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Abstract 

In this paper, we present a new pipeline for the fast and accurate segmentation of impedance 

images of the lungs using Electrical Impedance Tomography (EIT). EIT is an emerging, promising, 

non-invasive imaging modality that produces real-time, low spatial but high temporal resolution 

images of impedance inside a body. Recovering impedance itself constitutes a non-linear ill-posed 

inverse problem, therefore the problem is usually linearized, which produces impedance-change 

images, rather than static impedance ones. Such images are highly blurry and fuzzy along object 

boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter 

when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a 

two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to 

restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter 

by incorporating an adaptive foreground detection system to provide the boundary contours for the 

Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo 

deformation in a respiratory cycle. The proposed method has been validated by using misclassified 

area, false positive rate, and compared to previous methods. The results show the proposed 

automatic method can be a fast and reliable segmentation tool for EIT imaging. 
 

Keywords: EIT; ill-posed problems; impedance; regularization; segmentation; Kalman filter. 

 

1. Introduction 

There is evidence that the electrical properties of tissue vary according to its state of health (Pethig, 1984), 

which raises the possibility of distinguishing between healthy and abnormal tissue, once these electrical 

properties are known. Hence, if this latent conductivity distribution among different tissues could 

somehow be computed from measurements, a powerful diagnostic tool could be developed. Although the 
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problem of conductivity distribution reconstruction from surface measurements is non-linear and ill-

conditioned, it can be solved using 2D or 3D finite element methods (FEMs) subject to using appropriate 

regularization strategies (Molinari, 2003) and (Holder, 2005). 

 Electrical impedance tomography (EIT) forms images of the interior of the human body based on 

the passive electrical properties (i.e., electric conductivity and permittivity) of the organs inside the body. 

EIT is very useful in monitoring patient lung volume changes, due to the large conductivity contrast of air 

compared to other tissues in the thorax.  The large change in lung impedance with respiration, and the ease 

of use of impedance tomography, as a monitoring technique, has led to a significant body of research in 

lung impedance imaging (Frerichs, 1998, 1999, 2000, 2002, and 2009; Hahn et al. 1996; Victorino et al. 

2004; Grychtol et al. 2010). However, the spatial resolution of EIT images is very low and this makes it 

hard to determine the outline of these rapidly changing regions during a breathing cycle. In comparison to 

magnetic resonance imaging (MRI) and computed tomography (CT), EIT suffers from poor spatial 

resolution due to noise, low sensitivity of boundary voltages to inner conductivity perturbations and a 

limited number of boundary voltage measurements.  

X-ray computed tomography (CT) imaging generates 2D sections of the body, which are 

approximately 1mm in thickness (Hendee and Russell, 2002). Moreover, sub-millimeter spatial resolution 

having accurate discrimination between tissues (better than 1% attenuation change) can be achieved. This 

is not the case in EIT, where the spatial resolution is quite low (in the order of 10-20% of the object 

dimension)(Holder, 2005). Although, it should be noted that the poor spatial resolution of EIT does not 

come as a surprise, when one is reminded of the nature of the EIT image reconstruction problem itself 

(i.e., inverse, nonlinear and ill-posed). The latter factors impede accurate estimation of the internal 

structure boundaries. Moreover, the spatial resolution of the EIT images reduces even further with the 

rasterisation process, where FEM model results are mapped onto a rectangular grid for further image 

processing. This rasterisation step introduces further fuzziness in the reconstructed regions of conductivity 

changes in the EIT images of the lungs, and makes it even harder to determine the outlines of these 

dynamic regions during the breathing cycle. A visual comparison of an EIT image and its CT counterpart 

for imaging of the thorax is shown in figure 1.  

  

                               (a) 
(b) 

Figure 1: Spatial resolution: (a) A typical cross-sectional CT image of the thorax, (b) EIT 

difference image (brighter regions correspond to larger conductivity changes). 

 

The problem of medical image segmentation is a major obstacle in medical imaging (Pham et al., 200l ; 

Zhang, 2001; Singh 2010; Prasantha et al., 2010). The goal is to simplify the representation of an image, 
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by partitioning the medical image into multiple segments, such as locating organ boundaries, or abnormal 

growth of body tissue such as tumors. Typically a digital image represents medical images in their raw 

form, with pixel values indicating relevant physical quantity values that allow distinction between 

different types of body tissue contrast. Segmentation is an arduous task due to the presence of noise, organ 

motion, cluttered objects, occlusion, heterogeneous texture, and many other factors.  A common problem 

encountered in practice is the lack of sufficient contrast between object boundaries in medical images. To 

address this problem, several segmentation approaches have been proposed in the literature, with many of 

them providing rather promising results (Ma et a., 2010; Daniel et al, 2008). 

As discussed previously, the segmentation process, is extra difficult in EIT due the ill-posedness 

of the reconstruction problem, which lends itself into images with fuzzy organ boundaries. Hence, the 

common approach of segmenting EIT lung images is to manually define a region of interest (Frerichs, 

1998, 1999, 2000, 2002, Grychtol, 2010), and derive statistical measures. A manual segmentation 

approach is not desirable, firstly because it involves user interaction (which could be laborious and subject 

to errors), and secondly because if the goal of EIT is to be used as a bedside monitoring tool, a systematic 

approach should be developed that brings user interaction to a minimum. 

A fast segmentation method using a spatio-temporal segmentation framework was introduced in 

(Zifan et al, 2011). In the former method, in the first step, after impedance change images are 

reconstructed, segmentation is carried out directly on the finite element (FE) meshes prior to any 

rasterisation onto a regular grid. This prevents regions from becoming even fuzzier due to interpolation, 

and facilitates the estimation of accurate measurement results, which is a prerequisite for the extraction of 

much needed ventilation parameters from EIT images. In the second step, the authors use a probabilistic 

model, which accommodates for both temporal and spatial contiguity of mesh element values in order to 

segment and extract regions of conductivity changes directly from the EIT lung FE meshes. 

  In this paper, we present an alternative fast and robust segmentation framework that incorporates a 

search-space constrained Kalman filter, via anatomical information provided by a statistical shape model 

of the lung lobes and the thoracic wall, coupled with an automatic foreground detector in order to track 

conductivity changes in the lungs as they go through deformation in a respiratory cycle. Section 2 

provides a brief background of EIT, the Kalman filter and the relationship between    -norm 

regularization reconstructions and the Kalman filter. In Section 3, the segmentation pipeline is introduced, 

which discusses a framework for generating a statistical lung shape model and an adaptive foreground 

detection algorithm to enhance Kalman filtering in segmenting EIT lung images. Section 4 provides the 

simulation results. Finally, we conclude the paper in Section 5. 

2. Background 

In this section, we provide a brief background of EIT and the Kalman filter, which will be used later on in 

the simulation experiments. Moreover, we discuss the reasons behind the suitability of the Kalman filter 

when it comes to segmenting EIT images. 

2.1. Electrical Impedance tomography 

In EIT, typically low amplitude current is injected through a single (or multiple) ring of electrodes 

attached around the medium under study. Current is injected into one electrode pair and the voltages 

between other electrodes are recorded. The injection is then successively shifted so that all electrode pairs 
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are examined using either a single frequency (50 kHz) or a range of frequencies (up to 1 MHz). In order to 

reconstruct images of tissue conductivity, the following two problems must be solved: the forward 

problem and the inverse problem.  The forward problem is the determination of the voltage distribution for 

a known conductivity distribution in the imaged domain, while the inverse problem consists of 

conductivity image reconstruction using the measured voltages at the surface of the medium. This is 

shown schematically in figure 2 for an adjacent current injecting protocol, where actual measurements 

taken from the body are combined with the voltages obtained from a mathematical model in order to 

obtain the reconstructed conductivity image. 

 

Figure 2: EIT imaging system: Rotating current injection (I) is performed between pairs of adjacent 
surface electrodes on a cross-section of the human thorax, and the resulting voltages (V) are measured 
between other pairs of electrodes 

2.1.1. Forward problem 

The governing equation for the voltage field produced by applying current across a domain Ω is, 

  (    )    , 

 

(1) 

which is an elliptical partial differential equation, where σ is the conductivity of the medium, φ is the 

electric potential, ω is the frequency, and ε is the electric permittivity (Holder, 1993). Equation (1) is 

reduced to the standard governing equation for EIT,   (   )     when the angular frequency is 

sufficiently low or direct current is used. By using an excitation signal and permittivity distribution we can 

estimate the induced electrical measurements at the electrodes, using equation (1) under appropriate 

Dirichlet or Neumann boundary conditions (Holder, 1993). This is often referred to as the forward 

problem. If    is the current injected to the l-th electrode   , which has a contact impedance   , the 
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complete electrode boundary conditions (Cheng et al., 1989) are: 

        
  

  
 

(2) 

   ∫  
  

  

  
   

(3) 

where    is the constant voltage on electrode    , n the outward unit normal vector and,  

 
  

  
 = 0      (4)  

is the current density on the boundary inter-electrode gap. Finally, the solution of equation (1) can be 

approximated using the method of weighted residuals using Galerkin test functions to arrive at the 

following formula (Holder, 1993), 

 

                                                 ∫          ∑ ∫
 

    

 
    

(    )                                          (5) 

 

where   is the test function. Equation (5) can then be discretized and solved using finite elements using 

linear or quadratic elements of different orders taking the form, 

[
    

  
   

] [
 
 

]  [
 
 
] 

 (6) 

where I is the current pattern applied to the ring of electrodes, and   (       ) represents the discrete 

approximation of the potential. Using the same test functions to approximate potentials,     ∑      
 
   , 

the entries of the A matrix structure of Equation (6) can be obtained as follows,  

       ∫            ∑∫
 

    

 

    

( )       

        ∫
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        (|  |  
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(7) 

where           is the number of vertices, and L is the number of electrodes. The A matrix in (6) is 

sparse, symmetric (in the case of complex conductivities and contact impedances, this means that the real 

and imaginary parts are symmetric), and the real part is positive definite. 
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2.1.2. Inverse problem 

 If we represent the forward operator g by g(m)=d, where m is the model and d is the boundary 

measurement voltage vector, as the goal is to come up with a model that yields the actual measured 

voltages   , the simplest approach is to minimize the following sum, which is the minimum of the sum of 

square errors, 

‖    ( )‖ 
      (8) 

 where F denotes the Frobenius norm. Now, assuming no model null-space and that only the data misfit 

term as described in (8) is required to solve the inverse problem, if we could somehow linearize the g 

operator, we could use linear methods such as the conjugate gradient (CG) to derive the critical points of 

(8). This can be done, by linearizing the forward problem in the neighborhood of a reference model     
using a Taylor expansion, 

 ( )   (  )  
  

  
|
    

(    )  
   

   
|
    

(    )
    

  (  )    (  )(    )    

(9) 

Ignoring higher order terms, 

 ( )   (  )   (    ) (10) 

 

where, G is a rectangular matrix that gives the sensitivity of the forward problem to the model parameters 

at     , 

    
   

   
|
    

 
(11) 

Next, we use this Taylor expansion to linearize the inverse problem, 

   ( )   (  )   (    ) (12) 

Let,       (  )          denote the perturbation, so: 

       (13) 

which is the linearized inverse problem for the perturbation of m about       
      As the problem is ill-posed (small errors in the measurements may introduce large errors in the 

reconstruction) the minimization of the voltage error in (8), is not likely to yield good results. This is 

because in practice linear least squares calculations usually involve singular matrices or matrices that are 

numerically singular (small eigenvalues). For a unique solution, we must add some additional information 

regarding the conductivity that is independent of the data known as the prior. Regularization mitigates 
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these singularities. This can be done either by discarding small eigenvalues or by penalizing the size of the 

solution as well as the data misfit. In other words, the minimization problem of (8) can be written as, 

   ( ‖     (  )‖  ‖  ‖ ) (14) 

The first term of (14) is the data misfit, and the second term is referred to as the regularization term. We 

can also introduce a factor   that controls the tradeoff between the two terms and not only consider the 

possibility of minimizing the norm itself, but the norm of some linear function of the form, 

   ( ‖     (  )‖   ‖   ‖ ) (15) 

where                and    is an n-th order discrete difference operator. In this case, the second 

term in (15) penalizes the slope, roughness, or higher order derivatives of the model. This is useful when 

one seeks a smooth solution. 

Methods incorporating the   -norm as the regularization term, as in (14) or (15), are called 

Tikhonov regularization (Tychonoff and Arsenin, 1977) in Inverse theory and Ridge regression (Hoerl, 

1962) in Statistics. The use of this particular norm, as explained in Section 2.3, provides the key reasoning 

behind why the Kalman filter is useful for the segmentation/tracking of objects in image sequences 

obtained from the solution of ill-posed inverse problems that use the   -norm as the regularization term. 

  

 2.2. Kalman filter 

   The Kalman filter (Anderson and Moore, 1979) is a set of linear equations that provides an efficient, 

recursive means to estimate the state of a process in such a way that minimizes the mean of the squared 

error. The filter supports estimations of past, present, and future states of a system, even when the precise 

nature of the modeled system is unknown. It assumes that the posterior density is Gaussian at every time 

step, and that the current state    and observation    are linearly dependent on the past state     . The 

linear system of equations is as follows: 

              (16) 

                  (17) 

where      is the process white Gaussian noise with zero mean and covariance      (    (    )), 

{  } is the measurement white Gaussian noise with zero mean and covariance     . The covariance 

matrices    and    are assumed to be statistically independent. The matrix A is considered known and 

relates the former state      to the current state   . The matrix H is also known and relates the state    to 

the observation   . We define   ̂ 
      to be the a priori state estimate at step k, given knowledge of the 

process prior to step k, and  ̂     to be the a posteriori state estimate at step k, given measurements 

(Bucy and Joseph, 2005). Then, the a priori and a posteriori estimate error becomes (Anderson and Moore, 

1979), 
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      ̂ 

  ,        ̂  (18) 

respectively. The a priori estimate error covariance is then, 

  
      

   
    (19) 

and the a posteriori estimate error covariance is, 

         
   (20) 

In deriving the equations for the Kalman filter, the goal is to find the equations that compute the a 

posteriori state estimate  ̂  as a linear combination of an a priori estimate  ̂ 
 and a weighted difference 

between an actual measurement and a measurement prediction   ̂ 
  as described in (21), 

 ̂   ̂ 
   (     ̂ 

 ) (21) 

The matrix K in (21) is the gain. One form of the resulting K that minimizes (21) is given by (Anderson 

and Moore, 1979), 

     
   (   

     )   (22) 

 A Kalman filter uses a feedback control in order to estimate a process; it estimates the process state at 

some time k and then obtains feedback in the form of (noisy) measurements.  

2.3. Choice of Regularization and the Kalman filter 

It is not hard to see why the Kalman filter is a good choice when it comes to segmenting   -norm 

reconstructions. This can be done by re-examining (15) from a probabilistic point of view. Let us assume 

that we have a set of i.i.d. voltage measurements               , where G is the total number of 

measurements. Our goal is find a model  ̂ which best fits the data. In other words a model, which is the 

maximum a posteriori estimator (MAP) (Sorenson, 1980) of  , 

 

 ̂        ( ( |    )) (23) 

Using Bayes rule, 

 ( |    )  
 (    | ) ( )

 (    )
 

(24) 

Hence,  
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 ̂        (
 (    | ) ( )

 (    )
)        ∏ (

 

   

     
  ) ( ) 

(25) 

Now, if we assume our data comes from a multivariate Gaussian distribution  ( )  (   ), which has 

zero mean   =0 and a covariance of    
  

 ⁄  , where   is the variance,   the regularization term, and I the 

identitiy matrix. Then  ̂ becomes, 

 ̂        ∏
 

    
   

 

   

(
 (      (   ))

 

   
)  

    ( 
    

   ) 

(26) 

Taking the logarithm of (26) results in the minimization problem of, 

 ( )  ∑ (      (  ))
 
  

         (27) 

Comparing the second terms of (27) and (15) implies that       ‖   ‖ . This means that by using an 

L
2
 norm we impose a Gaussian prior assumption on the unknown parameter  . This latter fact explains 

why the Kalman filter suits best as it also uses a Gaussian distribution on the data. 

3. Methodology 

The proposed method uses a symbiotic cooperation between a anatomically constrained Kalman filter and 

an adaptive foreground detector to track changes in lung conductivity (i.e., absolute conductivity value 

changes of the mesh elements corresponding to lung regions) in EIT lung images. However, the Kalman 

filter requires Region of Interest (ROI) as the initial boundary, in our case the lung contours, to be able to 

track any conductivity changes. Hence, in the first stage a framework is introduced to build an initial 

global lung model using realistic anatomical information of the lungs inside the thorax. This is achieved 

through building a 2D statistical shape model of the lungs and the thoracic wall obtained from 2D cross-

sectional CT images of 50 subjects. Once such a shape model is built, it can be warped onto a new 

patient’s thorax geometry in order to confine the search region to speed up calculations. Furthermore, an 

automatic foreground detector is introduced that not only extracts an initial boundary contour for the 

Kalman filter, but also acts as a means for penalizing and preventing the Kalman filter estimates from 

diverging from the true lung boundaries. Finally, in order to prove the efficacy of the method, the 

proposed method is tested against the statistical segmentation approach of (Zifan et al., 2011). A flow-

chart of the proposed methodology is shown in figure 3.  
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Figure 3. Flowchart descring the flow of the segmentation process pipeline. 

As it can be seen from the above figure, a two-fold approach is used to tackle the EIT segmentation 

problem. First, a statistical lung-thorax shape model is built in order to restrict the search region of the 

Kalman filter. Second, for each new subject, using the surface voltage measurement, provided there exists 

geometric thoracic boundary information, a patient specific 2D mesh is generated via triangulation, and 

the inverse problem is solved on the former mesh (it should be noted that no Rasterisation is carried out to 

reduce boundary fuzziness due to subsequent grid interpolation). Finally, we proceed with augmenting the 

Kalman filter by incorporating an adaptive foreground detection system, which will feed its resulting 

change detection region information, in order to provide the boundary contours for the initialization and 

subsequent processing of the Kalman filter to carry out the tracking of the conductivity changes as the 

lungs undergo deformation in a respiratory cycle. 

3.1 Global Lung-thorax Shape Model: Delineating the Lungs and Thoracic Wall 

In order to derive a global shape model for the lungs and thoracic wall, which would explain the 

population mean shape and the variation within the subjects, we use Statistical shape modeling (SSM). 

Statistical shape models are commonly used in medical image analysis, computational anatomy, and 

computer vision in order to model the shape variability of biological organs (Fleute and Lavallee, 1998; 

Subsol et al, 1998; Rajamani et al, 2007, Dam et al. 2008). When it comes to building statistical models, 

one requires a set of segmentations of the organ of interest, as well as a set of landmarks, which are 

defined over the set of shapes in the training set. One major task, is finding correspondences between 
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points of different shapes, which is time-consuming and tedious. Given every image in the training set, we 

proceed with the following three major steps: 

1. Segmentation of the structure of interest (i.e., lungs and thoracic wall) from the data set 

2. Multi-resolution non-rigid registration  

3. Automatic Landmarking and Statistical shape Model Generation 

In brief, given the cross-sections of the 50 CT volume images, the anatomical structures of interest from 

each CT image are extracted. Next, a dense non-rigid image deformation is carried out to register all 

images into one global one. Next, the final mean shape image (consisting of the thoracic wall and lung 

lobe locations) is meshed, in order to create landmarks on the desired object boundaries. Principal 

component analysis (PCA) is applied next not only to reduce the dimensionality of the data and, but to 

build the final shape model describing the variance of shapes within the dataset.  In what follows, each 

step is discussed in detail. 

3.1.1. Segmentation 

In order to build the atlas, cross-sectional slices of the thorax at the lower thorax level (4
th
-6

th
 intercostal 

space on the mid-clavicular line) of 50 subjects were obtained from the ELCAP Public Lung Image 

Database in order to build the anatomical data set. The lung dataset consists of 50 CT scans obtained in a 

single breath hold with a 1.25 mm slice thickness.  

 

  

(a) (b) 

Figure 4. Extracting the lungs and the thoracic boundary of a sample cross-sectional CT : (Left) Original 

CT cross-section, (Right) Segmented image. 

In order to build the shape model, the lungs and the thorax boundary are automatically extracted. For each 

CT slice, the slice is thresholded using the algorithm proposed in (Hoffman, and Reinhardt, 2001) as 

follows: Let      be the threshold value at step I and       be the average intensities of the body pixels and 

non-body pixels, respectively. Then, the threshold for step I + 1 is set to the mean of       . This iterative 

threshold update procedure is repeated until there is no change in the threshold, i.e.         . In order to 

extract the thoracic wall, the image is inverted; the holes are filled using region filling. In order to segment 

out the lung lobes, the background is removed using the method from (Hoffman, and Reinhardt, 2001). 

The final segmentation is shown in figure 4(b). 
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3.1.2. Registration 

 The problem of the registration of two images can be described as finding an optimal 

transformation   , which can match a transformed reference image to a target image. The transformation 

T itself, constitutes a spatial mapping which relates the positions of features in one image with the 

corresponding features of the other image. Overall, the optimal transformation    is calculated by 

minimizing a cost function Q, 

           ( )        {    (            )      ( )}                               (28) 

where     and        denote the reference image and the target image, respectively. The set    is the set of 

admissable transfromations.     , denotes the similairty measure, and      is the regulariztion term wich 

penalizes undesired tranformation. 

      In order to construct the similiaty  measure, different features can be used. A simple measure, is the 

sum of squared differences (SSD) (Modersitzki, 2004), which translate to the following formulation, using 

SSD as a metric, 

    (            )      (            )  
 

 
‖            ‖  (29) 

The SSD metric forms the basis of most inensity-based image registration algorithms and one can use 

classical optimization methods in order to find the optimal solution. However, optimizing Equation (29) 

over the space of non-parametric transformations leads to unstable solutions. Therefore, the added 

regularisation term     , overcomes this problem,  

    ( )   ‖  ‖  (30) 

where   controls the amount of regularisation. Thus, the cost function can be re-written as: 

      (            )      ( )      (            )      ( )

 
 

 
‖            ‖   ‖  ‖  

(31) 

Solving Equation (31), is computationally expensive. A simple, yet intuitive method was proposed by 

Thirion (Thirion, 1995), namely Demons, and its variants (Cachier and Bardinet, 2003; Wang and Dong, 

2005; Rogeli and Kovacic, 2006), tackling non rigid registration as a diffusion process problem, We 

employ Demons’ multiresolution non-rigid registration method, to find the correspondences between 

matched labeled shapes (i.e., thoracic walls and lobes) rather than gray-level images, i.e., image 

segmentations where each voxel value indicates the type of structure this voxel belongs to. Given a fixed 

image   ( ) with dimensions     and a moving image      ( ), the non-rigid image registration is 

treated as an optimization problem that aims at finding the displacement of each pixel denoted by the 

vector   ( )     (   )     (   )     (   )  , where   (   )           is the  displacement 

vector field, so as to get a reasonable alignment of the images. The algorithm utilizes a diffusion model 

where the object boundaries in one image are characterized as semi-permeable membranes, and the other 
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image is allowed to diffuse through these membranes following the formulation of Ibanez (Ibanez et al, 

2005), 

  ( )     ( )   (    ( )    ( )) (32) 

the displacement vector is denoted by   ( ) , and the static image by    ( ). Assuming intensity 

preservation, the image moving velocity v is computed. In general, v is considered to be a displacement 

vector field u=-v in image registration. Next, at each point p out of the n points on the image, the 

displacement vector becomes (Thirion, 1995), 

 ( )   
(     ( )        ( ))

(     ( )        ( ))  ‖       ( )‖ 
       ( ) (33) 

In summary, the spatial transformation process is an iterative one. In what follows, we provide the main 

steps involved in the Demons method: 

(a) Given the current transformation T(n), compute the displacement field u(n). 

(b) Smooth the displacement field  ( )  ( )      ( ), where    is a Gaussian smoothing filter. 

(c) Compute the transformation  (   )   ( )   ( ). 

 

 

(a) (b) 

Figure 5: Example of: (a) sample segmented CT slice (lung lobes shown in white), and (b) its 

corresponding Euclidean distance transform 

 

3.1.3. Landmarking  and Shape Model Generation 

The atlas of each anatomical structure (i.e., lungs and the thoracic wall) is formed by extracting the zero 

level set of the binary images of each structure (Frangi et al, 2002). Let    and     denote the shape in 

atlas-aligned coordinates and its signed Euclidean distance transform (Danielsson, 1980), respectively. 

The signed distance transform of an average shape can be obtained by computing           

   ∑      
   . The average shape can be retrieved by thresholding the distance transform map to its 

zero-level set, as shown in figure 5. Next, this average shape is set as the temporary template and all other 

shapes are registered to this new shape using the registration procedure described in the previous section. 

This process is done iteratively until the error falls below a certain threshold. 
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Figure 6: Extracting the lungs and the thoracic boundary. 

Following the construction of the atlas, it needs to be landmarked. Ideally, a landmark is an anatomical 

point of interest that can be uniquely identified on a set of shapes. We consider the use of pseudo-

landmarks, i.e., landmarks lying on the cross-sectional thorax boundary surface, which only define its 

geometric properties. Surface landmarks are considered, which correspond to vertices, resulting from the 

triangulation of the atlas binary volume. Having obtained good surface correspondences across the CT 

images in the dataset, PCA is applied on the data (i.e. vertices of the triangulation) treating the shapes of 

each CT as sampling points in the shape space (Lorenz and Krahnstöver, 2000). Given a set of examples 

of a shape   , we build a statistical shape model. Thus, by aligning n shape samples, consisting of m 

landmarks and applying principal component analysis on the sample distribution, any example x of the 

distribution can be expressed as a linear combination of eigenvectors q. The samples are composed of the 

2D coordinates of the landmarks   (               ), both on the chest wall and the lung lobes, 

with a one to one correspondence between the vector elements of a given index due to point 

correspondences. First, the mean shape vector  ̅ and the covariance matrix C that describes the correlation 

between vector elements are defined: 

 ̅     ∑    

 

   
 (34) 

  
 

   
∑(    ̅)

 

   

 (    ̅)  (35) 

Applying PCA on the covariance matrix C results in 3m corresponding eigenvalues         

      and 3m eigenvectors               . The eigenvector    corresponding to the largest 

eigenvalue    contains the largest portion of shape variations. If the number of training set vectors n is 

smaller than the shape vector dimension, the decomposition is simplified into finding n eigenvalues of the 

implicit covariance matrix  ̃. The first (n-1) eigenvalues and eigenvectors of matrix C are determined as, 

     ̃      
    ̃

|    ̃|
           (   )  

(36) 
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where   ̃ are the eigenvalues and   ̃  are the eigenvectors of the implicit covariance matrix  ̃. By using 

these eigenvalues and eigenvectors, it is not only possible to reconstruct the original shape vectors, but 

also to generate new shape vectors (eigen shapes)   ́ , 

  ́   ̅        (37) 

where    are weight vectors. By varying the shape parameters within the limits learnt from the training 

set, for instance, |   |    √  , we can generate shapes similar to those contained in the training set. The 

three dimensional space is spanned by the first three principal components, whose score units are 

normalized by the standard deviations of each mode. The vertices of the triangulation of the shape model 

serve as a rough universal thorax and lung contour model, as shown in figure 6. Once such a mesh model 

is built, it can be warped to conform to the shape of a new patient’s thorax and superimposed to serve as 

the initial foreground area for the Kalman filtering. The anatomical shape information of the lungs and 

thorax helps speed up the Kalman filter by confining the search space of the Kalman filter to only the lung 

regions, thus improving its speed. Moreover, it enhances its accuracy by reducing outliers, penalizing 

regions that do not belong to the lungs. 

 

3.1.5. Warping onto a new Patient Geometry 

     Obviously, a new patient will have a different boundary shape compared to the global shape model 

generated in the previous section. Thus, a warping step is necessary in order to superimpose the global 

shape model onto the new patient geometry efficiently. In order to achieve this, for any new thorax shape, 

we perform the following: We assume that the boundary information of the new patient is available via 

landmark points. A uniform spline interpolation is performed to obtain a continuous boundary, which is 

filled using morphological operators to obtain the thorax region displayed in white, as shown in figure 

7(a). Next, the vertices of the global shape model are superimposed onto this thorax shape (red points in 

figure 7(a)) and the control points on the B-spline having minimum distance to the global shape vertices 

are selected as the new vertices to carry out the warping. 

       In order to warp the original global mesh vertices onto these new vertices coordinates, we 

parameterize the original global mesh onto these new vertices using the discrete harmonic map by (Eck et 

al, 1995).  Common to almost all surface parameterization methods is the approximation of the underlying 

smooth surface S by a piecewise linear surface   , in the form of a triangular mesh, i.e., the union of a 

set   {       } of triangles    such that the triangles intersect only at common vertices or edges. We 

will denote by V the set of vertices. If     has a boundary, then the boundary will be polygonal and we 

denote by    the set of vertices lying on the boundary and by    the set of interior vertices. 
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(a)                                     (b) 

Figure 7: Warping: (a) Superimposing the global lung shape (in red) onto the new patient’s boundary, 

shown in white, (b) Final warped mesh onto new patient geomtery. 

 

The most important parameterization task is to map a given disk-like surface      onto the plane. 

Working with a triangular mesh   , the goal is to find a suitable (polygonal) domain       and a 

suitable piecewise linear mapping           that is linear on each triangle    in     and continuous (see 

figure 8). 

 

 

Figure 8: Atomic map between a mesh triangle and the corresponding parameter triangle. 

Assuming    to be the original global mesh and     its boundary and    the new vertices of the warped 

mesh, we first fix the boundary mapping, i.e., fix  |   
     by mapping the polygonal boundary 

    homeomorphically to the new vertices and we find a piecewise linear mapping which minimizes the 

Dirichlet energy, 

   
 

 
∫ ‖      

 ‖
   

 
, (38) 

subject to the Dirichlet boundary condition  |   
       

The main advantage of this method is that it is a quadratic minimization problem and reduces to 

solving a linear system of equations. The resulting new vertices are shown in figure 7(b), superimposed on 

the triangulation of the new patient’s geometry. Finally, the left and right ROIs are selected by extracting 

the mesh elements, which fall inside the warped lung contours. These resulting regions are shown in figure 

9. 
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Figure 9: Extracting the lungs and the thoracic boundary. 

 

3.2 Automatic Foreground Detector 

Oncethe approximate location of the lungs (        and         ) on the new patient is extracted,  the 

initial contour to be used as the input to the Kalman filter is required. The proposed automatic method  is 

as follows: 

       For each new reconstructed EIT image sequence (or mesh sequence to be accurate, as the 

segmentation is carried out over the meshes),                ], where M is the number of images in 

the sequence, 

a) Extract a 7s window (this ensures one full breathing cycle is included, see figure 10), and 

calculate the first images with the maximum and minimum absolute conductivity change values   , inside 

in the left- and right-lung ROI regions. The resulting frames will correspond to the end expiration (   ) 

and end inspiration(    ) phases, respectively: 

        (       (    (   )        (   ) ) ) 

        (       (    (   )        (   ) ) ) 

where      denotes the ROI in the first second, etc. 

b) Extract the centroids of the         and          regions in     . For    , calculate the absolute 

sum of conductivity change values in their respective ROIs and denote them by       and        (both real 

valued numbers). Steps (a) and (b) are shown in figure 10. 

c) Find the boundary edges of the conductivity change regions by calculating the gradient of the mesh 

elements. First, we need to calculate the conductivity change gradient of   at every vertex v of the 

unstructured lung mesh. In order to estimate the value of the gradient of   at a vertex v of an element E, 

we use the method proposed in (Peyre and Cohen, 2006). Considering a 1-ring neighborhood (i.e., the 

immediate neighbors of any chosen vertex), given a local averaging function W, and a function f, the 

gradient operator G between two vertices i and j, is defined as, 

 (   )         (39) 
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  (  )    √   (     )    

 

 

Figure 10: Schematic represenation of a sample video sequence. 

 

For the local averaging, we use the square distances     ‖     ‖
  

, thus, 

 

(  )    
 (  )   (  )

‖     ‖
 

(40) 

which is exactly the finite difference discretisation of a directional derivative. 

d) For an image    at time t < M, we draw lines from the centroids of         and          at     

intervals to cover a complete 360 cycle. This corresponds to 18 cuts through each ROI, and shown in 

figure 11(a) for an arbitrary angle  .  

e) For each angle  , the mesh elements intersected by each line crosses are assembled (their total 

number denoted by j), and arranged into a vector   , containing the absolute gradient conductivity change 

values of that particular mesh element. For example, for the first element E from the centroid crossing the 

line at angle   , having vertices k, l and m, 

         (  )    (  )    (  )   ], 

          ,     , ,     ] 

(41) 

This process is repeated for all directions and the resulting vectors are assembled into a cell array Cfin, 
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Cfin = [     ,     , ,    ] (42) 

where R is the total number of directions. 

f) Next, in order to detect the foreground (i.e., conductivity change), we determine the element in 

each vector               , of the cell array Cfin, which contains the maximum gradient conductivity 

change value that its nearest to the ROI boundary control point (e.g., point    in figure 11(a)). This is 

performed for all directions. The boundary   , which represents the detected foreground at time t is 

extracted. The latter, is the convex hull of all the element vertices with the maximum gradient value in the 

ROI,      (     )   (     ) . Next, as in step (b) we calculate the absolute sum of conductivity 

change values in the current frame’s ROIs (left and right), and denote them by  ́      and  ́       

 g) Taking into account the fact of minimum conductivity change at EI,  

While  ( ́     +  ́     )    (      +       ),use the extracted boundary points obtained in Step (f) as 

the new contour for the next frame at time t+1 (i.e.,          ). The boundary points at each time 

instance are successively stored in a vector      as, 

        
      

      
   

         Else           (   ) 

The last statement ensures the contour expands again once it reaches a minimum area at end inspiration 

(EI), and prevents the contour from collapsing. 

3.3 Segmentation using the Augmented Kalman Filter 

Once the foreground contour representing the boundaries of the conductivity changes in each lobe has 

been extracted, the final position of the boundary points is the average of the Kalman filter output and the 

foreground detector. The segmentation scheme adopted is as follows: 

 For the first image    in the image sequence, use the boundary     as the initial contour, with 

corresponding locations (     ). 

 Find the estimated new boundary positions at time t+1, denoted by     , comprised of the 

new postions ( ̂   ̂ ),  using the Kalman filter. 

 The final boundary coordinates are given by the average of the Kalman filter output and the 

foreground detector positions. For example, for a single point (     )  on the boundary, 

 (          )  
 

 
 ( ̂   ̂ )  (     )  (43) 
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(a) (b) 

Figure 11: Extracting the lungs and the thoracic boundary: (a) Original boundary at time t, (b) 
Boundary at time t+1. 

 

4. Experimental results 

4.1. Data Acquisition 

Data were collected from a group of 10 male subjects with no known respiratory or cardiac abnormalities 

(age: mean 32; age range: 27-42). In each case, a 16 electrode adjacent protocol was chosen, and 16 

electrodes were placed around the subject’s lower thorax (4
th
-6

th
 intercostal space on the mid-clavicular 

line). During the measurements, the subjects laid supine, and were asked to relax and breathe normally 

during a 3 min recording. A total of 2340 frames were recorded using a Sheffield mark 1 EIT system with 

a 50 kHz current drive (Brown, 2003). The measured voltage data were then imported into EIDORS 

(Adler and Lionheart, 2006) and the inverse problem was solved using the Gauss-Newton reconstruction 

algorithm on a 2D, 576-element thorax mesh model. A sample reconstruction is given in figure 12(a). The 

registration and FEM simulations were run  under Matlab R2010a using an Intel Xeon 5130, 2.00 GHZ 

processor with 3.25GB of RAM. 

4.2.  Element Classification  

The segmentation was carried out directly on the mesh, prior to any rasterization. Once an EIT image 

sequence was chosen, each of its elements was classified to foreground or lung lobe region according to 

the algorithm described in section 3. In order to use the Kalman filter for the conductivity change 

boundary tracking, we assume that the motion of the control points is merely translational along the 

oriented lines and is almost constant over the frames. For the experiments, the state space consists of the 

four parameters (     ̇  ̇), with (x,y) representing the position of the points on the extracted boundaries 

and ( ̇  ̇) representing their transition speed. The points move according to the dynamic matrix, 

 

  [

     
     

    
    

] 
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where    is the step size, which is assumed constant. The target measurements are given by, 

  [
    
    

] 

The exact position and speed at the beginning of measurements (output of foreground detector) is known, 

and thus the estimate covariance matrix P was set to zero. The gain of the measurement noise was set to 

0.1. The step size    was set to 0.1, and the matrix H, was set to a zero. 

In frame t+1, the Kalman filter makes a prediction for a possible location of the object based on 

the contour of the output contour of the foreground detector. The final position is the average of the 

Kalman filter and the foreground detector position, as in (43). The process is then repeated on to the next 

frame, and so on. The resulting segmentation is shown in figure 12(c).  

As previously mentioned, EIT images are particularly difficult to segment due to the fuzzy and ill-

formed object boundaries in the reconstructions. Thus, a number of problems exist with the evaluation of 

segmentation algorithms for EIT image sequences. A critical issue is the lack of availability of ground 

truth data, due to which simulated EIT images are often employed to obtain a quantitative evaluation. 

Therefore, one cannot draw any definite conclusions about a particular algorithm since the simulated EIT 

images cannot accurately take into account all conditions (due to imaging as well as anatomical aspects) 

present during the acquisition of clinical data. Indeed, the usual method of expert validation, based on the 

estimation of the disparity with a manually delineated image (ground truth), suffers from human bias. 

As can be seen in figure 12, both the proposed method and the method of (Zifan et al., 2011), 

produce reliable results. However, the efficiency of the proposed method relies on the fact that by using a 

global shape model of the lungs, no prior background modeling is required; this is in contrast to the 

method of (Zifan et al., 2011), which requires this. Moreover, another benefit of the proposed 

segmentation method is its fast segmentation average time of 4.31 seconds for an EI to EE, 2D EIT image 

sequence. 

The proposed model was also compared to the Mixture of Gaussians (MoG) method described in 

(Stauffer and Grimson, 1999). The results of the proposed method in the EIT sequence of figure 12(a) are 

compared to the MoG method, and displayed in figure 13(c) for the same EIT sequence of figure 12 and 

for two other cases in figures 14 and 15. As it can be seen from these figures, the proposed method is able 

to detect better conductivity change regions, by exploiting the regional information of each element, as it 

evolves through time, thus recovering the correct shape change in the lobe regions. However, the method 

proposed by (Stauffer and Grimson, 1999) did not yield similar results. The main problems with this 

method are the presence of noise (small patches) in the foreground in some of the images and that the 

regions corresponding to the lungs appear to be over-segmented nearing end-expiration. This implies that 

the background model is matching the incorrect distribution for the background pixels. 
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(a) 

 

(b) 

 
(c) 

Figure 12: Segmentation results; image progression is from left to right, top to bottom. Full-breath cycle 

is shown: (a) Original image sequence, (b) Time-adaptive method described in (Zifan et al., 2011), (c) 

Proposed  method. 
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(a) 

 

(b) 

 

(c) 

 

Figure 13: Segmentation results, image progression is from left to right, top to bottom. Full-breath cycle 

is shown: (a) Original image sequence, (b) Proposed method (c) Time-adaptive per-pixel MoG method. 
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(a) 

 

(b) 

 

(c) 

 

Figure 14: Segmentation results, image progression is from left to right, top to bottom. Full-breath cycle 

is shown: (a) Original image sequence, (c) Time-adaptive per-pixel MoG method, and (c) Proposed 

method. 
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(a) 

 

(b) 

 

(c) 

Figure 15: Segmentation results, image progression is from left to right, top to bottom. Full-breath cycle 

is shown: (a) Original image sequence, (c) Time-adaptive per-pixel MoG method, and (c) Proposed 

method. 
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Comparing the segmented ROIs obtained from the simulations with manual segmentations by three 

radiologists assessed the segmentation results.  A mesh element is labeled as ‘1’ if at least two out of the 

three radiologists assign it as a ground-truth element (i.e., element belongs to region of conductivity 

change). Area overlap (AO), false positive rate (FPR), false negative rate (FNR) are used as the 

performance metrics. The metrics are computed as follows (Park and Lee, 2009): 

 

       
|     |

|     |
 

 

        
|     

 |

|     |
 

 

        
|  

    |

|     |
 

 

(44) 

where   are segmented regions and   
  its complement. While,    represents the ground truth data, 

delineated by the radiologists. FPR is used to quantify over-segmentation of conductivity change regions, 

while FNR contributes to under-segmentation within the segmented sequence. 

 

 

Table 1: Performance evaluation comparison 

(%) AO FPR FNR 

Proposed 97.089 2.177 0.734 

Time-adaptive MOG 

 
95.140 3.864 0.995 

Time-adaptive 

 
96.978 2.142 0.879 

 

 

Table 1 shows the performance evaluation between the proposed fully automatic framework, with the 

time-adaptive MOG of  (Stauffer and Grimson, 1999) and the adaptive method as described in (Zifan et 

al., 2011). The results show that the proposed method outperforms the two other methods, providing a 

high AO, while reducing false positives. The Time-adaptive method of (Zifan et al., 2011) shows 

comparable results to the proposed framework. However, the time-adaptive MOG lags the previous two 

methods, even though it gives a relatively high AO. The latter observation is mainly due to the existence 

of false positives, an over segmentation of the conductivity change regions. The former is not observed in 

the proposed method, as prior anatomical knowledge of lung lobes has been incorporated into the 

segmentation framework. 

5. Conclusions 

The work proposed in this contribution is a fast and robust segmentation pipeline for extracting 

conductivity changes in EIT lung images. The method involved a parallel approach, which combines the 
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outputs of a Kalman filter and an adaptive foreground detector to classify EIT mesh elements into lung 

and non-lung regions. Moreover, a prior model based on the anatomical position of the lungs in the thorax 

was generated in order to restrict the region of search and speed up computations. The results obtained 

from the different patient datasets show that this new approach can be successfully applied to robustly 

segment conductivity changes in EIT lung images. The proposed automatic segmentation framework 

operates directly on the resulting Finite Element meshes, prior to any rasterisation, thus reducing the 

propagation of errors in the reconstructed impedance change regions, due to interpolation. Application of 

the proposed method offers an alternative real-time automated framework to interactive segmentation 

commonly employed by EIT researchers and clinicians. 
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