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Stimulation and measurement patterns versus prior

information for fast 3D EIT: A breast screening case

study
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Abstract

Imposing prior information is a typical strategy in inverse problems in return

for a stable numerical algorithm. For a given imaging system configuration,

the Picard stability condition could then be deployed as a practical measure

of the performance of the system against noise contaminated data. Herein,

we make extensive use of the above measure to quantify the performance of

impedance imaging systems for various stimulation protocols. We numeri-

cally demonstrate that a large number of electrodes, as required for breast

imaging, adds little value, if any, to the performance of the impedance imag-

ing system. On the other hand, by engaging more electrodes to the 3D firing

process, a step increase in performance is recorded. Numerical results on a

female breast phantom reveal that for a conventional combination of stimu-

lation and prior information, the potential of the imaging system is approx-

imately 15%. In contrast, for the proposed stimulation and a better prior,

∗Corresponding author at: Information Engineering and Medical Imaging Group,
EEIE, SEMS, City University London, Northampton Square, EC1V 0HB, London, UK,
Tel: +44 (0) 207040 3886, FAX: +44 (0) 207040 8568

Email address: p.kantartzis@city.ac.uk (Panagiotis Kantartzis)

Preprint submitted to Signal Processing February 7, 2012

*Manuscript

Click here to view linked References



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

recorded performance is 61% and 97%, respectively. Finally, since a smaller

number of electrodes participate in the measurement process, a significantly

reduced number of observable data is acquired. It is worth underlining, that

despite the reduction in measurements no compromise in the quality of the

reconstructed image is reported.

Keywords: Electrical Impedance Tomography, stimulation protocol,

measurement protocol, SVD, Picard’s criterion, breast screening

1. Introduction1

Despite the advances in medicine and diagnostic technology, cancer is2

still one of the top causes of death, if not the leading one on the global3

scale. WHO, the World Health Organisation, on its February 2012 fact4

sheet, reports that ‘deaths from cancer worldwide are projected to continue5

to rise to over 13.1 million in 2030’ [1]. In particular, lung, stomach, liver,6

colon and breast cancer cause the most cancer deaths each year.7

In the UK alone, ‘breast cancer is the second biggest cause of death from8

cancer for women, after lung cancer. On average, nearly 50,000 people are9

diagnosed with breast cancer each year. That is one person every 10 min-10

utes’ [2]. As breast cancer is one of the most common cancer types and has11

higher cure rates if detected early [1], there is an all-time-high interest in the12

development of fast & robust screening modalities for breast cancer.13

The gold standard for breast screening is essentially Mammography, often14

coupled with Magnetic Resonance Imaging (MRI). However, both Mammog-15

raphy and MRI suffer from low specificity rates [3, 4]. In fact, a relatively high16

rate of raising false positive screenings is frequently encountered, entailing17

2
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additional costs for the healthcare system but, more importantly, additional18

distress for the patient. One should also factor in that patients subject to19

Mammography screening are exposed to ionizing radiation.20

On the other hand, in breast MRI, a contrast agent need to be used [5],21

also known to produce toxic side effects for the patients. In addition, in22

younger ages where the breast tissue is denser, Mammography fails to pick23

abnormalities so Ultrasound appears to be more appropriate [6]. Therefore,24

as specificity of current imaging modalities is not adequate, further develop-25

ment of alternative techniques is highly desirable. Herein, we omit to discuss26

methods not fully-approved by the US Food and Drug Administration as27

screening tools for breast cancer, e.g., Thermography, CT Laser Mammog-28

raphy.29

Electrical Impedance Tomography (EIT) is also being investigated in the30

field of breast imaging as a complementary technique to Mammography for31

breast cancer detection. Unlike MRI, EIT is portable, inexpensive and in32

a similar spirit to Ultrasound it does not use ionizing radiation. It is also33

worth underlining that EIT is already successful in providing valuable in-34

sight in both industrial and medical applications [7]. Moreover, commercial35

versions of EIT systems are now available in routine clinical use [8]. As the36

electrical properties of normal and malignant breast tissue differ [9], an early37

commercial development for breast screening, T-scan, has been developed38

[10]. T-scan has received approval by the US Food and Drug Administration39

to be used as a diagnostic aid to Mammography as it has been demonstrated40

to improve sensitivity and specificity. Hence, there is an all-time-high interest41

in further pursuing research to establish whether EIT could further improve42

3
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reported specificity rates, if not survive as a stand alone screening modality43

in this field.44

In principle, EIT is simple and easy to operate and requires no expe-45

rienced clinicians to perform a scan. In a typical experiment, currents are46

applied through electrodes attached to the periphery of a body and voltage47

measurements are collected from some other surface electrodes. The observed48

data vector, i.e., voltage measurements, is then fed to a computer to estimate49

the interior material (tissue) distribution [11–15].50

Not many will argue that most of the numerical effort is typically allo-51

cated to the image reconstruction aspects of the EIT problem. Unlike stan-52

dard imaging methods, as for instance xray-CT, in EIT one could model,53

study and demonstrate how a ‘local’ perturbation affects not only nearby54

measurements but, crucially, all measurements [11]. Despite the fact that55

captured measures are sensitive to local perturbations, little is reported on56

how to optimise driving patterns that produce more valuable measurements57

and thus reconstructions. Recall that measurements is the only observable58

data vector.59

It is worth mentioning the reports [16, 17], where the authors derived pat-60

terns that maximise the distinguishability between two corresponding mate-61

rials or simply the anticipated reconstruction contrast. Briefly, the idea is to62

maximise the difference between the two Neuman-to-Dirichlet (NtD) maps.63

In a circular domain, the optimal stimulation pattern accounts for the eigen-64

values of the corresponding NtD functional, i.e., firing on electrodes with65

Fourier bases. Although this provides an excellent solution from a mathe-66

matical point of view, there are some practical limitations of the suggested67

4
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method. For instance, one needs to drive a pattern on all electrodes and then68

measure the resulting voltages on same (current carrying) electrodes. Hence,69

more practical patterns are sought.70

In a 3D setting, there is a greater flexibility in stimulating the object.71

The authors in [18], suggested some measures to assess available stimulation72

protocols. Amongst many, their findings encouraged non-adjacent electrode73

patterns. Further, since for a given set of driving patterns, measurements are74

subject to a reconstruction (and thus regularisation) algorithm, results could75

be significantly enhanced or deteriorated. It is not clear therefore, how to76

best stimulate an object in order to get the most out of a measurement data77

set. This simply means, that the way that the object is stimulated could78

either enhance or obscure information content. See [19] for a discussion on79

information content for EIT.80

In the context of breast imaging, the reconstruction situation could be81

much less trivial mainly due to practical limitations. For instance, a large82

array of electrodes needs to be attached to the easily deformable female83

breast. Since both the number of electrodes and hence measurements as84

well as model misfits of the actual boundary surface are said to affect the85

quality of the reconstructed image [20], one encounters a potential bottleneck86

on how to proceed. The latter can be addressed by optical measurements87

that could result is accurate representations of the female breast surface [21].88

However, there is no straightforward way as to which stimulation pattern89

would provide best results for the breast domain at hand and, of course,90

under what constraints.91

To alleviate this, the authors in [22] proposed plane-wise sinusoidal volt-92

5
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age patterns with different phases per plane, that provide improved images.93

Assuming that a phase difference is the way forward for breast EIT screening,94

the question on whether one takes the most out of the available EIT system,95

as some of the measurements are (numerically) linearly dependent, is still96

open. In sort, this implies that one would eventually need to compensate97

for this loss by means of penalising higher frequency solutions, i.e., regular-98

isation, to avoid numerical instability. Needless to say that determining the99

optimal number of electrodes is also an additional open issue.100

In the same spirit, the authors in [23] identified the stimulation short-101

comings and proposed a much promising strategy which was numerically102

demonstrated in a 2D setting with 32 electrodes. Unlike most conventional103

methods reported in literature, the novelty lies in engaging 4 electrodes to104

act as group and then use 2 such groups of 4 electrodes to drive a current pat-105

tern. The authors, by means of Generalised Singular Value Decomposition106

(GSVD), derived a measure to quantify collected measurements against prior107

information as well as measurement noise, in order to filter out problematic108

singular values.109

In this paper, we follow the guidelines of [23], as, in our view, this ap-110

pears to be the only practical measure that factors in prior information when111

devising a stimulation strategy. Further, we extend the stimulation protocol112

to 3D, where a greater number of electrodes and patterns is often available.113

To the best of our knowledge, this methodology has never been tested to a114

3D domain before. On the other hand, our contribution differs from the one115

in [23] as we account for groups of variable electrode numbers to apply the116

desired stimulation protocol. This implies a variable reduction in the num-117

6
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ber of collected measurements (and thus data acquisition timings) without118

compromising on the quality of the reconstructed images. Finally, there is119

no need to measure on current carrying electrodes, e.g., [16, 22].120

In the next section, a brief introduction to the theoretical framework121

of EIT is given. The Singular Value Decomposition (SVD) along with the122

GSVD are also provided as a means of studying a reconstruction stability123

criterion (Picard’s criterion) in Section 3. Next, the suggested 3D stimulation124

scheme is demonstrated in Section 4 on a simple cylindrical tank and perfor-125

mance is reported against conventional stimulation patterns. The method-126

ology is then carried over to Section 5 which is concerned with a female127

breast phantom, where further numerical results are presented. Discussion128

and conclusions finalise this article.129

2. Theory: EIT problem130

The goal in EIT is to successfully derive a stable numerical map between131

observable voltages and unobservable interior admittivity distribution(s) in132

order to infer desirable material/tissue information.133

There are two computational models in literature for the EIT; a higher134

frequency one [24] and a lower frequency one [25]. The latter is freely avail-135

able from the EIDORS repository [26] whilst, nowadays, represent a widely136

accepted and used testbench. Therefore, without loss of generality, we omit137

the high-frequency model and we focus on the low-frequency one.138

2.1. The forward problem139

According to the EIT-adapted adjoint fields method [27], the process of140

simulating the boundary surface electrode voltages (i.e., assembling the so141

7
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called forward operator in EIT) requires repeated solutions of a generalised142

Laplacian PDE of non-constant coefficient, subject to appropriate boundary143

conditions [28] of the form144

∇ · (σ∇u) = 0 in Ω

σ∇u · ν = ı on Γ

u+ zℓσ∇u · ν − Uℓ = 0 on Γℓ

(1)

where σ, u, Uℓ, ν, ı, zℓ are the admittivity, the interior potential distribution,145

the surface potential on the ℓ−th electrode, the outward unit normal vec-146

tor, the current density and the surface impedance, respectively. Additional147

boundary conditions on the interelectrode gaps Υ require that148

σ∇u · ν = 0 on Υ. (2)

Ω ⊂ ℜ3 is a bounded domain equipped with L electrodes attached on its149

Lipschitz boundary surface ∂Ω. Γ ⊂ ∂Ω is the union of areas under each150

electrode, assumed to be open connected subsets
⋃L

ℓ=1 Γℓ = Γ, whose closures151

are disjoint,
⋂L

ℓ=1 Γℓ = ∅. Υ := ∂Ω \ Γ is the union of the remaining areas.152

Defining the sesquilinear form as [28]153

aΩ((v, V ), (w,W )) :=

∫

Ω

σ∇v ·∇w dΩ+
L∑

ℓ=1

∫

Γℓ

1

zℓ
(v−Vℓ)(w−W ℓ) dsΓℓ

, (3)

the weak formulation of the EIT problem on the original domain Ω can be154

stated as the following direct Boundary Value Problem (BVP): Given a (c-155

th) driving pattern (currents) I(c) := (I1, . . . , IL)
T ∈ R

L find (u, U) ∈ H1
Ω156

such that157

a((u, U), (v, V )) =
L∑

ℓ=1

IℓV ℓ for all (v, V ) ∈ H1
Ω (4)

8
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where Iℓ denotes the current applied to the ℓ-th electrode andH
1
Ω := {H

1(Ω)⊕158

ℑL}/ℑ is the (quotient) solution space. Equation (4) requires repeated so-159

lutions for the various driving patterns I [d] := (I(1), I(2), . . . , I(d)) ∈ R
L×d

160

that form the stimulation pattern I [d]. In addition, solutions of m-adjoint161

stimulation patterns I [m] ∈ R
L×m are also required [27]. Intuitively, varying162

the number of stimulation patterns directly affects the number of required163

solutions for the PDE, Equation (4). Given that EIT is typically concerned164

with large-scale Finite Element systems, ‘short’ patterns (d≪) are favoured165

as they offer significant computational savings. Hence, it is not hard to infer166

that the role of the stimulation pattern I [d] (and eventually I [m]) is of great167

computational significance.168

Using conventional EIT modelling methods, measured data y is essentially169

the result of the application of a measurement operatorM (Green’s operator)170

to electrode potentials U from Equation (4) as171

y = MU (5)

The steps above essentially reflect the so-called forward EIT problem and172

are summarised by the non-linear operator Λ : L2(Ω)→ ℑm,173

Λ(σ) = y (6)

which links the interior material distribution σ := σ(x) ∈ L2(Ω), x ∈ Ω with174

the observed data y ∈ ℑm, where m is the number of measurements. Of175

interest for EIT imaging is the inverse problem, set out in the next section.176

9
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2.2. The inverse problem177

The inverse EIT problem is formed as the problem of estimating the178

unobserved distribution σ from an observable one y. From an optimisation179

point of view, this can be formed as a quadratic minimisation functional of180

the form181

min
σ

1

2
‖Λ(σ)− y‖22 (7)

2.3. The linearised EIT problem182

Given a neighbourhood σ0, the forward operator is said to be Frèchet183

differentiable, hence application of Taylor’s expansion yields the linearised184

version of the EIT functional as185

Λ(1)(σ0)
︸ ︷︷ ︸

J

(σ − σ0)
︸ ︷︷ ︸

δσ

= (Λ(σ)− Λ(σ0))
︸ ︷︷ ︸

δy

+O(σ2)
︸ ︷︷ ︸

≈0

(8)

or approximately as186

Jδσ = δy (9)

where Λ(1)(σ0) is essentially the first order Frèchet differentiation of the non-187

linear operator Λ at σ0. Clearly, the dimensionality of J is determined by188

the dimensionality of the unobservable distribution σ and the measured data189

y.190

10
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2.4. Measured data191

In a typical EIT fashion, the measured data vector is contaminated with192

some noise originating from various physiological, modelling and discretisa-193

tion errors. Without loss of generality, herein, noise ǫ is assumed as additive.194

As such,195

Jδσ = δy + ǫ (10)

In a discrete setting, where only a finite set of measurements (y) could be196

collected, the number of the corresponding discretised equations of Equation197

(10) is finite. On the other hand, since the number of discretisation variables198

for σ typically outnumber the dimensionality of the measurements, one en-199

counters a heavily underdetermined problem. From a least squares point of200

view, the (maximum likehood) analytical solution of the above system results201

in the solution of the normal set of equations as202

δσ = (JTJ)−1JT (δy + ǫ) (11)

Unfortunately, the above solution is of little practical numerical use as203

the discrete equivalent of J , i.e., J, is a dense, rectangular and ill-conditioned204

matrix, hence sensitive to numerical errors. Using simple algebra, it is not205

hard to demonstrate that since J is anticipated to be ill-conditioned, (JTJ)206

is severely ill-conditioned. Hence, one would eventually need to account for207

this numerical deficiency by means of a regularisation functional R in order208

to compute a physically meaningful solution. The minimisation functional is209

now casted as210

11
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min
σ

1

2
‖Jδσ − δy‖22 +R(σ) (12)

In the Tikhonov regime, typical regularisation candidates are constraints211

for a bounded solution R(σ) := 1
2
λ‖σ‖22 or, more precisely, for a bespoke212

penalisation of non-smooth solutions as R(σ) := 1
2
λ‖Dσ‖22, where λ is a213

regularisation parameter, D is a differential operator. The selection of the214

optimal regularisation parameter and matrix is beyond the scope of this arti-215

cle and is omitted. The reader is kindly referred to [29] for the determination216

of the λ using, e.g., the L-curve method.217

Assuming a Tikhonov based regularisation functional, one now arrives at218

the (maximum a posteriori) analytical solution219

δσ = (JTJ + λDTD)−1JT (δy + ǫ) (13)

A discussion on non-linear reconstruction methods is omitted. Rather,220

we refer to [30] and references therein for extensive reviews and discussions.221

2.5. SVD & GSVD222

In the sequel, the δ-term in the discrete equivalents of δσ, δy, is dropped223

for notational convenience. Also, real admittivies are now assumed, i.e.,224

conductivities.225

The SVD is now employed to facilitate discussion on the interaction be-226

tween original information contents encapsulated in J and the artificially227

imposed prior information matrix R. SVD analysis involves expansion of the228

linearised system to an orthogonal basis as in the standard Fourier analysis.229

12
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The SVD of the (linearised) discrete forward operator J ∈ ℜm×N , m ≥ N , is230

effectively a decomposition of the form [31]231

J = PΞQT =
N∑

i=1

piξiq
T
i (14)

where P = (p1,p2, . . . ,pm) and Q = (q1, q2, . . . , qN) are matrices with or-232

thonormal columns, i.e., P TP = QTQ = I, called the left and right singular233

vectors, respectively. The non-negative entries of the diagonal matrix Ξ are234

typically sorted in non-increasing order as235

ξ1 ≥ ξ2 ≥ . . . ξN ≥ 0 (15)

and are identified as the ‘singular’ values.236

In broad terms, the sequential order of the singular values is inversely237

proportional to information fidelity. Coarse information, associated with low238

frequencies, is anticipated towards the first singular values, whilst fine detail,239

encapsulated in high frequencies, is usually concentrated towards the last240

singular values, i.e., as i→ N .241

Using SVD, one may determine a generalised inverse J† for J, correspond-242

ing to the different properties that J may satisfy. In effect, one may obtain243

J† as244

J† =

n†∑

i=1

qiξ
−1
i pT

i (16)

where245

n† :=







N, if J is invertible;

nr = rank(J), if J is r−rank-deficient.
(17)

13



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

The first case assumes that J is of full rank and effectively corresponds to246

the so called generalised Moore-Penroose ‘pseudo inverse’ [31]. The second247

case, which reflects the EIT problem, J is assumed to be r-rank deficient248

which implies that some of the smallest singular values are practically zero,249

i.e.,250

ξ1 ≥ . . . ξnr
≥ ξnr+1

≈ . . . ≈ ξN ≈ 0 (18)

Based on SVD, the Moore-Penrose inverse J† can be written in the fol-251

lowing form [29]252

σ† = J†y =

n†∑

i=1

pT
i y

ξi
qi (19)

From the above equation, one may study the contribution of the singular253

values ξi and the solution σ† and in fact, understand why SVD provides254

an insight into the ill-posedness. Generally speaking, should one attempt to255

invert small singular values ξi ≈ 0, the solution σ† would attract considerably256

high values, effectively obscuring the desired solution. In this respect, even a257

small perturbation in y can cause a dramatically high perturbation in σ† as258

the tiny values of ξi would eventually prevail, rendering the obtained solution259

meaningless.260

An indication of the severity of ill-conditioning is given by the ratio of261

the largest to the smallest singular value κJ = ξ1/ξN which is also identified262

as the condition number. The larger the condition number of J, the more263

severe the ill-posedness of the problem and the more the ill-conditioning it is.264

The concept of GSVD is now considered, where the main difference between265

GSVD and SVD is that, rather, a matrix pair is now analysed. In this light,266
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GSVD provides valuable insight of a matrix coupling. For our needs, the267

coupling of R, i.e., the selected regularisation matrix, and J is assumed. In268

the GSVD setting, the decomposition takes place in a slightly different form269

for the individual matrices as270

J = PΞX−1, R = QMX−1 (20)

where matrix X is non-singular and P , Q are orthonormal and different271

from their SVD counterparts. This notational abuse is solely for convenience272

purposes. In a similar fashion to SVD, matrices Ξ and M are diagonal with273

normalised entries ξi, µi, i = 1, . . . , p, ξ2i + µ2
i = 1 and for historical reasons274

arranged in non-decreasing and non-increasing order 0 ≤ ξi ≤ 1, 1 ≤ µi ≤ 0,275

respectively. The generalised singular values are then276

γi =
ξi
µi

(21)

In a similar fashion to SVD, one could study the generalised singular277

values to assess ill-conditioning, however, by taking into account prior infor-278

mation.279

3. Picard’s stability condition280

In [29], the author popularised Picard’s criterion as an invaluable insight281

into the stability of the regularisation problem. In effect, in Picard’s crite-282

rion the stability of the regularised problem is oriented around the (decay of)283

Fourier coefficients |pT
i y|, or more realistically |p

T
i (y + ǫ)| [29]. These coef-284

ficients are frequently encountered in the literature as Picard’s coefficients.285

Herein, we adopt this term.286
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As thoroughly discussed in [29], the key feature exploited in this section is287

that our measurements are contaminated with noise. It turns out that such288

errors typically tend to have components along all the left singular vectors289

pi. Hence, Picard’s coefficients |p
T
i (y + ǫ)| of observed data, typically level290

off around the noise measurement levels. Therefore, in order to maintain291

stability, one requires that Picard’s coefficients decay to zero faster than the292

generalised singular values γi.293

This is a great computational quality ‘measure’, that couples observed294

data with a priory information (incorporated in the regularisation matrix),295

without requiring to execute the reconstruction algorithm, e.g., Equation296

(13). In this regard, it is an a priory criterion to comment on the quality, if297

not effectiveness, of the proposed EIT configuration. Nevertheless, Picard’s298

criterion is a computationally intense, especially for large scale systems as it299

involves GSVD. On the positive side, one would only need to run this test300

once and in advance of the reconstruction algorithms, in order to test the301

suitability of the chosen regularisation matrix for the problem at hand.302

In the next section, we scrutinise stimulation patterns under Picard’s303

stability criterion.304

4. Putting everything together: Stimulation, measurements & nu-305

merical stability306

In order to provide a fair comparison between conventional and proposed307

stimulation, we kick off our numerical simulation with a simple study: We308

consider a cylindrical tank of uniform background distribution and a spher-309

ical perturbation (x1 + .2)2 + (x2 + .3)2 + (x3 + .4)2 − .12 < 0 of δσ = 10%310
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of the background value. One could consider adjacent simulations, however311

according to [18] little information is acquired with adjacent stimulation pat-312

terns so we focus on a standard opposite 2-electrode pair stimulation pattern.313

For clarity, we opt for a linearised problem, the solution of which is given by314

Equation (13). Unless otherwise specified, the identity matrix is employed as315

the regularisation prior, RTR = I. At this stage, the selection of the regu-316

larisation matrix is of secondary importance when compared to the selection317

stimulation pattern. Next, we vary the number of electrode ring number as318

well as the number of electrodes per ring. In all simulation results, 25dB319

Gaussian noise ǫ is added to the simulated measurements.320

4.1. Simple cylindrical phantom, 2-electrode pair321

When L := 6 electrodes are available and current is applied to a 2-322

electrode pair of opposite electrodes, i.e., I1 = [1, 0, 0,−1, 0, 0]T , one could323

collect measurements between electrodes {2, 3} and {5, 6}, i.e., (L− 4) mea-324

surements for this particular current pattern. By shifting the current pat-325

tern by one electrode, one arrives at I2 = [0, 1, 0, 0,−1, 0]T . Repeating for326

L-electrodes, eventually, one could potentially collect m := (L − 4)L = 12327

measurements, half of which are linearly dependent. Thus, one practically328

collects a total of m := L(L− 4)/2 = 6 measurements for y.329

Assuming a piecewise constant (per element) approximation in (3), (4),330

for the real admittivity distribution,331

σ ≈
N∑

i

σiχi=1 (22)

where χi is the characteristic function and N is the number of elements, the332

size of the typically underdetermined version of the Jacobian is J ∈ ℜm×N ,333
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where practically m≪ N . The sensible step therefore is to establish means334

of increasing the number of measurements m until, ideally, m ≈ N . This,335

in turn, entails a significant increase in the number of measurements and,336

eventually, electrodes L.337

Aside from impractical, an increased number of measurementsm will con-338

tribute towards unrealistically high computational overheads both for the as-339

sembly and inversion of the dense matrix J (not to mention ill-conditioning).340

Therefore, should a classical 2-pair stimulation and measurement strategy341

be deployed, a practical upper bound in terms of available computational342

resources is encountered.343

On the other hand, taking into account that we are dealing with an344

inverse problem, it is essential for stability to only utilise a subset of the345

available singular values spectrum, as suggested by the singular value analysis346

of Section 2.5. Moreover, in order to factor in the role of the regularisation347

matrix R as well as the presence of the noise in the measurements, the GSVD348

analysis, in particular, is recalled.349

In Figure 1a), a plot of Picard’s coefficients along with the generalised350

singular values γi is illustrated for 3 rings of electrodes. Recalling Picard’s351

criterion of Section 3, one requires a faster decay of Picard’s coefficients352

|pT
i (y + ǫ)| than the decay of the generalised singular values γi. In [23], the353

ratio of the generalised singular values that meet Picard’s criterion over the354

total number of available generalised singular values is termed as gain of the355

selected stimulation pattern. Clearly, as it can be depicted from Figure 1a),356

the majority of singular values is below Picard’s threshold. This becomes357

profound as the number of electrodes increases in the same Figure for the358
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cases of b) 24, c) 36 and d) 48 electrodes, where notably only a few singular359

values γi survive filtration. The actual gain recorded for each case, when 3360

ring of electrodes are considered, is tabulated in Table 1 and termed as Gain361

1. In the same Table, the ratio of the number of electrodes over the number362

of measurements is also tabulated to demonstrate how improportional the363

increase of electrodes is with respect to measurements could be.364

In order to further demonstrate that, practically, the quality of gathered365

measurements is no better when additional electrode rings are added, we366

repeat the previous experiment. In the new configuration, the number of367

electrodes remains fixed for each case as before, however, an additional ring368

of electrodes is allowed. As such, a different electrode distribution is enabled369

as illustrated in Figure 2. The corresponding gains for the 4-ring systems are370

now tabulated in Table 2 and termed as Gain 2. By coupling Figure 2 and371

Table 2, it is evident that, assuming fixed number of electrodes for each case,372

essentially the additional ring allowance, offers very little improvements, if373

any at all.374

Taking into account that the meshing algorithm [32], produces slightly375

more mesh elements to accommodate the need for the additional ring, gains376

obtained from Gain 2 are slightly worse than the ones obtained in Gain 1377

or, in broad terms, in the same range as in Gain 1. It is not hard to obtain378

from Tables 1 & 2 that the additional ring of electrodes results in the same379

number of measurements and does not yield an overall system improvement380

in the sense discussed herein.381

In fact, one should focus on the fact that, for the given opposite 2-382

electrode pair stimulation pattern, as the total number of electrodes increases,383
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both Gain 1 & Gain 2 plummet, as more regularisation would indeed be384

required for stability. In this regard, less singular values would escape fil-385

tration. This should be approached as a numerical acknowledgement of the386

fact that increasing the number of electrodes does not (necessarily) increase387

the potential information content. Note that this acknowledgement triggers388

again the earlier question on whether we take the most out of an EIT system,389

which essentially paves the way for non-conventional stimulation/collection390

protocols.391

4.2. Simple cylindrical phantom - multiple electrode pair392

Rather than engaging two electrodes to stimulate currents, we employ393

a multiple-electrode stimulation pair. That is, opposite groups of electrodes394

are now considered. In order to briefly report on the rationale behind this395

step, assume that L = 12 electrodes are available at our disposal and that396

the number of desired stimulation patterns is d = 6. We now suitably group397

some of the available electrodes, say 1 group of 2 electrodes, where current398

is injected, and 1 group of 2 electrodes where current exits the medium. In399

this way, we are left with L− 2 · 2− 2 = 6 non-current carrying electrodes to400

gather measurement data. For 6 desired patterns this accounts for 6 · 6 = 36401

measurements. This figure is significantly less than the 96 measurements402

that would have otherwise needed. The advantage of this stimulation pat-403

tern is that although L = 12 electrodes were originally considered, the EIT404

system is essentially clocked with just 36 measurements. In other words, 36405

measurements translate to just 37.5% of the overall time required to collect406

data with the conventional 2-pair opposite protocol.407

Given the GSVD discussion of the previous sections, it remains to demon-408
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strate that the resulting gain for the multiple-electrode pair is better than409

the conventional one. Intuitively, since more electrodes are involved in the410

firing process whilst occupying a greater boundary surface, it is sensible to411

anticipate some gain improvements over the conventional 2-electrode pair412

stimulation scheme. In other words, one would expect to observe a faster de-413

cay in Picard’s coefficients than the generalised singular values of the matrix414

pair (J, I) for this particular case.415

Figure 3 reveals the generalised singular spectrum against Picard’s coeffi-416

cients. The superiority of the proposed scheme materialises from the readings417

of Table 3, in particular when a large number of electrodes L is considered418

(Gain 3). The naive interpretation of Table 3 is that for the same domain,419

with the same forward problem parameters and the same regularisation ma-420

trix, one could essentially derive an improved system. As in the derived421

EIT system m is significantly smaller that the original one, so is the lin-422

earised problem. Hence, by definition, this is a lower dimension problem so423

intuitively should be a much faster problem to solve.424

The advantages of the proposed scheme become more apparent as more425

electrodes are engaged in the stimulation process. For clarity, the number426

of electrode rings is increased to 4 and the corresponding singular spectrum427

for the 4-ring electrode case is illustrated in Figure 4. As anticipated, a428

significant gain improvement when compared with Gain 2 is recorded and429

the results are tabulated in Table 4 (Gain 4).430

In the next section, the multiple-electrode pair scheme is applied to a431

breast phantom.432
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5. Breast screening with EIT433

It is evident from the previous sections that an increased number of elec-434

trodes is not necessarily a computational bottleneck. We refrain from dis-435

cussing methods of accurately extracting the boundary shape of the breast436

or the technicalities of applying a large number of electrodes to the female437

breast skin as these topics are beyond the scope of this contribution. Rather,438

we refer to [21] for accurately extracting boundary surfaces.439

Having demonstrated the effectiveness of the proposed scheme, the next440

sensible task is to report on the performance on a non-identity prior. For441

this purpose we employ the so called NOSER prior, which is essentially the442

diagonal of JTJ. We fix the number of electrodes to L = 36 and we illustrate443

a relatively fine (near the electrodes) mesh of a breast phantom in Figure 6444

(top).445

The performance of the original stimulation pattern (L/d = 1) is illus-446

trated in Figure 5a) and the corresponding gains are tabulated in Table 5.447

As anticipated, the recorded gain (0.15364) is not far from the one recorded448

in Gain 1, L = 36, for the identity prior, i.e., 0.13281, Gain 5. However,449

an increase in the gain measure is reported when, as expected, the more effi-450

cient NOSER prior is used (Gain 6) for the same case (L/d = 1). Next, we451

test the proposed configuration for L/d = 2 electrodes per group against the452

conventional (L/d = 1) one. This action essentially supports the theme of453

this paper which is swap the single electrode groups for more electrode per454

group.455

In Table 5 one may appreciate the performance of the suggested scheme456

for the priors considered herein. Clearly, increasing the number of electrodes457
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per firing-group results in a more efficient systems. This could be further458

enhanced by the selection of the NOSER prior.459

In summary, by suitably ‘clocking’ an EIT system with an appropriate460

stimulation pattern as well as an appropriate prior, the performance of the461

same system could be drastically improved from 0.15364 (Gain 5) to 0.9773462

(Gain 6), not to mention data acquisition and computational times. If more463

electrodes are considered, say L = 48, rather than 2112 measurements, only464

180 measurements need to be collected. This accounts for approximately465

8.52% of the original measurement number or a saving in the data acquisi-466

tion time of approximately 91.48%. Thus, for this example, one could not467

only derive a faster system but could also getaway with a fraction of the468

conventional measurements.469

In order to demonstrate that essentially no compromise in quality of the470

reconstructed images is reported, we provide some representative reconstruc-471

tion results. The question of the optimum regularisation value is essentially472

an active research area where various methods could be used [29]. This is473

beyond the scope of this paper as the answer lies with the problem at hand474

and the specifications to be met. Therefore, images are reconstructed for475

various equidistant logarithmic values for λ, ranging from 1e-1 to 1e-8, i.e.,476

λ ={1.00000e-001, 1.33352e-002, 1.77828e-003, 2.37137e-004, 3.16228e-005,477

4.21697e-006, 5.62341e-007, 7.49894e-008, 1.00000e-008}.478

For clarity, we present linear reconstructions for the various configurations479

reflecting the number of electrodes per firing-group, i.e., the conventional one480

L/d = 1-electrode per group in Figure 7, the proposed one for L/d = 2-481

electrode per group in Figure 8 and for L/d = 6-electrode per group in482
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Figure 9. In each Figure, one depicts from the first column 2D coronal483

slices extracted from the original 3D simulated perturbation. Essentially, we484

extract 2D reconstructions at levels h = [−0.8,−0.6,−0.4,−0.2]T , hence 4485

images per column. The columns next to the original 3D perturbation, i.e.,486

columns 2-10 in each Figure, are reconstructions for the various values of λ.487

To avoid biased reconstructions and essentially an inverse crime, mea-488

surements and reconstructions were computed on different meshes. In effect,489

measurements were collected from the fine mesh for a 10% perturbation, pre-490

sented in Figure 6 (middle). As mentioned before, 25dB noise was added to491

the measurements. All reconstructions were performed on a coarser mesh,492

shown in Figure 6 (bottom). Herein, for all simulations the EIDORS toolbox493

was employed [26].494

6. Discussion495

In our view, since EIT is an inverse problem, one should couple proposed496

stimulation and measurement strategies with prior information. Further, as497

it is clearly demonstrated by our numerical results, the 1-electrode group,498

simply put, performs poorly. The advantages of the compound-electrode499

pair outperform the conventional stimulation methods.500

It would be of great interest to verify our numerical findings with realistic501

measurements. The current bottleneck however, is that most available EIT502

systems are configured (hardware-wise) to fire on single-electrode groups and503

are typically manufactured with a little number of electrodes. As such, as504

long as a multiple-electrode pair system becomes available to our disposal505

we will publish our findings. Although that we have no mathematical means506
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to support such a statement at this stage, it appears that a ‘more random’507

choice of non-opposite groups would probably increase the incoherence of J508

and would probably improve reconstruction quality.509

On the other hand, by using the GSVD analysis, one could essentially pro-510

vide a good indication of the amount of information that a specific coupling511

(J,R) could offer to the inverse problem, before actually solving Equation512

(13). In this light, it is of little suprise that the identity prior offered very513

little improvement in the performance of the system. Indeed, the poor perfor-514

mance indicated that major amendments in the selection of the regularisation515

matrix were necessitated.516

6.1. Further work517

This study is part of our long term goal to derive model reduction schemes518

in EIT without compromising on robustness and/or quality of acquired EIT519

data/images. In this regard, a reduction in m was achieved and essentially520

reflected in J.521

In [15], the author proposed multi-level basis functions (wavelets) as ba-522

sis functions for both the forward and inverse computations of the soft-field523

imaging problem in order to reduce dimensionality of J (by compression).524

This automatically enabled the ‘multi-level Jacobian’ and hence the multi-525

level version of the forward version at no additional computational cost. To526

the best of our knowledge such a configuration was not available before. It527

is sensible therefore, to join the ideas developed in this article with the ideas528

developed in [15] in order to offer a ‘possibly primitive’ model reduction529

scheme that makes use of no additional transformation aside from the ones530

required for the solution of the inverse problem. Needless to say that if ap-531
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propriate, this could be further combined with other generic model reduction532

methods, e.g., statistical ones [33], to offer additional significant advantages533

in reconstruction timings.534

On the other hand, there is no restriction on the use of non-linear schemes535

to perform the reconstruction task. In fact, the proposed method, appears536

to best suit non-linear systems where linearised steps are essential. Thus,537

the proposed method has the potential to enable additional computational538

savings. Not to mention that although real admitivities were considered539

herein, there is no obvious limitation for the complex case. In this manner,540

higher frequency model or multi-frequency EIT system could also be studied.541

7. Conclusion542

In this article, we numerically demonstrated that by engaging more than543

one electrodes in the stimulation pattern, significant computational savings544

could be reported. Moreover, it was shown that unlike conventional systems,545

in the proposed configuration, as the number of electrodes increases so does546

the performance of the proposed system. Simulations on simple tanks with547

various numbers of electrode rings and number of electrodes per ring were548

presented. Ideas developed were then applied to a breast phantom. Repre-549

sentative reconstructions for the breast phantom were provided to emphasise550

that despite the reduction in the number of collected measurements, no com-551

promise in the quality of the reconstructed images is reported.552
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Figure 1: Conventional opposite 2-electrode pair stimulation protocol: Picard’s coefficients

superimposed to the generalised singular values for a cylindrical tank test phantom where

3 rings of electrodes are attached. The total number of electrodes is a) 12, b) 24, c) 36

and d) 48.
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Electrodes L Measurements m L/m Gain 1

12 96 0.12500 0.19792

24 480 0.05000 0.19167

36 1152 0.03125 0.13281

48 2112 0.02273 0.12612

Table 1: Conventional opposite 2-electrode pair stimulation protocol gains: Gain is the

ratio of the practically available generalised singular values against the total number of

generalised singular values for a cylindrical tank test phantom where 3 rings of electrodes

are allowed.
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Figure 2: Conventional opposite 2-electrode pair stimulation protocol: Picard’s coefficients

superimposed to the generalised singular values for a cylindrical tank test phantom where

4 rings of electrodes are attached. The total number of electrodes is a) 12, b) 24, c) 36

and d) 48.
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Electrodes L Measurements m L/m Gain 2

12 96 0.12500 0.23958

24 480 0.05000 0.13125

36 1152 0.03125 0.12674

48 2112 0.02273 0.09564

Table 2: Conventional opposite 2-electrode pair stimulation protocol gains: Gain is the

ratio of the practically available generalised singular values against the total number of

generalised singular values for a cylindrical tank test phantom where 4 rings of electrodes

are allowed.
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Figure 3: Proposed opposite protocol (d = 6 driving patterns): Picard’s coefficients su-

perimposed to the generalised singular values for a cylindrical tank test phantom where 3

rings of electrodes are attached. The total number of electrodes is a) 12, b) 24, c) 36 and

d) 48.
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Electrodes L Measurements m L/m Gain 3

12 36 0.33333 0.36111

24 84 0.28571 0.52381

36 132 0.27273 0.57576

48 180 0.26667 0.44444

Table 3: Proposed opposite protocol gains (d = 6 driving patterns): Gain is the ratio of

the practically available generalised singular values against the total number of generalised

singular values for a cylindrical tank test phantom where 3 rings of electrodes are allowed.
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Figure 4: Proposed opposite protocol (d = 6 driving patterns): Picard’s coefficients su-

perimposed to the generalised singular values for a cylindrical tank test phantom where 4

rings of electrodes are attached. The total number of electrodes is a) 12, b) 24, c) 36 and

d) 48.
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Electrodes L Measurements m L/m Gain 4

12 36 0.33333 0.36111

24 84 0.28571 0.41667

36 132 0.27273 0.46212

48 180 0.26667 0.38333

Table 4: Proposed opposite protocol gains (d = 6 driving patterns): Gain is the ratio of

the practically available generalised singular values against the total number of generalised

singular values for a cylindrical tank test phantom where 4 rings of electrodes are allowed.
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Figure 5: Conventional versus proposed opposite protocol for various numbers L/d of

electrodes per stimulation group. a) L/d = 1, b) L/d = 2 and c) L/d = 6 electrodes per

groups. In the left column results shown assume a simple identity prior and in the right

column results shown assume the NOSER prior.
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L/d Electrodes L Measurements m L/m Gain 5 Gain 6

1 36 1152 0.03125 0.15364 0.26736

2 36 540 0.06671 0.26673 0.55001

6 36 132 0.27274 0.61361 0.97731

Table 5: Comparison between conventional (L/d = 1) and proposed (L/d = 2, 6) opposite

protocol gains for the breast phantom. Priors considered herein are the Identity (Gain

5) and the NOSER (Gain 6) one.
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Figure 6: Breast phantom meshes: (Top, middle) Fine meshes used to simulate measure-

ments. In the middle a 10%, 3D perturbation is shown. (bottom) A coarser mesh to be

used for reconstruction purposes.
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Figure 7: Conventional opposite protocol (L/d = 1 electrodes per group). First column

is the original 3D perturbation presented as 2D coronal slices of the breast phantom at

levels h. Remaining columns (2-10) are reconstructions for various values of the regularisa-

tion parameter λ={1.00000e-001, 1.33352e-002, 1.77828e-003, 2.37137e-004, 3.16228e-005,

4.21697e-006, 5.62341e-007, 7.49894e-008, 1.00000e-008}.
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Figure 8: Proposed opposite protocol (L/d = 2 electrodes per group). First column is the

original 3D perturbation presented as 2D coronal slices of the breast phantom at levels

h. Remaining columns (2-10) are reconstructions for various values of the regularisa-

tion parameter λ={1.00000e-001, 1.33352e-002, 1.77828e-003, 2.37137e-004, 3.16228e-005,

4.21697e-006, 5.62341e-007, 7.49894e-008, 1.00000e-008}.
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Figure 9: Proposed opposite protocol (L/d = 6 electrodes per group). First column is the

original 3D perturbation presented as 2D coronal slices of the breast phantom at levels

h. Remaining columns (2-10) are reconstructions for various values of the regularisa-

tion parameter λ={1.00000e-001, 1.33352e-002, 1.77828e-003, 2.37137e-004, 3.16228e-005,

4.21697e-006, 5.62341e-007, 7.49894e-008, 1.00000e-008}.
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Highlights:

• Improved stimulation protocol for 3D impedance imaging;

• Suitable for excessive electrodes in 3D geometries, e.g., breast imaging;

• Reduction in number of measurements and data acquisition timings;

• Improved performance for the same impedance imaging system;

• No compromise on the quality of reconstructed images;

1

*Highlights


