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Abstract: We address the question of whether integrable models allow for PT -

symmetric deformations which preserve their intgrability. For this purpose we carry

out the Painlevé test for PT -symmetric deformations of Burgers and the Korteweg-De

Vries equation. We find that the former equation allows for infinitely many deformations

which pass the Painlevé test. For a specific deformation we prove the convergence of

the Painlevé expansion and thus establish the Painlevé property for these models, which

are therefore thought to be integrable. The Korteweg-De Vries equation does not allow

for deformations which pass the Painlevé test in complete generality, but we are able to

construct a defective Painlevé expansion.

1. Introduction

Classical as well as quantum mechanical models, which are invariant under a simultaneous

parity transformation P : x → −x and time reversal T : t → −t, can be deformed in

a controlled manner to produce new PT -symmetric theories [1, 2, 3, 4, 5, 6, 7, 8]. The

crucial feature of these models is that the PT -symmetry can be utilized to guarantee the

reality of the energy spectra, which is due to the fact that its operator realization is a

specific example of an anti-linear operator [9]. In contrast to standard textbook wisdom,

this means when the systems are Hamiltonian, they are non-dissipative despite being non-

Hermitian. An important question to answer in this context is whether it is possible

to deform models in a symmetry preserving manner. Regarding supersymmetry, it was

recently shown [10] that this is indeed possible. Here we will focus on the question of

whether this is also accomplishable with regard to the symmetry underlying integrability.

In other words, do integrable PT -symmetric models allow for deformations which do not

destroy the integrability? A positive answer to this question will naturally lead to new

integrable models. For some cases partial results already exist [11, 12, 13, 14, 15, 16, 7,

8, 10]. Here we will focus on two prototype models of integrable systems, the Burgers

equation and the Korteweg-deVries (KdV) equation. We will carry out the Painlevé test

http://arXiv.org/abs/0810.3628v1
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for PT -symmetric deformations of these models, establish thereafter in some cases the

Painlevé property and draw conclusions about their integrability.

As there exist various notions and definitions about integrability, the Painlevé test,

the Painlevé property, etc, let us briefly indicate which ones we are going to adopt in this

manuscript. To start with, there is clearly no doubt that integrability is an extremely

desirable property to have in a physical system, as it usually leads to exact solvability

rather than to mere perturbative results. In the context of 1+1 dimensional quantum field

theories the notion of integrability is usually used synonymously to the factorization of

the scattering matrix, where the latter can be achieved simply by making use of one non-

trivial charge [17]. Unlike as in most scenarios when one compares quantum and classical

theories, the latter appear to be more complicated in this particular regard. In classical

systems the definitions of integrability are much more varied and non-uniform. A common

notion is so-called Liouville integrability, which assumes for a system with N degrees of

freedom the existence of N analytic single valued global integrals of motion in involution.

The equations of motion are then separable and exact solutions can be obtained, at least

in principle. Focussing on differential equations, as we do in this paper, one calls them

integrable when, given a sufficient amount of initial data, they are solvable via an associated

linear problem. The problem with all these definitions is that one does not know a priori

whether a system is integrable or not without having computed all integrals of motion,

mapped the problem to a linear one or actually solved the equations of motion. A general

method to identify integrable models before this, often very difficult, task is completed

does not exist. The closest one may get to such a method is to check whether the system

possesses the Painlevé property. One can then assume that the Painlevé property implies

integrability in the above specified sense, albeit this connection is not rigorously proven. To

make matters worse, there exist even definitions which include the notion of integrability

into the definition of the Painlevé property [18].

The concept of the Painlevé property can be traced back more than a century to the

original investigations of Painlevé et al. [19], who set out to construct new functions from

the solutions of ordinary differential equations (ODE). The notion of a function implies

immediately that the solutions one is seeking ought to be single valued, which leads to a

natural definition: An ODE whose (general) solutions have no movable1 critical2 singular-

ities is said to possess the (generalized) Painlevé property [18, 20, 21]. The classification of

possible solutions to this problem can be organised into equivalence classes obtained from

linear fractional (Möbius) transformations and has been completed only to some degree. It

is proven that all linear ODE posses the Painlevé property, first order algebraic nonlinear

equations lead to Weierstrass functions and second order algebraic nonlinear equations lead

to the famous six Painlevé transcendental functions. The classification of algebraic ODEs

with Painlevé property of order greater than two is still an open problem, albeit some

partial results exist [22, 23, 24].

The situation is somewhat less structured for partial differential equations (PDE).

Extrapolating the previous notions one defines: A PDE whose solutions have no mov-

1Movable means that the solution depends on the initial values.
2A critical singularity is multivalued in its neighbourhood.
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able critical singularities near any noncharacteric3 manifold is said to possess the Painlevé

property. In general this is difficult to establish, however, there exists a more applicable

necessary, albeit not sufficient, condition for a PDE to possess the Painlevé property, which

was developed by Weiss, Tabor and Carneval [25] and is usually referred to as the Painlevé

test. This method is extremely practical and can be carried out in a very systematic

fashion. Roughly speaking the main idea is that one expands the solution for a PDE (or

ODE) in a power series starting with some single valued leading order terms. In case the

series can be computed and involves as many free parameters as the order of the PDE then

it is said that the PDE passes the Painlevé test. In order to extrapolate from the Painlevé

test to the Painlevé property one should also establish the convergence of the series, which,

however, has been carried out only in very rare cases.

For our purposes the relation between the Painlevé property (test) and integrability

is the most interesting. Ablowitz, Ramani and Segur [26] conjectured almost thirty years

ago: Any ODE which arises as a reduction of an integrable PDE, possibly accompanied by

a variable transformation, possesses the Painlevé property. To this day this conjecture has

not been proven rigorously, but is supported by a huge amount of evidence. On one hand

one has verified this property for almost all known integrable PDEs [25, 27, 28, 6, 29] and

in turn, which is more impressive, one has also used it to identify new integrable ODEs

[30, 31]. The latter is what we hope to achieve in this manuscript.

In summary, we will adopt here the logic that a PDE which passes the Painlevé test

and whose Painlevé expansion converges also possesses the Painlevé property. We take this

as a very good indication that the system is integrable.

We briefly explain the deformation procedure in section 2 and carry out the analysis

for Burgers and the KdV equation in subsection 2.1 and 2.2, respectively. We state our

conclusions in section 3.

2. PT -symmetrically deformed integrable models

Given a PT -symmetric PDE as a starting point, we adopt the deformation principle

of [7, 8, 10] to define new PT -symmetric extensions of this model by replacing ordinary

derivatives by their deformed counterparts

∂xf(x) → −i(ifx)ε =: fx;ε with ε ∈ R. (2.1)

Clearly the original PT -symmetry is preserved. In general the deformations will continue

real derivatives into the complex plane, unless ε = 2n− 1 with n ∈ Z. We do not make use

here of the possibility to deform also the higher derivatives via the deformation (2.1), i.e.

replacing for instance ∂2
xf(x) by fx;ε ◦ fx;ε, but simply define them as successive action of

ordinary derivatives on one deformation only

∂n
xf(x) → iε−1∂n−1

x (fx)ε = ∂n−1
x fx;ε =: fnx;ε. (2.2)

This deformation preserves the order of the PDE. We can now employ this prescription to

introduce new PT -symmetric models.
3On a characteristic manifold we can not apply Cauchy’s existence theorem and therefore we do not

have a unique solution for a given initial condition.
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2.1 Painlevé test for the PT -symmetrically deformed Burgers’ equation

Burgers’ equation is extensively studied in fluid dynamics and integrable systems, as it

constitutes the simplest PDE involving a nonlinear as well as a dispersion term

ut + uux = σuxx. (2.3)

Obviously equation (2.3) remains invariant under the transformation t → −t, x → −x,

u → u and σ → −σ. Taking the constant σ to be purely imaginary, i.e. σ ∈ iR, this

invariance can be interpreted as a PT -symmetry, which was also noted recently by Yan

[32]. A similar complex, albeit not PT -symmetric, version of Burgers’ equations plays an

important role in the study of two-dimensional Yang-Mills theory with an SU(N) gauge

group [33, 34]. The models considered in [33, 34] become PT -symmetric after a Wick

rotation, i.e t → it.

Let us now consider the PT -symmetrically deformed Burgers’ equation

ut + uux;ε = iκuxx;µ with κ, ε, µ ∈ R, (2.4)

where for the time being we allow two different deformation parameters ε and µ.

Our first objective is to test whether this set of equations passes the Painlevé test.

Following the method proposed in [25], we therefore assume that the solution of (2.4)

acquires the general form of the Painlevé expansion

u(x, t) =

∞
∑

k=0

λk(x, t)φ(x, t)k+α. (2.5)

Here α ∈ Z− is the leading order singularity in the limit φ(x, t) = (ϕ(x, t)− ϕ0) → 0, with

ϕ(x, t) being an arbitrary analytic function characterizing the singular manifold, ϕ0 being

an arbitrary complex constant which can be utilized to move the singularity mimicking

the initial condition and the λk(x, t) are analytic functions, which have to be computed

recursively.

2.1.1 Leading order terms

As a starting point we need to determine all possible values for α by substituting the first

term of the expansion (2.5), that is u(x, t) → λ0(x, t)φ(x, t)α, into (2.4) and reading off

the leading orders. For the three terms in (2.4) they are ut ∼ φα−1, uux;ε ∼ φα+αε−ε and

uxx;µ ∼ φαµ−µ−1. In order for a non-trivial solution to exist the last two terms have to

match each other in powers of φ, which immediately yields α = (ε−µ−1)/(ε−µ+1) ∈ Z−.

Thus α = −1 and ε = µ is the only possible solution. This means we observe from the

very onset of the procedure that only the models in which all x-derivatives are deformed

with the same deformation parameter have a chance to pass the Painlevé test. Therefore

we can conclude already at this stage that one of the deformations of (2.3) studied in [32],

i.e. ε = 1 and µ generic, can not pass the Painlevé test. Hence they do not possess the

Painlevé property and are therefore not integrable.

– 4 –
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2.1.2 Recurrence relations

Substituting next the Painlevé expansion (2.5) for u(x, t) with α = −1 into (2.4) with

ε = µ gives rise to the recursion relations for the λk by identifying powers in φ(x, t). We

find
at order − (2ε + 1): λ0 + i2εκφx = 0,

at order − 2ε: φtδε,1 + λ1φx − iκεφxx = 0,

at order − (2ε − 1): ∂x(φtδε,1 + λ1φx − iκεφxx) = 0,

(2.6)

such that

λ0 = −i2εκφx, λ1 = (iεκφxx − φtδε,1)/φx and λ2 is arbitrary. (2.7)

This means the number of free parameters, i.e. ϕ0 and λ2, at our disposal equals the order

of the PDE, such that (2.4) passes the Painlevé test provided the series (2.5) makes sense

and we can determine all λj with j > 2. To compute the remaining λj we need to isolate

them on one side of the equation and those involving λk with k < j on the other side. We

expect to find some recursion relations of the form

g(j, φt, φx, φxx, . . .)λj = f(λj−1, λj−2, . . . , λ1, λ0, φt, φx, φxx, . . .), (2.8)

with g and f being some functions characteristic for the system under consideration. We

will not present here these recursion relations for generic values of ε as they are rather

cumbersome and we shall only present the first non-trivial deformation, that is the case

ε = 2.

2.1.3 Resonances

For some particular values of j, say j = r1, . . . , rℓ, we might encounter that the function g in

(2.8) vanishes. Clearly this leads to an inconsistency and a failure of the Painlevé test unless

f also vanishes. In case this scenario occurs, it implies that the recursion relation (2.8)

does not fix λj and the compatibility conditions g = f = 0 lead to ℓ so-called resonances

λri
for i = 1, . . . ℓ. When ℓ + 1 is equal to the order of the differential equation we can in

principle produce a general solution which allows for all possible initial values. It might

turn out that some missing free parameters are located before the start of the expansion

(2.5), i.e. at j < 0, so-called negative resonances which can be treated following arguments

developed in [35]. When not enough additional free parameters exist to match the order

of the differential equation, the series is still of Painlevé type and is called defective.

It is straightforward to determine all possible resonances by following a standard ar-

gument. The first term in the expansion (2.5) gives rise to the leading order singularity

which needs to be cancelled by some yet unknown term in the expansion. Let us carry out

the calculation for Burgers equation. Using the expression for λ0 from (2.7) and making

the ansatz

ũ(x, t) = −2iεκ
φx

φ
+ ϑφr−1, (2.9)

we can compute all possible values of r for which ϑ becomes a free parameter. Substituting

ũ(x, t) into (2.4) and reading off the terms of the highest order, i.e. φ−2ε−1+r, we find the

– 5 –



Integrable models from PT -symmetric deformations

necessary condition

i2ε−1εεϑ(r + 1)(r − 2)κεφ2ε
x = 0, (2.10)

for a resonance to exist. This yields precisely to two resonances, one at r = 2, corresponding

to the third equation in (2.6), and the so-called universal resonance at r = −1. This means

also at higher order we can not encounter any inconsistencies or possible breakdowns of

the Painlevé test for any value of the deformation parameter ε.

2.1.4 From the Painlevé test via Painlevé property to integrability

Once it is established that a PDE passes the Painlevé test one needs to be cautious about

the conclusions one can draw as it is only a necessary but not sufficient condition for the

Painlevé property. In case one can also guarantee the convergence of the series the PDE

possess the Painlevé property, which is taken as very strong evidence for the equation to

be integrable. This step has only been carried out rigorously in very rare cases, e.g. in

[36, 37]. Here we establish the convergence for one particular deformation.

2.1.5 The ε = 2 deformation

As already mentioned, the details of the recursion relation for generic values of ε are rather

lengthy and we shall therefore only present the case ε = 2 explicitly. In that case the

deformed Burgers’ equation (2.4) becomes

ut + iuu2
x + 2κuxuxx = 0 (2.11)

The substitution of the Painlevé expansion (2.5) into (2.11) and the subsequent matching

of equal powers in φ then yields the recursion relation

iλ0φ
2
x {λj [(2j − 3)λ0 − 2i((j − 5)j + 4)κφx] + 2λ0 (λ0 + 2iκφx) δ0,j} = (2.12)

+

j
∑

n,m=1

{λj−m−n−2λm,xλn;x + (m − 1)λmφx [(n − 1)λj−m−nλnφx + 2λj−m−n−1λn;x]}

+

j−1
∑

n=1

{2λ0,x [(n − 1)λj−n−1λnφx + λj−n−2λn;x] − 2λ0φx [(n − 1)λj−nλnφx + λj−n−1λn;x]

−2iκ
{

λj−n,x

[

λn−3;xx + (n − 3)
(

(n − 2)λn−1φ
2
x + 2λn−2,xφx + λn−2φxx

)]

+ (j − n − 1)λj−nφx

[

λn−2;xx + (n − 2)
(

(n − 1)λnφ2
x + 2λn−1,xφx + λn−1φxx

)]}}

+ 2λ0,x [(j − 5)j + 6] κλj−1φ
2
x + λj−2 [2(j − 3)κφxx + iλ0,x]

− 2λ0φx {λj−1 [(j − 2)κφxx + iλ0;x] + κ [λj−2;xx + 2(j − 2)φxλj−1;x]}
+ (j − 4)λj−3φt + λj−4;t + 2κλ0,x [λj−3;xx + 2(j − 3)φxλj−2;x] ,

which is indeed of the general form (2.8). Having brought all λj with j > k to the left hand

side of (2.12), we may now successively determine the λj to any desired order. Starting

with the lowest value j = 0 the equation (2.12) reduces to

λ2
0φ

2
x (λ0 + i4κφx) = 0, (2.13)

– 6 –
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which leads to λ0 = −i4κφx and thus simply reproduces the expression in (2.7) for ε = 2.

For j = 1 the equation (2.12) simplifies to

−λ2
0λ1φ

2
x = 2λ0φx [iκλ0φxx + (λ0 + i4κφx)λ0;x] , (2.14)

such that λ1 = i2κφxx/φx, which coincides with (2.7) for ε = 2. When j = 2 the equation

acquires the form

λ0λ2φ
2
x (λ0 + 4σφx) = 2φxλ1;xλ2

0 − λ2
0;xλ0 + 2λ1φxλ0;x − 2iκφxxλ0;x − 4iκφxλ2

0;x

−2iκφx (λ0,xx − 2φxλ1;x)λ0. (2.15)

It is evident that the left hand side vanishes identically and upon substitution of the values

for λ0 and λ1. We can verify that this also holds for the right hand side of (2.15), thus

leading to the first resonance at level 2 and therefore to an arbitrary parameter λ2. One

may now continue in this fashion to compute the expansion to any finite order, but before

we embark on this task we make a few further simplification.

As the singularity has to be a noncharacteristic analytic movable singularity manifold,

we employ the implicit function theorem and make a further assumption about the specific

form of λk(x, t) = λk(t) and φ(x, t) = x− ξ(t), with ξ(t) being an arbitrary function. Then

the equation (2.12) simplifies to a much more transparent form

8κ2 (8κδ0,j + i(j − 2)(j + 1)λj(t)) =

j
∑

n,m=1

i(1 − m)(n − 1)λm(t)λj−m−n(t)λn(t) (2.16)

+

j−1
∑

n=1

[

2κ(n − 1)
(

n2 − n − j(n − 2) + 2
)

λj−n(t)λn(t)
]

+ (j − 4)λj−3(t)ξ
′(t) − λ′

j−4(t).

Solving this equation recursively leads to the Painlevé expansion

u(x, t) = −4iκ

φ
+ λ2φ +

ξ′

8κ
φ2 − iλ2

2

20κ
φ3 − iλ2ξ

′

96κ2
φ4 + O(φ5). (2.17)

Clearly we can use (2.16) to extend this expansion to any desired order. For the ordinary

Burgers equations, i.e. ε = 1, there exist a simple choice for the free parameters, which

terminates the expansion, such that one may generate Bäcklund and Cole-Hopf transfor-

mations in a very natural way. Unfortunately (2.17) does not allow an obvious choice of

this form. Taking for instance λ2 = 0 yields the expansion

u(x, t) = −4iκ

φ
+

ξ′φ2

23κ
− iξ′2φ5

7 × 28κ3
+

iξ′′φ6

5 × 29κ3
− ξ′3φ8

35 × 213κ5
− 23ξ′ξ′′φ9

385 × 213κ5
− ξ(3)φ10

135 × 214κ5

+
19iξ′4φ11

3185 × 218κ7
− 51iξ′2ξ′′φ12

385 × 219κ7
−

i
(

43641ξ ′′2 + 16460ξ ′ξ(3)
)

φ13

779625 × 220κ7
+ O(φ14). (2.18)

– 7 –
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Being even more specific and assuming a travelling wave solution, the general form of the

movable singularity is ξ(t) = ωt, which gives

u(x, t) = −4iκ

φ
+

ωφ2

23κ
− iω2φ5

7 × 28κ3
− ω3φ8

35 × 213κ5
+

19iω4φ11

3185 × 218κ7
+

ω5φ14

3185 × 221κ9

− 561iω6φ17

2118025 × 228κ11
− 93ω7φ20

3328325 × 232κ13
+

625011iω8φ23

53003575625 × 238κ15

+
32971ω9φ26

53003575625 × 241κ17
− 1509727iω10φ29

11501775910625 × 246κ19
+ O(φ30). (2.19)

Clearly we can carry on with this procedure to any desired order.

Convergence of the Painlevé expansion Having established that the deformed Burg-

ers equations pass the Painlevé test for any value of the deformation parameter ε, let us

now see whether the obtained series converges such we may conclude that these equations

also posses the Painlevé property. It suffices to demonstrate this for some specific cases.

Taking for this purpose λ2 = 0, we can express the expansion (2.18) in the general form

u(x, t) = −4iκ

φ
+ φ

∞
∑

n=1

αnφn (2.20)

and employ Cauchy’s root test, i.e.
∑

∞

n=1 γn converges if and only if limn→∞ |γn|1/n ≤ 1,

to establish the convergence of the series. We can easily find an upper bound for the real

and imaginary parts of αn

|Re α3n−ν | ≤
∣

∣Re p3n−ν(ξ
′, ξ′′, ξ′′′, . . .)

∣

∣

23n+4−νΓ(3n−ν
2 ) |κ|2n−1 for ν = 0, 1, 2, (2.21)

where the pn(ξ′, ξ′′, ξ′′′, . . .) are polynomials of finite order in t, that is
∑ℓ

n=0 ωntn with

ℓ < ∞ and ω ∈ C. The same expression holds when we the replace real part by the

imaginary part on both sides of the inequality. We should also comment that this point of

the proof is not entirely rigorous in the strict mathematical sense as we have only verified

the estimate (2.21) up to order thirty. Approximating now the gamma function in (2.21)

by Stirling’s formula as n → ∞

Γ
(n

2

)

∼
√

2πe−n/2
(n

2

)
n−1

2

(2.22)

we obtain

lim
n→∞

|Reα3n−ν |
1

2 ∼ |Re p3n−ν |1/n

23+ 4−ν

n (2π)
1

2n e−
1

2 (3n−ν
2 )

1

2
−

1

2n |κ|2−
1

n

= 0. (2.23)

The same argument holds for the imaginary part, such that the series (2.20) converges for

any value of κ and choices for ξ(t) leading to finite polynomials pn(ξ′, ξ′′, ξ′′′, . . .). It is

straightforward to repeat the same argument for λ2 6= 0.

Alternatively we can identify the leading order term in (2.11) and integrate the de-

formed Burgers equation twice. In this way we change the ODE into an integral equation

u(x, t) = 2κ

{

g(t) +

∫ x

x1

dx̂

[

i

2
+

1

u2(x̂, t)

(

f(t) +

∫ x̂

x0

dx̃
ut(x̃, t)

ux̃(x̃, t)

)]}−1

, (2.24)
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where g(t), f(t) are some functions of integration. When discretising this equation, i.e.

taking the left hand side to be un+1(x, t) and replacing all the u(x, t) on the right hand

side of this equation by un(x, t), we may iterate (2.24) with u0(x, t) = −4iκ/[x − ξ(t)] as

initial condition and recover precisely the expansion (2.17). Exploiting the Banach fixed

point theorem one may also use (2.24) as a starting point to establish the convergence of

the iterative procedure and therefore the Painlevé expansion, similarly as was carried out

for instance in [36, 37].

Reduction from PDE to ODE Making further assumptions on the dependence of

u(x, t) on x and t we can reduce the PDE to an ODE, and attempt to solve the resulting

equation by integration. A common assumption is to require the solution to be of the form

of a travelling wave u(x, t) = ζ(z) = ζ(x − vt) with v being constant. When v is taken to

be real, even solutions will be invariant under the original PT -symmetry. With this ansatz

the deformed Burgers’ equation for ε = 2 (2.11) acquires the form

−vζz + iζζ2
z + 2κζzζzz = 0. (2.25)

When ξz 6= 0 we can re-write this equation as

d

dz

(

c − vz +
i

2
ζ2 + 2κζz

)

= 0, (2.26)

which can be integrated to

ζ(z) = eiπ5/3(2vκ)1/3 c̃Ai′(χ) + Bi′(χ)

c̃Ai(χ) + Bi(χ)
(2.27)

with c, c̃ being constants, χ = eiπ/6(vz − c)(2vκ)−2/3 and Ai(χ), Bi(χ) denoting Airy

functions.

2.2 Painlevé test for the PT -symmetrically deformed KdV-equation

The KdV-equation was found to be PT -symmetric and was the first equation for which

deformations have been studied [7, 8]. Next we investigate the PT -symmetrically deformed

version of the KdV-equation with two different deformation parameters ε and µ

ut − 6uux;ε + uxxx;µ = 0 with ε, µ ∈ R. (2.28)

The case µ = 1 and ε generic was considered in [7] and the case ε = 1 and µ generic was

studied in [8].

2.2.1 Leading order terms

As in the previous section we substitute u(x, t) → λ0(x, t)φ(x, t)α into (2.28) in order to

determine the leading order term. From ut ∼ φα−1, uux;ε ∼ φα+αε−ε and uxxx;µ ∼ φαµ−µ−2

we deduce α = (ε − µ − 2)/(ε − µ + 1) ∈ Z−, such that the only solution is α = −2 with

ε = µ. This means neither the case µ = 1 and ε generic nor the case ε = 1 and µ generic

can pass the Painlevé test, but the hitherto uninvestigated deformation with ε = µ has at

this point still a chance to pass it.
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2.2.2 Recurrence relations

Substituting the Painlevé expansion (2.5) for u(x, t) with α = −2 into (2.28) with ε = µ

gives rise to the recursion relations for the λk by identifying powers in φ(x, t). We compute

order − (3ε + 2): λ0 = 1
2ε(3ε + 1)φ2

x,

order − (3ε + 1): λ1 = −1
2ε(3ε + 1)φxx,

order − 3ε: λ2 = ε(3ε+1)
24

(

4φ
x
φ

xxx
−3φ2

xx

φ2
x

)

+ δε,1
φ

t

6φ
x

,

order − (3ε − 1): λ3 = ε(3ε+1)
24

(

4φ
x
φ

xx
φ

xxx
−3φ3

xx
−φ2

x
φ
4x

φ4
x

)

+ δε,1
φ

t
φ

xx
−φ

x
φ

xt

6φ3
x

,

order − (3ε − 2): λ4 = ε(3ε+1)
24

(

6φ
x
φ2

xx
φ

xxx
−

15

4
φ4

xx
−

3

2
φ2

x
φ

xx
φ4x

φ6
x

+ φ
x
φ5x

−5φ2
xxx

5φ4
x

)

.

(2.29)

We find that the relation at order −(3ε−2) becomes an identity only for ε = 1, which makes

us suspect that also at higher order we will not encounter compatibility conditions and

therefore will not have enough parameters equaling the order of the differential equation.

To test whether new compatibility conditions arise at higher levels we can use the same

general argument as in subsection 2.1.3.

2.2.3 Resonances

We try once again to match the first term in the expansion (2.5) with some term of unknown

power. Using the expression for λ0 in (2.29) and making the ansatz

ũ(x, t) =
1

2
ε(3ε + 1)

φ2
x

φ2 + ϑφr−2, (2.30)

we compute all possible values of r for which ϑ becomes a free parameter. Substituting

ũ(x, t) into (2.28) and reading off the terms of the highest order, i.e. φ−3ε−2+r, we find the

necessary condition

εε(−i)ε−1(3ε + 1)ε−1(r + 1)
[

6(1 + 3ε) − 2(2 + 3ε)r + r2
]

ϑφ3ε
x = 0, (2.31)

for a resonance to exist. We observe the presence of the universal resonance at r = −1.

The bracket containing the quadratic term in r can be factorized as (r − r−)(r − r+) with

r± = −(2 + 3ε) ±
√

9ε2 − 6ε − 2, such that r± ∈ Z for 9ε2 − 6ε − 2 = n2 with n ∈ N. For

the solution of this equation ε± = (1 ±
√

n2 + 3)/3 to be an integer we need to solve a

Diophantine equation 3 + n2 = m2 with n,m ∈ N, which only admits n = 1 and m = 2 as

solution. Thus the bracket only factorises in the case ε = 1 into (r− 6)(r− 4). Hence, only

in that case the system can fully pass the Painlevé test. Nonetheless, we may still be able to

obtain a defective series if all remaining coefficients λj may be computed recursively. This

is indeed the case as we demonstrate in detail for one particular choice of the deformation

parameter.

2.2.4 ε = 2 deformation

For ε = µ = 2 the deformed KdV equation (2.28) acquires the form

ut − 6iuu2
x + 2iu2

xx + 2iuxuxxx = 0 (2.32)
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Integrable models from PT -symmetric deformations

Since the expression become rather lengthy for generic values in the expansion we will

present here only the case λk(x, t) = λk(t) and φ(x, t) = x − ξ(t), with ξ(t) being an

arbitrary function. We find a recursion relation of the form (2.8)

−28i(1 + j)(j2 − 16j + 42)λj(t) = −6i

j
∑

n=1

j−n−1
∑

m=1

{(m − 2)(n − 2)λm(t)λn(t)λj−m−n(t)}

+2i

j−1
∑

n=1

{

[(7 − k)n3 + (k − 4)kn2 + (18 − 5k)kn + 6k(5 + k) − 28(6 + n)]λj−n(t)λn(t)
}

+λ′

j−6(t) + (j − 7)λ′

j−5(t). (2.33)

The recursive solution of this equation leads to the expansion

u(x, t) =
7

φ2 +
iξ′φ3

156
+

(ξ′)2φ8

192192
− ξ′′φ9

681408
+

i(ξ′)3φ13

73081008
− 725iξ ′ξ′′φ14

216449705472
+

iξ′′′φ15

20262348288

− 340915(ξ ′)4φ18

23989859332927488
+

1867(ξ ′)2ξ′′φ19

758331543121152
+ O(φ20). (2.34)

Thus we have obtained a solution of Painlevé type for the deformed KdV equation, albeit

without enough free parameters, i.e. without the possibility to accommodate all possible

initial values. This means we have a so-called defective series. As in the case of the deformed

Burgers equation it is instructive to consider the series for travelling wave solutions, i.e.

taking ξ(t) = ωt, which yields

u(x, t) =
7

φ2 +
iωφ3

156
+

ω2φ8

192192
+

iω3φ13

73081008
− 340915ω4φ18

23989859332927488
+

391907iω5φ23

56760007181706436608

− 38892808841ω6φ28

507260097462393341102260224
+ O(φ33). (2.35)

Clearly we can carry on with this analysis to any desired order. The convergence of the

expansion can be established in a similar fashion as we demonstrated for Burgers equation

in the previous subsection or by making use of an integral equation of the type (2.24). We

find a similar behaviour for other values of ε.

3. Conclusion

We have carried out the Painlevé test for PT -symmetric deformations of the Burgers

equation and the KdV equation. When deforming both terms involving space derivatives,

we found that the deformations of the Burgers equation pass the test. In specific cases

we have also established the convergence of the series, such that these equations have

in addition the Painlevé property. Based on the conjecture by Ablowitz, Ramani and

Segur we take this as very strong evidence that these equations are integrable. Regarding

these models as new integrable systems leads immediately to a sequence of interesting

new problems related to features of integrability, which we intend to address in a future

publication [38]. It is very likely that these systems admit soliton solutions and it should

be possible to compute the higher charges by means of Lax pairs, Dunkl operators or
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Integrable models from PT -symmetric deformations

other methods. We should point out that most of our arguments will still hold when we

start in (2.4) with the usual Burgers equation, which has broken PT -symmetry, i.e. with

σ = iκ ∈ R. However, when embarking on the computation of charges and in particular

energies we expect to find a severe difference as then the PT -symmetry has a bearing on

the reality of the eigenvalues of the charges.

For the KdV equation our findings suggest that their PT -symmetric deformations are

not integrable, albeit they allow for the construction of a defective series.

In future work one could also include deformations of the term involving the time

derivative and it would clearly be very interesting to investigate other PT -symmetrically

integrable systems in the manner in order to establish their integrability.

Acknowledgments: P.E.G.A. is supported by a City University London research stu-

dentship.
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