the alternative implementations of demand, supply and �rm behaviour.

In part 4 we derive the theoretical prediction. Part 5 includes the simulation results and we conclude

in part 6. All proofs are in the supplementary material.

2 Behavioural electricity modelling alternatives

The three main sets of assumptions in behavioural electricity simulations are the representation of

supply, demand, behavioural rules. This section is a survey of the choices made in existing work. In

Table 1 we classify some of the most relevant papers.

2.1 Supply bidding

Bertrand and Bertrand with capacity constraints are generally not considered suitable in the electricity

literature because they do not �t the uniform pricing prevalent in power pools. Cournot quantity

bidding is sometimes used as an alternative (e.g. Bunn and Oliveira, 2007 and 2008; Veit et al., 2006).

However, a recurrent argument is that Cournot is also unsuitable because in real pools generators are

allowed to submit multiple �at bids for sections of their capacity. Hence, most papers use either von

der Fehr and Harbord�s (1993) stepwise auctions, or Green and Newbery�s (1992) adaptation of the

�supply function" (SF) equilibrium due to Klemperer and Meyer (1989).
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In the stepwise approach, the market is a sealed-bid, multiple-unit auction. Generators simultane-

ously submit single prices at which they are willing to supply sections of their capacity. An indepen-

dent auctioneer ranks the bids according to their o¤er prices, intersects the demand and supply and

determines the system marginal price.

The stepwise literature includes both per plant and overall �rm bidding models. Stepwise auction

papers with one bid per generator are more parsimonious and comparable to the theoretical literature.

Nicolaisen et. al. (2001) and Richter and Sheblé (1998) create models similar to those of auction

theory to study the structure and e¢ ciency of electricity markets. Closer to industrial organisation,

Rupérez Micola and Bunn (2008) and Rupérez Micola et al. (2008) examine how horizontal and vertical

integration in�uence the �rms�ability to exert market power. Nanduri and Das (2007) add a simple

electricity network. Bagnall and Smith (2005) study how their model replicates human behaviour in

the England and Wales market.

Others allow one bid per plant. Bower and Bunn (2000, 2001) simulate the transition between the

British pool and the New Electricity Trading Arrangements (NETA) and how this could a¤ect market

prices. Bunn and Martoccia (2005) also replicate the UK market and Bower et al. (2001) focus on

Germany. Only García et al. (2005) and Banal-Estanol and Rupérez Micola (2009) include abstract

models with multiple stepwise bids per plant.

Inherent in�exibilities in the operation of nuclear assets (e.g. safety concerns, very low marginal

costs and high start-up and loss of volume costs) prompt generators to submit �at schedules at very

low prices for each plant. However, the assumption is quite restrictive in comparison to most bid-based

electricity markets where they can submit many bid steps per plant. Multi-bidding leads to the well-

known �hockey stick�shape of the supply curve, with base-load plants submitting �at schedules and

peak-load generators o¤ering steeper step functions. Accordingly, a number of simulations include

several bids per plant. For example, Day and Bunn (2001) and Bunn and Day (2009) developed

detailed models of the England and Wales pool between 1990 and 2001. Bunn and Oliveira (2001,

2003) look into the related e¤ect of NETA�s introduction and test whether the incumbents could

in�uence prices. However, these models are often computationally cumbersome fo two reasons. First,

the algorithm�s operations grow with the number of bids. Second, �rms�coordination is more di¢ cult,

which complicates learning and the convergence to a steady state.

The SF approach approximates actual bids with increasing supply functions relating quantities

and prices. This is a compromise between providing realism and simplifying the simulation mechanics.

Banal-Estanol and Rupérez Micola (2009) include an SF model with two stepwise bids per �rm.

Cincotti et al (2005) study the e¤ect of market microstructure and costs on prices, and Visudhiphan

and Ilic (1999) focus on dynamic learning. Day and Bunn (2001, 2009) propose an even more �exible

approach in which �rms submit several SF sections per plant.
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However, the presence of multiple equilibria complicates the comparison of simulation and equi-

librium results. For example, the SF model has little predictive value if variation in demand is small

because almost anything between the Cournot and the competitive solution can be supported in equi-

librium (see Bolle 1992). Further, the solution is unde�ned if there is no short-run demand elasticity

(von der Fehr and Harbord, 1998). Similarly, there are often many non-Pareto ranked equilibria in

stepwise auction settings (e.g. von der Fehr and Harbord, 1993; Crawford et al., 2006).

2.2 Demand representation

The current literature mostly represents demands with double-sided call auctions or �xed aggregated

curves. First, double-sided call auctions consist of supply and demand bidding and common valuations

bounded between marginal cost and redemption values. Bids represent the price at which �rms are

willing to sell and buy all their capacity in a double version of the stepwise auction setting. Examples

include the papers by Richter and Sheblé (1998), Nicolaisen et. al. (2001), Bunn and Oliveira (2001,

2003) and Rupérez Micola and Bunn (2008).

However, many behavioural simulations use aggregate demands. The literature often models short-

run electricity demand as inelastic, in part due to the lack of real-time metering systems. Examples

include Bagnall and Smith (2005), Bunn and Martoccia (2005), Cincotti et al (2005), García et al.

(2005), Nanduri and Das (2007), Rupérez Micola et al. (2008) and Sun and Tesfatsion (2007). At �rst

glance, this may seem like an appropriate representation of reality, but there are several reasons why

relaxing that assumption can add value. First, markets have some level of bid-in demand, or implicit

elasticity provided through the actions of system operators who may take out-of-market actions to

e¤ectively reduce demand when prices rise. Second, most volume is traded outside of balancing

markets, either in exchanges or bilaterally. Third, �nancial derivatives increase demand elasticity.

Finally, inelastic demand models tend to present a large number of non-Pareto ranked pure strategy

equilibria. Papers with elastic demands include several by Derek Bunn and coauthors (e.g. Bower and

Bunn, 2000, 2001; Bower et al., 2001; Bunn and Oliveira, 2007, 2008; Day and Bunn, 2001), and also

Veit et al. (2006).

To our knowledge, only Banal-Estanol and Rupérez Micola (2009), Li et al. (2009) and Visudhiphan

and Ilic (1999) use both elastic and inelastic demands. Still, they do not seek to explicitly explore the

implications of the elasticity assumption.

2.3 Behavioural algorithm

Behavioural simulation models require rules to govern �rm behaviour. One of their main intentions

is to realistically represent human decision-making, and its proponents frequently argue that existing

deductive mechanisms often do poorly in experiments (Camerer and Ho, 1999, Roth and Erev, 1995;
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and van Huyck et al., 1990, are regularly used to support this claim). The electricity behavioural

simulations literature is based on adaptive learning algorithms mainly derived from psychology.

Some previous work uses reinforcement learning (RL). In RL, �rms tend to repeat actions that

led to positive outcomes and avoid those that were detrimental. Several papers have used modi�ed

versions of the Roth and Erev (1995) algorithm, e.g. Banal-Estanol and Rupérez Micola (2009), Li

et al. (2009), Nanduri and Das (2007), Nicolaisen et al. (2001), Rupérez Micola and Bunn (2008),

Rupérez Micola et al. (2008), Sun and Tesfatsion (2007) and Veit et al. (2006). It is based on the

law of e¤ect, whereby actions that result in more positive consequences are more likely to be repeated

in the future, and on the law of practice, whereby learning curves tend to be steep initially and then

�atten out. These are robust properties observed in the literature on human learning. One of RL�s

main strengths is that one does not need to make assumptions on the information that players have

about each other�s strategies, history of play and the payo¤ structure. This is consistent with the

fact that, in many cases, electricity traders cannot observe one another�s current strategies, and only

imperfectly infer them from volatile prices. However, RL might be too simplistic to fully capture the

strategic opportunities available to humans (Erev et al., 2007; Ert and Erev, 2007).

It is likely that players in reality engage in more sophisticated behaviour like best response to

their competitors�actions. There are two main types of best response algorithms: �ctitious play (FP)

and "Cournot" best response (BR).2 In FP (Brown, 1951), each player assumes that her opponents

play stationary, possibly mixed, strategies. In each round, the player best responds to her opponent�s

empirical frequency of play. Electricity studies using FP include those by Bunn and Oliveira (2001,

2003) and García et al. (2005). BR implies that the player only responds to her opponents�move

in the directly precedent period. BR papers include those by Bunn and Oliveira (2007, 2008) and

Day and Bunn (2001) and Bunn and Day (2009).3 To our knowledge, there is no research on whether

the results obtained with RL, FP and BR di¤er substantially in the electricity context. The use of

weighted �ctitious play, power choice rules and regret models may improve the models�quality.

Finally, most papers do not report initial conditions. In those that do, the standard approach is to

use a uniform initial probability distribution for all elements of the action space (e.g. Rupérez Micola

and Bunn, 2008), Rupérez Micola et al., 2008) and Banal-Estanol and Rupérez Micola, 2009). We are

not aware of any papers explicitly exploring alternative starting conditions.

2The term "Cournot" does not refer to quantity bidding but to the classic tatônnement process leading to equilibrium.
To avoid confusion, we refer to this algorithm as "best response" (BR).

3Several papers depart from those models. Bower and Bunn (2000, 2001), Bower et al. (2001) and Bunn and Martoccia
(2005) all use local adjustment. Bagnall and Smith (2005) use hierarchical classi�er systems and Richter and Sheblé
(1998) use genetic algorithms.
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3 Modelling speci�cations

Our model incorporates key features of electricity markets in the short-run. Although it could be easily

extended to become more complex, it is stylised to facilitate the exposition as well as the comparison

between theoretical predictions and simulation results. We �rst present the market structure and

trading rules that form our framework. Then, we describe the alternative parameter implementations

of demand, supply and �rm behaviour, which yield many of the literature�s models as particular cases.

3.1 Market structure and trading rules

Let there be n symmetric generators, i = 1; :::; n, with constant marginal production costs, c, up to

capacity. Denoting the market capacity as K, the individual capacity of each �rm is kn = K=n. For a

given K, n parametrises the degree of competition in the market, as the individual capacities decrease

with the number of generators.

Prices are bounded between marginal costs and 	, with 	 being the maximum �reasonable�price

cap (e.g. Lin et al., 2009). This can be understood as a limit triggering regulatory intervention or

the cost of alternative, expensive load fuels to which the system administrator could switch at short

notice. It also re�ects high cost back-up power generation facilities owned by many industrial users.

Although relevant in the long term, we do not deal with capacity expansion, long-term contracts,

ancillary and capacity payments. For ease of comparison to existing research, we have also left out

the network issues inherent in the operations of electricity utilities, i.e. we assume an un-congested

network as is done in most of the existing simulations�literature.

Trading takes place through a compulsory, uniform-price auction. Suppliers simultaneously submit

individual schedules. An independent auctioneer adds them horizontally and creates an ad hoc market

supply function. Then she intersects it with the market demand and determines the uniform price bp.
Finally, she assigns individual quantities, qi; to each of the bidders. Pro�ts for each �rm are

�i = (bp� c) � qi for i = 1; :::; n: (1)

3.2 Demand representations

We accommodate di¤erent demand levels and elasticities. Demand, Q(p), can be inelastic or price-

sensitive. In the inelastic case, demand is equal to a constant quantity �Q for any price between zero

and 	, i.e. a vertical line at �Q, Q(p) � �Q. We rotate this curve to obtain linear functions with

di¤erent elasticities at the same point. We denote the vertical coordinate of the rotation point as v

(0 � v � 	) and the deviation to the left of �Q at the price cap level as u (0 � u � �Q). Thus, all
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demand curves are linear, pass through ( �Q; v) and ( �Q� u;	) and can be written as

Q(p) � �Q� u

(	� v)(p� v):

In all cases, market demand is assumed to lead to system overcapacity, i.e. Q(p) < K for all p.

Figure 1 of the Supplementary Appendix shows examples of demand with �Q = 8, 	 = 20, v = 10 and

u = 0; 0:5; and 1. The three demands are Q(p) = 8 (u = 0, in purple), Q(p) = 8� 0:5
10 (p�10) (u = 0:5,

in magenta), and Q(p) = 8� 1
10(p� 10) (u = 1, in red).

3.3 Supply representations

Supply schedules vary along two dimensions. First, �rms are allowed to submit either �at bids (�step-

wise bidding� case) or increasing supply schedules (�SF bidding� case). Second, in line with Day

and Bunn, 2001, and Hobbs and Pang, 2007, we consider multi-step schedules. We divide each �rm�s

capacity into m equally-sized capacity bins, kn=m. We use alternative values of m in the stepwise and

supply bidding cases. We now provide details for each case and explain the market clearing process.

Stepwise bidding The feasible price o¤er domain is approximated by a discrete grid. Generators

choose from S possible bids, equally spaced between c and 	, at which they are willing to supply each

bin�s capacity. That is, the set of possible bids is

Sm(q) � fc+ s (	� c) =S j s = 1; :::; S g :

Each possible bid corresponds to an �action�or choice variable s. Bids generated from lower actions

are closer to c, i.e. more competitive. The individual schedules for each bin are �at but �rms can

submit multi-step schedules if m > 1.

Supply function bidding Supply schedules are non-decreasing. For each bin, the generators choose

among S possible angles, s = 1; :::; S, equally spaced between 0 and �=2 radians. The schedules consist

of the linear curves from (0; c) until (kn=m; b(s)), capped at 	,

Sm(q) �
�
min(c+

b(s)� c
kn=m

q;	) j s = 1; :::; S
�
;

where

b(s) = c+
sin(s (�=2) =S)

cos(s (�=2) =S)
kn=m:

The angle of the plant�s supply schedule, s, is the �action�and therefore the choice variable. Schedules

generated from lower actions are more competitive because they are �atter. The supply function for

the lowest action (s = 1) is almost �at at c. The supply function when s = S is the result of capping
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a vertical linear function at the origin.4 Schedules generated from high actions become �at at 	. Note

that the amounts sold by each �rm are always strictly positive.

Market clearing The auctioneer intersects the market demand and supply functions to set bp. Under
stepwise bids, she gives full capacity to bids below bp; the remaining capacity to those equal to bp (in
case of a tie, the selling bin is selected randomly); and zero to the bids above bp. Under SF bidding,
she assigns full capacity to the parts of each schedule below bp. Parts above bp receive nothing. The
Supplementary Appendix includes a formal derivation of the market clearing process. The two panels

in Figure 1 of the Supplementary Appendix show hypothetical bidding examples with n = 2, m = 1,

K = 10, 	 = 20, and c = 0. The market supply function (black line) is the horizontal addition of the

individual functions (blue and green).

3.4 Firm behaviour representations

We use the Experience-Weighted Attraction (EWA) adaptive learning mechanism (Camerer and Ho,

1999). This behavioural model nests RL, FP and BR as special cases. It assumes that each feasible

action of each bin has a numerical attraction. The attractions generate a bin-speci�c probability distri-

bution. In each round, generators submit supply schedules according to these bin-speci�c probability

distributions. Once the market clears, the attractions are adjusted with the behavioural rule and

mapped into new probability distributions. This process is repeated until the simulation converges.

We now describe how �rms use experience to update the attractions, and how these lead to choice

probabilities. Then we specify the initial attractions and the convergence de�nition.

Updating rules and choice probabilities Each action s for bin j in generator i has an �attraction�

Aji;s(t) > 0 after period t (� 1). Attractions are updated according to

Aji;s(t) =
�N(t� 1)Aji;s(t� 1) +

h
� + (1� �)I(s; rji )

i
�i(s; r

�j
i )

N(t)
; (2)

where rji and r
�j
i denote the action taken in period t by bin j of �rm i and by the rest of the bins,

respectively; I(x; y) is an indicator function with value 1 if x = y and 0 if x 6= y; N(t) = �N(t� 1)+1

with N(0) = 0, representing the number of �observation-equivalents� of past experience; and the

EWA parameters �, �, and � denote the weight placed on foregone payo¤s, a discount factor to

depreciate previous attractions, and a discount factor that weights the impact of previous against

future experience, respectively.

When � = 0 and � = 0, EWA behaves like the widely used class of RL models (e.g. Roth-

Erev, 1995). RL models are based on the law of e¤ect, whereby actions that result in more positive

4We add a marginal amount to the denominator to avoid indeterminacy when s = S.
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consequences are more likely to be repeated in the future, and on the law of practice, whereby learning

curves tend to be steep initially and then �atten out. When � = 1, and � = �, EWA is equivalent

to the standard weighted belief-based models. In particular, it produces BR when � = � = 0 and

FP when � = � = 1. In BR dynamics, players actions are determined by the best response to what

her opponents did in the immediately preceding period, so that only the most recent observation

counts. In FP, each player best responds to the empirical frequency of play of her opponents since the

beginning of the game, and all observations count equally.

Camerer and Ho (1999) estimated several parameters in stylised games, and preferred models

that fall between the three extreme examples. We focus mainly on the extreme RL, BR and FP

parametrizations for ease of comparison to the electricity literature. In the last section of the results,

we also consider an alternative regret model similar to the one in Erev and Ert (2007) and Marchiori

and Warglien (2008).

As is done is most of the electricity literature, we linearly map attractions into action choice

probabilities. The probability of selecting an action in the next period is its attraction divided by the

sum of attractions for all actions,

P ji;s(t+ 1) =
Aji;s(t)

�Sk=1A
j
i;k(t)

: (3)

Note that this is a particular case of the power probability function used by Camerer and Ho (1999) in

which the exponent is equal to one. In the same paper, Camerer and Ho (1999) also propose a power

function, which we employ in the last section of our analysis.

Prior beliefs and initial conditions The probabilities in the �rst period, P ji;s(1), are generated

from prior values of the attractions, Aji;s(0). As explained by Camerer and Ho (1999), the prior values

of the attractions may re�ect pre-game experience. We construct Aji;s(0) from four representative

assumptions on prior beliefs. We assume that �rms believe that the others will initially (i) choose the

highest possible bid (s = S), (ii) choose the mid-point of the range (s = S=2), (iii) choose the lowest

possible action (s = 1), or (iv) use a uniform distribution over all their actions. In each of the four

treatments, Aji;s(0) for all i and j is de�ned as the hypothetical pro�t that each action s would render

if prior beliefs about the opponents were correct.

Figure 2 in the Supplementary Appendix reports the impact of prior beliefs on the initial probabili-

ties in markets with one and twelve �rms (assuming stepwise bidding, m = 1, K = 10, 	 = 20, S = 50

and c = 0). Actions are identi�ed on the horizontal axis. Firms will use mixed strategies unless the

probability of playing all but one action is zero. Probabilities concentrated on higher actions result in

less competitive bids and vice-versa. By de�nition, prior beliefs on others have no impact when there

is only one �rm.
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To our knowledge, the literature only includes uniform initial probability distributions over all the

elements of the action space, which implicitely implies that �rms believe that their opponents will bid

	. Thus, take the case of twelve �rms. In treatment (i), that is when �rms believe that their opponents

will initially bid 	, they think that any bid below 	 would allow them to sell full capacity at 	. Hence

all the actions below S have initial attractions equal to the maximum pro�ts, i.e. Aji;s(0) = 	kn for all

s < S, and the same initial probability, P ji;s(1) � 1
S�1 . In treatment (ii), when �rms believe that others

will initially bid the minimum price (s = 1), any bid above the minimum would be out-of-the-money

and earn them zero pro�ts. Therefore, the initial attractions are concentrated on s = 1 and therefore

P ji;1(1) = 1 and P
j
i;s(1) = 0 for s > 1. In treatment (iii), when �rms assume the others will initially

bid in the middle of the distribution, they randomise over their lower half and assign zero probability

in the upper half. Finally, in treatment (iv), when players assume that the others will initially follow a

uniform distribution, they bid more competitively than if they used a uniform distribution, assigning

higher probability to lower prices.

Convergence We de�ne convergence in terms of strategy pro�les (see Fudenberg and Levine, 1998,

for a literature overview). A simulation run has converged if the maximum per-period change in the

probability of playing any strategy is below a (small) threshold.

De�nition 1 For a given � (small), a simulation run has converged to a mixed strategy pro�le z in

period t if for any potential action pro�le a in period t+ 1, the probability distribution adjustment of

any action s of any bin j of any generator i is such that

���P ji;s(t+ 1)� P ji;s(t)��� < �: (4)

The simulation price is computed from the �rms�mixed strategy pro�le z.

In practice, we select the action with the lowest probability in period t. Then, we compute the

hypothetical probability that would result from assigning maximum pro�ts to this action and minimum

pro�ts to all the other actions. The simulation has not converged as long as the di¤erence between

present and future probabilities is higher than � . It has converged when it is lower. The smaller � ,

the more stringent the threshold and the higher the necessary t.

Once there is convergence, we calculate expected end-of-simulation prices from the individual

probability distributions. Note that convergence is compatible with the survival of several feasible

trading actions, as in mixed strategies. Price volatility may not be equal to zero even if there is a

steady state. Moreover, EWA bidding depends on the stochastic process and, as a result, simulation

runs for the same parameters might lead to di¤erent end prices, i.e. the standard deviation of mean

prices across simulations is not necessarily zero.
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4 Theoretical predictions

We now derive predictions on the e¤ect of competition on market prices. The predicted market prices

shall depend on the number of �pivotal� plants (see e.g. Genc and Reynolds, 2005; Entriken and

Wan, 2005; Banal-Estanol and Ruperez Micola, 2009). A �rm is pivotal if it is necessary to satisfy the

quantity in demand. In the inelastic case, the de�nition is straightforward as the demand is constant,

but in the elastic case, the quantity demanded depends on the supply bids. In general, one has to

de�ne pivotality for an exogenous demand level.

De�nition 2 A �rm i is pivotal for a given level of demand Q0 if this level exceeds the sum of

production capacities of all other �rms, i.e. if �j 6=ikn = (n� 1)kn < Q0.

Pivotal dynamics are simple in symmetric settings. In markets with few �rms, they are all pivotal.

In those featuring many �rms, none is pivotal. We next de�ne the level of competition at which the

number of pivotal �rms changes.

De�nition 3 A level of competition n̂l is a lower switching point if (i) all �rms are pivotal at the

minimum demand (Q0 = Q(	)) for n < n̂l and (ii) none of them is for n � n̂l:

De�nition 4 A level of competition n̂u is an upper switching point if (i) all �rms are pivotal at

the maximum demand (Q0 = Q(c)) for n < n̂u and (ii) none of them is for n � n̂u.

If demand is inelastic, the upper and lower switching points coincide and, for simplicity, we call

them �the switching point�. For example, if Q(p) = 8 for any p and K = 10, the switching point is

n̂u = n̂l = 5 because if n < 5; (n� 1)kn < 8; and all �rms are necessary to ful�ll demand but no �rm

is pivotal when n � 5, (n� 1)kn � 8.

In the elastic case, the upper and lower switching points are di¤erent. Take for instance the case

in which 	 = 20, v = 10, Q = 8, u = 1, c = 0 and K = 10. The minimum and maximum demands

are Q(20) = 7 and Q(0) = 9. There is a lower switching point at n̂l = 4 since (n� 1)kn < 7 = Q(20)

for n < 4 and (n � 1)kn � 7 = Q(20) for n � 4 and an upper switching point at n̂u = 1 because

(n� 1)kn < 9 = Q(0) for n < 1 and (n� 1)kn � 9 = Q(0) for n � 1.

Proposition 5 (a) For each K; Q(p), there exists a unique upper switching point, n̂u = K= (K �Q(c)).

(b) If the number of �rms is lower than this threshold (n < n̂u), then any given �rm i bidding

p�m(n), where p
�
m(n) is the monopoly price of the residual demand curve, p

�
m(n) � argmax0�p�	f(p�

c) [Q(p)� (n� 1)kn]g; is part of any equilibrium. The equilibrium price is p�m(n).

(c) If the number of �rms is higher than this threshold (n � n̂u), then all �rms bidding c is an

equilibrium. The equilibrium price is c:
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The equilibrium price drops from the monopoly price of the residual demand to competitive levels

at n̂u. It is unique if n = 1 < n̂u (monopoly) and if n > n̂u (marginal cost pricing). If 1 < n < n̂u,

however, there are multiple pure strategy equilibria with many payo¤-equivalent actions as part of

each of them.5 Consider, for example, the case of two �rms, inelastic demand, one bin and stepwise

bidding. A generator bidding 	 and the other bidding close to c, or vice versa, are both equilibria

in which one obtains a low pro�t and the other gets the maximum. The situation is similar to the

�battle of the sexes�game. Coordination in this game can be low (Cooper et al., 1990), and especially

di¢ cult due to the payo¤ asymmetry in each of the equilibria (Crawford et al., 2008). If 1 < n < n̂u,

market prices are expected to be at most p�m(n) but can be substantially lower because of multiple

equilibria and coordination issues. The next corollary shows that a higher n decreases the equilibrium

price p�m(n) and increases equilibrium pro�t asymmetries. This will further reduce the �rms�incentive

to be the price-setter, and induce them to submit lower bids.

Corollary 6 If the number of �rms below the threshold (n < n̂u),

(a) the equilibrium price (p�m(n)) is non-increasing in n

(b) the relative pro�ts of a price-setting �rm with respect to a non-price setting �rm in the equilibria

((p�m � c) [Q(p�m)� (n� 1)kn] = [(p�m � c)kn]) decrease in n.

The proposition and the corollary allow us to sketch predictions about the e¤ect of competition

on prices. Monopoly prices should be equal to p�m(1) as this leads to maximum pro�ts. Prices should

decrease in n as long as the �rms are pivotal at the minimum demand, n < n̂u, due to lower equilibrium

prices and growing pro�t asymmetries. Prices should drastically decrease at the upper switching point

(n̂u) because the unique prediction is that prices are equal to marginal costs for n > n̂u.

Prediction 7 The dynamics pre- and post-switching point result in nonlinearities in the in�uence

of n on prices. Pre n̂u, prices decrease with n from the monopoly price, p�m(1). Post n̂
u, prices are

drastically reduced to c.

Note that this prediction is not speci�c to any of the supply, demand, and behavioural assumptions

that we explore in this paper. Further, there is wide consensus on the importance of pivotal dynamics

in real electricity markets (for a discussion on the role of pivotal dynamics, see e.g. Rothkopf, 2002).

The prediction is so standard that any combination of modelling assumptions aiming to reproduce

spot electricity markets should be able to ful�ll it.

5 Simulations

We �rst introduce the simulation parameters. and graphically compare the simulation outcomes with

the theory. Then, we formally test whether the data for each speci�cation features breaking points at
5There are also many mixed strategy Nash equilibria.
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the predicted locations and, whether the predicted switching point is best-�tting.

5.1 Parameters

We allow the number of �rms, which parametrises the degree of competition, to vary from one to

twelve, 1 � n � 12. Marginal costs are set to zero, c = 0. Total capacity is K = 10, so individual

capacities decrease from k1 = 10 to k12 = 0:833. The price ceiling is 	 = 20, with a grid of S = 50

possible actions and a demand rotation point v = 10. The convergence parameter is � = 0:004: We

focus on the demand, supply and behaviour assumptions in turn. We use as a reference speci�cation

an inelastic demand with 20% excess capacity (u = 0 and �Q = 8), �rms using stepwise bidding with

one bin (m = 1), and �rms learning following RL with a uniform initial distribution.

To study the e¤ect of the demand assumptions, we �x the reference supply (stepwise bidding and

m = 1) and behavioural representations (RL and uniform initial distribution). We run simulations for

the combinations of expected demand levels �Q = f8; 8:5; 9g and elasticity parameters u = f0; 0:5; 1g:

We perform 50 simulations for each n and for each combination of demand level and elasticity para-

meters. The data set includes 3 � 3 � 12 � 50 = 5; 400 observations.

When we focus on the supply side, we �x the demand ( �Q = 8 and u = 0) and behavioural

speci�cations (RL and uniform initial distribution). We perform simulations for each, the stepwise and

supply function bidding, and for one, two and three bins. The resulting data includes 2�3�12�50 = 3; 600

observations.

For the behavioural analysis, we �x the supply and demand speci�cations (stepwise, m = 1, �Q = 8

and u = 0). We perform simulations for each, BR, RL and FP, and for prior beliefs equal to 	, 0,

	=2 and random. In total, there are 3 � 4 � 12 � 50 = 7; 200 observations in the data set.

From Proposition 5, the monopoly prices are equal to the maximum price, p�m(1) = 	 = 20. The

upper switching points are bnu = f5; 6; 10g, respectively for �Q = f8; 8:5; 9g, if u = 0 (inelastic demand),
and bnu = f7; 10; 12g if u = 0:5 and bnu = f10; 12; 12g if u = 1:
5.2 Simulation results

Figures 1, 2 and 3 compare the impact of competition on prices for the di¤erent demand, supply

and behavioural speci�cations. Each panel plots the long-run average price (p) and two standard

deviations across the 50 simulation runs for each n. Since the theoretical price predictions are corner

solutions, the intervals sometimes exceed the simulation boundaries. The upper-left panel in each

�gure corresponds to the same reference speci�cation ( �Q = 8, u = 0; stepwise bidding, m = 1, RL and

a uniform initial distribution).

Demand speci�cations Figure 1 reports the demand results. Simulations use as demand levels

Q = 8; 8:5 or 9 (in columns one, two and three, respectively) and, as elasticity assumptions, u = 0;
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0:5, or 1 (in rows one, two and three). In all the panels, the supply and behavioural assumptions are

one-bin stepwise bidding and RL with uniform initial distribution.

Monopoly prices are close to 	(= 20) and the relationship between n and p is decreasing. In the

inelastic cases (u = 0, �rst row), p drops rapidly in n but �attens out around n = 5; n = 6 and

n = 10, respectively for �Q = f8; 8:5; 9g. More competition has a small e¤ect beyond those values, but

p remains clearly above c, particularly in the case of tight capacity ( �Q = 9, third column).

In the elastic cases (second and third rows), the theory predicted a break at the upper switching

points: bnu = f7; 10; 12g for u = 0:5 and bnu = f10; 12; 12g for u = 1 for �Q = f8; 8:5; 9g, respectively.

That is, as elasticity increases, we predict a break for higher levels of n. Instead, the simulations show

a lower breaking point as the elasticity increases, particularly under tight capacity. As we will see,

this is consistent with a break at the lower switching point.

Comparing simulation results across speci�cations, the impact of the elasticity seems to be, at

best, modest. Simulations are similar across rows, in terms of both price levels and the shape of the

n to p relationship. However, under tight capacity, a higher elasticity seems to make the price more

sensitive to n. Across demand levels, p tends to be less sensitive to n as the levels of demand increase.

Higher demand levels also lead to higher overall prices. This is also consistent with Proposition 5,

which predicts that equilibrium prices are increasing in �Q (higher bnu and higher p�m).
Overall, the demand results are quite, but not perfectly, consistent with the theory. First, although

monopoly prices are close to 	 and the relationship between n and p is decreasing, post-threshold prices

are far from c. Second, inelastic simulations �t the break predictions better than those with elasticity.

Third, smaller excess capacity (K � �Q) results in higher prices. Fourth, results do not vary too much

within our elasticity ranges, which are comparable to those in the literature.

Supply speci�cations Figure 2 reports the bidding assumption results. Simulations use stepwise

(�rst row) or SF bidding (second row) with one, two or three bins (columns one, two and three). We

use �Q = 8 and u = 0 and RL with uniform initial distribution in all cases.

As predicted, the relationship between n and p monotonously decreases both for the stepwise and

the SF assumptions. Its shape changes around n = 5, consistent with the prediction of a switching

point at bnu = 5. In the stepwise case, however, prices remain above the competitive levels after the
threshold. p�s sensitivity to n decreases with the number of bins and therefore the deviation from

theory grows. When m = 1, post-switching point prices are around 4, when m = 2 around 7 or 8 and

when m = 3 around 10. If there are multiple bins, �rms are able to use some of their bins to keep

prices high while recouping some of the bene�ts of high prices with the other bins.

Although the price variability increases, SF yields a better �t in terms of average prices. This is

probably because its higher �expressiveness�overcomes the di¢ culties to coordinate in the theoretical

prediction. The standard deviation grows in m, especially around the switching point. Under SF,
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bids above the equilibrium price may be reinforced because they also obtain substantial pro�ts. It

is therefore more di¢ cult for �rms to tell good from bad bids and dispersion grows. In comparison,

stepwise bids are either on- or out-of-the-money. Hence it is easier to identify the good bids and the

simulations become crisper. Overall, prices are less sensitive to n under stepwise bidding and SF is

better at capturing the extreme monopoly and competitive predictions. Still, SF�s price dispersions

increase substantially around the pivotal breaks.

Behavioural speci�cations Figure 3 reports simulation results for the di¤erent behavioural spec-

i�cations (assuming stepwise bidding with m = 1, and �Q = 8 and u = 0). RL is on the top, BR in the

middle and FP in the bottom panel. The four columns correspond to the four prior belief assumptions

in the following order: (i) the maximum price, (ii) randomly, (iii) the minimum price, and (iv) the

medium point. This implies that the initial probability distributions are uniform, lower than uniform,

concentrated in the lowest action, and uniform over the bottom half, respectively.

All con�dence intervals are narrow. In reinforcement learning (�rst row), monopoly prices are close

to 	, decrease until the theoretical switching point (bnu = 5) and approach c after it. The RL break
at the switching point is striking only if the prior is competitive (third column).

The pre-break relationships between n and p are not decreasing for BR and FP. In BR (second

row), monopoly prices are far from 	 (at about 14), but there is a clear breaking point for n = 5,

after which they converge exactly to c. Initial conditions do not have an impact under BR due to the

algorithm�s lack of memory.

The di¤erences between RL and BR can be traced back to the algorithms�features. Under BR,

prices have been shown to be competitive when no �rm is pivotal. This is because under BR, the

attractions of all the actions above those used by the other �rms in the previous period are reduced

to zero. Therefore �rms choose lower actions and p can only stay constant or decrease. The resulting

unravelling yields p = c. When all �rms are pivotal, equilibrium forces tend to increase p so that �rms

choose high actions with some probability. Simultaneously, unravelling prevents p from staying very

high. On balance, p never reaches 	, not even in monopoly, and may even increase slightly. In RL,

instead, there are no in-built unravelling and best-response mechanisms. Actions above those of the

opponents are still played because they might have generated pro�ts in earlier periods. Thus, p is

higher than under BR for all n.

Fictitious play (third row) departs signi�cantly from the predictions. Monopoly prices are around

14, are slightly increasing in n and stay patently above competitive levels. FP keeps most of the initial

noise as it weights heavily initial periods with quasi-random outcomes. Firms assign propensities

to inadequate actions, adaptation slows down and there is strong path dependence. There are two

countervailing forces at work. On the one hand, the higher n the more likely it is that there will be

unravelling as in the case of best response. On the other hand, initial random prices are more likely
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to be high if there are more �rms, so that reductions start from a higher base. Monopoly prices are

far from 	 because of unravelling. Prices when no �rm is pivotal are far from zero owing to high

initial prices. They are not decreasing due to the in-built best-response features of the algorithm. On

balance, the n to p relationship is quite �at and stays far from the theory extremes.

Overall, RL best matches the theory but is not as reactive to market conditions as BR. FP performs

worst. Competitive prior beliefs render by far the most homogeneous post-switching prices across

behavioural assumptions. This is because beliefs are self-ful�lling. Everyone�s best response is to bid

c when they believe that the others will bid c. BR and FP lock themselves up in that value while

experimentation in RL is not powerful enough to depart from it. The theoretical soundness of RL

with competitive initial beliefs is strikingly good and the best of the twelve. Monopoly prices are only

slightly below 	, and decrease clearly in n for n < 5, so that prices are above 10. For n > 5, prices

converge to c. These results are to our knowledge the �rst on the robustness of simulation techniques

to behavioural choices in electricity markets.

5.3 Threshold regressions

In this section, we carry out tests of whether the simulation data con�rm our hyptheses. We estimate

a piecewise linear model between n and p for each demand, supply and behavioural combination. The

models are uniquely speci�ed by a dummy variable associated with the upper switching point bnu;
pi = �0 + �1Di + �2ni + �3Dini + ui, where Di = 0 if ni < bnu, Di = 1 when ni � bnu: (5)

The pre- and post-breaking points regression estimates are speci�ed by

E(pijDi = 0; ni) = �0 + �2ni and E(pijDi = 1; ni) = (�0 + �1) + (�2 + �3)ni:

We test �rst the null hypothesis of linearity against the alternative of structural breaks at the pivotal

switching points bnu. Evidence supporting the existence of a breaking point can come either from
signi�cant intercept or slope change coe¢ cients, i.e. �1 and �3 di¤erent from zero. Second, we test

whether prices are decreasing in the number of �rms before the breaking point and �atter thereafter,

i.e. �2 negative and �3 positive.

Table 2 reports the results on the demand, supply and behavioural assumptions. On the left-hand

side of each block, we specify the parameters used in each speci�cation, together with the implied

upper switching point. The parameters changing in each block are in boxes. The right-hand side

reports regression estimates. The coe¢ cients correspond to equation (5).

In all cases, either �1 or �3 (or both) is signi�cant at standard levels. There are three non-signi�cant

coe¢ cients (one �1, two �3) but the other coe¢ cient in the same speci�cation is always signi�cative.
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The tests provide support for the �rst hypothesis. However, both best-response and �cticious play

exhibit increasing �rms-price relationships before the breaking point, i.e. �2 > 0. Reinforcement

learning, on the other hand, satis�es the second hypothesis. It displays a negative relationship before

the breaking point and a �atter relationship thereafter, as predicted by the theory.

5.4 Weighted �ctitious play, power choice rules and regret models

We now check whether the poor performance of the belief-based models (BR, FP) is due to the

particular speci�cations used in the available electricity models. The preceeding work in this literature

motivated three simpli�cations:

First, we have used extreme behavioral assumptions about how agents form beliefs about others�

behavior. Players either disregard all periods except the last one (BR) or give equal weight to all of

them (FP). We consider now an alternative weighted �ctitious play rule (WFP). Under this assump-

tion, agents consider all their previous experience, but their opponents�earlier behavior carries less

weight than more recent behavior. Second, we have assumed a linear probability choice rule, a partic-

ular type of the power probability rule proposed by Camerer and Ho (1999). As an alternative, we also

study their exponential probability rule. Third, we have not considered alternative behavioural rules

based on recent additions to the literature. For example, Ert and Erev (2007) and Marchioria and

Warglien (2008) include some regret-based feedback and argue that it might more accurately predict

actual human behavior in games with mixed strategy equilibria.

In this section, we address the three alternative speci�cations. We use our baseline case (stepwise

bidding with m = 1, and �Q = 8, u = 0 with uniform initial distribution) for the WFP model (� = 1

and � = � 2 (0; 1)), both with linear and exponential probability rules, and with and without regret.

We use a model with an exponential regret-based choice rule, similar to Ert and Erev�s (2007) model,

and use their estimated parameter combinations in the benchmark speci�cation. Our implementation

assumes that each action s for bin j in generator i is updated with

P ji;s(t+ 1) =
e�A

j
i;s(t)=�

j
i (t)

�Sk=1e
�Aji;k(t)=�

j
i (t)
; (6)

where �ji (t) is the regret parameter. �
j
i (t) is updated according to

�ji (t) = 1 +
�N(t� 1)�ji (t� 1) + maxsf�i(s; r

�j
i )g � �i(r

j
i ; r

�j
i )

N(t)
; (7)

where rji and r
�j
i denote again the action taken in period t by bin j of �rm i and by the rest of the

bins, respectively, and �ji (0) = 1.

Figure 4 provides the simulation results. The �rst row reports simulations of the WFP model

with a linear choice rule, as in (3). The WFP speci�cations are, from left to right, � = 0:52 (as
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estimated in Ert and Erev, 2007), � = 0:25 and � = 0:75. The simulation outcomes are similar to

each other and to those under BR (� = 0) (second row, �rst column in Figure 3). Prices are close to

the competitive levels after a breaking point. However, they are not sensitive to the number of �rms

before the breaking point and far from the maximum (	), even under monopoly. Prices are not as

close to the competitive levels as in BR, especially when � = 0:75, but clearly closer than under FP

(� = 1).

The second row provides the results of the WFP model with an exponential choice rule, as in (6),

but without regret (that is, �ji (t) = 1 for all t and i and j). We assume � = 0:52 and, from left to

right, � = 2:75 (as estimated in Ert and Erev, 2007), � = 1 and � = 5. Prices are decreasing and close

to 	 under monopoly. Still, post-breaking point prices are high, particularly when � = 1. Also, the

con�dence intervals for � = 2:75 and � = 5 are quite wide around the breaking point.

The third row provides the results of the WFP model with an exponential choice rule, as in (6),

with regret (�ji (t) updated with (7)). We use the same parameters as in the second row (� = 0:52 and,

from left to right, � = 2:75, � = 1 and � = 5). Con�dence intervals are narrower than without regret

but the breaking point is less clear, especially for � = 1. Post-breaking point prices also remain well

above competitive levels.

Overall, it seems that one can improve on the basic belief-based algorithms of the electricity

modelling literature. As an illustration, some of alternatives in this section are clearly better than the

previous best-response and �ctitious play outcomes. Further tests and re�nements are necessary but

this evidence indicates that one way to improve the performance of simulations models is by using

experiments to identify the appropriate simulation algorithms.

6 Discussion and conclusions

Firms and regulators alike have started to use behavioural simulations to study the properties of many

markets. However, the literature has advanced little in creating a set of standards. This paper is an

attempt to advance in that direction. We study the properties of di¤erent simulation techniques and

how they compare to each other and to a standard economic theory benchmark. As a case in point,

we focus on a well-established claim in the wholesale electricity auctions literature. Any model should

be able to replicate it.

The demand, supply, and, particularly, behavioural comparisons call into question an important

part of the extant behavioural literature on electricity markets. Reinforcement learning performs quite

well, but best-response and especially �ctitious play do not. Prior beliefs and initial conditions have an

in�uence on the performance of the simulations. Competitive pre-game beliefs render the best match

to theory. Flat and upward slopping supply functions yield similar results, and also several plausible

elasticity assumptions. The simulations are in�uenced by the number of bids per plant. Simulations
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perform best when they combine inelastic demand, reinforcement learning, competitive initial beliefs

and single-bin bids.

The paper has several implications. First, some preceding work makes choices that are not con-

sistent with economic theory in our simple setting. Second, future models should incorporate more

systematic robustness tests. Third, we have not included all possible assumptions. For example, we

have left out variable marginal costs and behavioural rules like genetic algorithms and Q-learning that

are also prominent, and we have not compared the implications of di¤erent convergence de�nitions.

Fourth, our strongest result relates to �ctitious play. Its main di¤erence with best response is mainly

one of memory, so that how much memory to retain and how it should decay, are intriguing, and

still unresolved, algorithmic questions. We have also left out the network congestion issues inherent

in the operations of electricity utilities. Finally, this paper focuses on electricity markets. We should

continue doing similar exercises in other settings, as in Fagiolo et al. (2007), Leombruni et al. (2007),

Marks (2007) and Midgley et al. (2007).

The question of which models �t best to real data is complementary to our research and deserves

future attention. The alternative belief-based models proposed in the last section of the paper perform

better than best-response and �ctitious play. Empirical and especially experimental research can help

in identifying the appropriate speci�cations to model electricity markets. Still, most researchers would

agree in that there is no single universal set of assumptions that can be applied to all situations. This

is for example one of the interpretations one can draw from Camerer and Ho�s (1999) behavioural

algorithm. We think that this is a valid option as long as we know the modelling choices�implications.

The ACE community has made a lot of progress in recent years and we believe it is now time to take

stock of what has been achieved, consolidate and move forward.
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Figure 1: The influence of demand specifications on prices 

 

Mean (+/- two standard deviations) of prices when demand levels 
are Q = {80, 85, 90} (columns 1,2,3) and elasticities u = {0, 5, 
10} (rows 1,2,3) 
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Figure 2: The influence of supply specifications on prices 

 

Mean (+/- two standard deviations) of prices in the stepwise (upper)
and supply function (lower row) cases with number of bins m = {1, 2, 
3} (columns 1,2,3). 
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Figure 3: The influence of behavioral assumptions on prices 

 
Mean (+/- two standard deviations) of prices in RL (row 1), BR (2), and FP (3). Prior beliefs 
are max. price (column 1), random (2), min. price (3) and middle of the distribution (4) 
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Figure 4: Some alternative behavioral assumptions and their impact on prices 

 

Mean (+/- two standard deviations) of prices in Weighted Fictitious Play (WFP - row 1, phi 

parameters 0.52; 0.25; 0.75), WFP with power choice rule(row 2, phi 0.52; lambda parameters 

2.75; 1; 5), and WFP, power choice rule and regret (row 3, phi 0.52; lambda parameters 2.75; 

1; 5).   



No. Paper Journal Research question Wholesale supply 

representation

Wholesale demand 

representation

Behavioural algorithm

1 Bagnall and Smith (2005) IEEE-Trans Replication of human behaviour in the 

UK market

Single price bid per firm Inelastic demand Hierarchical classifier 

systems

2 Banal and Rupérez Micola 

(2009)

ManSci Technological diversification and 

pivotal dynamics

Single price bid per plant 

and supply functions

Inelastic and elastic 

demands

Reinforcement learning 

(Roth-Erev)

3 Bower and Bunn (2000) EnJor Uniform price and discriminatory 

auctions

Single price bid per plant Elastic demand Reinforcement learning

4 Bower and Bunn (2001) JEDC Uniform price and discriminatory 

auctions

Single price bid per plant Elastic demand Reinforcement learning

5 Bower et al. (2001) EnPol Industrial consolidation in Germany Single price bid per plant Elastic demand Reinforcement learning

6 Bunn and Martoccia (2005) EnEcon Tacit collusion Single price bid per plant Inelastic demand Reinforcement learning

7 Bunn and Oliveira (2001) IEEE - Trans Provide pricing and strategic insights, 

ahead of NETA's introduction in the 

Price / quantity bid per plant Double-sided call auction Best-response dynamics 

(Fictitious-play) with 

8 Bunn and Oliveira (2003) Annals of OR Test whether two dominant generators

could profitably influence wholesale 

price in the UK

Price / quantity bid per plant Double-sided call auction Combination of best-

response dynamics 

(Fictitious-play) and 

reinforcement learning
9 Bunn and Oliveira (2007) EJOR Co-evolution of plant portfolios and 

spot prices

Quantities bidding Elastic demand Best-response dynamics 

(Cournot)

10 Bunn and Oliveira (2008) OR Co-evolution of plant portfolios and 

spot prices

Quantities bidding Elastic demand Best-response dynamics 

(Cournot)

11 Cincotti et al (2005) Proc. SPIE Effect of market microstructure and 

costs on prices

Supply functions Inelastic demand Reinforcement learning

12 Day and Bunn (2001) JRE Analyse divestures and their impact of 

market power in the UK pool

Piecewise supply functions Elastic demand Best-response dynamics 

(Cournot)

13 Day and Bunn (2009) JEDC Analyse market power in the UK pool Piecewise supply functions Elastic demand Best-response dynamics 

(Cournot)
14 García et al. (2005) OR Dynamic price formation and 

hydropower behaviour

Single price bid per plant Inelastic demand Best-response dynamics 

(Fictitious-play)

15 Nanduri and Das (2007) IEEE-Trans Test of model on a simple electricity 

network

Single price bid per firm Inelastic demand Reinforcement learning 

(Roth-Erev)

16 Nicolaisen et. al. (2001) IEEE-Trans Market structure, market power and 

efficiency

Single price bid per firm Double-sided call auction Reinforcement learning 

(Roth-Erev)

17 Richter and Sheblé (1998) IEEE-Trans Wholesale market simulation Single price bid per firm Double-sided call auction Genetic algorithm

18 Rupérez Micola and Bunn JEBO Horizontal cross-holdings Single price bid per firm Double-sided call auction Reinforcement learning

19 Rupérez Micola et al. (2008) JEBO Vertical integration Single price bid per firm Inelastic demand Reinforcement learning 

(Roth-Erev)

20 Sun and Tesfatsion (2007) CompEcon Interplay among market structure, 

protocols in relation to performance

Inelastic demand Reinforcement learning 

(Roth-Erev)

21 Veit et al. (2006) IJMEM Dynamics in forward and spot 

electricity markets

Quantities bidding Elastic demand Reinforcement learning 

(Roth-Erev)

22 Visudhiphan and Ilic (1999) IEEE meetings Dynamic learning in power markets Single price bid per firm and 

supply functions

Inelastic and elastic 

demands

Best-response dynamics

Table 1. Published papers
The Table includes an alphabetical list of electricity agent-based modeling papers published as journal 

articles, with the year of publication and abbreviated journal title. In addition, the Table briefly summarizes 

the research issue in each paper together with their supply bidding, demand representation and behavioral 

algorithm assumptions. Full citations appear in the references list.  

Demand Estimates

Behavior Bid type No. bins u Qbar

Theory br. 

point Beta0 t-stat. 0 Beta1 t-stat. 1 Beta2 t-stat. 2 Beta3 t-stat. 3 F - stat

RL Stepwise 1 0 80 5 22,6915*** 120,1925 -15,8361*** -68,3801 -3,7236*** -42,6075 3,3883*** 38,14074 6770,1818

RL Stepwise 1 0 85 7 20,6404*** 149,9273 -8,9893*** -33,6750 -1,5780*** -38,0172 1,2370*** 25,5813 3571,9040

RL Stepwise 1 0 90 10 20,1647*** 228,4622 -8,9473*** -16,5035 -1,4150*** -80,9588 1,1326*** 21,1356 4325,2052

RL Stepwise 1 5 80 7 22,1599*** 175,1508 -17,0345*** -69,4377 -3,5936*** -94,2047 3,4454*** 77,5304 6818,3850

RL Stepwise 1 5 85 10 17,4470*** 94,7108 -10,8443*** -9,5838 -1,6442*** -45,0715 1,5931*** 14,2440 929,3660

RL Stepwise 1 5 90 12 19,5195*** 200,8121 -8,9316*** -3,8525 -1,2370*** -78,9680 1,0249*** 5,0782 2651,2966

RL Stepwise 1 10 80 10 15,9032*** 74,4074 -11,8689*** -9,0407 -1,7786*** -42,0241 1,79439*** 13,8278 750,4089

RL Stepwise 1 10 85 12 16,1842*** 80,9220 -10,4379*** -2,1882 -1,2457*** -38,6473 1,2756*** 3,0716 566,0308

RL Stepwise 1 10 90 12 16,4728*** 129,1202 -7,0974*** -2,3325 -1,0007*** -48,6707 0,8540*** 3,2238 961,1434

Supply Estimates

Behavior Bid type No. bins u Qbar

Theory br. 

point Beta0 t-stat. 0 Beta1 t-stat. 1 Beta2 t-stat. 2 Beta3 t-stat. 3 F - stat

RL Stepwise 1 0 80 5 22,7623*** 117,1292 -16,0214*** -67,2072 -3,7875*** -42,1032 3,46129*** 37,8502 6387,31

RL Stepwise 2 0 80 5 22,5093*** 137,7616 -11,9539*** -59,6407 -3,5819*** -47,3575 3,2362*** 42,0915 4698,30

RL Stepwise 3 0 80 5 20,9970*** 152,6804 -8,8664*** -52,5584 -2,5914*** -40,7079 2,3111*** 35,7144 3995,64

RL SF 1 0 80 5 23,8829*** 29,5219 -11,8191*** -11,9099 -3,3377*** -8,9128 2,1521*** 5,6534 698,92

RL SF 2 0 80 5 21,6725*** 21,9375 -7,5188*** -6,2043 -1,5723* -3,4381 0,2282 0,4909 500,63

RL SF 3 0 80 5 20,9316*** 34,3007 -13,7422*** -18,3579 -1,1605 -4,1082 0,4488* 1,5632 1445,53

Behavioural choices Estimates

Behavior Bid type No. bins u Qbar

Theory br. 

point Beta0 t-stat. 0 Beta1 t-stat. 1 Beta2 t-stat. 2 Beta3 t-stat. 3 F - stat

BR Stepwise 1 0 80 5 13,0663*** 19,2451 -3,2282*** -3,8761 0,64344*** 2,0473 -1,5568*** -4,8731 616,48

RL Stepwise 1 0 80 5 23,2553*** 127,6799 -16,4564*** -73,6547 -4,0425*** -47,9472 3,7094*** 43,2801 7348,12

FP Stepwise 1 0 80 5 13,0186*** 55,7207 3,6323*** 12,6736 0,5914*** 5,4685 -1,5801*** -14,3719 1801,16

Table 2: Hypotheses’ tests of breaking point regression estimates

The parameters considered in each simulations batch are marked with boxes. The parameters outside those boxes stay 

constant. The estimates correspond to the threshold equation specified in eq. 5. Beta1 and Beta3 estimate the post-

breaking point changes in intercept and slope. They support the existence of a breaking point when they are statistically 

significant: * significant at the 0.10 level; **significant at the 0.05 level; ***significant at the 0.01 level. 


